
É P
Thèse de Doctorat

Spécialité Informatique

A     - 
    

Présentée et soutenue publiquement par

D B

le 9 décembre 2008

devant le jury composé de

Patrick B Rapporteur
Gilles D
Olivier L
Paul-André M̀
Dale M Directeur de thèse
Gopalan N
Christine P-M Rapporteur
Frank P Rapporteur

To my parents and siblings.

Acknowledgments

The past three years as a PhD student have been interesting, exciting and enjoyable.
For that, I thank my adviser Dale Miller very much. He provided me with wise sci-
entific advice, and has always been available for interesting discussions. It has been
a chance and a pleasure to work with Dale. I learned a lot from him and I hope that
that our collaboration does not end with this thesis. Very importantly, Dale brought
me to a lively research environment among his team and collaborators, who I thank for
their insightful comments and communicative enthusiasm: Kaustuv Chaudhuri, An-
drew Gacek, Gopalan Nadathur, Frank Pfenning, Brigitte Pientka, Alexis Saurin, and
especially Alwen Tiu on the footsteps of whom I walked.

I am honored that Patrick Baillot, Christine Paulin-Mohring and Frank Pfenning
have accepted to review my thesis, and I thank them for their careful reading. I am de-
lighted that Paul-André Melliès and Gilles Dowek accepted to be part of my jury, they
have a deep and broad scientific vision and I look forward to hearing their comments.
I would like to thank especially Olivier Laurent for taking part to my jury, and for the
helpful and insightful discussions that we had. Finally, I would like to thank François
Pottier and Luigi Santocanale, who unfortunately could not be part of my jury, for their
interest in my work; I particularly enjoyed the discussions with Luigi, which opened
new perspectives for me.

Big thanks to the great people from LIX: Antoine, Romain and Sylvain from the
balloons office, Olivier, Vivek and Alexis from the Tarski-and-Church office, Nicolas,
Zach and Alexandre, Vincent, Florian, David, Catuscia, Frank, Miki, Christoph, Luc.
I am very thankful to the administrative and technical staff who make the LIX go round:
in particular, Catherine and Isabelle, Mathieu and James. Big thanks as well to the great
people from Lyon: Samuel, Julien, Stéphane and Martin, the two Florent, Sylvain,
Marc, Etienne, Jade and our wonderful godfather Daniel Hirschkoff.

I warmly thank my old friends without which (these past few) years would have
been less fun: Fabien, Noémi, Juliette, and especially Nicolas. Much more than thanks
to Estelle, whose support (encourager, soutenir, supporter) makes anything sweet.

But there is more than a handful of people to thank, and, although I could not name
them all, I am truly thankful to all the people who guided, pushed and taught me for
years. This includes my family, friends and teachers — Mme Boussel, M. Choquet, if
you ever read this. . .

Contents

1 Preliminaries 5
1.1 Syntax . 5
1.2 Sequent calculus . 6
1.3 Linear logic . 10
1.4 Focusing . 13
1.5 Canonicity . 16
1.6 Terms and equality . 16

2 Fixed points 19
2.1 From logic programming to fixed point definitions 19

2.1.1 Cut-elimination . 21
2.1.2 The self-dual µ combinator 22

2.2 The logic µLJ . 23
2.2.1 Least fixed points . 23
2.2.2 Cut-elimination . 26
2.2.3 Greatest fixed points . 28

2.3 Comparison with related deductive principles 28
2.3.1 Type theory . 28
2.3.2 Cyclic proofs . 29

3 The logic µMALL 33
3.1 Definition . 34
3.2 Cut-elimination . 38
3.3 Classification of connectives . 42

3.3.1 Polarities in µMALL . 42
3.3.2 Polarities in µLL . 44

3.4 Examples . 45
3.5 Expressiveness . 47
3.6 Conclusion . 49

4 Focusing µMALL 51
4.1 A complete µ-focused calculus . 52

4.1.1 Balanced derivations . 54
4.1.2 Preliminaries . 58
4.1.3 Permutation lemmas and completeness 60

4.2 Application to µLJL . 61
4.3 The ν-focused system . 65
4.4 Exponentials and µLJ . 66

4.4.1 µLL . 67
4.4.2 Focusing µLJ . 69

4.5 Conclusion . 71

5 Proof-theory and model-checking 73
5.1 Finite state automata . 74

5.1.1 Multi-simulation . 75
5.1.2 Encoding finite automata in µMALL 77
5.1.3 Completeness . 81
5.1.4 Büchi automata . 83

5.2 Regular formulas . 85
5.2.1 Internal completeness . 88
5.2.2 Beyond cyclic proofs . 93

5.3 Conclusion . 94

6 Reasoning about generic judgments 95
6.1 The original design of ∇ . 96

6.1.1 Motivation . 96
6.1.2 The logic µLJ∇0 . 97

6.2 µLJ∇: treating ∇ as a non-logical connective 101
6.2.1 Proof theory of µLJ∇ . 102
6.2.2 Cut-elimination . 106
6.2.3 Structural rules on the generic context 107

6.3 Practical use of µLJ∇ . 110
6.3.1 The copy program . 110
6.3.2 λ-calculus . 111

6.4 Related work . 113
6.5 Conclusion . 114

7 Implementations 115
7.1 Bedwyr . 115

7.1.1 Architecture . 115
7.1.2 Examples . 118

7.2 Taci / µLJ . 119
7.2.1 The prove tactic . 120
7.2.2 Examples . 123

7.3 Conclusion . 124

ix

List of Figures 127

Index 128

Bibliography 131

x

Introduction

The scientific discourse, and the mathematical one above all, is characterized by the
production of proofs, which are supposed to be flawless reasoning. The task of early
logicians was to study the logical discourse in order to understand when it is valid.
Beyond that question, modern logicians develop and study the mathematical structure
of various logics and notions of proof. Reasoning about a finite universe of objects
or possibilities is essentially combinatorial: there might be a large amount of cases to
consider, and several ways to enumerate them all, but it is always possible to check
them one by one. This process can be well delimited and understood. But the logical
discourse is a much more powerful tool than that, with which man can tame infin-
ity, reasoning at once about an inaccessible amount of possibilities. The task of the
logician, concerning these aspects, is more difficult.

Mathematicians widely use sets, generally infinite ones. It is only at the beginning
of the XXth century that they started to study the structure of infinity, with the foun-
dation of set theory by Cantor. This made them realize that their intuition of sets and
infinity was often misleading, and raised the question of what are the valid axioms in
that domain. Eventually, axiomatizations of set theory were proposed, and were proved
(relatively) consistent. But there still does not seem to be one canonical list of axioms
that can be used to carry all set-theoretic proofs. Indeed, Gödel and Cohen showed that
principles such as the axiom of choice or the continuum hypothesis were independent:
set theory is consistent with either the axiom or its negation. There is no canonical
structure to the general infinity that sets incarnate.

There are less problematic infinities. Let us consider one of the oldest mathematical
concepts: 0, 1, 2. . . natural numbers. They have certainly been at the center of philo-
sophical disputes, even until the XVIIth century where mathematicians such as Fermat
and Pascal disagreed on the valid methods for reasoning about natural numbers. Pascal
essentially used induction as we know it, but Fermat criticized it, preferring the infinite
descent technique that Euclid used in his proof of the irrationality of

√
2. However,

we now know that both techniques are perfectly correct, and correspond well to the
common (faithful) intuition of natural numbers. Both derive from the same fact: the
canonical ordering of natural numbers is well-founded, i.e., it admits no infinite de-
scending chain. This common property comes from the underlying structure of natural
numbers. The set of natural numbers is indeed built from the empty set by iteratively
adding 0 and the successors of already present numbers. The obtained collection is

2

a least fixed point, and the ordering of natural numbers corresponds to their order of
construction.

Least fixed point constructions, more commonly called inductive definitions, are
widely used in computer science: lists, formulas, but also relations such as typing
or evaluation judgments are defined inductively. For each of these constructions, the
generalized induction principle applies: “If a property holds for any object under the
assumption that it holds for its predecessors in the sense of the iterated construction,
then it holds for any object”. Once this general concept has been identified, it only takes
one step to consider the dual notion associated to greatest fixed points: one obtains
coinductive definitions, and the associated deductive principle of coinduction. They
are increasingly used in computer science, for example, to define infinite data types
such as streams, or behavioral equivalences such as the bisimulation of π-calculus.

In this thesis, we consider a formal logical treatment of these two important con-
cepts: least and greatest fixed points. More precisely, we shall take a proof-theoretical
approach. Proof theory is the study of proofs as genuine mathematical objects. We shall
work within the particular framework of sequent calculus, a formalism which offers an
algebraic view of logic that is very principled and modular. In sequent calculus, the
fundamental property of cut-elimination requires a tight structure on logics, a precise
balance between the principles introducing (proving) and eliminating (reasoning about)
a logical concept. Least and greatest fixed points can be satisfyingly treated within se-
quent calculus, because their structure is well characterized by the above mentioned
deductive principles: inhabitants of least fixed points are obtained by finite iteration,
and one reasons about them by induction; symmetrically, inhabitants of greatest fixed
points are built by coinduction and analyzed by finite iteration.

More precisely, our approach is based on linear logic, a refinement of both clas-
sical and intuitionistic logics. Linear logic rejects a priori the ability to use the same
hypothesis any number of times. The usual non-linear treatment of hypothesis, involv-
ing copies and erasures, is recovered by means of the exponential connectives. Linear
logic, without exponentials, is thus a very finite system. By combining it with least and
greatest fixed points, we obtain a simple framework that is well-suited to the proof-
theoretical study of fixed points. We shall also see that it is a surprisingly powerful
logic. In other words, fixed points are a sufficient source of infinity in themselves, and
do not require exponentials for many applications that are usually conceived as intu-
itionistic. Linear logic is not only a simple framework, but also the logic behind logic.
It is a powerful looking glass for studying common aspects of logics. Linear logic has
notably allowed the discovery of focusing, an important property of the structure of
proofs. This observation renewed the vision of logics and brought several advances in
various domains. One of the contributions of this thesis is the extension of focusing
to fixed points. It is first developed in the linear framework, then adapted to the more
conventional intuitionistic setting.

Outline of the thesis

The first two chapters introduce the main concepts of the thesis:

• In Chapter 1 we introduce some basic notions of proof-theory that shall be useful
in the following, notably sequent calculus, linear logic and focusing.

3

• Chapter 2 provides an introduction to the central concept of fixed points. We
describe there the origins of our treatment of fixed points, its motivations and
main problems, and briefly discuss other approaches.

The heart of the thesis is the development and study of the logic µMALL, which is
carried in the next two chapters. Some of the contents of these two chapters has been
published in [BM07].

• We introduce the logic µMALL in Chapter 3. The symmetry of this system
makes it a good framework for studying proofs by induction and coinduction.
We study the basic proof theory of µMALL, notably proving that it enjoys cut-
elimination. We make some key observations about admissible structural rules,
and the high expressiveness of our system.

• Chapter 4 contains our main development, that is the extension of focusing to
fixed points. We design a focused system for µMALL, and provide a modular
proof of its completeness which highlights the key mechanisms involved. We
discuss why this system is satisfying, both from a theoretical and a practical
point of view, but observe that an alternative focusing system is also possible.
We show that our results extend to exponentials. Finally, we design a fragment
of intuitionistic logic where the focused treatment of µMALL applies directly,
and discuss the design of a satisfying focusing system for the full intuitionistic
logic.

The last three chapters are relatively independent, building on the previous devel-
opments and validating them.

• In Chapter 5, we study how µMALL can be used to reason on finite automata
inclusions, a natural class of complex problems. We show that fixed points allow
for a natural correspondence, from which we obtain a novel characterization
of automata inclusion as multi-simulation, and the completeness of µMALL for
inclusions. We then apply our observations directly to the logic, by designing and
studying the fragment of regular formulas. We obtain an internal completeness
result which lays the foundations of new automated theorem proving techniques.

• Chapter 6 deals with generic quantification, a logical notion introduced by Miller
and Tiu to reason richly about specifications involving variable bindings, e.g.,
evaluation and typing in programming languages, provability in logics, etc. We
come back to the original design of generic quantification and show that its poor
interaction between fixed points and generic quantification causes a lack of ex-
pressiveness. We propose another design which treats generic quantification as a
defined (non-logical) connective, and show that it restores the expected expres-
siveness without affecting the intended semantics. This work has been published
in [Bae08a, Bae08b].

• The thesis ends with Chapter 7, in which we briefly describe how previous devel-
opments are applied in two implementations: the logic programming language
Bedwyr, and the semi-automated theorem prover Taci which uses our focused
proof-search strategy.

4

Chapter 1

Preliminaries

The field of proof theory studies proofs, or derivations, as genuine mathematical ob-
jects. There can be several notions of derivations for the same logic, as long as they
prove all theorems and only theorems. In this chapter we introduce sequent calculus, a
particular style of presentation for proof systems, and related notions. We shall in par-
ticular present the sequent calculus for linear logic and its focusing. Our goal here is
not to give a formal introduction to sequent calculus, but rather to recall useful notions
for this thesis and highlight some unusual aspects.

It is worth pointing out that sequent calculus is not the only syntax for proofs. It
is a rather elegant one that comes with its own tools and corpus of knowledge, on top
of which we shall work. For a number of questions, syntax does not matter. But we
also address some truly syntactic questions in this thesis, among which focusing. Con-
cerning these aspects, changing for an other formalism would have probably brought a
different viewpoint and caused different problems. It is not in the scope of this thesis to
investigate in that direction. Questions of syntax might seem shallow and frustrating,
but they are essential to the effectiveness of proof theory, in particular for a computer
scientist.

1.1 Syntax
Although we do not work within Church’s type theory, we follow the same approach
to syntax. We do not intend to deal with low-level aspects of concrete syntax. Instead,
we leverage simply typed λ-calculus as a representational framework. Our languages
shall be given by a set of constructors as typed constants, and formulas are considered
up to βη-conversion; we shall in fact generally work with βη-long forms.

Like Church, we shall use the type o for formulas (or truth values), but we do not
use the single sort ι for terms (or individuals). Instead, we consider any simple type in
which o does not occur as a valid term type. We denote such types by γ. For example,
formulas of first-order logic are obtained by taking the following constants:

>,⊥ : o

∧,∨,⊃ : o→ o→ o

6 Chapter 1 – Preliminaries

∀γ,∃γ : (γ → o)→ o

=γ : γ → γ → o

Writing the type annotations of the first-order formula constructors is cumbersome
and of little interest, hence we shall omit them when they are irrelevant or can be
determined from the context.

Using this higher-order abstract syntax [MN87, PE88] is convenient as it leverages
types to distinguish terms from formulas, and λ-abstraction to deal with the notions of
renaming (α-conversion) and substitution (β-reduction). Of course, we shall still
write formulas using the usual concrete syntax, e.g., ∀x.∃y. x = y ∧ x = x. The point
here is to describe what it denotes, e.g., ∀(λx. ∃(λy. (∧) ((=) x y) ((=) x x))).

We do not deny the importance of names, renaming and substitution. They are criti-
cal in a correct implementation of a logic, and play an important role in its efficiency —
they shall indeed be discussed in Chapter 7, which is dedicated to our implementations.
For the rest of the thesis, it is more convenient to be able to abstract these problems
away and still remain formal.

The issues related to variable bindings are now sufficiently well understood by the
community to be omitted most of the time in the semi-formal discourse of logicians.
At this level it has indeed become common to accept the higher-order abstract syntax
viewpoint. This contrasts a lot with the currently active research done to support good
formalizations. We also address that aspect in Chapter 6, where we contribute to the
field of reasoning directly on specifications using higher-order abstract syntax.

1.2 Sequent calculus

In 1935, Gentzen [Gen69] introduced sequent calculus with the proof system LK for
classical logic. The great symmetry of his presentation allows for elegant results, and
his methodology still lasts and proves useful beyond its initial scope, both in terms of
the logic under consideration and of the properties being studied.

The sequent calculus LK is presented in Figure 1.1. Its inference rules derive se-
quents which are of the form x1, . . . , xk; H1, . . . ,Hn ` C1, . . . ,Cm and should be under-
stood as ∀x1 . . .∀xk. (H1∧ . . .∧Hn) ⊃ (C1∨ . . .∨Cm). The leftmost zone, separated by
the semicolon, is called signature and denoted by Σ; it is left untouched in most rules
and is then omitted for brevity. This reading of sequents with an explicit signature
binding universal variables is not Gentzen’s original point of view, but appeared only
later; it fits naturally with our approach to syntax.

The rules of LK are organized in three groups. The structural group roughly ex-
presses that the collections of formulas on both sides of the turnstile (`) are sets. The
rules WL and WR are called weakening rules; CL and CR are contractions; XL and
XR are exchanges. The logical group is the core of reasoning. The applicability of its
rules only depends on the outermost connective of one formula in the concluding se-
quent, which creates a tight connection between the notions of connective and logical
rule. This shallow treatment is made possible by the sequent structure, which is used
for opening up some trivial superficial structure of the formulas. For example, the left
conjunction rule moves the formula-level conjunction at the sequent level which allows

1.2. Sequent calculus 7

Identity group

Σ; P ` P axiom
Σ; Γ ` ∆, P Σ; P,Γ ` ∆

Σ; Γ ` ∆
cut

Logical group

Σ; Γ,⊥ ` ∆
⊥

Σ; Γ ` >,∆
>

Σ; Γ, Pi ` ∆

Σ; Γ, P0 ∧ P1 ` ∆
∧Li

Σ; Γ ` P,∆ Γ ` Q,∆
Σ; Γ ` P ∧ Q,∆ ∧R

Σ; Γ, P ` ∆ Σ; Γ,Q ` ∆

Σ; Γ, P ∨ Q ` ∆
∨L

Σ; Γ ` Pi,∆

Σ; Γ ` P0 ∨ P1,∆
∨Ri

Σ; Γ ` P,∆ Σ; Γ,Q ` ∆

Σ; Γ, P ⊃ Q ` ∆
⊃ L

Σ; Γ, P ` Q,∆
Σ; Γ ` P ⊃ Q,∆ ⊃ R

Σ ` t : γ Σ; Γ, Pt ` ∆

Σ; Γ,∀γx. Px ` ∆
∀L

Σ, x : γ ; Γ ` Px,∆
Σ; Γ ` ∀γx. Px,∆ ∀R

Σ, x : γ ; Γ, Px ` ∆

Σ; Γ,∃γx. Px ` ∆
∃L

Σ ` t : γ Σ; Γ ` Pt,∆
Σ; Γ ` ∃γx. Px,∆ ∃R

Structural group

Σ; Γ ` ∆

Σ; Γ, P ` ∆
WL

Σ; Γ ` ∆

Σ; Γ ` P,∆ WR

Σ; Γ, P, P ` ∆

Σ; Γ, P ` ∆
CL

Σ; Γ ` P, P,∆
Σ; Γ ` P,∆ CR

Σ; Γ,Q, P ` ∆

Σ; Γ, P,Q ` ∆
XL

Σ; Γ ` Q, P,∆
Σ; Γ ` P,Q,∆ XR

Term well-formedness

(x : γ) ∈ Σ

Σ ` x : γ
Σ ` M : γ′ → γ Σ ` N : γ′

Σ ` MN : γ
Σ, x : γ′ ` Mx : γ

Σ ` (λx. Mx) : γ′ → γ

Figure 1.1: The LK sequent calculus for first-order classical logic

8 Chapter 1 – Preliminaries

subsequent applications of rules on the topmost connectives of the two conjuncts. The
identity group contains the only rules that require a notion of equality on formulas:
axiom and cut. To check a proof starting with one of these rules, one has to check that
two formulas are the same. The novelty of sequent calculus is the cut, dual of the ax-
iom. It allows indirect reasoning, and makes it relatively easy to obtain the equivalence
between LK and other presentations of classical logic.

The treatment of first-order quantifiers deserves some attention. The existential
rules (∃R and ∀L) allow the substitution of the existentially bound variable by any
well-formed term, often called witness. Well-formed terms given by the judgment Σ `

t : γ, are simply-typed λ-terms of type γ over the signature Σ. We shall omit the well-
formedness judgments in the rest of this thesis. The universal rules (∀R and ∃L) use an
eigenvariable for representing the newly introduced variable. Gentzen coined the term
of eigenvariable, which for him it denoted a new variable, i.e., one that is unused in the
concluding sequent. Choosing a new variable ensures that there is no assumption made
on it, so that the deduction rule can indeed be read as “for any variable . . .”. Here we
do not need such an assumption by relying on a more abstract viewpoint, following the
approach to syntax adopted for formulas. We shall not detail how to represent sequents
in simply-typed λ-calculus, by introducing a new type and constructors. This is an
easy task which allows us to see the signature as a list of binders, with α-equivalence
built-in. The rules ∀R and ∃L are thus a mere mobility of binders from formula to
sequent, which rules out naming conflicts. Considering for example that x; px ` ∀x. qx
is identical to x; px ` ∀y. qy, the universal rule should behave equally on them, which
rules out the premise x, x; px ` qx that is not the same as x, y; px ` qy.

Several logics can be given a sequent calculus by adapting the structural rules of
LK. It is the case of intuitionistic and relevant logic, but also linear logic to some
extent. It is striking that LJ, a sound and complete sequent calculus for intuitionistic
logic can be obtained only by ignoring the right contraction rule to LK, hence limiting
the right hand-side zone to at most one formula. This observation foreshadows the
linear decomposition of classical and intuitionistic negations which will explain the
phenomenon.

Proposition 1.1 (Eliminability of non-atomic axioms). We call atoms the predicate
constants, and shall extend the terminology to predicate variables when there are any.
The axiom rule can be restricted to the atomic case, i.e., the axiom between two atoms.

This important observation is proved by repeatedly expanding all non-atomic ap-
plications of the axiom, for example:

P ∧ Q ` P ∧ Q

P ` P
P,Q ` P

Q ` Q
P,Q ` Q

P,Q ` P ∧ Q
P ∧ Q ` P ∧ Q

Non-atomic axioms will be redundant in all sequent calculi under consideration. In
particular we shall consider logics without propositional constants, in which the axiom
rule will thus be unnecessary. In that situation the question of the identity/equality of
formulas becomes pointless and only their local behaviors matter.

1.2. Sequent calculus 9

Proposition 1.2 (Cut-elimination). The cut rule is admissible: any derivation of a
given sequent can be transformed into one which does not make use of the cut rule.

Cut-elimination is Gentzen’s main result on LK. To prove it, he designed a system
of elementary proof reductions which reduces all instances of cut and established its
termination. The essential cases rely on the duality between corresponding left and
right rules, for example:

Π
Γ, P,Q ` ∆

Γ, P ∧ Q ` ∆

ΠP

Γ ` P,∆
ΠQ

Γ ` Q,∆
Γ ` P ∧ Q,∆

Γ ` ∆

Π
Γ, P,Q ` ∆

ΠQ

Γ ` Q,∆
Γ, P ` Q,∆

Γ, P ` ∆

ΠP

Γ ` P,∆
Γ ` ∆

Cut-elimination has been studied under various angles (e.g., confluence, Curry-
Howard isomorphism, complexity) and in various systems (e.g., classical, intuitionistic,
linear, polarized). But we do not need to elaborate on that topic as we mostly study
cut-free derivations in our work. However, we do use cut-elimination to validate our
interpretation of the logic, for example, in Chapter 5.

The consequences of cut-elimination are of interest. It implies the consistency of
the logic. Let us assume the opposite and consider the smallest cut-free derivation with
a conclusion of the form ` (⊥)n, i.e., a sequent with no left hand-side and n occurrences
of ⊥ on the right hand-side. Its first rule can only be a structural rule since no logical
rule applies to ⊥ on the right, hence its immediate subderivation also has a concluding
sequent of the form ` (⊥)m which contradicts the minimality of the initial derivation.
A similar argument can in fact yield a more general property.

Proposition 1.3 (Subformula property). All formulas occurring in a cut-free derivation
are subformulas of formulas occurring in the conclusion.

In a propositional setting, the notion of subformula is that of subtree. In first-
order logic, we have to accept any instance Pt as a subformula of ∃x.Px and ∀x.Px.
In other words, the first-order notion of subformula corresponds to the propositional
notion for the formulas obtained by erasing terms. A similar adjustment would be
silly for second-order quantification. In second-order logic, the subformula property
is instead restricted to sequents that are not above a second-order instantiation rule.
Cut-elimination remains an important property, from which consistency follows im-
mediately.

We have quickly presented LK and some general concepts about sequent calculus.
In the following, we shall omit several details when writing sequent calculus rules;
what we mean should be clear from the above presentation. Notably, we shall often
omit the signature Σ. We also use a more high-level viewpoint on sequents that allows
treating the cumbersome structural rules implicitly. Instead of considering the left and
right hand-sides of the sequent as lists with explicit structural rules for manipulating it,
we allow ourselves to treat them as sets or multisets. It is in fact a common thing to do,
but its implications are sometimes forgotten. It does not affect provability, but causes
some proofs to collapse because it blurs the distinction between identical formulas.

10 Chapter 1 – Preliminaries

For example there are essentially two ways of proving p ∧ p ⊃ p which correspond
to the two projections, but they are identified when omitting the structural rules. It is
not a problem for us since we do not work at that level of detail, which is a research
topic in itself. But these aspects are important and should not be forgotten. Thus, we
insist that this viewpoint on sequents is only a notational convenience and shall not be
regarded as a definition of the essential nature of sequents. Although this abuse hides
some information, we claim that the work presented here is still valid in a setting with
some strict tracking of occurrences. Indeed, some of it has been implemented in that
way.

1.3 Linear logic

Linear logic [Gir87] is a refinement of both classical and intuitionistic logics, providing
an elegant unified framework for their study. It was invented by Girard from observa-
tions on the coherent semantics of λ-calculus. But for our purpose we can restrict to a
purely syntactic presentation of linear logic. A sequent calculus for full linear logic is
given in Figure 1.2; we progressively introduce it below.

Definition 1.4 (Formulas of LL). The formulas of linear logic are given by the follow-
ing syntax:

P ::= P ⊗ P | P ⊕ P | 1 | 0 | !P | ∃x.Px | p~t

| P M P | P & P | ⊥ | > | ?P | ∀x.Px | (p~t)⊥

We deliberately do not precise any types, especially for the quantifiers that can equally
be first or second-order ones in this section.

