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Abstract

We define a meta-logic to serve as a formal framework in which meta-programming
tasks for a simple functional language can be elegantly specified. Highlighting the
relationships among meta-programming, logic programming and natural deduc-
tion, we consider both practical and theoretical concerns of program analysis and
thus motivate our methods. Then, using techniques inspired by structural opera-
tional semantics and natural semantics, we investigate how, in a natural deduction
setting, we can specify a wide variety of tasks that manipulate functional programs
as data objects. Specifications of this sort are presented as sets of inference rules
and are encoded as clauses in a higher-order, intuitionistic meta-logic. Program
properties are then proved by constructing proofs in this meta-logic. We argue
that the meta-logic provides clear and concise specifications that suggest intuitive
descriptions of the properties or operations being described. In particular, the
rich structure of functional programs, including a variety of binding and scoping
mechanisms, can be naturally represented and analyzed. We support this claim by
providing three example specifications for simple meta-programming tasks. From
a practical standpoint, the meta-logic can be implemented naturally in a logic
programming language and thus we can produce experimental implementations
of the specifications. We expect that our efforts will provide new perspectives and
insights for program manipulation tasks.

24.1 Introduction

Meta-programming, in its most general setting, is any programming task in which
programs are treated as data objects. We typically distinguish between the meta-
language, in which we write the meta-programs, and the object-language, in which
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the programs being manipulated are written. These two languages may in fact
be the same language (giving rise to meta-circular interpreters, for example) but
in general they can be two unrelated languages. Considering this definition of
meta-programming we observe that many common programs or procedures can
be classified as meta-programs: (1) editors treat programs as objects that are to
be modified; most editors do not treat object programs as a special data type
(distinct from arbitrary text), though some recent programming systems include
editors in which they are [27]; (ii) compilers treat programs as the source and
target objects of a translation process; (2:1) interpreters treat programs as input
data and produce as output the result of executing the program. A more narrow
definition of meta-programming includes only meta-interpreters providing exten-
sions to languages and program transformers, e.g., partial evaluators and abstract
interpreters. In this chapter we assume the former, more encompassing, definition
of meta-programming. This choice does not greatly affect the issues that arise in
this study, but merely enlarges the set of examples from which we can select.

The focal point of this work is the definition and examination of a meta-logic
for specifying meta-programming tasks over functional programs. We cannot
hope to be completely general in this goal as we must make certain choices during
our investigations: the choice of the functional programming language that we
consider and the range of meta-programming tasks to be considered. We will use
a small subset of Standard ML as our object language. Although we hope that
the methods we present will accommodate a wide range of meta-programming
tasks, we do not expect to define formally the limits of our methods.

The main purpose of this work is to demonstrate how, with the proper meta-
logic, a natural deduction paradigm provides a suitable framework for manipu-
lating and analyzing functional programs. Previous work has used inference rules
to specify the dynamic semantics and other properties of programs [5, 25], but
their emphasis has typically been more towards software engineering issues and
less towards a study of the resulting proof system. We are concerned with defin-
ing and characterizing a formal meta-language via proof-theoretic methods and
with understanding the nature of proofs that can be constructed in this language.
From a practical standpoint this work finds immediate application in the develop-
ment of programming languages and programming language environments. Such
tasks require development tools that are both expressive and extensible (as well
as other qualities as described below). The methods pursued in this work seem
to be well suited in both regards.

An expectation of this work 1s that with a single meta-language, we can spec-
ify a wide variety of tasks that treat programs as objects. We have considered
specifications for tasks such as evaluation, type inferencing and compilation, each
presented by a set of inference rules. Additional work has considered strictness
analysis and mixed evaluation. By describing these apparently disparate tasks
in a unified framework we hope to gain insight into the similarities and differ-
ences among these tasks. From a practical standpoint, this uniform treatment
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of tasks suggests the possibility of integrating various tools. From a theoretical
standpoint, a detailed analysis of a variety of tools can be performed using uni-
form techniques. Thus the same (meta-theoretic) analysis techniques used on the
static semantics of a language could apply to a compiler for the language.

Another expectation of this work concerns an analysis of the proof-theoretic
tools we describe. By exploiting our foundations in proof theory we hope to reason
about meta-theoretic properties via proof transformations and manipulations. For
example, we can show that certain program transformers have a correctness-
preserving property by demonstrating an equivalence between certain classes of
proof trees. Thus, using some well-established methods of proof theory we can
express and prove important (meta-)properties of our meta-programs.

Finally, an important aspect of this work is its operational characteristic.
We can interpret the meta-programming specifications as defining an operational
semantics in the sense of [25]. Thus we provide an operational description, that
we claim is natural and intuitive, of a variety of program analysis tasks. Such
descriptions facilitate our understanding of these tasks.

The remainder of the chapter is organized as follows. In Section 24.2 we present
some general background material on meta-programming, natural deduction and
logic programming. We discuss the relationships between these concepts and
motivate some of our decisions. In Section 24.3 we describe the issues involved
in manipulating programs as first-class objects. In Section 24.4 we describe a
general framework for our proof systems and the methods used to encode func-
tional programs as terms. We outline how program properties can be denoted by
propositions in a suitable logic. In Section 24.5 we describe a simple functional
language E and then in Sections 24.6 and 24.7 we specify a static semantics (for
type inferencing) and a standard evaluation semantics for E.