Linear logic can be obtained by removing the arbitrary contraction and weakening
rules of LK. Consider the two following rules:

Γ ` P,∆ Γ′ ` Q,∆′

Γ,Γ′ ` P ∧ Q,∆,∆′
Γ ` P,∆ Γ ` Q,∆

Γ ` P ∧ Q,∆

In LK, the structural rules make it easy to derive one from the other. It does not hold
anymore in a calculus without contraction and weakening. In such a setting, since a
rule really corresponds to a connective, there should in fact be two conjunctions. The
first one is called ⊗, the second one &. Similarly, two disjunctions appear:

Γ ` P,Q,∆
Γ ` P M Q,∆

Γ ` Pi,∆

Γ ` P0 ⊕ P1,∆

Adapting the cut reductions to these new connectives shows that M and ⊗ (resp. ⊕
and &) are duals. The connectives M and ⊗ are called multiplicative, as well as their
respective units ⊥ and 1. The connectives ⊕ and &, together with their units 0 and >
are called additive connectives. Together they form the multiplicative and additive
fragment of linear logic, called MALL.

1.3. Linear logic 11

To obtain full linear logic, Girard added the unary connectives why-not (?) and of-
course (!). Their role is to get back some non-linear behavior in an explicit way. The
rules for ?P are contraction, weakening and dereliction:

Γ ` ∆, ?P, ?P
Γ ` ∆, ?P

Γ ` ∆
Γ ` ∆, ?P

Γ ` ∆, P
Γ ` ∆, ?P

The only rule for !P is the promotion, where ?∆ denotes a multiset of formulas of the
form ?P, and similarly for !Γ:

!Γ `?∆, P
!Γ `?∆, !P

These two new connectives are called the exponentials because they turn additives in
multiplicatives: ?(P ⊕ Q) ≡?P M?Q and dually.

At this point we roughly have all the ingredients of linear logic. We have not shown
any left rule, but as is already visible in LK, the left rule of a connective is none but the
right rule of its dual. This can be internalized in a simpler presentation using mono-
sided sequents, since Γ ` ∆ can be read as ` Γ⊥,∆ where •⊥ denotes dualization, or
negation.

Definition 1.5 (Negation). The negation is the involution on formulas satisfying:

(P M Q)⊥ ≡ P⊥ ⊗ Q⊥ (P & Q)⊥ ≡ P⊥ ⊕ Q⊥

(?P)⊥ ≡ !P⊥ (∀x. Px)⊥ ≡ ∃x. (Px)⊥

⊥⊥ ≡ 1 >⊥ ≡ 0

This definition allows pushing down negation through a formula, leaving it only on
predicate constants and variables. If one needs to interpret negation on predicates, a
bijection should be assumed between two disjoint sets covering all predicates so that
negation is read as moving from one side to the other along that bijection.

Negation is not a logical connective but a defined one: it has no logical rule but is
only defined in terms of other connectives. Similarly, the linear implication P (Q is
defined as P⊥ M Q.

The sequent calculus for linear logic is given in Figure 1.2. It uses a simplified han-
dling of exponentials that eliminates some irrelevant information. For example, with
the original rules, ?P can be contracted ten times before that its copies get weakened.
This is avoided here by organizing the sequent in two zones, written ` Θ; Γ and read
as `?Θ,Γ. Such sequents are called dyadic. The new non-linear zone Θ, treated as
a set, allows a simpler treatment of formulas on which structural rules are available,
by merging the contraction and dereliction rules into the action of moving one copy
of a non-linear formula into the linear zone. This approach was developed by An-
dreoli [And92] in his Σ2 system. When restricting to MALL, the non-linear zone can
be ignored from the sequent calculus of Figure 1.2.

Linear logic can be seen as a logic of resources rather than truth, as formulas cannot
a priori be contracted. From that point of view, the exponential connectives express
re-usability or durability of a resource. Although it is indeed sometimes used as such
[Mil93, HM94, Hod94, CP02, Bae05], it is not the main interest of linear logic. Instead,
it is most often used as a the logic behind logic, a looking glass for studying our usual
intuitionistic and classical logics.

12 Chapter 1 – Preliminaries

Identity group

` Θ; P, P⊥
` Θ; Γ, P ` Θ; P⊥,Γ′

` Θ; Γ,Γ′

Logical group

` Θ; Γ, P,Q
` Θ; Γ, P M Q

` Θ; Γ, P ` Θ; Γ′, P′

` Θ; Γ, P ⊗ P′,Γ′

` Θ; Γ

` Θ; Γ,⊥ ` Θ; 1

` Θ; Γ, P ` Θ; Γ,Q
` Θ; Γ, P & Q

` Θ; Γ, Pi

` Θ; Γ, P0 ⊕ P1

` Θ; Γ,> no rule for 0

Σ, x ` Θ; Γ, Px
Σ ` Θ; Γ,∀x. Px

Σ ` Θ; Γ, Pt
Σ ` Θ; Γ,∃x. Px

` Θ, P; Γ

` Θ; ?P,Γ
` Θ; P,Γ
` Θ, P; Γ

` Θ; P
` Θ; !P

Figure 1.2: One-sided dyadic sequent calculus for LL

1.4. Focusing 13

Definition 1.6 (Translation of intuitionistic logic [Gir87]). Intuitionistic connectives
can be considered as defined in linear logic, as follows:

[P ∧ Q] ≡ [P] & [Q] [P ∨ Q] ≡ ![P] ⊕![Q]
[>] ≡ > [⊥] ≡ 0

[P ⊃ Q] ≡ (![P])([Q] [p t] ≡ p t
[∀x. Px] ≡ ∀x. [Px] [∃x. Px] ≡ ∃x. [Px]

This translation is proved sound by translating intuitionistic proofs in natural de-
duction to linear proofs using cuts. Completeness is obtained by translating cut-free
linear proofs to intuitionistic sequent calculus. We shall see that different translations
can be used, depending on one’s interests: semantic soundness, simulation of cut-
elimination, or simply soundness and completeness. Translations of classical logics
also exist, starting with [Gir87], revolving around an interpretation of implication as
(!P)((?Q).

1.4 Focusing
Focusing [And92] is one of the major observations about linear logic. As is well-
known, some rules are invertible: applying them never breaks provability. But Andreoli
observed a symmetric phenomenon about the other rules, which are the real choices in
proof-search: they can always be chained in an hereditary way. For example on P ⊕
(Q ⊕ R), it does not break completeness to require that if one chooses the right disjunct,
he has to immediately choose between Q and R. As an other example, consider a
sequent containing both A ⊗ (B ⊗ C) and D ⊗ E. A naive backward proof-search
might first consider all splittings of A ⊗ (B ⊗ C); in one case it has to treat B ⊗ C and
D ⊗ E in the same sequent. From this point the two tensors can be split in different
ways and orders, resulting in four configurations, each being reached in two different
ways. That state explosion is avoided by the focused strategy since it forces the splitting
of B ⊗ C after that of A ⊗ (B ⊗ C).

Andreoli used these observations in the design of his focused calculus. In this sys-
tem, proof-search alternates between two phases: the asynchronous phase corresponds
to invertible steps and the synchronous phase to chained choices. It starts with the asyn-
chronous phase, in which invertible rules are applied eagerly in any order. Eventually,
the linear part of the sequent contains only atoms and synchronous formulas. At this
point a choice has to be made: the focus has to be set on one of these formulas. Once
a focus is set, the system enters the synchronous phase in which rules are applied on
the formula under focus, until it becomes asynchronous. Proof-search then falls back
to the asynchronous phase.

Definition 1.7 (Synchronous, asynchronous). The connectives M,&,⊥,>, ? and ∀
(resp. ⊗,⊕, 1, 0, ! and ∃) are classified as asynchronous (resp. synchronous). Atoms
shall be given an arbitrary synchrony, consistent with negation: if a is synchronous, a⊥

must be asynchronous and conversely. The synchrony of a rule is that of the associated
connective; the synchrony of a formula is that of its toplevel connective or predicate.
For simplicity, we shall simply write synchronous atoms as a and asynchronous ones
as a⊥.

14 Chapter 1 – Preliminaries

The focused sequent calculus is given in Figure 1.3. It uses annotations on Σ2
sequents (see Section 1.3, Figure 1.2) in order to constrain proof-search. In the syn-
chronous phase, the formula under focus is distinguished in the linear zone: ` Θ; Γ ⇓ P.
In the asynchronous phase, the linear zone is split in two parts: ` Θ; Γ ⇑ ∆ where Γ

already contains only atomic and synchronous formulas while ∆ is still to be processed.

Asynchronous phase

` Θ; Γ ⇑ P,Q,∆
` Θ; Γ ⇑ P M Q,∆

` Θ; Γ ⇑ P,∆ ` Θ; Γ ⇑ Q,∆
` Θ; Γ ⇑ P & Q,∆

` Θ; Γ ⇑ ∆

` Θ; Γ ⇑ ⊥,∆ ` Θ; Γ ⇑ >,∆

` Θ; Γ ⇑ Px,∆
` Θ; Γ ⇑ ∀x.Px,∆

` Θ, P; Γ ⇑ ∆

` Θ; Γ ⇑?P,∆

Synchronous phase

` Θ; Γ ⇓ P ` Θ; Γ′ ⇓ Q
` Θ; Γ,Γ′ ⇓ P ⊗ Q

` Θ; Γ ⇓ Pi

` Θ; Γ ⇓ P0 ⊕ P1

` Θ; ⇓ 1

` Θ; Γ ⇓ Pt
` Θ; Γ ⇓ ∃x.Px

` Θ; ⇑ P
` Θ; ⇓!P

` Θ, a⊥; ⇓ a ` Θ; a⊥ ⇓ a

Switching (where P is synchronous, Q asynchronous)

` Θ; Γ, P ⇑ ∆

` Θ; Γ ⇑ P,∆
` Θ; Γ ⇓ P
` Θ; Γ, P ⇑

` Θ, P; Γ ⇓ P
` Θ, P; Γ ⇑

` Θ; Γ ⇑ Q
` Θ; Γ ⇓ Q

Figure 1.3: The focused proof-system for LL

Theorem 1.8 (Completeness of focusing for LL [And92]). ` Γ is provable in linear
logic if and only if `⇑ Γ is provable in the focused calculus.

Completeness was stated and proved by Andreoli. Several alternative proofs have
been proposed since then. For example [MS07] and [Lau04] study focusing in more
details as a proof transformation, the former one dealing with rule permutations in cut-
free proofs while the latter shows that focusing can be obtained as a special case of
cut-elimination.

A subtle feature of the focused system is its treatment of atoms. When focusing
on a synchronous atom, the only possibility is to apply the axiom. For example, con-
sider focusing on (P (a)⊥ where a is an asynchronous atom: the context is split
and the focus remains on a⊥ in the second premise, since it is synchronous the only
way to complete that subderivation is the axiom, hence a must be already present in

1.4. Focusing 15

the sequent. Hence, asynchronous atoms correspond to back-chaining — this obser-
vation can be used to recover uniform proofs [MNPS91] from focusing. Conversely,
synchronous atoms yield a forward-chaining behavior.

Although focusing was motivated by backwards proof-search in linear logic, it is a
fundamental property of linear logic in general. The focused calculus yields a big-step
reading of formulas, which are not seen as made of connectives but rather of aggre-
gates of connectives of the same nature, called synthetic connectives. For example,
A0 ⊕ (A1 ⊕ A2) really becomes a ternary disjunction equipped with three projections.
Going further, since asynchronous subformulas can be decomposed immediately after
synchronous steps, one can aggregate a layer of synchrony with the next layer of asyn-
chrony — the result is called a bipole. This big-step refinement of linear logic has,
for example, a high performance impact in forward proof-search [Cha06]. At a more
fundamental level, focusing also inspired Girard’s ludics [Gir01] and participated in
important new insights about the structure and dynamics of logic [Gir91a, Gir91b].

It is worth pointing out, however, that focusing in itself is a somehow weak obser-
vation. Its interest and weakness is that it only relies on a shallow syntactical criterion,
which can be easily fooled: an asynchronous formula P can be turned into an equiva-
lent synchronous one by forming P ⊗ 1, and conversely by considering P M ⊥. Such
constructions are called delays since they have the effect to delay the treatment of the
formula in proof-search. But the shallow syntactic notion of synchrony also turned out
to be related to a deeper one, namely positivity.

Definition 1.9 (Positive,Negative). A formula P is said to be positive if P ≡!P, negative
if P ≡?P. A connective is said to be positive (resp. negative) if it preserves positivity
(resp. negativity).

Proposition 1.10. In LL, synchronous (resp. asynchronous) connectives are exactly
positive (resp. negative) connectives.

We show only the non-trivial direction for the tensor case:

Assumed
P `!P

Assumed
Q `!Q

P ` P Q ` Q
P,Q ` P ⊗ Q

!P, !Q ` P ⊗ Q
!P, !Q `!(P ⊗ Q)

P,Q `!(P ⊗ Q) cut

P ⊗ Q `!(P ⊗ Q)

This characterization exploits the exponentials to force the order or rule applications
(the negated tensor has to be introduced first), not so much for their non-linear behavior.

To conclude, let us add that focusing has been successfully adapted to intuitionis-
tic [DJS93, DJS95, LM07a], classical [Lau02, LR03, LQdF05, LM07b] but also non-
commutative logics [Hen93] for example. It is thus a major property of proof-theory in
general. However, focusing is only so unambiguously principled in linear logic, which
remains the most appropriate framework to start studying it.

16 Chapter 1 – Preliminaries

1.5 Canonicity
An interesting question about a logic, and more precisely about its connectives, is
whether they are uniquely determined. This might sound like a semantic question,
but proof-theory is in fact sufficient for studying it.

Definition 1.11 (Canonicity). A connective can be duplicated by adding another one of
same type, and duplicating all the rules of the original connective into corresponding
ones for its copy. In other words, theorems remain theorems when you change one
version of the connective for the other. A connective is said to be canonical if it is
equivalent to all of its duplicates.

Atoms are non-canonical par excellence: they are pure names without any logical
structure. On the other hand, the conjunction is uniquely defined by its logical behavior.
In LJ, suppose that we duplicate conjunction into ∩, hence adding the rules:

Γ ` P Γ ` Q
Γ ` P ∩ Q

Γ, P,Q ` R
Γ, P ∩ Q ` R

It is then possible to derive the equivalence between P∩Q and P∧Q for any P and Q:

P,Q ` P P,Q ` Q
P,Q ` P ∧ Q

P ∩ Q ` P ∧ Q

P,Q ` P P,Q ` Q
P,Q ` P ∩ Q

P ∧ Q ` P ∩ Q

In a sense, canonicity establishes the connection between the connective (the symbol)
and its logical rule (the behavior).

In MALL, all connectives are canonical. Exponentials, however, are not. Let us
copy !, ? into !̂, ?̂ and add notably the following rule:

` ?̂Γ, P
` ?̂Γ, !̂P

There is no way to relate ? and ?̂. One can see here that non-canonicity is closely related
to the syntactical “sanity check” of having only one connective involved per inference
rule — except for those of the sequent structure. In that case, non-canonicity can be
understood from the very meaning of exponentials: they provide infinite availability,
and infinity is not an uniquely defined concept.

It is interesting to notice that exponentials do have a canonical focusing behavior: ?̂
would have to be asynchronous and !̂ synchronous. Atoms are both non-canonical and
do not have a canonical focusing behavior, while MALL connectives are both canonical
and have a canonical focusing treatment. Anticipating the next chapters, the fixed point
connectives µ and νwill be the opposite of exponentials: they have a canonical meaning
but not a unique focusing treatment.

1.6 Terms and equality
Although first-order logic is standard and widely understood, equality is less frequently
considered within proof-theory, and its treatment is subtle. We detail here our approach

1.6. Terms and equality 17

to equality, which dates back to [Gir92, SH93]. Historically, this notion of equality is a
byproduct of the introduction of fixed points. But it gains to be introduced separately.

What is clear about equality is its right rule: reflexivity. But there is no clear cut
for the design of the left rule. We shall consider the following rules:

{Σθ; Γθ ` Gθ : uθ = vθ}
Σ; Γ, u = v ` G =L

Σ; Γ ` u = u =R

The left rule has one premise for each unifier θ of u .
= v. The application of θ to terms

is standard and naturally extended to formulas and to the left hand-side of the sequent.
Its application to the signature (Σθ) denotes the signature obtained by removing from
Σ the variables that are in the domain of θ, and adding those that are in its range.

In a sense, the left rule is the naive dual of the right one: it enumerates all cases
for which the right one might have been proved. Indeed, this design supports cut-
elimination. The principal case only consists in permuting =R below the cut. The in-
teresting phenomenon occur when reducing a cut on first-order quantifiers: this results
in the instantiation of the universal variable by the witness of the existential quantifica-
tion. That instantiation has to be performed in a subderivation, preserving its validity
— this is a common simple result. The new case here is =L: as a variable gets in-
stantiated, some unifiers might be simply updated, but others might disappear. If the
equality eventually becomes absurd, the corresponding instance of =L has no more
premise. It is also easy to expand the axiom on equality, and along the same lines we
obtain commutativity and canonicity of equality:

. . . ` uθ = vθ =R
. . .

u = v ` u = v =L

Infinitary rules are often convenient, but can be rightfully criticized. Indeed, a proof
should always be finitely presentable, so that its validity can be decided. It is also a
practical issue that proofs can be built in a finite amount of time. Hence, we usually
consider a specialized version of the left rule, relying on a complete set of unifiers (csu),
i.e., a set S of unifiers such that all unifiers of u .

= v are specializations θθ′ of some
θ ∈ S :

{Σθ; Γθ ` Gθ : θ ∈ csu(u .
= vθ)}

Σ; Γ, u = v ` G

That rule is equivalent to the previous one: in one direction it is because the complete
set of unifiers is a subset of all unifiers, in the other because the difference between the
two can be obtained by specializing substitutions, and proofs accordingly. In the case
of first-order terms, the csu can in fact be a most general unifier. However, that rule is
still not effective in general in the case of higher-order terms; in practice it can often be
managed by using higher-order pattern unification [Mil92].

Example 1.12. The csu-based rule is natural to work with, as it only requires the es-
sential information. For example, with first-order terms:

x; Px ` Px
x, y; x = y, Px ` Py

18 Chapter 1 – Preliminaries

With higher-order terms, in the higher-order pattern fragment:

...
z; ` ∃z′. (λa. z) = (λa. z′) ∧ (λb. z) = (λb. z′)

x, y; (λaλb. x a) = (λaλb. y b) ` ∃z′. x = (λa. z′) ∧ y = (λb. z′)

As is clear from these examples, universal variables are not constants. Hence, we avoid
to call them eigenvariables as Gentzen [Gen69] did.

It is important to notice that the left equality rule does not enumerate possible in-
stantiations, but really all possible substitutions. For example, if a type τ is empty
in the current signature, there is no ground instantiation but there is still the identity
substitution. In other words, the equality rule does not embody any reasoning on the
signature. The same is true of the universal quantifier. Semantically speaking, ∀xτ.⊥
holds when τ is vacuous. However, its proof theoretic treatment is generic: the vacuity
of τ is not an obstacle to extending the signature with a new universal variable. In
fact, the only connective that takes Σ into account is the existential quantifier; still, it
does not reason on it but only builds a witness from it. As a consequence, derivations
are stable by extension of the signature. A left equality rule working on instantiations
rather than unifiers would not be very practical and could not be reduced to unification.
Moreover, it would simply be consistent with universal quantification, as there is no
cut-free proof of the following:

x; x = x ` ⊥ x; ` x = x
x; ` ⊥
` ∀xτ. ⊥

Studying a finer-grained rule for equality might be of interest. By putting unifica-
tion steps into the logic, one would avoid the need to rely on an external unification
procedure to obtain the effective csu-based rule. This could also allow to move more
easily from finite to possibly infinite terms, by removing the occur-check clauses. The
advantage of that presentation is that it is light and convenient to work it, so it does not
interfere with the main goal of this thesis.

Chapter 2

Fixed points

This chapter is dedicated to the introduction of fixed points, which are the central con-
cept investigated in this thesis. Although some forms of fixed points appeared early
in proof-theory, the general treatment of (co)induction should probably be attributed
to Mendler’s work in type theory [Men87]. In this chapter, we present a line of work
within sequent calculus, starting in the ’90 in the field of logic programming. This
allows for a progressive introduction that illustrates clearly important proof-theoretical
aspects of fixed points. More precisely, this introduction entirely lies in the intuitionis-
tic setting. We do not intend to fully develop the proof-theoretical aspects encountered
in that introduction: the useful ones will be detailed in the simpler proof-theoretical
setting of µMALL (Chapter 3). Finally, we shall also compare our treatment of least
and greatest fixed points with other treatments, namely in type theory and cyclic proofs.

2.1 From logic programming to fixed point definitions
A similar proof-theoretical treatment of fixed points was proposed independently by
Girard [Gir92] and Schroeder-Heister [SH93]. In both cases, the goal was to renew the
foundations of logic programming and in particular give a logical account of negation-
as-failure.

In (pure) Prolog, one uses clauses to specify a program, for example:

∀XL. mem X (X :: L)
∀XYL. mem X (Y :: L) ⊂ mem X L

Given such a program P, the user can run Prolog against a query G, e.g., mem 3 nil.
Prolog then executes a goal directed, complete proof-search strategy on the sequent
P ` G. Such an approach is open-ended: if P ` G is provable, then so is P,P′ ` G.
Hence, the extension of a program can only add more facts. In other words, the logical
foundation of Prolog only allows to inspect the consequences of a program, but not to
reason about its causes, and in particular to establish negations.

An extra-logical argument, or meta-level observation, shows that Prolog is in fact
finding inhabitants of an inductive specification. Indeed, it is building objects by a

20 Chapter 2 – Fixed points

finite chaining of the clauses of the logic program. The clauses of the program can
be read as the clauses of an inductive specification, the inductive aspect being inher-
ited from the inductive, finite structure of the derivations that Prolog builds. Formally,
the representation of inductive specifications as logic programs is adequate: there is
a bijection between the objects inductively specified and their representations, i.e., the
derivations built by Prolog. It is important to notice that this adequacy depends on the
very directed proof-search strategy that Prolog applies. In general, sequent calculus
proofs working on Horn clauses can be very much unfocused: one can partially instan-
tiate a clause, then drop it, or interleave it with the another instantiation, etc. In order
to obtain adequacy results, one has to consider uniform proofs [MNPS91] — which are
a particular kind of focused proofs. In natural deduction, normal forms are enough for
obtaining adequacy.

The notion of definition proposed in [Gir92, SH93] partially internalizes the meta-
level observation that a logic program can be read as an inductive specification. Only
partially, because the resulting notion will not define a least fixed point, i.e., an induc-
tive specification, but only an arbitrary fixed point. From the point of view of the user
writing a specification, moving to definitions [Gir92, SH93] is a negligible syntactic
shift. Our example becomes:

mem X (X :: L) 4
= >

mem X (Y :: L) 4
= mem X L

The novelty lies in the proof-theoretical treatment of the definitions, which reflects
a closed-world reading in a rich way. For doing so, the logic has to treat defined atoms
as connectives. As such, they shall be equipped with introduction and elimination
rules. The right rule expresses that definitions are derivable from their clauses, sup-
porting backchaining in logic programming. The left rule is a case-analysis principle,
expressing that only the clauses can be used to derive a defined atom.

{ (Γ, B ` P)θ : A 4
= B and A′θ .

= Aθ }
Γ, A′ ` P

Γ ` Bθ A 4
= B

Γ ` Aθ

Before anything else, it is important to notice that LJ extended with definitions still
represents the same objects as before. In other words, the encoding of an inductive
specification as a set of definitions is still adequate. It is in fact straightforward, with-
out even having to restrict to focused derivations: with definitions, there is no more
irrelevant information. In fact, as long as one considers what is basically a Horn clause
specification, there is exactly one formula on the right hand-side.

So, intuitionistic logic extended with definitions allows for adequate representa-
tions. But it allows for much richer reasoning about the represented objects, thanks
to the left rule on defined atoms — that interpretation of left rules being justified by
cut-elimination. For example, one can prove that a given item is not in a given list. The
case analysis rule allows to inspect finite behavior, i.e., a finite part of the causes of an
hypothesis. This brings a logical foundation to the notion of negation as (finite) failure
in particular, and more generally to model-checking, which shall be exploited in the
logic programming language Bedwyr (cf. Chapter 7).

2.1. From logic programming to fixed point definitions 21

In general, a finite case analysis may not suffice to prove a theorem. For example,
∀x∀l. mem x l ⊃ mem x l cannot be obtained by a finite exploration of the hypothesis,
as there are infinitely many list inclusions. It shows that instances of the axiom rule
on defined atoms cannot be eliminated in general. It can be expanded, but the iterated
expansions may not terminate, as is the case in our example. In other words, while
defined atoms have a logical behavior, they must still be treated as atoms.

2.1.1 Cut-elimination

The cut-elimination procedure is extended with a reduction for definitions, where the
right definition rule selects a clause among all cases of the left definition rule:

Σ; Γ ` Bθ A 4
= B A′ = Aθ

Σ; Γ ` A′
{(Σ; Γ, B ` P)θ : A 4

= B, A′θ .
= Aθ}

Σ; Γ, A′ ` P
Σ; Γ ` P
↓

Σ; Γ ` Bθ Σ; Γ, Bθ ` P
Σ; Γ ` P

In order to preserve consistency, definitions are required to be monotonic: there
should not be a negative recursive occurrence of the defined atom in any of its defin-
ing clauses. Without this constraint, it is indeed easy to break consistency, or more
precisely break the termination of cut-elimination. Let us define p to be p ⊃ ⊥, and
consider the following derivation, which we shall name Ω for a good reason:

p,⊥ ` ⊥ init p ` p init

p, p ⊃ ⊥ ` ⊥ ⊃ L

p, p ` ⊥ de f L

p ` ⊥ contract

` p ⊃ ⊥ ⊃ R

` p de f R

Now, cutting Ω against its subderivation establishing p ` ⊥, we obtain a proof of ⊥.
One can check that on this derivation, the cut-elimination procedure loops. In fact, its
behavior is that of the λ-term (λx. xx) applied to itself: it makes two copies of itself
(which corresponds to the contraction rule above) and applies one to the other.

It is interesting to notice that nothing in the cut reduction rule requires monotonic-
ity. The inconsistency is a global non-termination problem. As a matter of fact, Girard
made explicit the relationship between structural rules, inconsistency and definitions.
In [Gir92] he notes that in linear logic, negative occurrences of the defined atom were
safe as long as they are not under any exponential. The reason is that the “inconsistent”
features need exponentials to really go wrong. This idea has been pushed further by
noting that light exponentials, which guarantee polynomial-time reduction, can also be
used to force everything to terminate: this has been done with fixed points [Gir98] but
also naive set theory [Ter04].