24.2 Meta-Programming, Natural Deduction and Logic
Programming

To help motivate our particular methods we consider several perspectives of meta-
programming, both practical and theoretical. Our first point is to distinguish be-
tween meta-logic and meta-programming. Meta-programming implicitly implies
some programming language is used to manipulate object programs, but it does
not stipulate the properties of this meta-language. One could choose languages
such as Lisp or Prolog to implement all of the meta-programming tasks that we
have in mind. We are, however, concerned with the formal properties of such im-
plementations and so we are concerned with a logic for meta-programming, which
we refer to as a meta-logic. Our approach is to first define a logic (including
terms, propositional formulas and methods for constructing proofs) suitable for
describing manipulations and analyses on simple functional programs. Then we
shall describe an implementation for this logic.
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Above we described a class of programming tasks operating on programs as
data and labeled these as meta-programming. This viewpoint provides one as-
pect to this work, that of the “high-level” tasks involved and their motivations.
Equally important are two orthogonal issues: logical formalism and implementa-
tion. Logical formalism refers to the logic upon which our methods or solutions
are based. From this viewpoint we expect to provide a formal basis from which
we can reason about the tasks involved. We choose a natural deduction system
to provide the formal or logical basis of our methods. We also wish to provide
practical implementations of the meta-programs and so we must consider the per-
spective of implementation. We choose a logic programming paradigm to provide
an implementation vehicle. The justification for these two choices is given by the
intimate relationship among them and meta-programming.

24.2.1 Natural Deduction and Meta-Programming

In a natural deduction theorem prover, one thinks of constructing proofs of propo-
sitions according to a prescribed set of inference rules. These propositions are
typically defined in some formal logic, e.g., first-order predicate calculus. The in-
ference rules are typically characterized as being either introduction or elimination
rules according to whether a logical connective is introduced or eliminated in the
conclusion. For our application, the atomic propositions will denote statements
about object programs. These statements may either be statements concerning
a program property ( “program P is well-typed”) or concerning an operation on
the program ( “program P evaluates to value V”). The inference rules for our
purposes will correspond roughly to the inference rules of Gentzen’s NJ (natural
deduction for intuitionistic logic). The particular choice of terms, propositional
formulas and inference rules is largely based on the object language that we con-
sider, though the kind of program property or operation that we consider, also
matters.

This connection between natural deduction and meta-programming largely
originated with the work on structural operational semantics [25] and later natural
semantics [4, 16]. The current work is closely related to the application of the
LF (Logical Framework) system to operational semantics [3] and grew out of an
effort to extend the methods of natural semantics [11]. While natural semantics
provides methods for specifying many meta-programming tasks, we feel that its
use of strictly first-order terms and limited types of inference figures makes the
formal properties of their meta-program harder to determine. We shall represent
programs instead as simply typed A-terms and shall also extend the underlying
reasoning mechanism of natural semantics with two kinds of introduction and
discharge rules. We argue that this extension yields a higher-level description
of many program manipulations and provides a more natural specification of
these tasks. Many low-level routines for manipulating program code, such as
substitutions for free variables, changing bound variable names, maintaining a
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context, elc., are essentially moved to the meta-language and need not be written
into the specification.

24.2.2 Natural Deduction and Logic Programming

The connection between natural deduction and logic programming has already
been exploited in the work of natural semantics where the specifications are com-
piled into Prolog. In general, logic programming languages provide many features
that make them suitable implementation languages for natural deduction theorem
provers [6]. A brief examination of these features makes this connection obvious.
A foremost aspect of computation in logic programming is the search operation.
Taking a procedural view of logic programming we can describe the execution of
a logic program by describing a search process through a space defined by the
program. Search is also an important component of natural deduction theorem
proving. The task of constructing a proof can be described as the exploration of a
search space. Unification is a second characteristic feature of logic programming.
It provides a mechanism for matching two terms. More specifically, we can specify
“generic” clauses in a program and then use these clauses in specific instances via
unification. A similar mechanism plays an important role in constructing proofs
in natural deduction. A natural deduction system can be specified by a set of
inference rules. These rules are typically given by rule templates, i.e., ones that
contain free variables. Proofs will contain only closed instances of these rules and
so some matching or unification process is required to produce the required in-
stances of these rules. Finally, most logic programming languages are constructed
from clauses of the general form “Body O Head” with the intuitive reading “if
Body is true then Head is true.” Thus the inference rules used to specify a natu-
ral deduction system should have a natural translation into clauses of this form.
The head and body of a clause will denote the consequent and the antecedent
of an inference rule. This straightforward translation into clauses together with
the declarative style of logic programming suggests that using logic programs can
provide perspicuous implementations of natural deduction theorem provers.

24.2.3 Meta-Programming and Logic Programming

As discussed above, the characteristic feature of meta-programming is the manip-
ulation of programs as data objects. Thus we require a language that is equipped
with terms suitable for representing programs as first-class objects and with mech-
anisms for analyzing these terms. We will argue that an encoding of programs
into simply typed A-terms provides a convenient representation for manipulating
functional programs as objects. A characteristic feature of logic programming
1s unification of terms and we will make a use of a particular kind unification
to provide an appropriate mechanism for analyzing terms representing programs.
We will also make a simple use of 3-conversion for manipulating A-terms in useful
ways.
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A common presentation of meta-programming is in terms of some kind of
conditional rules. For example, a program transformation system, in which an
input program is manipulated into another program, is typically given by a set of
rules. Each rule contains conditions describing the applicability of the rule and
these conditions may be in the form of tests or procedures to be performed on
the incoming program. Such rules can be naturally encoded as clauses in a logic
programming paradigm.

A third point considers again the search paradigm of logic programming.
Meta-programming, too, is often reduced to a problem of search. In fact, part of
the complexity of many meta-programming tasks is their lack of a simple deter-

ministic algorithm. Rather, a search must be conducted, as in the case of program
transformation where many rules may be applicable for a given program.

24.2.4 Natural Deduction and Sequent Systems

In his seminal paper on logical deduction Gentzen presented two intuitionistic
proof systems, LJ and NJ [7]. In the system LJ, sequents of the form I' — A,
where T is a sequence of formulas and A is a formula, form the basic propositions.
The sequent ' — A denotes the proposition: from the formulas in I', the formula
A follows. In contrast, the basic proposition in the proof system NJ is a single
formula: the context by which that formula is proved 1s left implicit. A common
distinction made between the two systems is that the more notationally explicit
LJ system is more suitable for machine implementation while the less explicit NJ
is more suitable for human understanding.