22 Chapter 2 – Fixed points

2.1.2 The self-dual µ combinator
The line of work on definitions continued, notably with the study of induction and
coinduction [MM00, MT03b, Tiu04]. Before presenting these aspects, let us show
how to move from the notion of defined atoms, where the logic is parametrized by
a set of definitional clauses, to a self-contained formalism where defined atoms are
replaced by µ expressions. That notation is used in several other formalisms, notably
type theory [Mat99] and modal µ-calculus.

Although equality can be encoded as a defined atom, we take the converse approach
and consider equality as an independent notion, as described in the previous chapter.
This allows to rewrite all definitions in just one clause with flexible parameters in the
head, for example:

mem X L 4
= (∃L′. L = X :: L′) ∨ (∃Y∃L′. L = Y :: L′ ∧ mem X L′)

The definition in that form behaves as before: the toplevel disjunction allows to select
one of the clauses on the right, and enumerates all possible clauses on the left; the
equalities encode the unification constraints. The behavior of the definition rules is
now restricted to pure unfoldings. We are ready to replace the notion of definition by a
logical connective expressing this core concept.

For any term types ~γ we add a fixed point combinator µ~γ of type (~γ → o) → (~γ →
o). These new logical connectives are self-dual, and the axioms cannot in general be
eliminated on them. In other words, we consider the following rules:

Γ, B(µB)~t ` G

Γ, µB~t ` G

Γ ` B(µB)~t

Γ ` µB~t Γ, µB~t ` µB~t

The obtained notion of general fixed point is sometimes called a retract.
As long as there is no mutual recursion, it is straightforward to translate a definition

into a single clause and finally turn it into a fixed point, i.e., a µ-formula. This is
done by first translating the defined atoms occurring in the (single) clause defining the
considered atom. More details about this translation are provided in Chapter 5 where
we also study the case of mutually defined fixed points.

Example 2.1. We introduce the term type n for natural numbers, with two constants
0 : n and s : n→ n. We define nat of type n→ o as a fixed point:

Bnat
de f
= λnatλx. x = 0 ∨ ∃y. x = s y ∧ nat y

nat
de f
= µBnat

The second-order abstraction Bnat shall be called a predicate operator, or simply the
body of the fixed point expression µBnat. Notice that reasoning takes place on the
fixed point formula nat, not on the type n which could as well contain other pointless
constants.

Unsurprisingly, our new connective is not canonical. Indeed, the two rules given
here hold for any fixed point, and there can be many in general. Let us consider the
duplicate µ̂ equipped with the same inference rules as µ, and try to establish µBnat x `

2.2. The logic µLJ 23

µ̂Bnat x. The only possibility is to unfold the left hand-side fixed point, which yields
two cases: x is either zero or the successor of some y. In the first case, we can prove
` µ̂Bnat0. But the second one is the same as our initial goal: µBnaty ` µ̂Bnaty. This
looping attempt calls for a proof by induction, which in turn requires capturing not
only fixed points but more precisely least fixed points.

2.2 The logic µLJ

We present the logic µLJ, our intuitionistic system of reference supporting least and
greatest fixed points. Its language of formulas is extended not only with the connective
µ, now representing least fixed points, but also ν, of the same type, representing greatest
fixed points. The rules of µLJ are presented in Figure 2.1. We present and discuss below
the treatment of fixed points, starting with least fixed points.

2.2.1 Least fixed points
In proof-theory, least fixed points are characterized by the ability to reason about them
by induction. It is interesting to justify that characterization, and its formalization in
µLJ, from other presentations of least fixed points. It also shows that we are considering
a natural notion, and not an exotic connective or an ad-hoc increment of expressiveness.

Definition 2.2 (Fixed, prefixed and postfixed point). Let φ be a mapping from sets to
sets1. The set S is said to be a fixed point of φ when φ(S) = S ; a prefixed point of φ
when φ(S) ⊆ S ; a postfixed point of φ when S ⊆ φ(S).

Example 2.3. The predicate operator Bnat can be read as the following function:

N 7→ {0} ∪ {s y : y ∈ N}

Its prefixed points contain zero and are stable by successor. Its postfixed points do not
necessarily contain zero, but each of their elements is either zero or the successor of
another. It admits a least fixed point, obtained by iterating from the empty set: it is the
usual set of natural numbers. The greatest fixed point, assuming that there exists objects
x which are not natural numbers, would contain them as well as their successors snx;
assuming infinite terms, the greatest fixed point would also contain the infinite chain of
successors.

Theorem 2.4 (Knaster-Tarski). Let φ be a monotonic function, then φ has a least fixed
point, which is the intersection of all its prefixed points.

In category theory, least fixed points are initial algebras.

Definition 2.5 (Initial algebra). Given an endofunctor F of the category C, an F-
algebra is an object A together with a morphism α : FA → A. An initial F-algebra

1One can more generally consider a mapping on a complete lattice, but we seek the most intuitive pre-
sentation.

24 Chapter 2 – Fixed points

Propositional intuitionistic logic

Σ; Γ,⊥ ` P Σ; Γ ` >

Σ; Γ, P, P′ ` Q
Σ; Γ, P ∧ P′ ` Q

Σ; Γ ` P Σ; Γ ` Q
Σ; Γ ` P ∧ Q

Σ; Γ, P0 ` Q Σ; Γ, P1 ` Q
Σ; Γ, P0 ∨ P1 ` Q

Σ; Γ ` Pi

Σ; Γ ` P0 ∨ P1

Σ; Γ ` P Σ; Γ, P′ ` Q
Σ; Γ, P ⊃ P′ ` Q

Σ; Γ, P ` Q
Σ; Γ ` P ⊃ Q

First-order structure

Σ, x; Γ, Px ` Q
Σ; Γ,∃x.Px ` Q

Σ; Γ ` Pt
Σ; Γ ` ∃x.Px

Σ; Γ, Pt ` Q
Σ; Γ,∀x.Px ` Q

Σ, x; Γ ` Px
Σ; Γ ` ∀x.Px

{(Σ; Γ ` Q)θ : tθ .
= t′θ}

Σ; Γ, t = t′ ` Q Σ; Γ ` t = t

Fixed points

Σ; Γ, S t ` P x; BS x ` S x
Σ; Γ, µBt ` P

Σ; Γ ` B(µB)t
Σ; Γ ` µBt

Σ; Γ, B(νB)t ` P
Σ; Γ, νBt ` P

Σ; Γ ` S t x; S x ` BS x
Σ; Γ ` νBt

Identity group

Σ; Γ, µB~t ` µB~t Σ; Γ, νB~t ` νB~t

Figure 2.1: Inference rules for µLJ

2.2. The logic µLJ 25

(A, α) satisfies the following diagram for any F-algebra (B, β):

FA
α //

F(f)
��

A

f
��

FB
β // B

The Knaster-Tarski theorem gives us an induction rule, along the common interpre-
tation of implication as an inclusion:

“If B(S) ⊆ S and t ∈ µB then t ∈ S .”
x; BS ~x ` S ~x
Σ; µB~t ` S~t

We obtain the same rule by interpreting the categorical notion of initial algebra, this
time reading implication as the existence of a morphism: “If FS → S then µF → S ”.
The rest of the diagram could be identified in the cut reductions. The monotonicity
condition of the Knaster-Tarski theorem, ensuring the existence of a (least) fixed point,
translates in µLJ to the constraint that fixed point bodies are monotonic.

Example 2.6. In the particular case of nat, the above induction rule yields the usual
induction principle:

` P 0 Py ` P(s y)
(BnatP)x ` Px

∨L,∃L,=L

nat x ` Px

The problem with the considered induction rule is that it does not satisfy cut-
elimination. We shall see that there is a way to reduce a cut between derivations of
µB ` S and ` µB, obtaining a derivation of the invariant S . But it is impossible to re-
duce a cut between derivations of µB ` S and S ` P, until the invariant becomes active
in the former derivation. In other words, the reduction of a cut on the invariant has to
be postponed until a cut is reduced on the associated least fixed point. To express this,
we consider in µLJ the following left rule for µ, which aggregates the former induction
rule with a cut on the invariant, thereby restoring cut-eliminability:

Σ; Γ, S~t ` P x; BS ~x ` S ~x
Σ; Γ, µB~t ` P

As shown in Figure 2.1, the right rule for µ is unchanged, and the axiom on least
fixed points is necessary. (As before, notice that although our logic has become much
more expressive with the introduction of the induction rule, it still represents the same
objects.) There is no need to consider a left unfolding rule for µ. Indeed, induction can
emulate unfolding in the case of a monotonic fixed point B, by picking the invariant
B(µB). This is detailed for LINC in [Tiu04] and in the next section for the linear case,
which does not essentially differ.

As announced above, the connective µ is now canonical. Let us consider its dupli-
cate µ̂, equipped with the same rules:

Γ, S~t ` G BS ~x ` S ~x
Γ, µ̂B~t ` G

Γ ` B(µ̂B)~t

Γ ` µ̂B~t Γ, µ̂B~t ` µ̂B~t

26 Chapter 2 – Fixed points

We can prove the equivalence between µB and µ̂B, independently of B, using the (ad-
missible) generalized axiom init:

µ̂B~t ` µ̂B~t
B(µ̂B)~x ` B(µ̂B)~x

init

B(µ̂B)~x ` µ̂B~x
µ̂R

µB~t ` µ̂B~t
µL

µB~t ` µB~t
B(µB)~x ` B(µB)~x

init

B(µB)~x ` µB~x
µR

µ̂B~t ` µB~t
µ̂L

Once can check that the greatest fixed point combinator ν, and thus all connectives
of µLJ, are also canonical. Since we do not consider predicate constants in that logic,
it means that all formulas have a defined behavior. This is an important aspect of
the systems that we consider in this thesis; it will also hold for µMALL (Chapter 3).
Although most results (e.g., cut-elimination, focusing) extend trivially to predicate con-
stants, some do not: for example, we shall derive structural rules from the behavior of
formulas in µMALL, and similarly derive generic structural rules in µLJ (Chapter 6).
When such techniques are used, it is necessary to exclude undefined atoms.

2.2.2 Cut-elimination

We have introduced the proof-theoretical treatment of least fixed points in µLJ, by
means of semantic intuitions. Although these intuitions are useful, and connections
certainly exists, they do not need to be formally established to validate the design of
µLJ: the syntactic, internal process of cut-elimination suffices. And a presentation of
some of its key points should help understanding the logic.

The principal cut reduction for least fixed points is based on the transformation of
a derivation of µB into a derivation of one of its invariants. Given a formula S and a
proof Θ of ∀~x. BS ~x ⊃ S ~x, one can transform a derivation of Γ ` µB~t into one of Γ ` S~t.
This is done by induction on the derivation of the least fixed point, along the following
scheme:

...

Γ′ ` B(µB)~t′

Γ′ ` µB~t′

...

Γ ` B(µB)~t

Γ ` µB~t →

...

Γ′ ` BS ~t′
Θ(~t′)

BS ~t′ ` S ~t′

Γ′ ` S ~t′
...

Γ ` BS~t
Θ(~t)

BS~t ` S~t
Γ ` S~t

The big steps here, represented by dots, consist in traversing the structure of B. For
doing so it is crucial that B is positive. If it is strictly positive, then there is no recursive
occurrence of µB that will ever occur on the left. Otherwise, some instances may occur
on the left, but negatively. In any case these sub-formulas will only occur at toplevel
on the right hand-side of the sequent, and can thus only be active in the right unfolding
rule. This is essential, as it is the only thing that S can simulate. So, unlike the cut
reduction for the self-dual µ, the reduction associated to least fixed point does rely on
monotonicity.

2.2. The logic µLJ 27

It is in fact possible to refine the transformation, and obtain a more precise con-
straint on fixed points. The traversal of B can be expressed as a functoriality property,
i.e., the following rule:

~x; P~x ` Q~x
Σ; BP ` BQ

f uncto

Such a rule is admissible if B is monotonic. But it might also be derivable for some
negative B, for example λp. p ⊃ p without even using the premise P~x ` Q~x. The use
of such monotonicity witnesses was investigated by Matthes [Mat99] in an extension of
System F with fixed points. Matthes uses the term “positive” for what we called mono-
tonic bodies, and “monotonic” for fixed points that have such monotonicity witnesses.
This is more usual and precise, but we avoid to use the term “positive” for that matter,
as it shall be heavily used to denote a polarity (cf. Definition 1.9). Moreover, we really
only consider positive fixed points in this thesis.

Assuming only the functoriality of B, we can fully formulate the reduction of a
principal cut on least fixed points:

Π

Γ ` B(µB)~t

Γ ` µB~t
µR

Π′

∆, S~t ` G
Θ

BS ~x ` S ~x
∆, µB~t ` G

µL

Γ,∆ ` G
cut

↓

Π

Γ ` B(µB)~t

S ~x ` S ~x
Θ

BS~y ` S~y
µB~x ` S ~x

µL

B(µB)~t ` BS~t
f uncto

Θ(~t)
BS~t ` S~t

B(µB)~t ` S~t
cut

Γ ` S~t
cut Π′

∆, S~t ` G
Γ,∆ ` G

cut

Identifying the functoriality property allows for an elegant presentation of the rule,
and has proved to help structuring normalization proofs. We do not show a normaliza-
tion proof for µLJ in this thesis. For cut-elimination proof in sequent calculus, we refer
the reader to the work on LINC [MT03b, Tiu04], which is closely related to µLJ. The
main difference is that it deals with defined atoms rather than fixed points, and limits
definitions to be stratified: from the point of view of fixed points, it imposes strict pos-
itivity and forbids mutually2 (co)inductive fixed points. Tiu conjectures [Tiu04] that
monotonicity is enough for ensuring cut-elimination. This is backed by Matthes’ proof
for extensions of System F (a much stronger system than µLJ, by the way) and our
proof of cut-elimination for µMALL, which both require only monotonicity.

Moreover, the explicit monotonicity witness opens the possibility to work safely
with definitions that are not obviously well-founded. Such cases arise in practice, when
a definition is not syntactically well-founded, but a parameter is decreasing in each

2Mutually inductive fixed points are sometimes called interleaved fixed points (by opposition to nested
ones), because of the pattern formed by the introduction and usage of predicate variables in such fixed point
formulas, e.g., in arbitrarily branching trees: µTree. > ∨ Lea f ∨ (µList. > ∨ Tree ∧ List).

28 Chapter 2 – Fixed points

non-positive recursive occurrence. It is the case, for example, of Tait’s reducibility
predicate, used to prove normalization of various calculi: it is defined by induction on
the type. It might be useful to consider systems where such fixed points are allowed,
and justified before any use by asking the user to prove the well-foundedness of the
notion. We leave these considerations to further work.

2.2.3 Greatest fixed points

In many settings, least and greatest fixed points are duals of each other: in a complete
lattice, reversing the order swaps least and greatest fixed points; this amounts to con-
sider complements in set theory, in other words the complement of a least fixed point is
given by the greatest fixed point of the dual operator; this is also observed in category
theory [CS02]. Unsurprisingly, the treatment of greatest fixed points in µLJ is obtained
by dualizing the rules for least fixed points — this will be even clearer in the next chap-
ter, with the logic µMALL which internalizes this duality. The same observations can
be made: admissibility of the right unfolding, canonicity, cut reductions, etc.

2.3 Comparison with related deductive principles

Before concluding, we quickly compare our framework with two interesting relatives:
type theories supporting (co)inductive types, and cyclic proofs. We do not consider
infinitary approaches such as infinitely deep derivations, or the infinitely wide ω rule
which enumerates all natural numbers, and by extension all inhabitants of a fixed point.
Such systems belong more to the model-theoretic approach to logic, and do not consti-
tute valid notions of proofs to us. Moreover, these treatments tend to hide the distinc-
tion between least and greatest fixed points by pushing it to the meta-level, while we
are trying to analyze it precisely.

2.3.1 Type theory

Inductive and coinductive types have been considered in various type theories [Men87,
PM96, Gim96, Gim98]. We consider in particular the Calculus of Inductive Construc-
tions used in Coq. That system is much more powerful than µLJ, which is only a
first-order logic. But it is interesting to relate the treatment of (co)inductive types in
both systems, even informally, for the types that can be expressed in both. For example,
what is the difference between an induction on nat in Coq and µLJ?

In Coq, both inductive and coinductive types can be eliminated by pattern match-
ing: from the logical point-of-view this provides finite case-analysis. Conversely, finite
constructions of (co)inductive types is provided by the associated constructors. In-
ductive types have a special eliminator, called fix, which allows to build a recursive
function over an inductive type, under the condition that all recursive calls of the func-
tion are done on a strict subterm of the argument that is inducted over. Intuitively, this
ensures that the function terminates because an inhabitant of an inductive type is only
made of a finite number of constructors. Conversely, coinductive types have cofix,

2.3. Comparison with related deductive principles 29

which allows to build infinite objects recursively, under the condition that recursive oc-
currences are under constructors. Intuitively, this ensures that any finite inspection of
the coinductive construction will terminate, since each recursive call brings some new
information.

The induction rule of µLJ can be seen as a combination of fix and (shallow) pattern
matching on the inductive argument. The invariance condition BS ~x ⊃ S ~x corresponds
to the guard of fix, in a more restrictive version: it requires that, assuming that S
holds for immediate predecessors of ~x, it holds for ~x. It is more restrictive because
it only provides recursive instances of S for the immediate predecessor, while fix
allows recursive calls to arbitrary predecessors. A typical way to obtain such a strong
induction principle is to use the accessibility relationship. For example, accessibility
for nat corresponds to the relation ≥:

acc
de f
= µAλxλy. x = y ∨ ∃x′. x = s x′ ∧ A x′ y

Then, the strong induction is obtained by taking invariants of the form λx. ∀y. acc x y ⊃
P y. However, the accessibility relationship cannot always be defined in µLJ, for ex-
ample, with the purely propositional version of nat, i.e., µX. > ∨ X. A finer solution
can be considered even in those cases. Although an inductively defined function may
proceed to recursive calls on arbitrary subterms, there is a bound k to that depth, fixed
by the patterns used to extract subterms. To obtain a similar behavior in µLJ, it suffices
to consider the (less) strengthened invariant S ∧ BS ∧ . . . ∧ Bk−1S .

The discussion is the same for the treatment of greatest fixed points.

2.3.2 Cyclic proofs

The induction and coinduction rules of µLJ obviously complicate its proof-theory, the
most immediate consequence being that the subformula property does not hold any-
more. An appealing way to recover it, while keeping finitely representable derivations,
is to consider cyclic proofs where fixed points are only unfolded and the (co)inductive
nature of a fixed point determines the conditions under which a cycle may be formed.

Luigi Santocanale [San02] proposed a calculus of circular proofs for a very sim-
ple logic, without implication nor quantifiers, which strikingly enjoys cut-elimination.
Brotherston and Simpson [Bro06, BS07] developed a rich cyclic proof system for clas-
sical3 first-order logic, which however does not satisfy cut-elimination. For the rest of
this section, we make a couple observations on a similar system for intuitionistic logic.

We show an example of cyclic proof, with cut, where N is the natural inductive

3The classical nature of their system allows for striking examples of cut-free cyclic proofs, which would
not be possible in an intuitionistic setting. This is the case, for example, of ∀x. nat x ⊃ even x ∨ odd x.
However, other theorems such as the totality of the addition fail to be proved even in the classical system.

30 Chapter 2 – Fixed points

definition of natural numbers, and E that of even natural numbers:

` E 0
` E 0 ∨ E (s 0)

loop to (*)
N y ` E y ∨ E (s y)

E y ` E y

E y ` E (s2 y)
E y ` E (s y) ∨ E (s2 y)

E (s y) ` E (s y)
E (s y) ` E (s y) ∨ E (s2 y)

E y ∨ E (s y) ` E (s y) ∨ E (s2 y)
N y ` E (s y) ∨ E (s2 y)

cut

(∗) N x ` E x ∨ E (s x)

The loop in that proof is valid because the left hand-side inductive is unfolded at each
traversal of the loop. Brotherston actually considered very complex looping schemes,
including cross-branches loops, and developed a general soundness criterion.

It is easy to see that there is no cut-free cyclic derivation establishing that every
natural number is either even or odd. Assume that there is a cut-free proof of nat x `
even (snx) ∨ odd (snx) for some n. It cannot start with a ∨Ri because the resulting
subgoal would be invalid, hence it must do a case-analysis on nat x. The zero case is
provable, but the premise for the successor case is nat y ` even (sn+1y) ∨ odd (sn+1y).
That subderivation cannot start with a loop rule4, hence we have a smaller derivation
for n + 1. By infinite descent on the size of the derivation, this is absurd.

Intuitively, invariants can be obtained from cyclic proofs, extracted from sequents
on which loops are formed — in our example, the invariant is λx. E x∨E (s x). It seems
possible to translate cyclic proofs into µLJ, where the cuts can then be eliminated. This
is illustrated for our example:

Id

` E 0
` E 0 ∨ E (s 0)

E y ∨ E (s y) ` E y ∨ E (s y)

...

E y ∨ E (s y) ` E (s y) ∨ E (s2 y)
E y ∨ E (s y) ` E (s y) ∨ E (s2 y)

cut

B(λx. E x ∨ E (s x))x ` E x ∨ E (s x)
N x ` E x ∨ E (s x)

However, there is an extra difficulty: cyclic proofs usually allow cycles going back to
arbitrary predecessors, not only immediate ones. This difference can be overcome as
explained in the previous section.

Compared to derivations using explicit (co)induction rules as in µLJ, cyclic proofs
have two weaknesses: they do not allow to generalize a goal in order to make it invari-
ant; and they do not allow reasoning about the invariant obtained for the predecessor
by having it explicitly in the sequent. When applying cut-elimination to cyclic proofs,
there are precisely two places where cuts cannot be reduced, corresponding to these
two limitations: openings and closings of loops.

Even if cut-free cyclic proof systems are far from being complete, they are a natural
restriction to consider from an implementation point of view, since they can easily
be implemented through tabling [Pie05]. We experimented with that approach, for
example, in the Bedwyr system (Chapter 7). From a more theoretical point of view,

4Of course, the possibility of generalizing the patterns allowed when looping is bound to fail with a more
complex example, and would only make things obscure.

2.3. Comparison with related deductive principles 31

one may look for fragments of a logic with explicit (co)induction rules for which some
kind of cyclic proof system is complete. Chapter 5 of this thesis will provide some
answers in that direction.

32 Chapter 2 – Fixed points

Chapter 3

The logic µMALL

We present the logic µMALL which is at the core of our work, in itself and as a basis
for carrying observations to other systems. It is obtained by first extending the mul-
tiplicative and additive fragment of linear logic (MALL) with equality and first-order
quantification. Because of the bounded use of formulas during proof construction,
provability in first-order MALL can be reduced to deciding unification problems under
a mixed quantifier prefix. That is decidable if terms are first-order, although not if terms
are simply typed λ-terms. An elegant and well-known way to make this logic more ex-
pressive is to add the exponentials ! and ? and the inference rules that allow for certain
occurrences of formulas marked with these to be contracted and weakened [Gir87].
Such modal-like operators are not, however, without their problems. In particular,
there is not an unique way to formulate the rules of the exponentials (see for example
elementary and light linear logic [Gir98] and soft linear logic [Laf04]). Even if we
fix the inference rules for the exponentials, as in standard linear logic, we have seen
in Chapter 1 that the defined connectives are not canonical. It is certainly possible to
consider a (partially ordered) collection of identically behaved exponentials on top of
MALL (see for example [DJS93]).

An alternative to strengthen MALL with exponentials is to extend it with fixed
points. Early approaches to adding fixed points [Gir92, SH93] involved inference rules
that could only unfold fixed point descriptions: as a consequence, such logics could
not discriminate between a least and greatest fixed point. Stronger systems that allow
induction [MM00] as well as co-induction [Tiu04, MT03b] include inference rules
using a higher-order variable that ranges over prefixed or postfixed points (invariants
or coinvariants). We shall explore this alternative to exponentials: we extend first-order
MALL to µMALL by adding least and greatest fixed point constructions. The obtained
system gives a structured approach to infinity, and turns out to be very expressive.

Besides considering fixed points as alternatives to the exponentials, there are other
reasons for examining µMALL. First, least and greatest fixed points are de Morgan
duals of one another and, hence, the classical nature of linear logic should offer some
economy and elegance in developing their proof theory, in contrast to intuitionistic
logic. Second, since linear logic can be seen as the logic behind intuitionistic logic, it
will be rather easy to develop a focusing proof system for intuitionistic logic and fixed

34 Chapter 3 – The logic µMALL

points based on the structure of the one we develop for µMALL.
It is important to stress that we are using linear logic here as “the logic behind

computational logic” and not, as it is more traditionally understood, as the logic of
resource management (in the sense of multiset rewriting, database updates, Petri nets,
etc). Instead, we find the proof theory of linear logic an appropriate and powerful
setting for exploring the structure of proofs in various intuitionistic logics (see [LM07a]
for another such use of linear logic).

The rest of this chapter is organized as follows. In Section 3.1, we define µMALL,
illustrate it through simple examples, and show some of its basic proof theoretic prop-
erties. We prove cut-elimination for µMALL in Section 3.2. Then, in Section 3.3, we
establish a central property of µMALL’s connectives that extends the classification of
MALL’s connectives between positive and negative ones. This observation highlights
the expressivity of µMALL, which is shown through some examples in Section 3.4,
and finally by encoding primitive recursive functions in Section 3.5.

3.1 Definition

In the following, terms are denoted by s, t; vectors of terms are denoted by ~s,~t; for-
mulas (objects of type o) are denoted by P,Q; variables are denoted by x, y. Finally,
the syntactic variable B represents a formula abstracted over a predicate and n terms
(λpλx1 . . . λxn.Ppx1 . . . xn). We have the following formula constructors:

P ::= P ⊗ P | P ⊕ P | P M P | P & P | 1 | 0 | ⊥ | >

| ∃γx. P | ∀γx. P | s
γ
= t | s

γ
, t | µγ1...γn (λpλ~x. P)~t | νγ1...γn (λpλ~x. P)~t

The syntactic variable γ represents a term type and ranges over all simple types that do
not contain o. The quantifiers have type (γ → o) → o and the equality and disequality
(i.e., ,) have type γ → γ → o. The connectives µ and ν have type (τ→ τ)→ τwhere τ
is γ1 → · · · → γn → o for some arity n ≥ 0. We shall almost always elide the references
to γ, assuming that they can be determined from context when it is important to know
their value. Formulas with top-level connective µ or ν are called fixed point expressions
and can be arbitrarily nested. The first argument of a fixed point expression is called
its body, and shall be denoted by B. In themselves, such second-order expressions are
called predicate operator expressions or simply operators.

Quantifiers and (in)equality are not new and play a small role in the proof theory
results: they are, however, crucial for our example applications. The central feature
here is the fixed point constructs. Finally, note that there are no atoms (predicate con-
stants) in the µMALL grammar. We shall see in the following the advantages of using
fixed points instead.