A similar distinction between styles of operational semantics can be made.
The work on natural semantics is built essentially on a sequent style proof system
where sequents are of the form I' F P(P) in which P(P) is a predicate over
program P and T is a set of assumptions about the identifiers (free variables)
of P. The work in this paper is built essentially on natural deduction proof
systems. In a sense, the difference between the two approaches is insignificant:
for the examples presented in this paper a simple translation from one style to
the other is possible. Each method does have certain advantages over the other,
however. For example, by being more explicit, the sequent style is more closely
tied to conventional implementations of functional programming languages. The
set I' often acts as a mapping from identifiers to values and such mappings can
be efficiently implemented. While the natural deduction style systems, which
rely on introduction and discharge rules, seem further removed from efficient
implementations, they are often more easily manipulated in a formal setting.
See [10] for an examples where the formal manipulation of a natural deduction
style proof system was much more convenient than its corresponding sequential
specification.
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24.3 Programs as First-Class Objects

At the heart of meta-programming is the issue of representing programs as first-
class objects and manipulating these objects. The static structure of programs,
however, 1s inherently complex, with structure arising from a variety of binding
constructs and scoping rules. Hence a meta-logic (or meta-programming lan-
guage) should be suitably equipped with appropriate data structures and opera-
tions to facilitate the task of effectively representing these objects. In this section
we attempt to characterize an effective representation for the kind of program
analyses that we would like to specify in our meta-logic. In what follows we
assume the reader to be familiar with the notion of lexical scoping.

If we consider Standard ML [13] as the prototypical functional programming
language then we can immediately observe several kinds of binding operations
occurring in simple programming examples. The example program in Figure 24.1
contains four different kinds of bindings. The datatype definition introduces two
new identifiers: the type name MYPAIR and the constructor pair. The scope for
these two identifiers is assumed to be “global” in that the definition has been
added to the top-level environment. Next we have the definition of functions that
introduce the identifiers swap, st and snd, all denoting (function) values. The
scope of the identifier swap is, like the two above, global, while the scope of both
fst and snd is local to the definition of swap. Finally, each of the three function
definitions introduces identifiers as formal parameters with a scope local to the
associated definition: p is local to the definition of swap; instances of x and y are
local to the definitions of both fst and snd.

As this small example plainly illustrates, even a simple programming language
can incorporate a number of binding constraints. Here we have four, over type
names, constructors, function names and formal parameters. The notion of global
scope is really only one of convenience and does not need to be considered as a
special case. Note that in each case above what was introduced was simply an
identifier, regardless of whether it denotes a value, type, etc. Thus our meta-logic
may only need a single mechanism for providing a scoping for identifiers over (a
representation of) expressions to capture a wide variety of binding operations in
the object language.

Consider using Standard ML itself as the meta-language for just this simple
example. We could naturally define (at the meta-level) datatypes for representing
expressions, declarations and bindings, as was done in the Standard ML of New
Jersey compiler [1]. (In this compiler, the datatype declaration for bindings alone
contains the union of nine different kinds of bindings!) In this compiler the bind-
ing information 1s managed via an explicit environment that performs binding,
lookup and scope management functions. For the particular application of com-
pilation, this treatment of bindings is perhaps optimal as it is efficient and easily
implemented. So one conclusion possible from the experience with the Standard
ML compiler is that Standard ML provides suitable facilities for representing itself
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datatype MYPAIR = pair of int #* int;

fun swvap p =
let fun fst(pair(x,y)) = x;
fun snd(pair(x,y)) =y
in
pair(snd(p), fst(p))
end;

Figure 24.1: Examples of Bindings in Standard ML

as data objects. Compilation, however, is only one of several meta-programming
tasks we would like to consider.

Consider, then, the possible analysis or manipulation facilities that Standard
ML could provide. At the primitive level of the language, only simple pattern
matching is provided to decompose terms. As a simple example of how this level
of sophistication is inadequate for some purposes, consider the following two ex-
pressions:

fun fst(pair(x,y)) = x; fun snd(pair(y,x)) =y

and suppose we wish to determine if these two expressions denote the same expres-
sion. A simple check for syntactic identity would report that these two programs
are different. A more sophisticated program could, of course, be written that
would check for the alphabetic variants in bound variable names and conclude
that these two fragments are equal. Note, however, that the two instances of
the identifier pair could refer to different constructors (e.g., one defined over
pairs of integers and one over pairs of reals), depending on the contexts in which
each function was defined. The problem encountered with this example is that
equality between A-termis is typically considered modulo A-conversion. This no-
tion of equality 1s a much more complex operation than the simple syntactic
equality provided naturally by pattern matching. In particular, using this notion
of equality, a A-term is equal to any alphabetic variant of itself (a-equivalence).
Meta-programming equality modulo A-conversion is a particularly appealing idea:
A-terms provide the essential de-sugared elements of functional programming, dis-
pensing with the need for keeping tract of bound variable names.

To provide further analysis capabilities we consider unification of simply typed
A-terms as described in [14]. If the only method for manipulating A-terms is via
normalization and unification then it is impossible to distinguish between two
programs which are equal modulo A-conversion. Furthermore, unification is a
sophisticated mechanism that can be used to probe the structure of programs,
respecting congruence classes modulo A-conversion. The use of A-terms and A-
term unification to implement program manipulation systems has been proposed
by various people. Huet and Lang in [15] employed second-order matching (a
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decidable subcase of A-term unification) to express certain restricted, “template”
program transformations. Miller and Nadathur in [18] extended their approach
by adding to their scheme the flexibility of Horn clause programming and richer
forms of unification. In [11} we argued that if the Prolog component of the TYPOL
system [2] were enriched with higher-order features, logic programming could play
a stronger role as a specification language for various kinds of interpreters and
compilers.