Definition 3.1. We define the negation B of an operator expression B, and extend the
usual definition of the involutive negation (cf. Definition 1.5) as follows:

B
de f
= λp.λ~x.(B(λ~x.(p~x)⊥)~x)⊥ (s = t)⊥

de f
= s , t (µB~t)⊥

de f
= νB~t

3.1. Definition 35

An operator B is said to be monotonic when for any predicate variable p and terms ~t,
the negation normal and λ-normal form of Bp~t does not contain any negated instance
of p.

We shall assume that all bodies are monotonic. In other words, negation (•⊥ for
formulas and • for bodies) is not part of the syntax since negation normal form of
formulas and bodies without atoms do not contain negations and since we forbid them
explicitly in fixed point expressions. When we write negation in some inference rules,
we shall be considering it as implicitly computing the negation normal form.

The monotonicity of a function is also a natural condition for the existence of fixed
points in lattices or other models. The condition of monotonicity is used only syntacti-
cally here since we are not studying the semantics of µMALL.

We present the inference rules for µMALL in Figure 3.1. The initial rule is re-
stricted to fixed points. In the ν rule, which provides both induction and coinduction,
S is called the (co)invariant, and is a closed formula of the same type as νB, of the
form γ1 → · · · → γn → o. The treatment of equality1 dates back to [Gir92, SH93]. In
the disequality rule, csu stands for complete set of unifiers. This set has at most one
element in the first-order case, but can be infinite in the presence of higher-order term
variables, which we do not exclude. In that case, the proofs are infinitely branching but
still have a finite depth. They are handled easily in our proofs by means of transfinite
inductions. Again, the use of higher-order terms, and even the presence of the equality
connectives are not essential to this work. All the results presented below hold in the
logic without equality, and they do not make much assumptions on the language of
terms.
Example 3.2. As an example we shall show why induction and coinduction coincide
in the classical framework of linear logic. Let us consider the result of applying the ν
rule on the negation of a least fixed point:

` S~t,Γ ` (S ~x)⊥, BS ~x
` (µB~t)⊥,Γ

Now, let S ′ be S ⊥. Then BS is simply (BS ′)⊥ and we observe the usual induction rule
in its one-sided form:

` (S ′~t)⊥,Γ ` (BS ′~x)⊥, S ′~x
` (µB~t)⊥,Γ

Finally, since negation is an involution, the rule holds for any invariant.

Proposition 3.3. Let θ be a substitution. If Σ; ` Γ is provable, then so is Σθ; ` Γθ.

Proof. This is a standard property. It is established by induction on the proof, the case
of equality being the only non-trivial one. When the conclusion of that rule is modified
by the application of θ, the solutions θ′ of the original unification problem are affected.
If some θ′ is incompatible with θ, then the corresponding branch does not have to be
considered anymore. Otherwise, a branch should be considered for the composition of
the two substitutions, but this is precisely the result of applying θ to the subderivation
originally associated to θ′. The resulting set of unifiers is still a complete one. �

1See Chapter 1 for a detailed discussion about it.

36 Chapter 3 – The logic µMALL

MALL rules

` 1
` Γ, P ` ∆,Q
` Γ,∆, P ⊗ Q

` Γ, P,Q
` Γ, P M Q

` Γ
` Γ,⊥

` ∆,>

` Γ, P ` Γ,Q
` Γ, P & Q

` Γ, Pi

` Γ, P0 ⊕ P1

First-order structure

` Γ, Pt
` Γ,∃x.Px

Σ, x; ` Γ, Px
Σ; ` Γ,∀x.Px

` t = t
{` Γθ : θ ∈ csu(s .

= t)}
` Γ, s , t

Fixed points

` Γ, B(µB)~t

` Γ, µB~t
µ

Σ; ` Γ, S~t ~x; ` BS ~x, (S ~x)⊥

Σ; ` Γ, νB~t
ν

` µB~t, νB~t
µν

Figure 3.1: Inference rules for µMALL

In the following, we write two sided sequents for convenience. We recall that Γ ` ∆

is just a shorthand for ` Γ⊥,∆.

Proposition 3.4. Let P and Q be formulas (abstracted over some variables) and B a
monotonic operator. The following rule, called functoriality of B, is admissible:

~x; P~x ` Q~x
Σ; BP ` BQ

f uncto

Proof. Let Π be a derivation of ~x; P~x ` Q~x. The idea of the proof is to build expansions
of Π. We proceed by induction on the number of fixed point connectives surrounding
p in Bp~x, with a subinduction on the size of B. The interesting base case is when B is
of the form λp. p~t, in which we conclude by instantiating Π. The monotonicity of B
excludes λp. (p~t)⊥. The inductive steps for first-order MALL units and connectives are
standard, for example the tensor is expanded as follows:

...
B1P ` B1Q

...
B2P ` B2Q

B1P, B2P ` B1Q ⊗ B2Q
B1P ⊗ B2P ` B1Q ⊗ B2Q

And the two subderivations are respectively obtained by induction hypothesis on B1
and B2. The new cases are fixed points. When B is of the form λp. ν(B′p)~t, we proceed

3.1. Definition 37

as follows:

ν(B′P)~t ` ν(B′P)~t

...
B′P(ν(B′P))~x ` B′Qν(B′P)~x
ν(B′P)~x ` B′Qν(B′P)~x

ν(B′P)~t ` ν(B′Q)~t

The derivation is then completed by induction hypothesis on λp. B′p(ν(B′P))~x. The
case of µ is treated symmetrically. �

Proposition 3.5. The following inference rules are derivable:

` P, P⊥
init

` Γ, B(νB)~t
` Γ, νB~t

νR

Proof. The admissibility of init is a standard result — it is also a special case of func-
toriality. The unfolding νR is derivable from ν, using B(νB) as the coinvariant S . The
proof of co-invariance ((B(νB)~x) (B(B(νB))~x) is obtained applying the functoriality
of B on the following subderivation:

` B(νB)~x, B(µB)~x
init

` B(νB)~x, µB~x
µ

�

Example 3.6. Units can be represented by means of = and ,. Assuming that 2 and
3 are two distinct constants, then we have 2 = 2 � 1 and 2 = 3 � 0 (and hence
2 , 2 � ⊥ and 2 , 3 � >). Here, P � Q denotes ` (P (Q) & (Q (P) and
P(Q denotes the formula P⊥ M Q.

Example 3.7. The µ (resp. ν) connective is meant to represent least (resp. greatest)
fixed points. For example ν(λp.p) is provable (take any provable formula as the co-
invariant), while its dual µ(λp.p) is not provable. More precisely: µ(λp.p) � 0 and
ν(λp.p) � >.

Example 3.8. The least fixed point, as expected, entails the greatest. The following is
a proof of µB~t (νB~t.

` B(µB)~x, B(νB)~x
init

` B(µB)~x, νB~x
νR

` µB~t, νB~t
µν

` νB~t, νB~t
ν on νB~t with S := µB

The greatest fixed point entails the least fixed point when the fixed points are noethe-
rian, i.e., all unfoldings of B and B terminate.

38 Chapter 3 – The logic µMALL

3.2 Cut-elimination
In Chapter 2, we have described the cut reductions for fixed points in intuitionistic
logic. There is no obstacle to extend the reductions of MALL along the same lines to
obtain the reductions for µMALL. The same does not hold for the proof of termination
of the cut reductions: the reducibility technique used for the extensions of LJ [MT03b,
Tiu04] is not adapted to classical calculi such as µMALL. In our setting, one has to use
another technique, such as (variants of) the reducibility candidates used by Girard for
the strong normalization of second order linear logic or Matthes [Mat99, Mat98] for
his extensions of system F with fixed points. It would be an interesting task to carry
out, which could also benefit the intuitionistic systems by establishing the uselessness
of the stratification condition used in that case — Tiu conjectured in [Tiu04] that this
technical device was not essential, and the work on system F, as well as ours, seems
to indicate that monotonicity is enough in these frameworks. However, we leave it to
further work and present here an indirect proof.

We prove cut-elimination for µMALL by encoding it into second-order linear logic
(LL2), normalizing the encoding and finally translate back the cut-free LL2 derivation
to a cut-free µMALL derivation. Although this is indirect, it is still a syntactic proof of
cut-elimination. As usual, it yields consistency of µMALL as well as relative soundness
and completeness with respect to LL2.

Theorem 3.9. The logic µMALL enjoys cut-elimination.

Proof. We first show in Lemma 3.12 how to translate µMALL formulas and proofs
into full second-order linear logic derivations, which are then normalized and focused,
and finally translated back to cut-free µMALL derivations as shown in Lemma 3.13.

Formally, the normalization has only been established for LL2 without equality, but
previous work on equality has shown that it has little role to play in normalization —
in general, first-order ingredients do not play a role in the complexity and termination
of cut-elimination. Similarly, Andreoli’s focusing did not treat first-order structure at
all, but it is straightforward to extend it: first-order quantifiers behave just like second-
order ones, and the treatment of equality is unsurprising as we shall see in the next
chapter. �

To distinguish second-order quantifiers from first-order ones, we shall write them
∀2 and ∃2.

Definition 3.10 (Translation from first-order to second-order). The translation com-
mutes with the connectives of MALL and the first-order ones, as well as the negation.
It is defined as follows on the least fixed points:

dµB~te
de f
= ∀2S . !(∀~y. dBeS~y(S~y)(S~t

And hence we have:

dνB~te
de f
= dµB~te⊥ ≡ ∃2S . !(∀~y. S~y(dBeS~y) ⊗ S~t

Here, dBe stands for λp.λ~x. dBp~xe, and we define similarly the encoding of a formula
abstracted over terms: dS e is λx. dS xe.

3.2. Cut-elimination 39

That translation is the straightforward linear adaptation of the standard impred-
icative encoding of least fixed points. Since predicate variables are translated to
second-order variables and everything is compositional, we have dBedS e ≡ dBS e and
dS e~t ≡ dS~te.

Definition 3.11 (Well-restricted second-order instantiations). A valid second-order in-
stantiation is an introduction of ∃2 of one of the following two forms:

` Θ; Γ, PdQe
` Θ; Γ,∃2X.PX

Q closed

` Θ; Γ, !(∀~y. dBeS~y(S~y) ⊗ (S~t)⊥

` Θ; Γ, dνB~te
!(∀~y. dBeS~y(S~y) ∈ Θ

Lemma 3.12. If ` Γ is derivable in µMALL then ` dΓe has a proof in LL2. Moreover,
every instance the ∃2 rule in that proof is well-restricted.

Proof. A simple induction allows to translate µMALL derivations rule by rule, which
is obvious for all connectives except fixed points. The axiom on fixed points becomes
an instance of the identity in LL2. It also works naturally for the ν rule, which is
translated as follows:

S~t ` Γ BS ~x ` S ~x
µB~t ` Γ

dBedS e~y ` dS e~y dS e~t ` dΓe

!(∀~y. dBedS e~y(dS e~y)(dS e~t ` dΓe

∀S . !(∀~y. dBeS~y(S~y)(S~t ` dΓe

The validity of the encoding of least fixed points strongly relies on monotonicity. In-
deed, the second-order eigenvariable S ~x can simulate the unfoldings of µB~x thanks to
the prefixed point hypothesis about it, but if the fixed point got negated by B after an
unfolding it could be subject to inductions that S cannot simulate at all. This is for-
mally expressed by the use of functoriality in the LL2 derivation that is cut to translate
applications of the µ rule:

Trivial
!(∀~y. dBeS~y(S~y),∀S . !(∀~y. dBeS~y(S~y)(S ~x ` S ~x

!(∀~y. dBeS~y(S~y), dµBe~x ` S ~x

!(∀~y. dBeS~y(S~y), dBedµBe~t ` dBeS~t
f uncto

!(∀~y. dBeS~y(S~y), dBedµBe~t ` S~t

` dBedµBe~t (dµB~te

At the end of that derivation we basically have an identity, where a second-order ex-
istential is instantiated with the corresponding variable S . It is the only place in the
translation where a second-order existential is not instantiated by an d.e encoding. �

Often, encoding a system into another is easy, but decoding can be cumbersome. If
one rule of the original system translates to several, and a transformation (e.g., normal-
ization) is applied to the translated derivation, these several rules can end up scattered
through the derivation. Here, we remark that focusing does the tedious task of reorga-
nizing those rules for us.

40 Chapter 3 – The logic µMALL

Lemma 3.13. If ` dΓe has an LL2 derivation that uses only well-restricted introduc-
tions of ∃2, then there is a cut-free derivation of ` Γ in µMALL.

Definition 3.14. Let Θ be a set of formulas. We define the translation b.cΘ from LL2
to µMALL formulas as follows:

bP ⊗ QcΘ ≡ bPcΘ ⊗ bQcΘ and similarly for M,⊕ and &
b1cΘ ≡ 1 and similarly for ⊥,>, 0, u = v and u , v

b∀x. PxcΘ ≡ ∀x. bPxcΘ and similarly for ∃
bS~tcΘ ≡ µB~t when S is a second-order variable

and (∀~y. dBeS~y(S~y) ∈ Θ

And finally:

b∀2S . !(∀~y. dBeS~y(S~y)(S~tcΘ ≡ µB~t

b∃2S . !(∀~y. S~y(dBeS~y) ⊗ S ~xcΘ ≡ νB~t

We extend this notation to multisets of formulas in the usual way, and omit to specify Θ

explicitly as it shall be obvious from the context. We say that a formula is b.c-encodable
when the translation is defined for that formula.

Proof. We first normalize the proof of ` dΓe and focus it with all predicate variables
being treated asynchronously. Then we proceed by a simple induction on the focused
LL2 derivation, precisely establishing that:

1. If there is a proof of ` Θ : Γ ⇑ ∆ where Θ = {(∀~y.dBieS i~y (S i~y)⊥ | i ∈ I}, and
Γ, ∆ are multisets of b.c-encodable formulas, then there is a proof of ` bΓ,∆c.

2. If there is a proof of ` Θ : Γ ⇓ P, with the same condition on Θ and Γ, and with
a b.c-encodable P, then there is a proof of ` bΓ, Pc.

We conclude by observing that bdΓec is Γ.
The asynchronous cases of the induction are easy. Only the introduction of second-

order universal quantifier is not directly mapped to µMALL, but it does not change the
b.c translation.

When the asynchronous phase ends, a focus is chosen. If it is put on a formula from
the linear context Γ, we simply use the second part of our induction hypothesis. But
it can also be put on an unfolding hypothesis in Θ, causing its contraction-dereliction.
This corresponds to the unfolding of a least fixed point. In that case, the polarity of S
forces the derivation to have a convenient form:

...

` Θ : Γ ⇓ dBieS i~t ` Θ : S i~t ⇓ (S i~t)⊥

` Θ : Γ, S i~t ⇓ dBieS i~t ⊗ (S i~t)⊥

` Θ : Γ, S i~t ⇓ ∃~y.dBieS i~y ⊗ (S i~y)⊥

` Θ : Γ, S i~t ⇑

3.2. Cut-elimination 41

By induction hypothesis on the subderivation focused on dBieS i~t, we get a derivation
of ` bΓc, Bi(µBi)~t, from which we build a derivation of the conclusion’s decoding, that
is ` bΓc, µBi~t.

We now treat the synchronous case. The propositional and first-order cases trans-
late trivially. The delicate step is when the focus is set on the encoding of a greatest
fixed point. It triggers the introduction of a second-order existential, immediately fol-
lowed by a tensor and an exponential. The crucial remark here is that normalization
and focusing do not affect the instantiations of second-order instantiations. Thus, the
instance is either of the form dIe for some closed I (case of a (co)induction), or it is the
variable associated to some least fixed point (case of an identity). Let us first treat the
case of a closed dIe:

...
` Θ :⇑ dBI~ye⊥, dI~ye

...
` Θ : Γ ⇓ dI~xe⊥

` Θ : Γ ⇓ (!∀~y.dBedIe~y(dIe~y) ⊗ dI~xe⊥

` Θ : Γ ⇓ ∃2S .!(∀~y.dBeS~y(S~y) ⊗ (S ~x)⊥

It translates well into:
...

` bΓc, (I~x)⊥

...

` BI⊥~y, I~y

` bΓc, νB~x
` bΓc, (µB~x)⊥

=

Now, if the existential is instantiated by the corresponding variable S , the focusing
enforces again the right form:

...
` Θ :⇓!(∀~y. dBeS i~y(I~y) ` Θ : S i~t ⇓ (S i~t)⊥

` Θ : S~t ⇓!(∀~y. dBeS i~y(S~y) ⊗ (S i~t)⊥

` Θ : S~t ⇓ ∃2S . !(∀~y.dBeS~y(S~y) ⊗ (S~t)⊥

Since S represents the least fixed point on B, the vertical dots are an instance of the
identity and the concluding sequent translates back to ` µB~t, νB~t, which we prove using
the µν rule. �

As shown in the above proof, fixed points can be encoded by means of second-
order quantification and exponentials. However, first-order MALL with exponentials
and first-order MALL with fixed points are incomparable.

An interesting observation about our technique is that it puts more structure on
µMALL derivations than what we claim. Not only do we obtain a cut-free derivation,
it also inherits a focused structure from LL2. However, we shall see in the next chapter
that the focusing that it yields on fixed points is much weaker than what can be obtained
from a closer examination.

We conjecture that a similar technique would work for establishing cut-elimination
(and hence consistency) for µLL, i.e., µMALL extended with exponentials. It requires

42 Chapter 3 – The logic µMALL

some extra care because the non-linear context Θ would not be exclusively used to
store the formulas stating that second-order variables represent prefixed points, but that
should not make an essential difference.

As said in Chapter 2, Girard [Gir92] observed that exponentials and non-monotonic
definitions combine to yield inconsistency: for example, the definition p ≡ p⊥ (that
is, the fixed point µλp.p⊥) does not lead to an inconsistency, whereas the definition
p ≡ ?(p⊥) (that is, µλp. ?(p⊥)) does. To reproduce the latter inconsistency in µMALL,
one needs to be able to unfold the expression νλp. !(p⊥). But this is not implied by
Proposition 3.5 since its body is not monotonic. Thus, even in the presence of ex-
ponentials, we currently do not have any example of non-monotonic definition that
invalidates the consistency of µMALL.

3.3 Classification of connectives

It is common to classify inference rules between invertible and non-invertible ones. In
linear logic, we can use the refined notion of positive and negative connectives (cf. Def-
inition 1.9). It is more interesting, as we learn something about positive connectives,
while non-invertibility is only an absence of information. Even if it does not seem to
be related to proof-search, positivity turns out to play an important role in the under-
standing and design of focused system [LM07a, Lau02, LQdF05, DJS93, DJS95].

Since µMALL does not have exponentials, it is not possible to talk about positivity
of its formulas and connectives. Hence, we are going to take a backwards approach:
we shall forget about the definition of positivity and redefine it syntactically, then prove
that negative formulas have a property close to the original negativity. Finally, we
consider the logic extended with exponentials and establish that the original notion of
positivity holds for our syntactically defined positives.

3.3.1 Polarities in µMALL
Definition 3.15. We classify as negative the following connectives: M, ⊥, &, >, ∀,
,, ν. Their duals are called positive. A formula is said to be negative (resp. positive)
when all of its connectives are negative (resp. positive). Finally, an operator λpλ~x.Bp~x
is said to be negative (resp. positive) when the formula Bp~x is negative (resp. positive).

Notice, for example, that λpλ~x.p~x is both positive and negative. But µp.p is only
positive while νp.p is only negative.

Proposition 3.16. The following structural rules are admissible provided that B is
negative:

` Γ, νB~t, νB~t
` Γ, νB~t

νC ` Γ

` Γ, νB~t
νW

Hence, the following structural rules hold for any negative formula P:

` Γ, P, P
` Γ, P C ` Γ

` Γ, P W

3.3. Classification of connectives 43

Proof. The standard argument for obtaining the general rules (outlined in Chapter 1,
Section 1.4) works except for the new case of the greatest fixed point. Hence, we only
show the proof of admissibility for the greatest fixed point rules, especially since that
proof also contains the ingredients of the general one.

We first prove the admissibility of νW. It is obtained by co-induction, choosing
⊥ as the co-invariant. We obtain the co-invariance proof (` B(λ~x.⊥)~x, 1) from a more
general result: for any collection of negative formulas (Pi)i, there is a derivation of
` (Pi)i, 1. This is done by induction on the total size of (Pi)i, counting one for each
connective, unit and predicate variable but ignoring terms. The proof is trivial if the
collection is empty. Otherwise, if P0 is a disequality we conclude by induction with one
less formula, and the size of the others unaffected by the unification; if it’s > our proof
is done; if it’s ⊥ then P0 disappears and we conclude by induction hypothesis. The M
case is done by induction hypothesis, the resulting collection has one more formula but
is smaller; the & makes use of two instances of the induction hypothesis. Finally, the ν
case is done by applying the ν rule with ⊥ as the invariant:

` (Pi)i, 1
` ⊥, (Pi)i, 1 ` B(λ~x.⊥)~x, 1

` νB~t, (Pi)i, 1

The two subderivations are obtained by induction. For the second one there is only
one formula, namely B(λ~x.⊥)~x, which is indeed negative (by monotonicity of B) and
smaller than νB.

Contraction (νC) is also an instance of the ν rule, obtained by choosing the co-
invariant (λ~x. νB~x M νB~x) — in the following, we write it (νB M νB) for short. As
before, we shall build, by induction on B, a derivation of the co-invariance of that
formula. Unfortunately, it is not possible to obtain directly a cut-free one. The proof
of co-invariance (νB~x M νB~x ` B(νB M νB)~x) follows from that of BνB~x M BνB~x `
B(νB M νB)~x — a first cut is used for replacing the fixed points by their unfoldings,
which is equivalent. We generalize over that form of sequent and derive in µMALL,
for any negative n-ary operator A:

A(νB1) . . . (νBn) M A(νB1) . . . (νBn) ` A(νB1 M νB1) . . . (νBn M νBn)

We prove this by induction on A:

• It is trivial if A is a disequality, > or ⊥.

• A is a projection λp1 . . . λpn.pi~t: we have to derive νBi~t M νBi~t ` νBi~t M νBi~t,
which is an instance of init.

• A is A1 M A2. In general, (P1 M P2) M (P1 M P2) is provably equivalent to
(P1 M P1) M (P2 M P2). We use this for Pi := Ai(νBi)i, cutting it to replace the
left hand-side of our sequent by (A1(νBi)i M A1(νBi)i) M (A2(νBi)i M A2(νBi)i).
We can then introduce the right hand-side M, and split the left one, to finally
conclude by induction hypothesis on A1 and A2.

44 Chapter 3 – The logic µMALL

• A is A1 & A2. We introduce the additive conjunction on the right, and have to
derive two similar premises:

(A1 & A2)(νBi)i M (A1 & A2)(νBi)i ` A1(νBi M νBi)i

To conclude by induction hypothesis, we have to choose the right projections for
the left hand-side &. Since the & is under the M, we have to use a cut — one can
derive in general that (P1 & P2) M (P1 & P2) ` P1 M P1.

• A is λp1 . . . λpn. ∀x. A′(pi)ix. The same scheme applies: we introduce the uni-
versal variable on the right, and instantiate the two quantifiers on the left, under
the M thanks to a cut.

• A is λp1 . . . λpn. ν(A′p1 . . . pn)~t. Let Bn+1 be A′(νBi)i≤n. We build our derivation
as follows:

Id
A′(νBi)i(νBn+1)~x M A′(νBi)i(νBn+1)~x ` A′(νBi M νBi)i(νBn+1 M νBn+1)~x Trivial

νBn+1~x M νBn+1~x ` A′(νBi M νBi)i(νBn+1 M νBn+1)~x
cut

νBn+1~t M νBn+1~t ` ν(A′(νBi M νBi)i)~t
ν

ν(A′(νBi)i)~t M ν(A′(νBi)i)~t ` ν(A′(νBi M νBi)i)~t

The Trivial derivation that is cut in establishes νBn+1~x M νBn+1~x `

A′(νBi)i(νBn+1)~x M A′(νBi)i(νBn+1)~x — there is even an equivalence between
the two because all we did is unfold νBn+1. We finally complete the deriva-
tion above by induction hypothesis, with Bn+1 added to the family (Bi)i and the
smaller operator expression A′.

�

The previous property is interesting in that it is established in an exponential-free
framework. However, in that setting, while negatives are characterized by admissible
rules, there is nothing to say about positives. To fix that, let us move temporarily to
µLL, that is µMALL plus exponentials.

3.3.2 Polarities in µLL
Instead of only establishing the usual characterization of positivity for the positive
formulas of µMALL, we observe that it can be obtained for a larger class of formulas.
Doing so, we essentially extend the syntactic positivity criterion to µLL by observing
how exponentials and fixed points interact. We expect that such observations would be
useful to study µLJ through the looking glass of µLL.

Definition 3.17. Positive formulas are given by the following grammar:

P ::= 1 | P ⊗ P | 0 | P ⊕ P | ∃x. P | u = v

| !Q for any formula Q
| µB~t when B is weakly positive, i.e., B1~t ∈ P
| νB~t when B is strongly positive, i.e., B⊥~t ∈ P

Negative formulas are those whose dual is positive.

3.4. Examples 45

Proposition 3.18. Any positive formula P is provably equivalent to !P. Said otherwise,
any negative formula Q is provably equivalent to ?Q.

On the first line, we find the positive formulas of µMALL. It is well-known that
!Q is positive independently of Q, since !Q �!!Q. That creates the possibility to have
strongly positive bodies and positive greatest fixed points. A simple examination of the
definition shows that if B⊥ is positive, then any occurrence of p in (λp. Bp) must be
under a !. Hence B(νB) is also positive, and so is νB because they are equivalent.

Proof. We prove the following generalization, by induction on the weakly positive op-
erator expression B: for any (possibly empty) collection of formulas (Pi)i, it is provable
that B(!Pi)i `!B(!Pi)i. This entails our proposition, since a positive formula can be seen
as a weakly positive operator expression with a vacuous abstraction.