With these ideas in mind we shall define an abstract syntax for programs and
types of the object language based on the simply typed A-calculus. We shall
represent programs as simply typed terms by introducing an appropriate set of
constants to a calculus from which we can construct terms denoting programs. In
general, for each programming language construct we introduce a new constant
which is used to build a term representing this construct. And for each construct
that introduces a binding (of an identifier), we use a A-abstraction where the
abstracted variable denotes the bound identifier and the expression over which it
is abstracted defines the scope of the binding. This uniform treatment of bindings
provides a natural specification of many programming language constructs. We
also define new base types (or sorts) corresponding to the different categories of
the object language. For example, a simple functional language might require two
sorts, one for object-level terms and one for object-level types. We provide an
example of such an abstract syntax in Section 24.5.

While we are only concerned in the current work with the simply typed A-
calculus, richer and more flexible A-calculi have been proposed as a suitable rep-
resentation system for programs. For example, Pfenning and Elliot in [23] have
extended the simply typed A-calculus to include simple product types. They also
discuss in depth the role of higher-order abstract syntaz, i1.e., the representation of
programs as A-terms, in the construction of flexible and general program manipu-
lation systems. The LF specification language [12] uses a A-calculus with a strong
typing mechanism to specify various components of proof systems: much of this
specification language could profitably be used in the context we are concerned
with here [3].

Similar advantages of the blend of higher-order unification and logic program-
ming have been exploited in systems that manipulate formulas and proofs of
logical systems. Felty and Miller in [6] discuss the use of a higher-order logic
programming language to specify and implement theorem provers and proofs sys-
tems. Here again, A-terms and higher-order unification are used to represent and
manipulate formulas and proofs. The Isabelle theorem prover of Paulson [22] also
makes use of these features to implement flexible theorem provers.

24.4 The Meta-Logic

Having settled on the representation of programs as A-terms we now define the
propositional formulas of our logic and a core of “primitive” inference figures.
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These inference figures will correspond to a subset of the inference figures of
Gentzen’s NJ system. For a specific specification (of some meta-programming
task), additional inference figures will be added.

Propositions in our meta-logic are either atomic or compound, and are given
the type o. The atomic propositions of our meta-logic will be constructed from
a finite set of n-ary propositional symbols (typically with n = 2), each with a
given type. Given a propositional symbol p of type (in curried form) (o —
03 — ---0n, — 0) and typed A-terms ?;:01,1:02,...1,:0,, then p(t,t,...1;) 1s
a proposition of type o. Compound propositions are constructed with the logical
connectives &:(0 — 0 — 0), = (0 — 0 — 0) and V:((¢ — 0) — o). Here, V is
polymorphic in the type variable o. So, for example, if A; and A, are propositions
then so are (A1& A3), (A; = Az) and (V Az.A;). We shall typically write (V Az.A)
as (Vz A).

To manipulate such propositions, particularly the compound ones, the meta-
logic comes equipped with four primitive inference figures, given in Figure 24.2.
The first one, (87) is applicable when the A-terms representing the propositions
in Ag and A; are #n-convertible. By virtue of this rule, we generally think of any
two A-terms as equal if they are @n-convertible. For example an instance of this
rule is

type(1l, 1nt)
type((Az.z 1), 1nt)

where type 1s some non-logical predicate constant.

The second inference figure, (&7), is called conjunction introduction. When
using this inference rule to construct proofs we interpret it in the following back-
ward fashion: to establish the proposition in A; & A,, establish the two separate
propositions found in A; and A,.

The remaining two rules deal with introduction and discharge. To specify the
introduction and discharge of assumptions needed to prove hypothetical proposi-
tions we use the inference figure (=>7). That is, to prove A; = A,, first assume
that there 1s a proof of A; and attempt to build a proof for A, from it. If such a
proof is found, then the implication is justified and the proof of this implication is
the result of discharging the assumption about A4;. This rule is called tmplication
introduction. Proving a universally quantified proposition has a similar structure,
suggesting the inference figure labeled (VI). Here, to prove a universal instance,
a new parameter (c¢) must be introduced and the resulting generic instance of
the quantified formula must be proved. Of course, after that instance is proved,
the parameter must be discharged, in the sense that ¢ cannot occur free in A4 or
in any undischarged hypotheses. This rule is called universal introduction. The
corresponding discharge or elimination rules are also included in the meta-logic
but are not used in any of the examples presented.

These two rules, implication and universal introduction, are not typically
found in other presentations of operational semantics. We shall use these two
together in the following way. For a particular meta-programming task we shall
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L (o) LT ()
(A1)
: Alz — (]
A = Ay

Figure 24.2: Primitive Inference Figures

introduce a new inference figure whose premise is of the form
Ve(Ai(c) = Az(c))
which we can describe operationally as follows:

Introduce some new constant ¢, not occurring in A;, A, or any current
hypothesis; then assume property A; about c. From this assumption
attempt to prove property A, for c. If such a proof can be found then
discharge the assumption A;(¢) and the parameter c.

We shall see how this kind of reasoning provides a powerful and natural way of
describing aspects of meta-programming tasks, particularly when dealing with
object-level bound variables.

A specification of a meta-level program will be a collection of atomic proposi-
tions which will denote axioms and a collection of inference figures, none of which
introduce the symbols &,=,V. Of course, the premises to user supplied infer-
ence figures can contain instances of these symbols. Following the convention of
specifying proof systems, we interpret these inference figures as schemas, in that
the inference figures may contain free variables that get instantiated to specific
instances. (We assume all capitalized i1dentifiers denote variables.) Thus we take
the universal closure of each inference figure. When providing examples of infer-
ence figures later in this chapter, we shall drop references to the connective & in
premises. Inference figures of the form

A & A,
Ay

A A,

will simply be written as
Ao

Notice that we have not explicitly included the corresponding elimination rules
((&F), (=F) and (VE)). For all the examples in this paper, the inclusion of these
rules is not necessary.
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A proof in this language will be understood in the standard sense of proofs in
natural deduction. For more information on natural deduction and its terminology
(both of which are used in this chapter) see [7, 26].

We shall view the construction of a proof of a proposition as a kind of compu-
tation. Rarely shall we be particularly interested in the actual proof constructed,
but rather in some instantiation of existentially quantified variables. This is ac-
complished by starting with propositions containing free variables and assuming
that they are existentially quantified. For example, we may have a proposition of
the form type(1, T') which can be interpreted as the query “what is type type of
12’ Constructing a proof of this proposition should result in the instantiation of
the existentially quantified variable T to some ground term, e.g., int.

Following the observation described in [16] that natural semantics has an inti-
mate connection to logic programming, we show how the preceding four inference
figures are related to logic programming. First-order Horn clauses, however, are
not strong enough to directly implement these inference rules. First, the no-
tion of equality between terms would be that of simple tree equality, not that of
pBn-conversion. Horn clauses also do not provide a mechanism for directly imple-
menting the introduction and discharge of parameters and assumptions. It is not
difficult to modify our proof system so that the explicit references to introducing
and discharging assumptions could be eliminated in favor of treating basic propo-
sitions as essentially sequents. That is, a proposition Prop would be replaced by
a proposition I' — Prop, in which I' is used to store assumptions. This 1s, for
example, used in natural semantics to handle contexts. A more serious challenge
to Horn clauses is that they cannot naturally implement the universally quantified
proposition.

There is, however, a generalization of Horn clauses which adds both implica-
tions and universal quantifiers to the body of clauses and permits quantification
over higher-order variables. This extension, called higher-order hereditary Har-
rop formulas [19] has (partially) been implemented in the AProlog system [21].
AProlog does, in fact, provide a natural implementation language for these infer-
ence rules. For example, the user can specify inference rules by directly writing
program clauses containing conjunction, implication, and universal quantifiers,
since these are understood on a primitive level of AProlog. For example, clauses
of the form

Ay :— A1 & (V.’L‘)(A2 = A3)

can be used to represent complex inference figures. Free (higher-order) variables
here are assumed to be universally quantified over the scope of the full clause
corresponding to the universal closure of inference schemas. Queries to construct
proofs of propositions will become goals in AProlog, so the example query above
becomes

?7—type(1, T)

and a successful computation of this goal results in reporting the answer substitu-
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tion: T = int. Instead of using the AProlog syntax to present example inference
rules in later sections, we shall continue to use the more graphically oriented infer-

ence figures. All the examples presented here have been implemented and tested
in a version of AProlog.

24.5 Abstract Syntax as Lambda Terms

Having defined our meta-logic, including its terms, propositional formulas and
inference figures, we now describe how a simple functional programming language
can be encoded as terms in our meta-logic. Of course, there may be many possible
ways of representing programs as terms, but we want one that will allow us to
make full use of the meta-logic. We distinguish between concrete syntax, which
may provide a convenient representation for human understanding, and abstract
syntax, which contains the essential information needed for program manipula-
tion. In our introduction to handling binding information we have already hinted
at what a good abstract representation should include. Here we make these ideas
precise by starting with a simple language, namely the pure untyped A-calculus
(A"). Later we extend this language to into a more substantial subset of Standard
ML. This presentation demonstrates how an abstract syntax for a functional lan-
guage can be constructed using simply typed lambda terms and how this abstract
syntax captures the binding and scoping constructs found in functional program-
ming languages. We take care in making the distinction between terms and types
at the object (A*) level and terms and types at the meta-level. We refer to the
latter as meta-terms and meta-types.
Suppose that the concrete syntax for A* is given by the following grammar:

U == z | AXz.U | (UD).

(We must be careful here because we shall overload the use of the symbol A.) We
introduce a new meta-type tm for representing (at the meta-level) terms of A*.
Now there 1s a standard way of encoding untyped terms into the simply typed
A-calculus (A7) and this is described in [17]. The idea is to introduce two new
constants into the typed calculus (A™):

v : (tm — tm) — tm
$ : tm— (tm — tm)
We can then define a simple mapping (-)" : \¥ — A~ as follows:
DEFINITION 1 ((:)*). For any M € A\Y let (M)* be
(z)* = =z":tm for z a variable.
(MN)* = &OM*'N*
(Az.M)* = ¥(Az*:tm.M")
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C : tm
if : tm—tm— tm—tm int : tp
Q@ : tm— (tm — tm) bool : tp
lamb : (tm — tm) — tm — : tp—tp—tp
le¢ : (tm — tm) — tm — tm
fiz : (tm — tm) — tm

Figure 24.3: Signature for Terms and Types of E

We assume that (-)* defines a bijective mapping of untyped variables to typed
variables (of type tm). For a more complete discussion of this encoding, including
soundness and completeness results, see [8]. As an example of this encoding,
consider the untyped term AzAy(zy). Via this encoding its corresponding typed
term is ¥(Az(¥(Ay(Pz y)))). Note that this is a term of type tm. Thus we have
a simple way of representing any pure untyped A-term as a simply typed term
of uniform type. This is important because in the task of type inference, to be
discussed in the next section, we must be able to handle terms that are both
well-typed and untypable.

We now consider a slightly larger programming language. Let E be the func-
tional language whose concrete syntax is defined by the following grammar:

E == C | x | if Fthen Felse E | (EF) |
Ax.E | letx=Fin £ | fix x.E

Here, r ranges over variables and C ranges over primitive constants, typically
including the integers and booleans and a set of primitive operations to manipulate
them.