Most cases of the induction are standard: the connectives ⊗,⊕,∃ preserve positivity,
and 1, 0 and equality are positive — in the sense of being equivalent to its own !. The
case of the least fixed point is as follows, where P denotes µB′(!Pi)i, and Θ is obtained
by induction hypothesis:

Id

Θ′

B′(!Pi)i!P `!B′(!Pi)i!P

P~z ` P~z
!P~z ` P~z

B′(!Pi)i!P~x ` B′(!Pi)iP~x
f uncto

B′(!Pi)i!P~x ` µB′(!Pi)~x
!B′(!Pi)i!P~x `!µB′(!Pi)~x

B′(!Pi)i(λ~y. !µB′(!Pi)i~y)~x `!µB′(!Pi)~x
cut

µB′(!Pi)i~t `!µB′(!Pi)i~t
ν

A simple examination of the definition of positivity shows that in a strongly pos-
itive operator (λp. B′p), all occurrences of p are under a !, although not necessarily
immediately. Hence, a given instance B′P can be written as B′′(!Qi)i. This allows us to
treat the case of a greatest fixed point over a strongly positive body by simply unfold-
ing the fixed points on both sides (under the ! on the right hand-side). Here, Θ is again
obtained by induction hypothesis, by observing that the sequent that it has to prove can
be written as B′′(!Pi)i(!Q j) j~t `!B′′(!Pi)i(!Q j) j~t:

Θ

B′(!Pi)i(νB′(!Pi)i)~t `!B′(!Pi)i(νB′(!Pi)i)~t
νB′(!Pi)i~t `!B′(!Pi)i(νB′(!Pi)i)~t

B′(!Pi)i(νB′(!Pi)i)~t ` B′(!Pi)(νB′(!Pi)i)~t
init

B′(!Pi)i(νB′(!Pi)i)~t ` νB′(!Pi)i~t
νR

!B′(!Pi)i(νB′(!Pi)i)~t `!νB′(!Pi)i~t
νB′(!Pi)i~t `!νB′(!Pi)i~t

cut

�

3.4 Examples
We shall now give a few theorems in µMALL. Although we do not give their deriva-
tions here but only a quick description of how to obtain it, we stress that all of these

46 Chapter 3 – The logic µMALL

examples are proved naturally. We also invite the reader to check that the µ-focusing
system presented in Chapter 4 is an useful guide when deriving these example, leaving
only the important choices. The reader will also note that although µMALL is linear,
these derivations are intuitive and their structure resemble that of proofs in intuitionistic
logic.

We first define a few least fixed points expressing basic properties of natural num-
bers. We assume two constants 0 and s of respective types n and n → n. Note that all
these definitions are positive.

nat
de f
= µ(λnatλx. x = 0 ⊕ ∃y. x = s y ⊗ nat y)

even
de f
= µ(λevenλx. x = 0 ⊕ ∃y. x = s (s y) ⊗ even y)

plus
de f
= µ(λplusλaλbλc. a = 0 ⊗ b = c

⊕ ∃a′∃c′.a = s a′ ⊗ c = s c′ ⊗ plus a′ b c′)

leq
de f
= µ(λleqλxλy. x = y ⊕ ∃y′. y = s y′ ⊗ leq x y′)

half
de f
= µ(λhalfλxλh. (x = 0 ⊕ x = s 0) ⊗ h = 0

⊕ ∃x′∃h′. x = s (s x′) ⊗ h = s h′ ⊗ half x′ h′)

ack
de f
= µ(λackλmλnλa. m = 0 ⊗ a = s n

⊕ (∃p. m = s p ⊗ n = 0 ⊗ ack p (s 0) a)
⊕ (∃p∃q∃b. m = s p ⊗ n = s q ⊗ ack m q b ⊗ ack p b a))

The following statements are theorems in µMALL. The main insights required
for proving these theorems involve deciding which fixed point expression should be
introduced by induction: the proper invariant is not the difficult choice here since the
context itself is adequate in these cases.

` ∀x. nat x(even x ⊕ even (s x)
` ∀x. nat x(∀y∃z. plus x y z
` ∀x. nat x(plus x 0 x
` ∀x. nat x(∀y. nat y(∀z. plus x y z(nat z

In the last theorem, the assumption (nat x) is not needed and can be weakened, thanks
to Proposition 6.11. In order to prove (∀x. nat x (∃h. half x h) the context does
not provide an invariant that is strong enough. A typical solution is to use complete
induction, i.e., use the strengthened invariant (λx. nat x ⊗ ∀y. leq y x(∃h. half y h).

A typical example of co-induction involves the simulation relation. Assume that
step : state→ label→ state→ o is an inductively defined relation encoding a labeled
transition system. Simulation can be defined using the definition

sim
de f
= ν(λsimλpλq. ∀a∀p′. step p a p′ (∃q′. step q a q′ ⊗ sim p′ q′).

Reflexivity of simulation (∀p. sim p p) is proved easily by co-induction with the co-
invariant (λpλq. p = q). Instances of step are not subject to induction but are treated
“as atoms”. Proving transitivity, that is,

∀p∀q∀r. sim p q(sim q r (sim p r

3.5. Expressiveness 47

is done by co-induction on (sim p r) with the co-invariant (λpλr. ∃q. sim p q ⊗ sim q r).
The focus is first put on (sim p q)⊥, then on (sim q r)⊥. The fixed points (sim p′ q′)
and (sim q′ r′) appearing later in the proof are treated “as atoms”, as are all instances
of step. Notice that these two examples are also cases where the context gives a coin-
variant.

Except for the totality of half, all these theorems seem simple to prove using a
limited number of heuristics. For example, one could first try to treat fixed points “as
atoms”, an approach that would likely fail quickly if inappropriate. Second, depending
on the “rigid” structure of the arguments to a fixed point expression, one might choose
to either unfold the fixed point or attempt to use the surrounding context to generate an
invariant. Doing this without a good focusing system would be very inefficient, but we
shall see in Chapter 7 that a simple strategy can go a long way when applied on top of
the focused system developed in Chapter 4.

3.5 Expressiveness

The study of µMALL raises the question of how far one can go without the exponen-
tials, getting the infinite behavior from the meaning of fixed points instead of modali-
ties. This question has interested people for long, for the particular case of arithmetic:
having natural numbers and induction, is it possible to represent the same functions
with and without contractions? This question has been asked in categorical terms by
Burroni [Bur86]. Taking a computational approach, the authors of [AFFM06] show
that Gödel’s System T can be restricted to follow a linear discipline without loosing in
expressiveness. These studies start with the observation that nat can be contracted and
weakened by means of induction, which is a particular case of the property of nega-
tive formulas (Proposition 6.11). We outline here how this observation is exploited to
encode any primitive recursive function in µMALL.

The encoding follows the proof-as-program approach. We assume a system of
cut reductions extending that of MALL with reductions for fixed points as outlined
in Chapter 2. We define the type of natural numbers as N := µX.1 ⊕ X, and the
representation of a numbers in µMALL as follows:

Π0 =

` 1
` 1 ⊕ N
` N ΠS (n) =

Πn

` N
` 1 ⊕ N
` N

A primitive recursive function f of arity k will be represented by a deriva-
tion Π f of (N)k ` N, such that for any natural numbers n1, . . . , nk, the derivation
cut(Π; Πn1 , . . . ,Πnk) reduces to the representation Π f (n1,...,nk) and no other derivation.
To do so, we encode in µMALL the elementary primitive recursive functions (zero,
successor and projectors) and simulate the two means to combine them (composition
and primitive recursion).

48 Chapter 3 – The logic µMALL

The successor is represented by:

N ` N
N ` 1 ⊕ N

N ` N

When cut against a natural number, the auxiliary reductions push the cut above the
rules µ and ⊕ and replace the axiom by the natural number, effectively forming the
representation of its successor.

The projector pi
n, defined by pi

n(x1, . . . , xn) = xi, is obtained by weakening the
discarded arguments, which is admissible for N:

xi : N ` N
x1 : N, . . . , xi : N, . . . , xn : N ` N

Notice that the reduction of a projector is not immediate at all, as each discarded natural
number is iterated over for building a proof of 1 that is finally cut against the main
derivation and discarded.

Given an n-ary primitive recursive function f , and n primitive recursive functions
(gi)1≤i≤n of arity m, their composition h is also a primitive recursive function:

h(x1, . . . , xm) = f (g1(x1, . . . , xm), . . . , gn(x1, . . . , xm))

We represent it by contracting n times each of the m inputs and distributing them to the
functions g over n successive cuts. We show the derivation for n = 2:

Πg1

x1 : N, . . . , xm : N ` N

Πg2

x1 : N, . . . , xm : N ` N
Π f

r1 : N, r2 : N ` N
r1 : N, x1 : N, . . . , xm : N ` N cut

x1 : N, . . . , xm : N ` N

Again, the reduction will be far from efficient, as every natural number will be copied
by induction. To be formal, we should check that the contraction given by Proposi-
tion 6.11 indeed corresponds to a copy. An inspection of its proof should convince the
reader.

Finally, the primitive recursion scheme allows to form a function h of arity n + 1
from the functions f of arity n and g of arity n + 2, defined by:

h(0, ~y) = f (~y)
h(S (k), ~y) = g(k, h(k, ~y), ~y)

We simulate this in µMALL using induction. The computational content of an induc-
tion is the iteration of the proof of (co)invariance. This does not match exactly with
the recursion scheme, which also carries along the extra parameters ~y and the current
rank k. We obtain the same behavior by using an invariant (Nn (N) ⊗ N: the first
component represents the function h partially applied to k, the second component being

3.6. Conclusion 49

k. The derivation is as follows:

N ` N
(Nn (N),Nn ` N

(Nn (N),N,Nn ` N
(Nn (N) ⊗ N,Nn ` N

Π f ⊗ Π0

` (Nn (N) ⊗ N

Πg

hk~y : N, k : N, ~y : Nn ` N
hk : (Nn (N), k : N, ~y : Nn ` N

Πsucc

k : N ` S k : N
hk : (Nn (N), k : N ` (Nn (N) ⊗ N

(Nn (N) ⊗ N ` (Nn (N) ⊗ N
1 ⊕ (Nn (N) ⊗ N ` (Nn (N) ⊗ N

x : N, ~y : Nn ` N

When cut against a natural number n, the reduction will iterate n times the invariance
premise corresponding to the successor case, starting with the invariance premise cor-
responding to the base case. The result, of type (Nn (N) ⊗ N, is then cut against
the main premise of the induction, which discards the second component and applies
the first one to ~y. One can read from the derivation that the iterative process starts with
(f , 0) and at each step transforms (hk, k) into ((λy. g(k, hk, ~y)), S (k)), which corresponds
to the primitive recursion scheme.

Clearly, the encoding of primitive recursive functions exploits only a small por-
tion of µMALL. The natural next question is whether µMALL can capture Gödel’s
System T. In [AFFM06], a linear restriction of System T is designed and proved to
be equivalent to the original system. However, their computational notion of linear-
ity, allowing open invariants that only need to be closed at reduction, does not corre-
spond exactly to linear logic. While we can reproduce in µMALL some other of their
observations, it is impossible to obtain the copy for arrow types in our system, i.e.,
(P (Q) ` (P (Q) ⊗ (P (Q). That contraction lacks, for example, when trying to
represent the Ackermann function.

3.6 Conclusion
The logic µMALL is a natural system to consider for the study of least and greatest
fixed points. It is very symmetric, and all of its components are canonical. Moreover,
while it is based on linear logic, it has a surprising expressiveness and lends itself to
traditional reasoning on (co)inductive specifications: arithmetic, algorithms, etc. The
rest of this thesis builds on top of that system, exploiting its qualities.

This chapter leaves several questions open. One of the most important future work
would be to obtain a proof of cut-elimination that establishes the termination of cut
reductions directly on µMALL: this would certainly give insights on the dynamics
and complexity of our system. Although various observations rely on monotonic-
ity (unfolding of greatest fixed points, functoriality, the encoding on which our cut-
elimination proof is based, but also the definition of cut reductions as in Chapter 2) we
do not have any counter-example to consistency in the presence of fixed points on non-
monotonic bodies, even when adding exponentials. This question may not have a high
practical impact as it is unusual, and very inconvenient, to work with non-monotonic
operators. There are also several open questions that are related to the second-order fea-
tures of (co)induction. In our proof of cut-elimination, and more precisely Lemma 3.13
that decodes an LL2 derivation into a µMALL, one can wonder whether the proviso on

50 Chapter 3 – The logic µMALL

the second-order instantiations can be removed. More likely, and more interestingly,
a similar question would arise when relating intuitionistic logic and µLL: if a µLL
proof uses an invariant that is not the encoding of an intuitionistic invariant, is there
still a way to obtain an intuitionistic proof? This is close to the question of the precise
expressiveness of µMALL. Attacking these problems is hard, and might require some
new approaches.

Chapter 4

Focusing µMALL

Arguably, the most important property of a logic is its consistency. In sequent calcu-
lus, consistency is obtained from cut-elimination, which requires a symmetry between
one connective and its dual, or in other word between construction and elimination,
conclusion and hypothesis. The notions of polarity and focusing are more recent in
proof-theory but their growing importance put them on par with cut-elimination. Fo-
cusing organizes proofs in stripes of invertible and non-invertible rules, removing ir-
relevant interleavings and inducing a reading of the logic based on macro-connectives
aggregating stripes of usual connectives. Focusing is useful to justify game theoretic
semantics [MS06] and have been central to the design of Ludics [Gir01].

From the viewpoint of proof search, cut-elimination is an essential result as it usu-
ally guarantees that no invention is needed. Focusing plays the essential role of re-
ducing the space of the search for a cut-free proof, by identifying situations when
backtracking is unnecessary. In logic programming, it plays the more demanding role
of correlating the declarative meaning of a program with its operational meaning, given
by proof-search. Various computational systems have employed different focusing the-
orems: much of Prolog’s design and implementations can be justified by the complete-
ness of SLD-resolution [AvE82]; uniform proofs (goal-directed proofs) in intuition-
istic and intuitionistic linear logics have been used to justify λProlog [MNPS91] and
Lolli [HM94]; the classical linear logic programming languages LO [AP91] and Forum
[Mil96] have used directly Andreoli’s general focusing result [And92] for linear logic.

Inductive proof-search, e.g., in µMALL, is very problematic because cut-free
derivations are not analytic: there is no way to restrict the higher-order (relation) vari-
ables used in the (co)induction rules. Many systems use various heuristics to restrict
the search space, but these solutions lack a proof theoretical justification. In that set-
ting, focusing becomes especially interesting: it yields a restriction of the search space
while preserving completeness. Obviously, there is no hope that it will make proof
search decidable, but it is an appreciable leap forward, pushing further the limit where
proof-theory and completeness leave place to heuristics.

A good focused proof system for µMALL is not a simple consequence of the trans-
lation of fixed points into LL2 that is used in the proof of Theorem 3.9: applying linear
logic focusing to the result of that translation leads to a poorly structured system that

52 Chapter 4 – Focusing µMALL

is not consistent with our classification of connectives as positives and negatives. Let
us recall the encoding of µB~t:

∀S . !(∀~x. BS ~x(S ~x)(S~t

Superficially, this is asynchronous. Once the asynchronous layer has been processed,
one obtains unfoldings by focusing on the pre-fixed-point hypothesis. Through that
encoding, one would thus obtain a system where several unfoldings necessarily require
several phase alternations. This is not satisfying: the game-based reading of focus-
ing identifies fully synchronous (positive) formulas with data types, which should be
built in one step of the player, i.e., in one synchronous phase. In µMALL, least fixed
points over fully synchronous bodies should be seen as data types. That intuition,
visible in previous examples, is also justified by the classification of connectives (Def-
inition 3.15), and shall be accounted for in our focused system.

In the design of our focusing calculus, and in the proof of its completeness, it is
important to keep in mind that invertibility is not asynchrony. Invertibility is the pos-
sibility of applying a rule without ever loosing provability, hence both µ and ν are
invertible — with an appropriate coinvariant for ν, typically the unfolding invariant.
This does not capture the essential aspect of fixed points, that is their infinite behavior.
A system requiring that the µ rule is applied whenever possible would not be complete,
notably failing on ` > ⊗ 1, µX. X or ` nat x (nat x. The best proof of the latter
sequent consists in an axiom. Invertibility of µ does give us a proof starting with an
unfolding: it is the η-expansion of that axiom. This shows very well that invertibility
(at the cost of expansions) is not the thing to consider. Rather, focusing is about permu-
tations of rules in an existing derivation: asynchronous rules commute with any other,
synchronous rules commute with other synchronous rules.

The rest of this chapter is organized as follows. We first design the µ-focused sys-
tem in Section 4.1, treating µ synchronously, which is satisfying for several reasons
starting with its positive nature. In Section 4.2, we apply this system to an interest-
ing fragment of µLJ. We show in Section 4.3 that it is also possible to consider a
focused system for µMALL where ν is treated synchronously. Finally, we consider in
Section 4.4 how to extend our results beyond µMALL, considering µLL and µLJ.

4.1 A complete µ-focused calculus

We present the proof system in Figure 4.1 as a good candidate for a focused proof sys-
tem for µMALL. We use explicit annotations of the sequents in the style of Andreoli.
In the synchronous phase, sequents have the form ` Γ ⇓ P. In the asynchronous phase,
they have the form ` Γ ⇑ ∆ where Γ and ∆ are both multisets of formulas. In both
sequents, Γ is a multiset of synchronous formulas and ν-expressions. The convention
on ∆ is a slight departure from Andreoli’s original proof system where ∆ is a list —
which can be used to provide a fixed but arbitrary ordering of the asynchronous phase.

The rules for equality are not surprising. The main novelty here is the treatment of
fixed points. Each of the fixed point connectives has two rules in the focused system:
one treats it “as an atom” and the other one as an expression with “internal structure.”

4.1. A complete µ-focused calculus 53

Asynchronous phase

` Γ ⇑ P,Q,∆
` Γ ⇑ P M Q,∆

` Γ ⇑ P,∆ ` Γ ⇑ Q,∆
` Γ ⇑ P & Q,∆

` Γ ⇑ ∆

` Γ ⇑ ⊥,∆ ` Γ ⇑ >,∆

{` Γθ ⇑ ∆θ : θ ∈ csu(s .
= t)}

` Γ ⇑ s , t,∆

` Γ ⇑ Pc,∆
` Γ ⇑ ∀x.Px,∆

c new

` Γ ⇑ S~t,∆ `⇑ BS ~x, S ~x⊥

` Γ ⇑ νB~t,∆
~x new

` Γ, νB~t ⇑ ∆

` Γ ⇑ νB~t,∆

Synchronous phase

` Γ ⇓ P ` Γ′ ⇓ Q
` Γ,Γ′ ⇓ P ⊗ Q

` Γ ⇓ Pi

` Γ ⇓ P0 ⊕ P1

`⇓ 1 `⇓ t = t

` Γ ⇓ Pt
` Γ ⇓ ∃x.Px

` Γ ⇓ B(µB)~t

` Γ ⇓ µB~t ` νB~t ⇓ µB~t

Switching (where P is synchronous, Q asynchronous)

` Γ, P ⇑ ∆

` Γ ⇑ P,∆
` Γ ⇓ P
` Γ, P ⇑

` Γ ⇑ Q
` Γ ⇓ Q

Figure 4.1: The µ-focused proof-system for µMALL

54 Chapter 4 – Focusing µMALL

In accordance with Definition 3.15, µ is treated during the synchronous phase and ν
during the asynchronous phase.

Roughly, what the focused system implies is that if a proof involving a ν-expression
proceeds by co-induction on it, then this co-induction can be done at the beginning;
otherwise that formula can be ignored in the whole derivation, except for the µν rule.
The latter case is expressed by the rule which moves the greatest fixed point to the left
zone, an operation that we call freezing. Focusing on a µ-expression yields two choices:
unfolding or applying the initial rule for fixed points. If the body is fully synchronous,
the focus will never be lost. For example, if nat is the (fully synchronous) expression
µ(λnat.λx. x = 0 ⊕ ∃y.x = s y ⊗ nat y), then focusing puts a lot of structure on a proof
of ` Γ ⇓ nat t: either t is a ground term representing a natural number and Γ is empty,
or t = snx for some n ≥ 0 and Γ is {(nat x)⊥}.

We shall now proceed with the proof of completeness. The main lines of this proof
follow [MS07, Sau08] which has two advantages. First, it identifies focused proofs
as standard ones with extra structure. The annotated sequents of the focused system
are just a concise way of expressing this extra structure. The practical outcome of
this is that the proof of completeness is a process of proof transformation working
on standard derivations. This proof transformation proceeds by iterating two lemmas
which themselves perform rule permutations. The first lemma expresses the fact that
asynchronous rules can always be applied first, while the second lemma expresses that
synchronous rules can be hereditarily applied once the focus has been chosen. The
second benefit of that technique is the clean presentation of the focalization graph for
analyzing dependencies in a proof and showing that there is always at least one possible
focus.

4.1.1 Balanced derivations
In order to ensure that the focalization process terminates, we have to guarantee that
the permutation lemmas do not deepen derivations. Unfortunately, the > rule is known
to cause problems in that respect. For example, here is a possible focalization of an
already focused proof:

` 1 M 1,> >
f oc
−→

` 1, 1,> >

` 1 M 1,> M

It is clearly not a major issue, which can be fixed in various ways. A simple solution is
to postpone applications of > after all possible asynchronous rules, before running the
focalization process. This is easily obtained in standard MALL, as the eager application
of the other asynchronous rules M, &, ⊥ and ∀ terminates and leaves > available.

A slight novelty here is that trivial disequalities such as 1 , 2 behave as >. They
shall thus be similarly postponed after all other asynchronous rules have been applied.
Fortunately, we do not have to worry about disequalities that might only become trivial
after the application of substitutions caused by rule permutations, because subderiva-
tions will be focused before the whole derivation.

Fixed points also require some preparation of the derivations. In the focused sys-
tem, a greatest fixed point can be used for co-induction or frozen for later use “as an

4.1. A complete µ-focused calculus 55

atom” in the axiom rule. To reflect this step, we shall enrich our derivations with an
extra-logical annotation for frozen fixed points. The heart of our problem is that an
instance of ν must be used in the same way in all branches for the focalization process
to work. If a greatest fixed point is copied by an additive conjunction, then it should
either be used for co-induction in both branches, or frozen and used for axiom in both
branches. Otherwise we will fail to permute the treatment of the ν under that of the &
while controlling the size of the transformed derivation. We shall instead apply a first
balancing transformation before the essential part of focalization.

In order to detail the balancing of derivations, we must clarify our notions of for-
mulas and occurrences. Indeed, we need to be able to identify several occurrences of a
formula, but not necessarily identify all isomorphic formulas. To clarify this, we shall
use the notion of location — reminiscent of the loci from [Gir01]. Intentionally, we
remain informal to leave heavy details out of the main discussion, and just try to give
the right intuition.

Definition 4.1 (Formula, location, occurrence). A formula shall be seen not only as the
structure that it denotes, namely an abstract syntax tree, but also as an address where
this structure is located. Similarly, subformulas have their own locations, yielding a
tree of locations and sublocations. This allows to make a distinction between identical
formulas, which have the same location, and isomorphic formulas which only denote
the same structure. In this work, the locations almost always matter. When we talk of
the occurrences of a formula in a sequent or derivation, we refer to identical formulas
occurring in different places in that sequent or derivation.

The locations are independent of the term structure of formulas: all instances of a
formula are considered to have the same location. This amounts to say that locations
are attached to formulas abstracted over all terms.

Inference rules should be read from the locative viewpoint, the multiset of formulas
being in fact a multiset of locations. Let us give a couple key examples. In the ∀ and
∃ rules, the top and bottom sequents only differ in one location: the active location
is replaced by its only sublocation. The premise sequents of the , rule are locatively
identical to the conclusion sequent, except for the location of the active , formula
that has been removed. In the & rule, the formulas of the context are copied in the
two premises, each of them occurring (identically) at least three times at toplevel in
the rule. The axiom rule should be read structurally, i.e., it takes place between two
locations which denote dual structures.

In the ν rule, the formulas from the co-invariance proofs have new locations, as well
as the co-invariant in the main premise. This means that these locations can be changed
at will, much like a renaming of eigenvariables. In other words, a greatest fixed point
has infinitely many sublocations, regarding the coinvariants as its subformulas. In the
µ rule, the formula B(µB)~t is the only sublocation of the least fixed point1. Notice that
in order for the graph of locations to remain a tree, distinct occurrences of µB in B(µB)
(resp. νB in B(νB)) must be distinguished.

1The details about µ can be safely ignored in a first reading, as they only matter in establishing the
completeness of the ν-focused system for µMALL.

56 Chapter 4 – Focusing µMALL

Example 4.2. Locations are primarily used to track a formula through a derivation.
They also have the important effect of distinguishing fixed points from their recursive
occurrences. If nat (s x) is located at a given address then the recursive occurrence of
nat in its unfolding, which will eventually become nat x, is located at a strict subloca-
tion of that address.

We assume that two formulas of a same sequent have disjoint locations: neither is
a sublocation of the other. It is easy to check that this property is preserved by the rules
of µMALL.

Definition 4.3 (Freezing-annotated derivation). The freezing-annotated variant of
µMALL is obtained by enriching the sequent structure with an annotation for frozen
fixed points, restricting the initial rule to be applied only with a frozen greatest fixed
point, and adding an explicit annotation rule:

` Γ, (νB~t)∗

` Γ, νB~t ` (νB~t)∗, µB~t

Any µMALL derivation can be transformed into a freezing-annotated one by ap-
plying the obvious transformation:

` νB~t, µB~t −→

` (νB~t)∗, µB~t

` νB~t, µB~t

From now on we shall work on freezing-annotated derivations, simply calling them
derivations.

Definition 4.4 (Balanced derivation). A greatest fixed point occurrence is used in a
balanced way if all of its principal occurrences are used consistently: either they are all
frozen or they are all used for co-induction, with the same co-invariant. We say that a
derivation is balanced if all greatest fixed points occurring in it are used in a balanced
way, and only frozen asynchronous formula are erased in it (by an application of > or
trivial ,).

Lemma 4.5. If S 0 and S 1 are both coinvariants for B then so is S 0 ⊕ S 1.

Proof. Let Πi be the derivation of coinvariance for S i. The proof of coinvariance of
S ⊕ S ′ is as follows:

φ0(Π0)
S 0~x ` B(S 0 ⊕ S 1)~x

φ1(Π1)
S 1~x ` B(S 0 ⊕ S 1)~x

S 0~x ⊕ S 1~x ` B(S 0 ⊕ S 1)~x

The transformed derivations φi(Πi) are obtained by functoriality:

φi(Πi) =

Πi

S i~x ` BS i~x

S i~z ` S i~z
S i~z ` S 0~z ⊕ S 1~z

BS i~y ` B(S 0 ⊕ S 1)~y
f uncto

S i~x ` B(S 0 ⊕ S 1)~x
cut

4.1. A complete µ-focused calculus 57

Notice that after the elimination of cuts, the proof of coinvariance that we built can be
larger than the original ones. �

Lemma 4.6. Any derivation can be turned into a balanced one.

Proof. We first ensure that all coinvariants used for the same (locatively identical)
greatest fixed points are the same. This is achieved by taking the union of all coin-
variants, thanks to Lemma 4.5. We also add to this union the unfolding coinvariant
B(νB). Let S be the resulting coinvariant, of the form S 0 ⊕ . . . ⊕ S n ⊕ B(νB), and Θ

be the proof of its coinvariance. We adapt our derivation by changing every instance of
the ν rule as follows:

` Γ, S i~t
Θi

S i~x ` BS i~x
` Γ, νB~t −→

` Γ, S i~t

` Γ, S~t
⊕ Θ

S ~x ` BS ~x
` Γ, νB~t

We can assume that the only asynchronous formulas that are erased are frozen fixed
points, otherwise this is obtained by applying a finite number of asynchronous rules,
including freezing, to postpone the applications of> and trivial ,. It remains to balance
the usage of fixed points, while preserving the property that only frozen asynchronous
formulas are erased.

The transformation proceeds by induction on the derivation. Once the subderiva-
tions are balanced, they should be glued back to form a balanced derivation. This is
non-trivial as soon as one formula occurs in several subderivations, i.e., in the rules &
and ,. We shall only consider the case of &, the other one being similar:

Π

` Γ, νB~t, P
Ξ

` Γ, νB~t,Q
` Γ, νB~t, P & Q

Let Π′ and Ξ′ denote the balanced versions of Π and Ξ. Although they are balanced,
a given νB~t is not necessarily used consistently between them. Let us say that it is
frozen in Ξ′ but co-inducted on in Π′. We apply the following two transformations on
Ξ′, replacing all axioms and erasures on (νB~t)∗: an expansion of the axioms,

` (νB~t)∗, µB~t −→

` B(νB)~t, B(µB)~t
init∗

` B(νB)~t, µB~t
µ

` S~t, µB~t
⊕ Θ

S ~x ` BS ~x

` νB~t, µB~t
ν

58 Chapter 4 – Focusing µMALL

and a similar expansion of the erasures2,

` (νB~t)∗,Γ,> −→

` (νBi~ti)∗i ,Γ
′,>

` (νBi~ti)i,Γ
′,>

...

` B(νB)~t,Γ,>

` S~t,Γ,>
⊕ Θ

S ~x ` BS ~x
` νB~t,Γ,>

ν

In the expansion of the axiom, the rule init∗ denotes the natural adaptation of the de-
rived rule init (see Proposition 3.5) to the framework of annotated derivations: if a fixed
point formula is encountered, it is frozen and the axiom is applied. In the expansion
of the erasure, the vertical dots correspond to treating the outer asynchronous layer of
B(νB)~t, i.e., applying ⊥,M,&,∀ and ,, until only synchronous formulas and greatest
fixed points remain. Then, fixed points are frozen and the > rule can be applied. The
same transformation is also used to adapt the erasure of fixed points by an trivial ,.

These two transformations restore a balanced usage for νB, but may introduce
freezing on greatest fixed point subformulas of νB: this may occur in init∗, but also
with the νBi in our expansion of the erasure. If necessary, i.e., if these subformulas
are not frozen in Π′, their freezing should be corrected by applying the same trans-
formations on them. At this point the distinction between location and structure (cf.
Definition 4.1) is crucial: speaking about structure, the subformula relation is cyclic
on fixed points (nat is a subformula of nat); but from the locative point of view it co-
incides with the tree of sublocations. Moreover, that tree is only finitely explored in
Π′, so there is a well-founded order on formulas, based on the distance to a leaf in that
finite part of the tree. A multiset ordering argument on top of that measure shows that
our iterative process terminates. �

Balancing is the most important and novel part of our focalization process. This
pre-processing of derivations is only a technical device ensuring termination in the
proof of completeness, independently of which rules are permuted down; we stress
that it is possible in the focused system to apply > before other asynchronous rules.
It is also possible to produce a derivation that is not balanced, e.g., by applying an
additive conjunction before treating a greatest fixed point.

4.1.2 Preliminaries
Definition 4.7. We consider the measures hµ(Π) and |Π|. |Π| is the number of connec-
tives in the conclusion, counting 1 for µ and ν expressions, but 0 for frozen ones. The
µ-height of a derivation Π with subderivations (Πi)i is an ordinal, inductively defined
by:

hµ(Π) =

{
1 + sup{hµ(Πi)} if the first rule of Π is µ or ν;
sup{hµ(Πi)} otherwise.

2We could have used a more radical solution by using the coinvariant 0. We prefer to invoke the unfolding
to show that it works equally well when treating balancing the usages of µ instead of ν.

4.1. A complete µ-focused calculus 59

Proposition 4.8. The lexicographic order on (hµ(Π), |Π|) is compatible with the sub-
derivation order.

Proof. Any application removes one connective and thus decreases |Π| (without chang-
ing hµ(Π)), except µ and ν which decrease hµ(Π). �

The couple (hµ(Π), |Π|) will be simply called the measure or size of a derivation in
the followings.

Lemma 4.9. Let σ be a substitution of first-order variables. If ` Γ is provable, then so
is ` Γσ. Moreover, the instantiated derivation has a least or equal size.

Proof. This property is a standard and straightforward one, as the fixed points do not
change anything here. �

We now present the focalization graph of [MS07].

Definition 4.10. The synchronous trunk of a derivation is its largest open sub-
derivation which contains only applications of synchronous rules.

Definition 4.11. We define the relation ≺ on the formulas of the base sequent of a
derivation Π: P ≺ Q if and only if there exists P′, asynchronous subformula3 of P
in Π, and Q′, synchronous subformula of Q, such that P′ and Q′ occur in the same
sequent of the synchronous trunk of Π.

The intended meaning of P ≺ Q is that we must focus on P before Q. Therefore,
the natural question is the existence of minimal elements for that relation, equivalent
to its acyclicity.

Proposition 4.12. If Π starts with a synchronous rule, and P is minimal for ≺ in Π,
then so are its subformulas in their respective subderivations.

Proof. It is enough to notice how the ≺ relation evolves in a synchronous trunk. The
relations below and on top of a ⊕ rule are isomorphic. The same thing holds for ∃ and
µ. The application of = and 1 ends the derivation and hence the synchronous trunk.
There only remains the interesting case: the tensor. In that case the relation below the
tensor is (isomorphic to) the union of the two relations on top of it, in which only two
points get merged, namely the two subformulas of the split tensor. �

Lemma 4.13. The relation ≺ is acyclic.

Proof. We re-use previous observations on the evolution of ≺ and proceed by induction
on the derivation. There is not anything to do for the cases of = and 1. If the derivation
starts with a ⊕, ∃ or µ, the acyclicity on ≺ on the conclusion comes from the acyclicity
for the subderivation. For ⊗, assuming the acyclicity of ≺ on the premises, we cannot
have a cycle in the conclusion: this cycle cannot lie within the ancestors of a single
branch, so it has to involve the split tensor, but then it would have to be involved twice
because it is the only node connecting the two ancestors components, and we contradict
again the acyclicity of ≺ on the premises. �

3This does mean subformula in the locative sense, in particular with (co)invariants being subformulas of
the associated fixed points.

60 Chapter 4 – Focusing µMALL

4.1.3 Permutation lemmas and completeness
Lemma 4.14. Let P be an asynchronous formula. Any balanced derivation of ` Γ, P
can be turned into one where P is active in the conclusion, which is still balanced and
which has a smaller or equal size than the original.

Proof. We proceed by induction on the derivation. If P is not active in the first rule,
then by induction hypothesis make it active in the immediate subderivations where it
occurs. Then permute the first two rules. A simple inspection shows that in each case,
the resulting derivation has equal (in most of the cases) or smaller size (e.g., when
permuting down a > rule), and that balancing is not affected.

The MALL permutations are usual and interact well with our measure. Most of the
permutations involving the new rules are not surprising, such as ⊗/ν:

` Γ, P, S~t ` BS ~x, S ~x⊥

` Γ, P, νB~t ` Γ′, P′

` Γ,Γ′, P ⊗ P′, νB~t −→

` Γ, P, S~t ` Γ′, P′

` Γ,Γ′, P ⊗ P′, S~t ` BS ~x, S ~x⊥

` Γ,Γ′, P ⊗ P′, νB~t

The &/ν permutation relies on the fact that our derivation is balanced:

Π

` Γ, P, S~t
Θ

` BS ~x, S ~x⊥

` Γ, P, νB~t

Π′

` Γ, P′, S~t
Θ

` BS ~x, S ~x⊥

` Γ, P′, νB~t
` Γ, P & P′, νB~t

↓

Π

` Γ, P, S~t
Π′

` Γ, P, S ′~t
` Γ, P & P′, S~t

Θ

` BS ~x, (S ~x)⊥

` Γ, P & P′, νB~t

Another non-trivial case is ⊗/, which makes use of Lemma 4.9:

{` (Γ, P)σ : σ ∈ csu(u, v)}
` Γ, P, (u = v)⊥ ` Γ′,Q
` Γ,Γ′, P ⊗ Q, (u = v)⊥ →

{
` (Γ, P)σ ` (Γ′,Q)σ
` (Γ,Γ′, P ⊗ Q)σ : σ ∈ csu(u, v)

}
` Γ,Γ′, P ⊗ Q, (u = v)⊥

�

Lemma 4.15. Let Γ be a sequent of synchronous formulas. If it has a derivation, and
P is minimal for ≺ in the conclusion of that derivation, there there is also a derivation
where P is active. Moreover, the new derivation has a smaller or equal size, P is still
minimal in its conclusion, and balancing is preserved.

Proof. If P is already active, there is nothing to do. Otherwise, we will make it active
in the subderivations. We can do that by induction: by minimality of P the subderiva-
tion’s conclusion does not have any asynchronous formula, and P is still minimal in
the subderivations by Proposition 4.12. Then we permute the first two layers of rules,
which are synchronous. The permutation of synchronous rules are already known for

4.2. Application to µLJL 61

MALL, and the new cases involving = or µ are straightforward. Moreover the permu-
tation of synchronous rules within the synchronous trunk does not affect minimality,
which only depends on the frontier of the trunk. The preservation of size and balancing
is easy to check. �

Theorem 4.16. The µ-focused system is sound and complete with respect to µMALL.

Proof. Soundness is trivial. We prove completeness by induction on the size of the
balanced derivation:

• If there is any, pick an asynchronous formula arbitrarily, and transform the
derivation by making that formula active thanks to Lemma 4.14. By induction,
focus the subderivations, and add the first rule in the focused system.

• When there is no asynchronous formula left, we’ve shown in Lemma 4.13 that
there is a minimal synchronous formula. We can then apply Lemma 4.15 to make
that formula active. While there are no asynchronous formulas in the conclusion,
we repeat that step, choosing the subformula of the previous minimal formula
among the new minimal ones (Proposition 4.12). This strategy translates well to
hereditary rule applications in the focused system.

�

4.2 Application to µLJL
The examples of Section 3.4 showed that despite its simplicity and linearity, µMALL
can be related to a more conventional logic. In particular we are interested in drawing
some connections with µLJ. In the following, we show a simple first step to this pro-
gram, in which we actually capture a non-trivial fragment of µLJ even though µMALL
does not have exponentials at all.

We have observed (Proposition 6.11) that structural rules are admissible for neg-
ative formulas of µMALL, which coincide with fully asynchronous formulas in the
µ-focusing system. This property allows us to obtain a faithful encoding of a fragment
of µLJ in µMALL despite the absence of exponentials. The encoding must be orga-
nized so that formulas appearing on the left-hand side of intuitionistic sequents can
be encoded positively in µMALL. The only connectives allowed to appear negatively
shall thus be ∧, ∨, =, µ and ∃. Moreover, the encoding must commute with nega-
tion, in order to translate the (co)induction rules correctly. This leaves no choice in the
following design.

Definition 4.17 (µLJL). The logic µLJL is the restriction of µLJ to sequents where all
hypothesis are in the fragment H , and the goal is in the fragment G. These fragments
are given by:

G ::= G ∧ G | G ∨ G | s = t | ∃x.Gx | µ(λpλ~x.G)~t | p~t
| ∀x.Gx | H ⊃ G | ν(λpλ~x.G)~t

H ::= H ∧H | H ∨H | s = t | ∃x.H x | µ(λpλ~x.H)~t | p~t

62 Chapter 4 – Focusing µMALL

Formulas inH and G are translated in µMALL as follows:

[P ∧ Q]
de f
= [P] ⊗ [Q]

[P ∨ Q]
de f
= [P] ⊕ [Q]

[s = t]
de f
= s = t

[∃x.Px]
de f
= ∃x.[Px]

[µB~t]
de f
= µ[B]~t

[∀x.Px]
de f
= ∀x.[Px]

[νB~t]
de f
= ν[B]~t

[P ⊃ Q]
de f
= [P]([Q]

[λpλ~x.Bpx]
de f
= λpλ~x.[Bpx]

[p~t]
de f
= p~t

Proposition 4.18. For any P ∈ G, P is provable in µLJ if and only if [P] is provable
in µMALL, under the restrictions that (co)invariants λ~x.S ~x in µMALL (resp. µLJ) are
such that S ~x is in [H] (resp. H).

Proof. The proof transformations are simple and compositional. The induction rule
corresponds to the ν rule for (µB~t)⊥, the proviso on invariants allowing the translations:

Γ, S~t ` G BS ~x ` S ~x
Γ, µB~t ` G ←→

[Γ], [S~t] ` [G] [B][S]~x ` [S ~x]
[Γ], µ[B]~t ` [G]

This relies on a few simple observations: [B][S]~x is the same as [BS ~x]; and if both B
and S are in H then so is BS , hence we remain in our fragment. The same goes for
coinduction, except that in that case B can be in G:

Γ ` S~t S ~x ` BS ~x
Γ ` νB~t ←→

[Γ] ` [S]~t [S ~x] ` [BS ~x]
[Γ] ` ν[B]~t

In order to restore the additive behavior of some intuitionistic rules (e.g., ∧R) and trans-
late the structural rules, we can contract and weaken our negative µMALL formulas
corresponding to µLJL hypothesis. �

Linear logic provides an appealing proof theoretic setting because of its empha-
sis on dualities and of its clear separation of concepts (additive/multiplicative, asyn-
chronous/synchronous). Our experience is that µMALL is a good place to study focus-
ing in the presence of least and greatest fixed point connectives. To get similar results
for µLJ, one can either work from scratch entirely within the intuitionistic framework
or use an encoding into linear logic. Given a mapping from intuitionistic to linear logic,
and a complete focused proof system for linear logic, one can often build a complete
“focalized” proof-system for intuitionistic logic.

` F

��

// ` [F]

��
`⇑ F `⇑ [F]oo

The usual encoding of intuitionistic logic into linear logic involves exponentials,
which can damage focusing structures (by causing both synchronous and asynchronous
phases to end). Hence, a careful study of the polarity of linear connectives must be

4.2. Application to µLJL 63

done (cf. [DJS93, LM07a]) in order to minimize the role played by the exponentials
in such encodings. Here, as a result of Proposition 4.18, it is possible to get a com-
plete focused system for µLJL that inherits precisely the strong structure of the linear
µ-focused derivations.

This system is presented in Figure 4.2. Its sequents have the form Γ; Γ′ ` P where
Γ′ is a multiset of synchronous formulas (fragment H) and the set Γ contains frozen
least fixed points. First, notice that accordingly with the absence of exponential in the
encoding into linear logic, there is no structural rule. The asynchronous phase takes
place on sequents where Γ is not empty. Indeed, Γ will only contain left-asynchronous
formulas. The synchronous phase processes sequents of the form Γ; ` P, where the
focus is without any ambiguity on P. Notice that it is impossible to introduce any con-
nective on the right when Γ′ is not empty. Strictly speaking, the synchronous phase
actually contains some asynchronous rules: implication, universal quantification and
coinduction. We ignore this in order to simplify the presentation, which is harmless
since there is no choice in refocusing afterwards. Finally, notice that the linear encod-
ing tells us that we could even require Γ to be treated linearly, be empty in the initial
rule for equality and have exactly one element in the initial rule for fixed points. Indeed,
fixed points inH can be explicitly weakened if needed. But we relaxed this constraint
as it does not seem to make a better system.

Proposition 4.19. The focused proof system for µLJL is sound and complete with re-
spect to µLJL.

Proof. As explained above, that focused system follows directly from the constraints
imposed by the µ-focused system of µMALL on the translations of µLJL derivations.

�

Although µLJL is only a small fragment of µLJ, it catches many interesting and
useful problems. For example, any Horn-clause specification can be expressed inH as
a least fixed point and theorems that state properties such as totality or functionality of
predicates defined in this manner are in G. Theorems that state more model-checking
properties, for example, ∀x.p(x) ⊃ q(x), where p and q are one-placed least fixed point
expressions over [H], are also in G. Finally, the theorems about natural numbers pre-
sented in Section 3.4 are within [G]. However, two of the proofs of these theorems (for
the totality of hal f and that the sum of natural numbers is a natural number) do not sat-
isfy the restriction on co-invariants. We shall see, however, that there is a simpler proof
for the totality of hal f that is in µLJL. More generally, we shall define in Chapter 5 a
general class of formulas for which we obtain a completeness result within µLJL.

The logic µLJ is closely related to LINC [Tiu04]. The main difference is the ab-
sence of the ∇ quantifier in our system, but we show in Chapter 6 that it could be added
in an orthogonal fashion. The resulting extension to µMALL (and µLJL) should allow
natural ways to reason about specifications involving variable bindings, in the manner
illustrated in [BGM+07b, Tiu04, Tiu05]. Interestingly, the fragmentG has already been
identified in LINC [TNM05], and the Bedwyr system [BGM+07b] presented in Chap-
ter 7 implements a proof-search strategy for it that is complete under the assumption
that all fixed points are noetherian. This strategy coincides with the focused system for
µLJL restricted to unfoldings, discarding freezing and general (co)induction. Under

64 Chapter 4 – Focusing µMALL

Asynchronous phase

Γ; Γ′, P,Q ` R
Γ; Γ′, P ∧ Q ` R

Γ; Γ′, P ` R Γ; Γ′,Q ` R
Γ; Γ′, P ∨ Q ` R

Γ; Γ′, Pc ` Q
Γ; Γ′,∃x.Px ` Q

{(Γ; Γ′ ` P)θ : θ ∈ csu(s .
= t)}

Γ; Γ′, s = t ` P

Γ, µB~t; Γ′ ` P

Γ; Γ′, µB~t ` P
Γ; Γ′, S~t ` P BS ~x ` S ~x

Γ; Γ′, µB~t ` P

Synchronous phase

Γ; ` A Γ; ` B
Γ; ` A ∧ B

Γ; ` Ai

Γ; ` A0 ∨ A1

Γ; A ` B
Γ; ` A ⊃ B

Γ; ` t = t
Γ; ` Pt

Γ; ` ∃x.Px
Γ; ` Pc

Γ; ` ∀x.Px

Γ, µB~t; ` µB~t

Γ; ` B(µB)~t

Γ; ` µB~t

S ∈ H Γ; ` S~t S ~x ` BS ~x
Γ; ` νB~t

Figure 4.2: Focused proof system for µLJL

4.3. The ν-focused system 65

such restrictions, there is no need for any contraction and one can always eagerly elim-
inate left-hand side (asynchronous) connectives before working on the goal (right-hand
side); in particular, there is no need for the initial rule µν.

4.3 The ν-focused system

While the classification of µ as synchronous and ν as asynchronous is rather satisfying
and coincides with several other observations, that choice does not seem to be forced
from the focusing point of view alone. After all, the µ rule also commutes with all other
rules. It turns out that one can design a ν-focused system treating µ as asynchronous and
ν as synchronous, and still obtain completeness. That system is presented in Figure 4.3.

Asynchronous phase

` Γ ⇑ P,Q,∆
` Γ ⇑ P M Q,∆

` Γ ⇑ P,∆ ` Γ ⇑ Q,∆
` Γ ⇑ P & Q,∆

` Γ ⇑ ∆

` Γ ⇑ ⊥,∆ ` Γ ⇑ >,∆

{` Γθ ⇑ ∆θ : θ ∈ csu(s .
= t)}

` Γ ⇑ s , t,∆

` Γ ⇑ Pc,∆
` Γ ⇑ ∀x.Px,∆

c new

` Γ ⇑ B(µB)~t,∆

` Γ ⇑ µB~t,∆

` Γ, µB~t ⇑ ∆

` Γ ⇑ µB~t,∆

Synchronous phase

` Γ ⇓ P ` Γ′ ⇓ Q
` Γ,Γ′ ⇓ P ⊗ Q

` Γ ⇓ Pi

` Γ ⇓ P0 ⊕ P1

`⇓ 1 `⇓ t = t

` Γ ⇓ Pt
` Γ ⇓ ∃x.Px

` Γ ⇓ S~t `⇑ BS ~x, (S ~x)⊥

` Γ ⇓ νB~t ` µB~t ⇓ νB~t

Switching (where P is synchronous, Q asynchronous)

` Γ, P ⇑ ∆

` Γ ⇑ P,∆
` Γ ⇓ P
` Γ, P ⇑

` Γ ⇑ Q
` Γ ⇓ Q

Figure 4.3: The ν-focused proof-system for µMALL

Theorem 4.20. The ν-focused system is sound and complete with respect to µMALL.

66 Chapter 4 – Focusing µMALL

Proof. The proof follows the same argument as for the µ-focused system. First, the
usage of least fixed points can be balanced: we took care in the previous proof to make
an argument for ν that would work equally well for µ. It is in fact simpler for µ, as there
is no need to merge all possible coinvariants: the balancing process is only ensuring
that a least fixed point is unfolded the same number of times in each branch of the
proof. Then, balanced proofs can be put in focused form by permuting rules. The
permutations are as before, the non-trivial step of permuting a µ and a & being made
possible by balancing. �

This flexibility in the design of a focusing system is surprising. It is not of the same
nature as the arbitrary bias assignment that can be done in Andreoli’s system: atoms
are non-canonical, and the bias can be seen as a way to indicate what is the synchrony
of the formula that a given atom might be instantiated with. Here, our fixed points
are fully defined and canonical. This flexibility highlights the fact that focusing is a
somewhat shallow property, only accounting for local rule permutations independently
of deeper properties like positivity. Although we do not see any practical use of such
flexibility, it is not excluded that one is discovered in the future, much like with the
arbitrary bias assignment on atoms in Andreoli’s original system.

To go one step further, we could consider an arbitrary “bias” assignment to fixed
point formulas, to specify if they should behave synchronously or asynchronously. We
would consider two logically identical variants of each fixed point: µ+ and ν+ being
treated synchronously, µ− and ν− asynchronously. It turns out to be difficult to ensure
the termination of the balancing process in that case: in order to balance a ν−, one may
have to unfold a µ− and possibly break its balanced use, and vice versa. A simple and
natural way to ensure the termination of balancing is to restrict the axiom rule to take
place between fixed points of opposite bias:

` (µB~t)+, (νB~t)− ` (νB~t)+, (µB~t)−

While we would then be able to design a complete focused system with respect to
µMALL with bias, it is important to notice that biased µMALL is not complete with
respect to µMALL.

4.4 Exponentials and µLJ

We have defined two focusing systems for µMALL, based on a common methodology.
In this last section, we show that our proof also naturally extends to exponentials.
Considering exponentials is interesting regarding the flexibility in the synchrony of
fixed points: the question is whether the focusing treatment of exponentials requires
synchrony and positivity to coincide. We shall see that it is not the case. Finally,
we design a focusing system for µLJ and see why the usual techniques used to carry
focusing from linear to intuitionistic logic do not apply here.

4.4. Exponentials and µLJ 67

4.4.1 µLL
Let us consider the µ-focused system for µLL in Figure 4.4. That system treats expo-
nentials as in Andreoli’s focusing system for LL (Figure 1.3). It also uses the same
dyadic sequents, with a new non-linear zone Θ. The ?P formulas enter that zone
in the asynchronous phase. Formulas in Θ can be focused on, which triggers their
contraction-dereliction. Finally, !P is introduced in the synchronous phase, which has
to release the focus. The proof technique of [MS07, Sau08] has been shown to extend
naturally to that treatment of exponentials. It remains true in our case.

Asynchronous phase

` Θ; Γ ⇑ P,Q,∆
` Θ; Γ ⇑ P M Q,∆

` Θ; Γ ⇑ P,∆ ` Θ; Γ ⇑ Q,∆
` Θ; Γ ⇑ P & Q,∆

` Θ; Γ ⇑ ∆

` Θ; Γ ⇑ ⊥,∆ ` Θ; Γ ⇑ >,∆

` Θ, P; Γ ⇑ ∆

` Θ; Γ ⇑?P,∆

{(` Θ; Γ ⇑ ∆)θ : θ ∈ csu(s .
= t)}

` Θ; Γ ⇑ s , t,∆
` Θ; Γ ⇑ Pc,∆
` Θ; Γ ⇑ ∀x.Px,∆

c new

` Θ; Γ ⇑ S~t,∆ `; ⇑ BS ~x, S ~x⊥

` Θ; Γ ⇑ νB~t,∆
~x new

` Θ; Γ, νB~t ⇑ ∆

` Θ; Γ ⇑ νB~t,∆

Synchronous phase

` Θ; Γ ⇓ P ` Θ; Γ′ ⇓ Q
` Θ; Γ,Γ′ ⇓ P ⊗ Q

` Θ; Γ ⇓ Pi

` Θ; Γ ⇓ P0 ⊕ P1

` Θ; ⇓ 1
` Θ; Γ ⇑ P
` Θ; Γ ⇓!P

` Θ; ⇓ t = t
` Θ; Γ ⇓ Pt
` Θ; Γ ⇓ ∃x.Px

` Θ; Γ ⇓ B(µB)~x
` Θ; Γ ⇓ µB~x ` Θ; νB~t ⇓ µB~t ` Θ, νB~t; ⇓ µB~t

Switching (where P is synchronous, Q asynchronous)

` Θ; Γ, P ⇑ ∆

` Γ; Γ ⇑ P,∆
` Θ; Γ ⇓ P
` Θ; Γ, P ⇑

` Θ, P; Γ ⇓ P
` Θ, P; Γ ⇑

` Θ; Γ ⇑ Q
` Θ; Γ ⇓ Q

Figure 4.4: The µ-focused proof-system for µLL

Theorem 4.21. The µ-focused system for µLL is sound and complete with respect to
µLL.

Proof. We explain how to adapt our proof. First, it is important to precise the locative
reading of contraction-derelictions: each contracted formula is given a different new

68 Chapter 4 – Focusing µMALL

sublocation. For example, say that if l is the location of ?P, its nth copy has location
〈l, n〉. It is not true anymore that dyadic sequents only contain disjoint locations, but
that property still holds for their linear zone; all what is ensured for the whole sequent
is that it does not contain twice the same location (at toplevel).