To define our abstract syntax for £ we follow an approach similar to the above
one for A¥and in the same spirit as [23]. We begin by giving a signature for some
meta-terms that we use to construct terms and types at the object level. (See
Figure 24.3.) Notice that the constants lamb, let and fiz are higher-order, that
1s, they each require a functional argument of type tm—tm. In the examples that
follow M will be used as a higher-order (meta-)variable of this meta-type. ‘—’ is
the function space constructors for tp. We have overloaded the symbol ‘—’, using
it at both the object and meta levels; its use, however, should always be clear
from context. The object types we consider are only monotypes (in the sense of
[20] as we do allow type variables). In the next section we present a separate
discussion of manipulating polytypes.

Using the signature of Figure 24.3 we can build up A-terms forming an abstract
syntax for E as follows. For constants and variables in the concrete syntax we just
introduce associated constants and variables of type tm to the abstract syntax.
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For the if statement we introduce the new constant if such that given three
terms e;, ez, e3 : tm, then (if ey e2 e3) : tm. Application is made explicit with
the infix operator ‘@’ so that e;@e, represents the expression denoted by the
term e; applied to e;. For lambda abstraction we introduce the constructor lamb
that takes a meta-level abstraction of the form Az.e, in which z and e are of
meta-type tm, and produces a term of type tm. For example the concrete syntax
for lambda abstraction is Ax.E and its abstract syntax is (lamb Az.e) (for e
the A-term corresponding to E). Similar to lamb, the let construct uses a meta-
term M of the form Azr.e to represent the binding of an identifier. Thus the
concrete syntax let x = E; in E, is given by the abstract term (let Az.es €;)
in which e; and e; are the (abstract) terms denoting the expressions E; and Ej,
respectively. To represent the recursive fix construct we introduce the fir constant
which again uses an explicit abstraction to capture the binding. An example of
this construction is given below.

Throughout most of this chapter we will avoid discussing primitive operations
such as +, —, etc. They are, of course, important to have in the full language
but including them here is neither difficult nor illuminating. We shall typically
assume, for the sake of examples, that we at least have some basic set of list
operations. In the following and subsequent examples we systematically drop the
apply “@” operator in order to make examples more readable.

Consider the following expression that defines the append function and then
applies 1t to two lists.

let app = (fix f.Ak.AL(if empty(k) then 1 else cons(hd(k) f(tl(k) 1))))
in (app (1] [2)).

The corresponding term in the abstract syntax is

(let Aapp.(app (cons 1 nil) (cons 2 nil))
(fiz Af(lamb Xk(lamb A(if (empty k) I (cons (hd k) (f (k) 1))))))).

Note how the four bindings in the concrete syntax (app, f, k, 1) are translated
into explicit A-abstractions in the abstract syntax.

Before presenting some example specifications we recall the distinction we
made earlier between natural deduction and sequent style systems. Now that
our abstract syntax has been defined further comment concerning the difference
between our method and typical approaches to natural or operational semantics
is appropriate. This distinction concerns the treatment of identifiers. The typical
approach to programs analysis uses an environment (or context) to denote a finite
mapping from identifiers to some domain (e.g., types or terms). When analyz-
ing an abstraction, the bound variable is stripped from the abstraction and the
identifier which names that bound variable is added to the context. The meaning
of such an identifier within the body of the abstraction is then determined by
“looking up” the value associated with the identifier in the current environment.
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We refer to this technique as the environment approach.

Given our commitment to representing program abstractions using abstrac-
tions with A-terms and to equating such terms when they are 8n-convertible, it is
impossible to access the bound variable name of a A-term at the meta-level, since
such an operation would return different answers on equal terms. A combination
of the V and => propositions, as suggested earlier, can provide a very simple solu-
tion to this problem. When an abstraction is encountered, typically within lamb,
let and fiz constructions, a V judgement is used to introduce a new parameter.
That parameter is then substituted into the abstraction using (-conversion. The
value or type to be associated with this new parameter is then introduced as an
assumed proposition. In this way, the newly introduced identifier is used to stand
for the name of the bound variable.

This relation between the environment approach and our technique is similar to
an observation by Plotkin about evaluations in the SECD machine [24]. There two
different evaluation functions were defined: the awkward Eval function defined in
terms of closures and the simpler eval defined using substitution (3-conversion,
here). While these two functions were shown to be equivalent, introducing the
simpler definition for evaluation allowed properties of the SECD machine to be
described much more naturally than with the first, more cumbersome, defini-
tion. Similarly, we believe that the use of abstractions and substitution in our
meta-language will often produce this kind of advantage over programs using the
environment approach.

In the following two sections we present some meta-programming examples
using our abstract syntax.

24.6 Static Semantics

Static semantics refers to a class of program analyses that provide information
about programs based on their static structure (i.e., not considering their behavior
during some form of evaluation). One common example of a static semantics is
type inferencing. An example of this kind of analysis is given below. Other kinds
of static analysis include type checking, certain kinds of flow analysis and possibly
complexity analysis.

24.6.1 Type Inference

We introduced the language E' as an implicitly typed functional language, in the
same vein as Standard ML. Thus an important static operation on F programs is
type inference. More specifically, we only wish to admit programs generated by
the given grammer for F that are “well-typed.” By this we mean that a type can
be given to the program according to some laws. The idea of using inference rules
to specify type inference is not new. Most recently Tofte has given a thorough
treatment of polymorphic type inference in an operational semantics style [28].