Balancing adapts well to this treatment of locations, the non-trivial steps being the
same as before, i.e., & and ,. Since contractions of greatest fixed points are differenti-
ated, they are not tied in the balancing process but can be used in different ways.

The notion of synchronous trunk is adapted to contain the new synchronous rule,
namely contraction-dereliction, but also the promotion rule. However, the trunk stops
after the promotion rule, whose premise is a leaf of the open derivation. This irregu-
larity is necessary to obtain the necessary permutations within the trunk since no rule
permutes with the promotion rule, and suffices because the focus is released on the
promotion rule in the focusing system.

It is easy to check that the precedence relation (≺) defined on the sequents of syn-
chronous trunks is still acyclic. Finally, we adapt the definition of the size of deriva-
tions by adding a component counting the number of contractions, and establish size-
preserving permutation lemmas. The new permutations are straightforward: we have
to check that the ? rule can be permuted down, and that the synchronous rules (includ-
ing contraction-dereliction) commute. The obtained lemmas can finally be combined
as before to obtain a translation of derivations to focused derivations. �

It is straightforward to adapt this proof to obtain the completeness of a ν-focused
variant for µLL. Indeed, this focusing treatment of exponential still solely relies on rule
permutations, which does not discriminate between the two fixed point connectives.

However, there are systems where focusing and exponentials are more entangled.
Inspired by LU [Gir91b], these systems are based on derivations where introduction
rules can take place inside the non-linear zone. If P and Q are negative, then so is
P M Q and thus the following rule is admissible:

` Θ, P,Q; Γ

` Θ, P M Q; Γ

It is also invertible. Generalizing that idea, all negative formulas can have their connec-
tives introduced in the non-linear zone, and one can forbid any contraction-dereliction
on negative formulas. These observations can lead to focused system where the expo-
nentials interfere less with the focus. They are interesting in that it removes useless
formulas from the non-linear zone, and also makes the economy of round-trips through
the linear zone. A good example4 of this kind of system is LJF [LM07a]. In such a fo-
cusing system, the polarity of fixed points, and not only their synchrony, would finally
have to be taken into account.

It is easy to see that the following rules are admissible:

` Θ, (νB~t)∗; Γ

` Θ, νB~t; Γ

` Θ, S~t; Γ `; (S ~x)⊥, BS ~x
` Θ, νB~t; Γ

4In LJF, the refinement of the treatment of exponentials is based on that idea but uses a translation of
formulas that removes redundant exponentials instead of expressing this as a rule of the underlying focused
linear logic. Such a static elimination of redundant exponentials is not possible with fixed points.

4.4. Exponentials and µLJ 69

To show that these are asynchronous rules, i.e., that they can be permuted under other
rules, it suffices to observe that the balancing argument can be strengthened a lot: it is
possible to require that all contractions of a greatest fixed point are used consistently.
Shockingly, we did not have to rely on the polarity of νB — which depends on that
of B. Hence, we conjecture a system where these two rules would be the only ones
available for a greatest fixed point in the non-linear zone, notably excluding its dere-
liction, independently of its polarity. The only difference in such a system between a
synchronous and an asynchronous body occurs after the unfolding: only in the latter
case is it possible to keep working in the non-linear zone. We do not detail further the
design and justification of such a system, as it would not bring much and is currently
unsatisfying and insufficiently understood.

4.4.2 Focusing µLJ
Before studying the full logic µLJ, let us restrict our attention to the fragment νLJL,
which is obtained from µLJL by exchanging the roles of µ and ν. The design of µLJL
relied on the positivity of µ, but this only makes sense from the linear point of view.
The question is: in the intuitionistic framework, is there a dissymmetry between µ and
ν? The answer seems to be negative as far we can tell from the observation of νLJL;
the notable point is that µMALL cannot explain it.

Definition 4.22 (νLJL). The logic νLJL is the restriction of µLJ to sequents where all
hypothesis are in the fragment H , and the goal is in the fragment G. These fragments
are given by:

G ::= G ∧ G | G ∨ G | s = t | µ(λpλ~x.G)~t | ∃x.Gx

| ∀x.Gx | H ⊃ G | ν(λpλ~x.G)~t
H ::= H ∧H | H ∨H | s = t | ν(λpλ~x.H)~t | ∃x.H x

We consider the focusing system for νLJL given in Figure 4.4.2, naively obtained as
the symmetric of the focusing system for µLJL. It turns out to be complete, which can
be proved using the same tools as before, obtaining a strong balancing by identifying
the locations of all contractions of an hypothesis. Strictly speaking, that focusing sys-
tem is not really the exact symmetric of the other: for µLJL, the non-linear treatment
of the frozen zone was allowed for convenience only; here, it is an essential ingredient
of completeness. We provide a direct proof of completeness of that focused system,
before discussing why it cannot be explained from a linear reading.

Proposition 4.23. The focused system in νLJL is sound and complete with respect to
νLJL.

Proof. The proof follows the same outline as before. We consider unfocused proofs
with an explicit freezing annotation, and reorganize them to obtain a focused structure.
The proof relies on the observation that we can obtain a strong balancing, enforcing
that contractions of a greatest fixed point are used consistently. It is then possible to
permute down all left rules. The case of greatest fixed point rules (coinduction and
freezing) is where balancing is exploiting. In the end, right rules and contractions are

70 Chapter 4 – Focusing µMALL

Asynchronous phase

Γ; Γ′, P,Q ` R
Γ; Γ′, P ∧ Q ` R

Γ; Γ′, P ` R Γ; Γ′,Q ` R
Γ; Γ′, P ∨ Q ` R

Γ; Γ′, Pc ` Q
Γ; Γ′,∃x.Px ` Q

{(Γ; Γ′ ` P)θ : θ ∈ csu(s .
= t)}

Γ; Γ′, s = t ` P

Γ, νB~t; Γ′ ` P
Γ; Γ′, νB~t ` P

Γ; Γ′, B(νB)~t ` P
Γ; Γ′, νB~t ` P

Synchronous phase

Γ; ` A Γ; ` B
Γ; ` A ∧ B

Γ; ` Ai

Γ; ` A0 ∨ A1

Γ; A ` B
Γ; ` A ⊃ B

Γ; ` t = t
Γ; ` Pt

Γ; ` ∃x.Px
Γ; ` Pc

Γ; ` ∀x.Px

Γ, µB~t; ` µB~t

Γ; ` B(µB)~t

Γ; ` µB~t

S ∈ H Γ; ` S~t S ~x ` BS ~x
Γ; ` νB~t

Figure 4.5: Focused proof system for νLJL

4.5. Conclusion 71

only applied when the left hand-side is restricted to frozen fixed points: we have a
focused derivation. �

Unlike µLJL, the formulas of νLJL cannot be encoded in µMALL, because the
hypothesis fragment H allows greatest fixed points, which are not positive. Let us
consider encoding it in µLL. It is probably not enough to only use an exponential when
encoding the implication, i.e., [H ⊃ G] ≡ (![H]) ([G], because one would still lack
the ability to weaken subformulas of derelicted copies of hypothesis. Even then, we see
that the focusing behavior obtained from the linear reading is poor: any introduction
on the left requires a copy and renders its active formula linear. In particular, any
work on the left hand-side has to be duplicated over branches of a conjunction. A
proper encoding would have to use exponentials inside the encoding of the fragment
H , notably inside fixed point bodies. Then, we could use the observation that ν can
be introduced directly within the non-linear zone, obtaining a very simple focusing
behavior. Unfortunately, there is no symmetric explanation for ! and µ, so the focusing
on conclusions would still be unsatisfactory.

If linear logic cannot (yet) give a clear account of intuitionistic focusing treatments
of fixed points for the νLJL fragment, there is no hope to do it for µLJ. We propose
a µ-focused system for µLJ, in Figure 4.6, and claim its completeness, as well as that
of the ν-focused variant. This system is deliberately simple, and does not give an
account of alternative ways to focus µLJ; our goal is only to give the definition of
the focusing system used as a basis for the automated proof-search tactic developed
in the Taci system, which we describe in Chapter 7. In particular we do not consider
synchronous and asynchronous variants of the conjunction like [LM07a], and restrict
to the synchronous one. In an attempt to keep things readable, our focused system only
uses extra annotations in the synchronous phase, the asynchronous phase simply being
a saturation of all possible asynchronous rules. The synchronous sequents Γ ⇓ P ` Q
and Γ `⇓ P respectively denote left and right focus on P.

4.5 Conclusion
We have designed a µ-focused system for µMALL and established its completeness.
This system is satisfying in the way that it constrains proofs, and the synchronous
treatment of µ coincides with several other theoretical observations: the positive nature
of µ (Proposition 6.11), but also game theoretic semantics [MS06]. The µ-focusing,
together with the positivity of µ, also allowed for an elegant connection with µLJL, a
simple fragment of µLJ that had already been identified in the practical context of logic
programming with fixed points.

Then, we have described several ramifications of our study of focusing. We have
seen that despite the positive polarity of µ, there is a complete focused system that
treats that connective as asynchronous. We have shown how our proof extends to ex-
ponentials in the traditional way, and that the flexibility in the synchrony of fixed points
persists in that setting. We gave a focused proof system for µLJ, and explained how
several phenomenons remained to be understood to clearly connect the linear and intu-
itionistic focused systems.

72 Chapter 4 – Focusing µMALL

Asynchronous phase

Γ ` Q
Γ,> ` Q

Γ, P, P′ ` Q
Γ, P ∧ P′ ` Q

Γ, P ` Q Γ, P′ ` Q
Γ, P ∨ P′ ` Q Γ,⊥ ` Q

Γ ` Px
Γ ` ∀x. Px

Γ, Px ` Q
Γ,∃x. Px ` Q

{(Γ ` P)θ : θ ∈ csu(u .
= v)}

Γ, u = v ` P

Γ, S~t ` P BS ~x ` S ~x
Γ, µB~t ` P

Γ, (µB~t)∗ ` P

Γ, µB~t ` P

Γ ` S~t S ~x ` BS ~x
Γ ` νB~t

Γ ` (νB~t)∗

Γ ` νB~t

Switching, when no asynchronous rule applies
(P synchronous, Q asynchronous)

Γ,Q ⇓ Q ` P
Γ,Q ` P

Γ `⇓ P
Γ ` P

Γ, P ` Q
Γ ⇓ P ` Q

Γ ` Q
Γ `⇓ Q

Synchronous phase

Γ `⇓ >

Γ `⇓ P Γ `⇓ P′

Γ `⇓ P ⊗ P′
Γ `⇓ Pi

Γ `⇓ P0 ∨ P1

Γ ⇓ Pt ` Q
Γ ⇓ ∀x. Px ` Q

Γ `⇓ Pt
Γ `⇓ ∃x. Px Γ `⇓ u = u

Γ ⇓ B(νB)~t ` P
Γ ⇓ νB~t ` P Γ ⇓ νB~t ` (νB~t)∗

Γ `⇓ B(µB)~t

Γ `⇓ µB~t Γ, (µB~t)∗ `⇓ µB~t

Figure 4.6: The µ-focusing system for µLJ

Chapter 5

Proof-theory and model-checking

The purpose of model-checking is to mechanically verify whether a model satisfies a
given property. In practice, models are abstractions of software or electronic systems.
Properties are expressed in various logics, often temporal. The class of considered
models and specification logics is of course limited by the feasability of automated
verification. Since very large systems are usually targetted, simple models are predomi-
nent. The typical approach is to encode both the considered system and its specification
as finite automata, which reduces model-checking to an automata inclusion: all traces
of the system should be accepted by the specification. In this chapter, we shall study
how to represent finite automata in µMALL and reason about automata inclusions in
that framework.

There are various reasons for considering finite automata in logic, and more pre-
cisely proof-theory. First, although most of the effort in the model-checking commu-
nity is spent on finding more efficient techniques and algorithms, there is a growing
interest for producing certificates: when an algorithm returns, it should not only say
whether or not a model satisfies a property, but also provide a certificate of that claim.
Proof-theory is a natural candidate for that task. Moreover, the ability to express the re-
sult of model-checking in a logic makes it possible to integrate it with related tasks like
the abstraction of systems and specifications into automata: if the abstractions and the
model-checking are proved, cut-elimination allows to conclude that the original system
satisfies its specification. Proof-theory offers a common framework for representing,
computing and reasoning, mechanically or not.

There is also a proof-theoretical interest in studying finite automata. They form
a natural class of complex, infinite behaviors. It is thus a good test for the logic to
study how directly an automata can be represented, and how richly the logic allows to
reason about it. We shall see that fixed points offer a very natural solution in µMALL.
Finite automata are especially interesting in that they are not too complex, and have
an elegant and well understood theory. In particular, inclusion of finite automata is
decidable. This raises two proof-theoretical questions: Is the logic expressive enough
to capture all inclusions? Can we carry decidability results to the logic, beyond the
particular case of finite automata?

The rest of the chapter is organized as follows. In Section 5.1, we exhibit some

74 Chapter 5 – Proof-theory and model-checking

structure to the inclusion property, introducing the concept of multi-simulation, then
we propose an encoding of automata as fixed point predicates and obtain soudness and
completeness of µMALL for automata inclusions. Then, we apply these observations
directly to the logic in Section 5.2, designing and studying the fragment of regular
formulas. We obtain soundness and completeness for implications between compat-
ible regular predicates, and lay the foundations for new automated theorem proving
techniques.

In the rest of the chapter, we work only with first-order terms, so that we have
a decidable finitely-branching left equality rule. We shall work in µMALL, usually
two-sided, which can safely be read as intuitionistic logic.

5.1 Finite state automata
Definition 5.1 (Finite state automaton, acceptance, language). A non-deterministic
finite state automaton on the alphabet Σ is specified by the tuple (Q,T, I, F) where Q is
a set whose elements are called states, T ∈ ℘(Q×Σ×Q) is a set of transitions and I and
F are subsets of Q, respectively containing the initial and final states. The automaton
is said to accept a word c1 . . . cn when there is a path q0q1 . . . qn where q0 ∈ I, qn ∈ F
and each (qi−1, ci, qi) ∈ T . The language L(A) associated to an automaton A is the set
of all the words that it accepts.

Definition 5.2 (Acceptance, language for sets of states). Let (Q,T, I, F) be a finite
automaton. We say that a set of states Q′ ⊆ Q accepts a word c1 . . . cn when there is
a path q0q1 . . . qn where q0 ∈ Q′, qn ∈ F and each (qi−1, ci, qi) ∈ T . Accordingly, we
denote by L(Q′) the set of all the words that Q′ accepts. We write L(q) as shorthand
for L({q}).

In particular, the language accepted by an automaton is the language accepted by
its initial states, and we have ∪iL(Qi) = L(∪iQi).

Definition 5.3 (α−1L, α−1Q). For a language L and a set of states Q, we define α−1:

α−1L
de f
= {w : αw ∈ L} α−1Q

de f
= {q′ : q→α q′ for some q ∈ Q}

For example, one can check that α−1L(Q) = L(α−1Q). We finally come to the only
non-standard definition, that is the extension of the notion of transition to sets of states.

Definition 5.4 (Notation for transitions, transitions between collections of states). We
write q →c q′ for (q, c, q′) ∈ T . For a collection of states Q we write Q →α Q′ when
Q′ =

⋃
q∈Q Qq where each Qq contains only (but not necessarily all) states q′ such that

q→α q′. In other words, Q′ ⊆ α−1Q.

In the following we shall not specify on which alphabet each automaton works,
supposing that they all work on the same implicit Σ. We also talk about transitions,
final and initial states without making explicit the automaton that defines them, since it
shall be recovered without ambiguity from the states1.

1States are mere identifiers, and automata are in fact considered modulo renaming. Hence, when several
automata are considered we implicitly make the assumption that their sets of states are disjoints (a sort of
Barendregt convention), which indeed makes it possible to recover the automaton from one of its states.

5.1. Finite state automata 75

5.1.1 Multi-simulation
We propose a coinductive characterization of inclusion. Its interest is to allow the
transition from the (semantic) automata-theoretic inclusion to the (syntactic) inductive
proof of implication in µMALL. As far as we know, that characterization is as novel as
its purpose.

Definition 5.5 (Multi-simulation). A multi-simulation between two automata
(A,T, I, F) and (B,T ′, I′, F′) is a relation< ⊆ A × ℘(B) such that whenever p<Q:

• if p is final, then there must be a final state in Q;

• for any α and p′ such that p →α p′ there exists Q′ such that Q →α Q′ and
p′<Q′.

Proposition 5.6. L(p) ⊆ L(Q) if and only if p<Q for some multi-simulation<.

Proof. Direction “if”. We show that language inclusion is a multi-simulation, which
follows immediately from the definition: if we have L(p) ⊆ L(Q) and p is final then
ε ∈ L(Q), hence one of the states of Q must be final; if p →α p′ then αL(p′) ⊆ L(Q),
that is L(p′) ⊆ α−1L(Q), and hence Q′ := α−1Q fits.

Direction “only if”. Let < be a multi-simulation. We prove by induction on the
word w that whenever p<Q and w ∈ L(p), then w ∈ L(Q). It is true for ε by definition,
as there must be a final state in Q when p is final. If w = αw′ is in L(p) then we have
some p′ such that p →α p′, and by definition of pre-inclusion there exists Q′ such
that Q →α Q′ and p′<Q′. Since w′ ∈ L(p′) we obtain by induction hypothesis that
w′ ∈ L(Q′) and hence w ∈ L(Q). �

As a side note, the notion of multi-simulation extends naturally to labeled tran-
sition systems. In that case, both finite and infinite trace inclusions would be multi-
simulations. However, multi-simulation does not imply infinite trace inclusion but only
the finite one — which is shown by induction on the length of the trace. As a counter-
example, consider on one side a unique state qω with a looping transition α, and on the
other side all states qn for n ∈ N such that qn+1 has an α transition to qn. There is a
multi-simulation between the two, which needs not relate any other pair: qω only does
an α transition to itself, and so does {qn : n ∈ N}. The finite traces of ω are {αn : n ∈ N},
each αn being doable by state qn. But the infinite trace αω cannot be obtained by any
qn.

We now show a couple examples of how to “prove” some inclusions by means of
the multi-simulation technique.

Example 5.7. Inclusion is the greatest multi-simulation, and as such does not give very
precise information. Consider for example the following two automata:

?>=<89:;pi
α // GFED@ABC?>=<89:;p f ?>=<89:;qi

α //

α
��

GFED@ABC?>=<89:;q f

GFED@ABCq⊥ α

rr

76 Chapter 5 – Proof-theory and model-checking

The inclusion relation between states of the left automaton and sets of states of the right
one is:

{(pi, {qi}), (p f , {q f }), (pi, {qi, q⊥}), (p f , {q f , q⊥})}

To understand why a given p is included in Q, it is more interesting to look at a
minimal multi-simulation that relates them. That is what is done for the following ex-
amples. In the first direction of the proof of Proposition 5.6 we use Q′ := α−1Q, which
is very imprecise: on our example, it justifies the association (pi, {qi}) by (p f , {q f , q⊥}).
It would have sufficed to take (p f , {q f }). Both alternatives are justified by the finality
of q f , another hint at the uselessness of q⊥ in the first association.

A multi-simulation establishing L(p0) ⊆ L(Q0) can be obtained by iterating the
following transformation on the relation {(p0,Q0)}: for each (p,Q) and each p →α p′,
add (p′, α−1Q) to the relation. When a fixed point is reached, check the condition on
final states: if it holds the relation is a multi-simulation; if it does not there cannot
be any multi-simulation relating p0 and Q0. This simple technique generally gives a
smaller relation than inclusion, but it is still not the best: on our example, it yields
{(pi, {qi}), (p f , {q f , q⊥})}.

Example 5.8. Consider the following automata:

?>=<89:;pi
α //

β
UU

GFED@ABC?>=<89:;p f ?>=<89:;qi
α //

β
��

GFED@ABC?>=<89:;q f

GFED@ABCq′i
α //

β

YY

GFED@ABC?>=<89:;q′f

The states pi and qi accept the same language, namely β∗α. This is justified by the
multi-simulation< = {(pi, {qi}), (pi, {q′i}), (p f , {q f }), (p f , {q′f })}.

Example 5.9.

GFED@ABCp0
α //GFED@ABCp1

α //

β
UU

GFED@ABC?>=<89:;p2 ?>=<89:;q0
α //

α ��
@@

@@
@@
?>=<89:;q1

β
��

α // ?>=<89:;76540123q2

GFED@ABCq′1

β
OO

Again, p0 is included in q0: if there is an even number of β transitions to make, go to
q1, otherwise go to q′1. This non-local2 reasoning is expressed by the multi-simulation
< = {(p0, {q0}), (p1, {q1, q′1}), (p2, {q2})}.

Example 5.10. We finally show an example that hints at the upcoming generalization of
this discussion. Consider the inductive specifications of natural numbers and division
by two:

nat 0 4
= 1 hal f 0 0 4

= 1
nat (sX) 4

= nat X hal f (s0) 0 4
= 1

hal f (s2X) (sY) 4
= hal f X Y

2One can sense here the local but backwards aspect of proofs by induction.

5.1. Finite state automata 77

Our goal here is to establish the totality of hal f , that is ∀x. nat x(∃y. hal f x y. We do
so by first extracting the finite automata describing the behaviors of these specifications,
and then checking their inclusion. The first step is informal, which will be fixed in
Example 5.21. The transformation is easy for nat; for hal f it requires to erase the
information about the second parameter:

?>=<89:;ps
z
//

s
UU

?>=<89:;76540123pz ?>=<89:;qs
z
//

s

@@

@@
@@

s
��

?>=<89:;76540123qz

GFED@ABCq′′s

s
EE

GFED@ABCq′s
z
//GFED@ABC?>=<89:;q′z

The following multi-simulation establishes that L(ps) ⊆ L(qs):

< = {(ps, {qs}), (ps, {q′s, q
′′
s }), (pz, {qz}), (pz, {q′z})}

We have exhibited a simple structure underlying inclusion of non-deterministic fi-
nite automata, which expresses non-trivial reasoning. We are now going to move to the
(linear) logical world and exploit it.

5.1.2 Encoding finite automata in µMALL
We shall represent an automaton, or rather its acceptance predicate, in the logic
µMALL. A natural first step is to translate the automaton into a set of definitions,
with one predicate per state, one clause per transition and one clause per final state:

q(αw) 4
= q′w for each q→α q′

qε 4
= 1 for each final state q

This yields an exact representation of acceptance for a given automaton: there is a
bijection between the accepting paths starting with one of its states q and proofs3 of the
corresponding predicate. Note that the information of the names of states is kept, and
as a result the representation does not identify automata that differ only by a renaming
of their states. A more serious drawback of definitions, for the task that we consider,
is that it is very cumbersome to deal with mutually inductive definitions. Indeed, the
only published work on induction for arbitrary definitions [MT03b, Tiu04] requires
stratification, which rules out mutually inductive definitions.

These definitions can then be refactored to have only one clause per predicate and
flexible arguments in the head, without changing the properties of the representation.
The resulting clauses would have the following form:

qw 4
= w = ε ⊕ (∃w′. w = αw′ ⊗ q′w′) ⊕ . . .

At this point, two alternatives should be considered. This definition can be turned
into a single fixed point by keeping the names of the states, passing them as an extra

3These proofs can be in any logic supporting definitions, this detail does not matter, especially since we
are considering extremely simple formulas.

78 Chapter 5 – Proof-theory and model-checking

argument:

accept
de f
= µ(λAλxλw. x = q ⊗ (w = ε ⊕ (∃w′. w = αw′ ⊗ A q′ w′) ⊕ . . .)

⊕ x = q′ ⊗ . . .)

We are interested in a more structural approach, that erases the names of states and
translates the mutually inductive definitions into a interleaved fixed points. Moreover,
this shall bring nice examples of how simultaneous induction schemes arise naturally
from the simple induction rule.

The drawback of interleaved fixed points, compared to definition tables, is that it
forces a sequential introduction of mutually inductive predicates, which forbids shar-
ing. Before studying formally this issue, we shall give an intuition of it on automata.
Graphically, that sequentialization requires writing a graph as a tree (the syntax tree)
plus looping edges (predicate variables referring to fixed points). For example, the
following transformation will essentially be applied when encoding pi as a µ-formula:

?>=<89:;pi
α //

β
AA

AA
AA
GFED@ABCpα

β
// GFED@ABC?>=<89:;p f

γ

��

GFED@ABCpβ
α

>>||||||

 ?>=<89:;pi
α //

β ��
??

??
??
GFED@ABCpα

β
// GFED@ABC?>=<89:;p f

γ

��

GFED@ABCpβ α // GFED@ABC?>=<89:;p′f

γ

PP

Taking the α transition from pi involves an unfolding of the µ formula:

GFED@ABCpα
β
// GFED@ABC?>=<89:;p f

γ
// ?>=<89:;pi

α //

β ��
??

??
??
GFED@ABCpα

β
// GFED@ABC?>=<89:;p f

γ

��

GFED@ABCpβ α // GFED@ABC?>=<89:;p′f

γ

PP

On the other hand, the encoding of the state pα of the original automaton will not ex-
actly be the same. It is obtained by taking a covering tree rooted at pα in the automaton:

GFED@ABCpα
β
// GFED@ABC?>=<89:;p f

γ
// ?>=<89:;pi

α

��
β
// GFED@ABCpβ

α

]]

Notice, however, that these mismatches preserve bisimulation.
We shall now describe formally how mutual inductive definitions can be translated

as interleaved fixed points. This is of course a more general question than just encoding
finite automata.

5.1. Finite state automata 79

Definition 5.11 (Translation of defined atoms into fixed points). Let (a~x 4= Ba~x)a be a
collection of mutually inductive definitions, in the form where there is a single clause
per defined atom and the head variables are flexible. We translate the defined atoms
into fixed point expressions, generally encoding a formula F into [F] (shorthand for
[F]·) as follows:

[a~t]Γ ≡

{
µ(λp.λ~x. [Ba~x]Γ, a 7→p)~t if a is unbound in Γ

p~t if Γ binds a to p

[u = v]Γ ≡ u = v

[P ∗ Q]Γ ≡ [P]Γ ∗ [Q]Γ

[Qx. Px]Γ ≡ Qx. [Px]Γ

Here, ∗ stands for any propositional binary connective and Q for any quantifier.

Notice that this encoding is structural: it does not rely on the names of the defined
atoms but only reflects their structure. As we have shown in the previous examples,
bisimilar states might be identified.