24. A Meta-Logic for Functional Programming 469

t e 'y bool e i T e Y T
y 1— 2 — 33—
c—C(c (1,2)
) (¢f e e es)—tl»T
(Ve) (c-t—yw'l => (M C)ﬂ’Tg) el—tl»(rl — 12) CQiTl (3,4)
(lamb M)—tlv(rl—»‘rg) (el@eg)ﬂ»rg ,
ty ty ty ty
€e2— T2 (M e2)—m Ve) (c—1 = (Mc)—T) (5, 6)
(let M e;)-Yory (fiz M)-or ’

Figure 24.4: Type Inference for £

The specification for type inference in FE is given in Figure 24.4. We introduce
the infix propositional symbol e tm - tp — o and construct propositions of
the form e—%7 where 7 is a A-term built up from the constants int, bool, etc.
and —. The proposition e—tivr, in which e is a closed term denoting the abstract
syntax of functional program E and 7 is a closed term denoting the abstract
syntax of a type, states that e has type 7. We assume that we have a fixed map
C from the abstract constants to types, such that for each base constant ¢ of
the abstract syntax, C(c) = 7. Clause 1 of the specification types the constants
using the map C. The next clause 2 gives the typing for the conditional statement.
Clause 3 is the typing rule for lambda abstraction and it is a bit different from the
usual typing rule using environments [28]. In the environment approach, typing
the term (A z.E) would first require adding the type assignment z : 7; to the
environment, then computing the type of E in this new environment to be 7,
and then finally inferring the type of the original term to be 7y —73. Our rule

uses B-reduction and operationally works as follows. Given the term (lamb M)
we first pick a new constant ¢ and assume it has type 7 (i.e., we introduce the

assumption cﬂvrl). Under this assumption we then type (the #n-normal form
of) the term (M c¢). If M is of the form Az.e then the S-reduction is, in this case,
equivalent to the substitution e[z +— c]. If we infer the type 7, for this term then
we infer the type of the original term to be 7;—72. Informally, this infers the
correct type because every occurrence of z bound by this abstraction has been
replaced by a term ¢ whose type will be inferred to be ;. Although this is in
many ways similar to the environment approach, it avoids the need to access the
names of bound variables.

Clause 4 is the usual typing rule for application. Clause 6 for fixed points
uses the same technique as lamb, though in this case we know that M must
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be of type 7—7 for some 7. Clause 5 requires some explanation. The more
standard implementation of type inference for let first infers a type for ez, then
generalizes that type with a universal quantifier over type variables, yielding a
polytype. Later in the typing of the abstraction M, various universal instances
of this polytype could be made for instances of the abstracted variable of M.
Our meta-language, however, contains no method for generalizing a free variable
into a bound variable, and so this kind of implementation is not possible here.
Instead, we avoid inferring a polytype for e; explicitly. Clause 5 requires that e,
have some type, but that type is then ignored. S-reduction 1s used to substitute
e; into the abstraction M, and then the type of the result is inferred. If e, is
placed into several different places in M, each of those instances will again have a
type inferred for them; this time the types might be different. Therefore, es could
be polymorphic in that its occurrences in M might be at several different types.

We do not need a rule for typing identifiers because any identifier occurring
in a term is replaced via S-reduction with either (i) a term explicitly typed via
an assumption (lamb, fir) or (#2) a term whose type has already been inferred
(let). (Recall that we are typing only closed expressions.) Note that the three
clauses that make use of #-reduction correspond precisely to the three clauses in
the environment approach that extend the environment. This is not surprising as
these are the only three clauses that introduce identifiers and bindings.

We can view this proof system as a declarative specification for type checking

problems. Given a closed proposition of the form ei‘r, finding a proof of this
proposition asserts that the type of (the expression denoted by) e is 7. Of course
we would like to have type inference algorithm to which we supply the open propo-
sition e—%T. Numerous works have shown that type inference can be accom-
plished by unification. We apply these ideas by exploiting our logic programming
implementation for our meta-logic that comes equipped with unification. Thus by

posing the query 7— e—Y, T, for some closed e, to the logic program corresponding
to this specification, unification resolves all the type constraints imposed by the
inference rules. Note that the resulting answer substitution # may not be ground,
i.e., (T) may contain free type variables. For example the result of the query

?— (lamb /\r.r)l

would have T instantiated to t—t for some type variable t. We have no ex-
plicit rule for quantifying over type variables but we may implicitly assume the
expression to denote the type Vi.t—t.

24.6.2 The Subsumes Relation for Polytypes

As a second example of using our meta-language to manipulate ML-like types,
we present a proof system for the subsumes relation on polytypes [20]. For this
purpose, we now introduce a higher-order constant for constructing ML types,
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namely the type quantifier forall which is of meta-type (ip—1p)—1tp. Any term
of type tp which does not contain an instance of this constant is a monotype. A
term of type tp in which all of occurrences of forall are in its prefix (that is, no
occurrence of forall is in the scope of —) is called a polytype (a monotype is a
polytype). It is possible to construct terms (of meta-type tp) that are neither
monotypes nor polytypes, but these will not interest us here. In the following
discussion, the greek letter 7 will represent a monotype and & a polytype. Before
defining the subsumes relation we provide an auxiliary definition.

DEFINITION 2 (Instance of a Polytype). 7 is an instance of polytype (forall
Ay (... (forall At,(7'))...)) if there exists some substitution S of the variables
t1,..., 1, into monotypes such that S(v') = .

The subsumes relation on polytypes is then given by the following.

DEFINITION 3 (Subsumes). Let ¢y and o, be two polytypes. o, subsumes o2,
written oy C o9, If every instance of o9 is also an instance of o, .

For example, the polytype (forall At.t) subsumes all other polytypes. An informal
operational description of this definition is the following. Given ¢y and o2, erase
the quantifiers of each yielding two monotypes, 71 and 7. Then o, C o2 iff there
exists a substitution S such that S(7;) = 72. Since the erasure of bound variables
1s another operation not available in our meta-language, we need to approach the
implementation of subsumes differently.

In our meta-language we can construct a simple proof system for the subsumes
relation; it 1s given in Figure 24.5. The first clause states the obvious: any
polytype subsumes itself. The second clause produces a ‘canonical’ instance of
02. This step is essentially like the process of erasing a type quantifier. The
meta-level universal quantifier used in this clause ensures that, after removing
the quantifiers on o, revealing a monotype, any future substitution does not
affect this monotype (its free variables are, in a sense, protected). The third
clause is used to build an instance of the first type by stripping off a quantifier
(replacing a bound (type) variable with a free one).

Notice that these three proof rules have a simple declarative reading. Assume
that types are interpreted as sets of objects of that type, that forall is interpreted
as intersection, and C as subset. The second clause states that a type is a subset
of the intersection of a family of types if it is a subset of all members of the family.
The third clauses similarly states that if some member of a family is a subset by
a given type, then the intersection of that family is a subset of that type.

24.7 Dynamic Semantics

Dynamic semantics refers to a class of program analyses that provide informa-
tion about programs based on a dynamic behavior, i.e., some set of evaluation
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(Vo) o1 T (M o) (M 2) C oz
- o1 C (forall M) (forall M) C o2

Figure 24.5: Subsumes Relation for Polytypes

rules is assumed and the behavior of programs under these rules is considered. In
this section we present a standard evaluation semantics that provides a declara-
tive specification for an E interpreter. Other, non-standard semantics, including
strictness analysis and mixed evaluation are also possible [9].

We would like to specify the evaluation of expressions in E, based on a sim-
ple interpreter for the language. (We say standard here to distinguish from a
non-standard semantics.) Following [16] we refer to a formal specification of an
evaluator for a language as the language’s dynamic semantics. We characterize
the dynamic semantics of an object language via judgements of the form ¢ — a
in which e i1s an expression of the object language and « is the result of evaluat-
ing e. Informally, the terms appearing to the left of — denote expressions and
the terms appearing to the right are the “values” or meanings of the expressions.
By providing rules corresponding to the operational behavior of the language
(with the general guideline of having one rule for each programming language
construct) we can specify the declarative aspects of evaluators for the language,
isolated from control issues. As mentioned previously this provides a convenient
tool for analyzing and experimenting with new programming languages.

We now present a dynamic semantics for F, using the same abstract syntax
as given in Section 24.5. As with the type inference specification we introduce a
new infix propositional symbol = : tm — tm — o. Propositions in our system
are of the form e——a in which e and « are expressions in E and « is the result

of “evaluating” e. Proofs of these propositions are constructed from the proof
system given in Figure 24.6. The first rule treats the constants of the language
as just evaluating to themselves. The next two rules treat the if expression in a
natural way: the conditional part, e; must evaluate to true or false for a proof to
be found. Rule (3) states that an abstraction evaluates to itself. In the rule for
application (4), meta-level -reduction correctly captures the notion of function
application (with a call-by-value semantics). Similar comments apply to our rule
for let (5). In the rule for recursion (6) we introduce a fixed point operator with
its intuitive operational semantics (i.e., unfolding). This again makes explicit use
of meta-level (B-reduction as the meta-term M is applied to the term (fiz M).
The result of B-converting this expression substitutes the recursive call, namely
(fiz M), within the body of the recursive program, given by M. Static scoping
1s ensured with this specification because S-reduction, as a means of propagating
binding information, guarantees that the identifiers occurring free within a lambda
abstraction are replaced (with their associated value) prior to manipulating the
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se

c—C (1)
se se se se
€ —-otrue sf;g—-»d €1 —Tfalse si3—+a (2a, 2b)
(lf €1 €2 63)——’0 (if € €2 e;;)——va
(lamb M)=Z.(lamb M) (3)
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Figure 24.6: Standard Evaluation Semantics for F

abstraction.

The values implicitly defined by this specification (i.e., the set of terms that
can appear to the right of =) are just the set of constants, lambda abstractions
and primitive constructors. In general, the set of values may not always be a
subset of the language (as is the case in [16]). Now given some closed expression
e we can think of evaluating e by finding some value & such that e——a is
provable. We assume some non-deterministic search procedure is used to find
such an a and construct such a proof.

24.8 Summary

We have presented a meta-logic for the analysis and manipulation of functional
programs. Using a higher-order, intuitionistic meta-logic we encoded axioms and
inference rules as clauses in this logic. The expressive power of this logic provides
us the ability to specify, in a natural and formal setting, a variety of program
manipulation tasks (e.g., type inferencing, evaluation and compilation) as proof
systems. This formal setting distinguishes our approach, as a meta-logic, from
more ad hoc methods of meta-programming. Though not discussed here, exist-
ing methods from proof theory, as pertain to natural deduction, often provide a
natural basis for performing meta-theoretic analyses of these proof systems.
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We presented several examples to support our claim that this meta-logic per-
mits a high-level and elegant specification of program manipulations. From the
perspective of program specifications, we argued that the proof rules provided in
this meta-logic were more perspicuous than, for example, a first-order logic, and
we did not need to introduce any non-logical meta-level operations to implement
all the examples considered. An important aspect of practical meta-programming
systems is the compiling of the specifications (e.g., inference rules) into efficient
programs. Although we see no reason to believe that the specifications given here
could not be implemented efficiently, it seems probable that such compiling will
be more involved than it is for compiling specifications written in a first-order
meta-logic.

The ability of a meta-language to “scale-up” to richer languages is also impor-
tant. The language that we considered was only a simple one providing a small
subset of Standard ML. In particular, we did not include datatype definitions,
exceptions, modules, etc. We have, however, used our meta-logic to represent and
manipulate an enriched language containing datatype definitions (both concrete
and abstract). The binding and scoping of the datatype constructors is handled
in a manner similar to our treatment of bound variables: New (higher-order)
constants are added to the abstract syntax for constructing terms denoting the

introduction of data constructors and type names to expressions. For abstract
datatypes, the concealment of the structure of the datatype is naturally handled
using meta-level abstractions in A-terms. Additional binding and scoping facilities
exist in Standard ML (e.g., modules) and future work will explore the applicability
of our methods to these.
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