Example 5.12. Let us develop the syntactic counterpart of the graphical explanation
above. We shall translate into a fixed point the atom pi defined by the following table:

piw
4
= (∃w′. w = αw′ ⊗ pαw′) ⊕ (∃w′. w = βw′ ⊗ pβw′)

pαw 4
= (∃w′. w = βw′ ⊗ p f w′)

pβw
4
= (∃w′. w = αw′ ⊗ p f w′)

p f w
4
= (w = ε) ⊕ (∃w′. w = γw′ ⊗ piw′)

The translation of pi starts with the empty context: [pi] ≡ [pi]· ≡ λw. [piw]·. Since pi is
unbound in the empty context, the translation introduces a least fixed point, associating
it to pi in the context, and unfolds pi into its definition:

[piw]· ≡ µ(λp′iλw. [(∃w′. w = αw′ ⊗ pαw′) ⊕ (∃w′. w = βw′ ⊗ pβw′)]pi 7→p′i)w

Then, the translation commutes with first-order and propositional connectives, to reach
the defined atoms pα and pβ:

[piw]· ≡ µ(λp′iλw. (∃w′. w = αw′ ⊗ [pαw′]pi 7→p′i) ⊕ (∃w′. w = βw′ ⊗ [pβw′]pi 7→p′i))w

These two atoms are treated in the same way: since they are unbound in the associ-
ated contexts, a new least fixed point based on the translation of their definitions is
introduced. After trivially pushing the translation down to p f , we obtain the following:

µ(λp′iλw. (∃w′. w = αw′ ⊗ µ(λp′αλw. ∃w′. w = βw′ ⊗ [p f w′]pα 7→p′α,pi 7→p′i)w′)
⊕ (∃w′. w = βw′ ⊗ µ(λp′βλw. ∃w′. w = αw′ ⊗ [p f w′]pβ 7→p′β,pi 7→p′i)w′))w

80 Chapter 5 – Proof-theory and model-checking

Then, the definition of p f is unfolded:

µ(λp′iλw.
(∃w′. w = αw′ ⊗ µ(λp′αλw. ∃w′. w = βw′ ⊗
µ(λp′fλw. (w = ε) ⊕ (∃w′. w = γw′ ⊗ [piw′]

p f 7→p′f ,pα 7→p′α,pi 7→p′i))w′)w′)
⊕ (∃w′. w = βw′ ⊗ µ(λp′βλw. ∃w′. w = αw′ ⊗

µ(λp′fλw. (w = ε) ⊕ (∃w′. w = γw′ ⊗ [piw′]
p f 7→p′f ,pβ 7→p′β,pi 7→p′i))w′)w′))w

We finally cycle, from p f back to pi. This time, pi is bound in the context so it is
translated to the associated predicate variable:

[piw]· ≡ µ(λp′iλw.
(∃w′. w = αw′ ⊗ µ(λp′αλw. ∃w′. w = βw′ ⊗
µ(λp′fλw. (w = ε) ⊕ (∃w′. w = γw′ ⊗ p′iw

′))w′)w′)
⊕ (∃w′. w = βw′ ⊗ µ(λp′βλw. ∃w′. w = αw′ ⊗

µ(λp′fλw. (w = ε) ⊕ (∃w′. w = γw′ ⊗ p′iw
′))w′)w′))w

The resulting formula does correspond to the above expansion of our automata, written
as a tree with looping edges, which involves a copy of p f .

Proposition 5.13 (Adequacy of the structural encoding). LetA be a finite automaton.
There is a bijection between accepting paths starting at one of its state q and µMALL
derivations of ` [qw], where w is the word induced by the path.

Proof. We construct an injective mapping from paths to derivations, by induction on
the length of the path. Along the same lines, by induction on the derivation, we would
build a mapping from derivations to paths. Together, this establishes the existence of
a bijection — without resorting to this general argument, one can also simply observe
that the two mappings are inverse of each other. The difficulty is that the encoding of a
state depends on Γ, i.e., on how it has been reached in the graph. But we only need to
consider valid contexts: a context is said to be valid if it is empty, or if it of the form
(Γ, a 7→ [a]Γ) for a valid Γ that does not contain a.

We establish the following generalization: for each valid Γ and each state q, there
is an injective mapping from accepting paths starting at q and derivations of ` [qw]Γ,
where w is the word associated to the path. These mappings are all defined simultane-
ously, by induction on the path and sub-induction on the validity of the context:

• If q ∈ Γ then [q]Γ is Γ(q), which is of the form [q]Γ′ for a predecessor of Γ. We
can thus conclude by the sub-induction hypothesis.

• Otherwise [q] is a fixed point obtained by encoding Bq:

– If the path is empty, q is accepting and w is ε. Then ` [qw]Γ is derived by
unfolding and selecting the (only) disjunct w = ε in Bq.

– If the path starts with q →α q′, the derivation is obtained by unfolding,
selecting the (only) disjunct corresponding to the transition, and completed
by inductive hypothesis, on q′ and (Γ, q 7→ [q]Γ).

5.1. Finite state automata 81

�

The only interest of that proof is the formalization of the valid contexts, since the
local dynamics matched in a straightforward way. Although it is actually not necessary
to the proof, it shows that there are only a finite number of contexts that can occur
during the superficial4 unfoldings of an encoding. In other words, it formalizes what
is very intuitive on graphs, or rather trees with looping edges: there are only a finite
number of graphs (fixed points) that arise from all possible traversals (superficial un-
foldings).

Remark 5.14. Having outlined a general translation from definitions to fixed points, it is
natural to wonder what kind of result can we obtain about it. As long as no implications
are used in the body of the definitions, the previous proof can be extended to obtain
adequacy between derivations of ` a~t in a logic with definitions and derivations of
` [a~t] in the corresponding logic equipped with fixed points.

However, it is hard to go further than that. As soon as negations occur, the deriva-
tion of the encoding may use induction rules, possibly with invariants that are not
encodings of formulas using defined atoms. More importantly, the derivation of the
encoding can use axiom rules which cannot be translated to axioms on the other side,
because two distinct atoms identically defined are equalized by the encoding. In or-
der to recover the missing identities in presence of mutually inductive definitions, one
needs mutual induction schemes, which has not been so much studied yet.

Anyway, it is not so important to relate these two systems; let us rephrase the
question. Consider a system working with least and greatest fixed points, where the
user would type in specifications in the more convenient style of definitions. What
can we guarantee to the user about our translation of his input? This question is not
a trivial one: we have seen that some fixed points might occur at toplevel which are
not subformulas of the user input; going further, there are surprising examples when
mixing inductive and coinductive definitions.

Example 5.15. When the definitions are all inductive or all coinductive, on can check
that [a~x] � [Ba~x], but this is not necessarily the case for definitions interleaving least
and greatest fixed points. Consider the natural extension of our translation to tables
mixing inductive and coinductive definitions: clauses would be annotated with µ and ν,
and this annotation would be used when translating a defined atom into a fixed point.
Consider the following definitions: p 4=µ q and q 4=ν p. Then [p] ≡ µp. νq. p which is
equivalent to µp. p and hence to 0. And [q] ≡ [p]⊥, equivalent to >.

We leave to future work the exploration of these issues and the design of solutions,
if needed.

5.1.3 Completeness
We have adequately represented automata in µMALL, and shall now consider reason-
ing about them in our logic. We are going to exploit (a small amount of) the µ-focusing

4Obviously, infinitely many subformulas result from the unfolding of fixed points deep inside a formula.
But that is not what occurs in a cut-free derivation.

82 Chapter 5 – Proof-theory and model-checking

of µMALL, obtaining a synthetic reading of the positive fixed points that represent
automata.

Proposition 5.16. Let A be a finite automaton, and p one of its states. The following
rule is sound and invertible, where the states p′, p′′ are taken among those reachable
from p:

{` S p′ε : p′ final} {S p′′ x ` S p′ (αx) : p′ →α p′′} S 0~t ` Γ

[p]~t ` Γ

Like the induction rule, this rule leaves the difficult choice of finding a correct
invariant for each state.

Proof. Let µAp be the encoding [p]. We observe that (µAp)⊥ is fully asynchronous, and
can hence be fully decomposed in an invertible way. In the focusing system, freezing
would have to be considered but it can be ignored here since we are only interested in
invertibility — this comes at the price of possible unnecessary unfoldings. The rule of
the decomposition is an induction:

ApS px ` S px S pt ` Γ

µApt ` Γ

By applying more asynchronous rules on Ap, we enumerate all transitions of p, and the
terminal case if it is final:

` S pε if p is final {[p′]p 7→S p x ` S p(αx) : p→α p′} S pt ` Γ

µApt ` Γ

Following that scheme, induction and case analysis are added, parsing the whole
covering tree rooted at p. For example, the main premise of the induction on [p′]p 7→S p

above, whose invariant shall be called S p′ , will be S p′ x ` S p(αx). As the tree is
parsed, each transition becomes an implication between the corresponding invariants.
Finally, some transitions might go back in that tree: in the fixed points they will be
represented by a call to an outer inductive predicate, which is substituted in our case
by the corresponding invariant. For example if p′ →β p, then after the induction on
[p′]p 7→S p and the subsequent case analysis, one of the premises will be S px ` S p′ (αx).

We have seen that one state of an automaton is not uniquely represented in the fixed
point encoding, but might occur in different forms depending on how it was reached in
the graph. This applies to the parsing used to derive the simultaneous induction rule,
but since all variations impose the same constraints on their invariants, we can factorize
the corresponding premises. �

We have seen that the mutual induction rule emerges naturally from the simple
one, especially in the case of a fully asynchronous definition since all the steps can be
considered as one big step without sacrificing completeness. We shall now use that
macro-rule for proving inclusions.

Theorem 5.17. Let A and B be two automata, let p0 be a state of A and Q0 a collection
of states of B. Then L(p0) ⊆ L(Q0) if and only if ∀x. µAp0 x (⊕q∈Q0 µBqx is provable
in µMALL.

5.1. Finite state automata 83

Proof. The easy direction here is to conclude the inclusion from the provability of the
linear implication. We use the adequacy of the encoding: whenever w ∈ L(p0) we get
` µAp0 w, which we cut against the implication proof to obtain ` ⊕q∈Q0 µBqw. After
eliminating the cut from that derivation, we only have to inspect it: after the ⊕ we have
a derivation of ` µAqw for some q ∈ Q, which implies that q accepts w.

For the other direction we use our characterization of inclusion. Since L(p0) ⊆
L(Q0) there exists a multi-simulation < that relates them. We prove µAp0 x ` ⊕ µBqx
by using the simultaneous induction rule shown above, with the invariants S p given as
follows by the multi-simulation:

S p := λx. &p<Q⊕q∈Q µBqx

We have to build a proof of ` S pε for each terminal state p: we enumerate all p<Q
by introducing the &, then since < is a multi-simulation there must be a final state
q f ∈ Q, we select this disjunct and finally derive ` µBq f ε by selecting the final clause
in it.

We also have to build a derivation of S p′ x ` S p(αx) for each p →α p′. We intro-
duce again the & on the right, enumerating all p<Q, then by definition of the multi-
simulation there is a Q′ such that Q→α Q′ and p′<Q′, so we choose the corresponding
&-conjunct on the left hand-side. We are left with ⊕q′∈Q′ µBq′ x ` ⊕q∈Q µBq(αx) which
corresponds exactly to Q →α Q′: for each q′ there is a q such that q →α q′. We trans-
late that by enumerating all q′ (introducing the left ⊕) and choosing the appropriate q
in each branch (introducing the right ⊕) and finally selecting the right clause in Bq to
establish µBq′ x ` µBq(αx). �

This theorem shows once more that µMALL is an expressive framework, which is
sufficient (and probably necessary) for reasoning on automata inclusion. Our repre-
sentation of automata as fixed points is very satisfying: the derived induction principle
allows rich reasoning about acceptances, naturally reflecting the behavior of an au-
tomaton. It fits perfectly with the notion of multi-simulation. The natural next step
is to try to obtain a similar logical support for more complex automata, for example,
Büchi automata. We shall briefly discuss it, before putting automata theory in the back-
ground and applying the same methodology directly on logic to obtain a more general
result.

5.1.4 Büchi automata
A very interesting thing to consider is Büchi automata, but it is also very challeng-
ing. Büchi automata are much more complex than finite automata. For example, non-
deterministic ones cannot necessarily be determinized, which has motivated an active
research on algorithms working directly on non-deterministic automata. Reasoning on
infinite traces is very complex, which makes it especially appealing to use logic in
order to avoid errors and generally guide our understanding of the involved structures.

The first obstacle to work with infinite automata and hence infinite words in
µMALL is to add infinite terms. It would affect equality, since the occur-check rule
becomes invalid. Another problem with Büchi automata is the adequacy result, be-
cause acceptance is defined coinductively. This is an essential problem that cannot be

84 Chapter 5 – Proof-theory and model-checking

avoided: when coinduction is involved, one has to make some assumptions on the lan-
guage in which the coinvariant is represented in order to obtain its representation in the
logic. Even if the ultimate goal of adequacy is out of reach, some care should be taken
to understand better the gap between defined atoms and fixed points when inductive
and coinductive definitions are interleaved (see Example 5.15).

There are a lot of challenges, but also some promising examples. Consider the
following Büchi automaton:

?>=<89:;76540123q0

1
::

0
33

?>=<89:;q1

0
zz

1
ss

Both states accept words that pass infinitely many times through the accepting state q0,
that is words containing infinitely many 0.

To encode it in the logic, we define as coinductive the states that are final, the other
being inductive as before. In definition style we obtain:

q0x 4=ν (∃w. x = 0w ⊗ q0w) ⊕ (∃w. x = 1w ⊗ q1w)

q1x 4=µ (∃w. x = 0w ⊗ q0w) ⊕ (∃w. x = 1w ⊗ q1w)

We obtain the following translation for q0:

q0 ≡ νq0λx. (∃w. x = 0w ⊗ q0w) ⊕ (∃w. x = 1w ⊗
(µq1λx. (∃w. x = 0w ⊗ q0w) ⊕ (∃w. x = 1w ⊗ q1w))w)

In this hypothetical extension of µMALL with infinite terms, we can also naturally
specify that a word is an infinite string of 1 (resp. 0); we call these greatest fixed points
in f1 (resp. in f0).

Our encoding of the automaton turns out to behave interestingly well on some ex-
ample properties. We first consider proving that q0 accepts the infinite chain of 0:

∀x. in f0 x(q0 x

After having treated ∀ and (, we are left with the dual of a coinductive, and a coin-
ductive which should then be treated in the asynchronous phase. Indeed, the trivial
coinduction works easily.

We also consider a negative result:

∀x. q0 x(in f1 x(0

This time, the first asynchronous phase leaves the duals of the two greatest fixed points
untouched. We must focus on one to unfold it, and choose in f1 x. After a second
asynchronous phase we are left with in f1 y, q0 (1y) ` 0, and focus on q0. After its
unfolding, the third asynchronous phase does the case analysis on possible transitions,
and we obtain in f1 y, q1 y ` 0. But the asynchronous phase does not end because we
have an inductive on the left, namely q1: this constitutes a handle on infinite behaviors.
The obvious invariant (λy. in f1 y(0) allows to conclude easily.

5.2. Regular formulas 85

5.2 Regular formulas
We obtained a completeness result for finite automata, behind which lies a decision
procedure that builds complex invariants. It is tempting to extend such a good property.
Obviously, the completeness result obtained for representations of finite automata can
be generalized to fixed points of similar shape. In this section, we consider a notion
of regular formulas that is considerably richer, in an attempt to capture simple but
useful properties like totality of relations. As finite automata, regular formulas are finite
systems of interdependent superficial constraints. The main differences between finite
automata and regular formulas are that our formulas deal with terms rather than words
and have an arbitrary arity. Hence, regular formulas do not specify only languages but
also relations. We shall see that this possibility makes regular formulas much more
complex than finite automata — the name “regular” is thus misleading. While only
the first letter of a word is checked when taking a transition in an automata, terms in
regular formulas are matched against arbitrary patterns. In particular, the pattern can
be trivial, which corresponds to an ε-transition.

In this section, we restrict ourselves to first-order terms in order to have a well-
behaved unification.

Definition 5.18 (Patterns). A pattern C of type γ1, . . . , γn → γ′1, . . . , γ
′
m is a vector of

m closed terms5 pi : γ1, . . . , γn → γ′i , such that each of the n variables occurs at most
once in all (pi)i. The (pi) are called elementary patterns of C. A pattern is said to be
non-erasing when each of its input variables occurs in one of its elementary patterns.

We write C~t for denoting the vector resulting from the application of ~t to each
elementary pattern of C. For two vectors of terms of equal length n, ~t = ~t′ denotes the
formula t1 = t′1 ⊗ . . . ⊗ tn = t′n.

An elementary pattern can be seen as a tree with term constants as nodes and either
term constants or variables as leafs. Using this viewpoint, we define the size of a
pattern to be the total number of nodes of its elementary patterns, and its height to be
the maximum of their heights.

A trivial pattern is a pattern which has no rigid structure, i.e., whose elementary
patterns are projections. Trivial patterns are denoted by ε. A particular case of trivial
pattern is the identity: we denote by In the pattern (λ~x.x1, . . . , λ~x.xn).

Definition 5.19 (Pattern compositions). Let C and C′ be patterns of arbitrary type. Let
(pi)i≤m be the elementary patterns of C and (p′j) j≤m′ those of C′. We define (C,C′) to
be (λ~x~y.p1~x, . . . , λ~x~y.pm~x, λ~x~y.p′1~y, . . . , λ~x~y.p

′
m′~y), which is still a pattern.

Assuming that C has type ~γ → ~γ′, and C′ has type ~γ′ → ~γ′′, we define C′C to be
the pattern (λ~x.p′1(C~x), . . . , λ~x.p′m′ (C~x)).

Definition 5.20 (Regular formula). We define the class of formulas RΓ
I/O, parametrized

by Γ (a set of predicate variables), I (a set of input term variables) and O (a set of output
variables). The regular formulas on a signature Σ are given by R∅

∅/Σ
.

RΓ
I/O ::= RΓ

I/O ⊕ R
Γ
I/O | ∃y. RΓ

I,y/O | P
Γ
I∪O

5The pi are not first-order terms but they are only a technical device for presenting patterns. The point is
that they shall always be applied when occurring in formulas, hence yielding terms of ground type γ′.

86 Chapter 5 – Proof-theory and model-checking

| O = C when I = ∅

| O′ = CI ⊗ PΓ
I∪O′′ when O′ and O′′ form a partition of O

PΓ
I ::= p~x | µ(λp.λ~x. RΓ,p

∅/~x)~x where ~x is I in an arbitrary order

We say that a predicate P is regular when P~x is regular over the signature ~x.

The syntactic definition of regular formulas is quite restrictive but suffices to cap-
ture interesting examples. In particular, encodings of finite automata are regular for-
mulas. In the last clause of R, notice that the splitting of O allows that some un-
constrained output variables are passed to the recursive occurrence P. This allows
direct encodings of ε-transitions, without resorting to an artificial clause of the form
λw. ∃w′. w = w′ ⊗ p′ w′ for copying the input variable to the output.

Notice that the fixed point subformulas of a regular formula do not have free term
variables. Hence, regular formulas are encodings of definitions.

Example 5.21. Both (λx. nat x) and (λx. ∃h. hal f x h) are regular predicates. The usual
specification of addition would also be regular, but not that of multiplication.

Example 5.22. It is not possible to encode automata with (unbounded) state, as it would
require to pass constructed terms to recursive occurrences. This can be understood by
considering the pushdown automata recognizing the words 0n1n, encoded as follows
with its stack as first argument:

p0 s (0w) 4
= p0 (0s) w p1 (0s) (1w) 4

= p1 s w
p0 s w 4

= p1 s w p1 ε ε
4
= 1

We now exhibit a fundamental property of regular formulas, which shall allow us
to abstract away from their syntactic definition.

Proposition 5.23 (Fundamental property). Let P be a regular predicate. There is a
finite collection of (regular) predicates (Pi), called states of P, such that:

• P0 is P.

• Each Pi~x is provably equivalent to an additive disjunction of formulas of the
form ∃~y. ~x = C~y or ∃~y. ~x = C~y ⊗ P j~y:

∀~x.
(
Pi~x � (∃~y. ~x = C~y) ⊕ (∃~y. ~x = C′~y ⊗ P j~y) ⊕ . . .

)
When the first form occurs in the disjunction we say that Pi is C-final; when the
second one occurs we write Pi →

C′ P j.

• The following rule is admissible:

{ ` S iC : Pi C-final } { ~x; S j~x ` S i(C~x) : Pi →
C P j } S 0~t ` Γ

P~t ` Γ

Proof. The essential observation is the following. Consider a cut-free derivation of
some instance ` P~t. After a first unfolding in the case where P is a fixed point, either

5.2. Regular formulas 87

the provability of P~t is reduced to that of some (regular) µB~t′, or the proof is completed
without any µ rule. In other words, our derivation must have one of the following
forms, where we indicate multiple rule applications by regular expressions:

` ~t = C
(⊗|=)∗

` P~t
µ?⊕∗

` ~tO′ = C′~tI
(⊗|=)∗

...

` µB~tI∪O′′

` P~tO
µ?(⊕|∃)∗

This simply follows from the definition of regular formulas. In the second case, we
indicate in subscript on terms to which variables of the definition they correspond.
We observe that the same (partial) derivations are also suitable for deriving P(C~x) for
distinct eigenvariables ~x. In other words, we can derive the following generic facts,
after modifying a little C′ into C′′ to adapt to the order of variables imposed by µB and
so that essentially O′′ is empty:

~x; ~x = C ` P~x ~x; ∃~y. ~x = C′′~y ⊗ µB~y ` P~x

It still holds by forming, on the left, the disjunction of all possibilities, i.e., all final
cases and transitions. This gives us one direction of the characterization. Finally, since
we have enumerated all possibilities of proving P, the converse also holds:

~x; P~x ` (~x = C) ⊕ (∃~y. ~x = C′′~y ⊗ µB~y) ⊕ . . .

It is derived by applying asynchronous rules on P, unfolding it if it is a fixed point,
which leads symmetrically to one of the transitions or final cases, at which point it is
easy to close the derivation.

We characterized the regular formula P by its final patterns and its transitions to
some other regular formulas µB. We can repeat the same process on these new for-
mulas. We claim that this process eventually loops, which yields a finite collection of
states (Pi). Indeed, even though the derivations of P~t might involve complex unfold-
ings (cf. Section 5.1.2), only a limited number of formulas can appear. Consider all
fixed point bodies occurring in P: they are of the form (λ(pi)iλpλ~x. B(pi)i p~x) where
the (pi) denote the fixed points introduced above and p denotes the current one. Note
in particular that each B is closed, which would not be true in general but follows from
regularity. In a proof of P, fixed points µB0~t of depth 0 would arise first, and would
be unfolded into B0(µB0)~t. New formulas cannot arise from the recursive occurrence
µB0, but only from a fixed point of depth one occurring in B0. It would be of the
form µ(B1(µB0))~t1, unfolding into B1(µB0)(µ(B1(µB0)))~t1. Again, new formulas can
only arise from B1. The same pattern applies as we go deeper — this is similar to the
valid contexts of Proposition 5.13. Since the depth is bounded by the syntax tree of P,
there are only a finite number of such unfoldings to consider, so only a finite number
of distinct µB can occur at toplevel in cut-free derivations.

We finally describe how to obtain the simultaneous induction rule. If P is a fixed
point, we can consider using the general induction rule instead of unfolding it on the
left hand-side of a sequent. The eager application of induction and other asynchronous
rules leads to the simultaneous induction rule in the same way as in Proposition 5.16.

88 Chapter 5 – Proof-theory and model-checking

If P = P0 is not a fixed point, then there is no transition that leads to it. We start by
cutting S 0, the final premises ` S 0C allow to derive the final branches of P~t ` S 0~t.
When the derivation reaches a fixed point Pi~t′ (i.e., P0 →

C Pi) we apply the previous
construction on Pi, and S i~t ` S 0(C~t) appears as the main premise of the induction. �

Corollary 5.24. The provability of ` P~t, and more generally of ` ∃~x. P(C~x), is decid-
able.

Proof. This simple observation relies on the fact that only finitely many fixed points
can occur during the depth-first proof-search for P(C~x), and that their term parameters
can only decrease in size. Hence, it is possible to detect looping branches, which cannot
lead to any derivation, and abort them. And the exhaustive search terminates. �

5.2.1 Internal completeness
For proving a regular formula P by induction on an other regular formula Q, we are
going to need to adapt the states of P, so that their behavior is finitely defined for the
transitions of Q, which might be finer than those of P.

Definition 5.25 (Q-states). Let P and Q be regular predicates of the same type. We
say that P admits Q-states if there is a finite number of predicates (P′i) such that:

• P is equivalent to P′0

• for each transition C of Q, each P′i of compatible type, P′i(C~x) is provably equiv-
alent to an additive disjunction of P′j~x

Theorem 5.26. Let P and Q be two regular predicates of same type such that P admits
Q-states.

{ ~t : ` Q~t } ⊆ { ~t : ` P~t } if and only if ~x; Q~x ` P~x

Proof. If we have a derivation of the implication we obtain the inclusion by cut-
elimination. For the other direction, we use a technique similar to the first part of
the proof of Proposition 5.6.

When P′ and Q′ are predicates of the same type, we simply write P′ ⊆ Q′ for
{ ~t : ` P′~t } ⊆ { ~t : ` Q′~t }. We shall build a derivation that uses the derived induction
rule on Q (Proposition 5.23). Consider the Q-states of P, called (P′i)i≤n. For each state
Qi, we form the conjunction of all unions of Q-states of P that contain Qi:

S i := &{ ⊕kP′ik : Qi ⊆ ⊕kP′ik }

We check that the (S i) are valid invariants for Q:

• For each C-final Qi, we have by definition of S i an acceptance of C in each
conjunct, which allows to prove ` S iC.

• For each transition Qi →
C Q j, we need to derive S j~x ` S i(C~x). Our derivation

starts by a & rule which enumerates all conjuncts S of S i. Each S contains Qi

by definition of S i, and by definition of the Q-states there is another disjunction
of Q-state S ′ such that S ′~x � S (C~x).

5.2. Regular formulas 89

We observe that Q j is contained in S ′: If Q j accepts ~t then Qi accepts C~t, and so
does S ; By cutting this against the above equivalence we obtain that S ′ accepts
~t. So we have S ′ in S j, and we select this conjunct on the left hand-side. We
now have to derive S ′~x ` S (C~x) which is simply the other direction of the above
equivalence.

�

As for the corresponding proof about finite automata, this proof yields a (naive)
decision procedure: there is only a finite number of invariants to try, and it is decidable
to check the final premises, as well as the transition premises since their form is very
limited. As for multi-simulation on automata, the full invariant considered in our com-
pleteness theorem is often unnecessarily large, but more economic techniques apply
equally well on Q-states.

Unfortunately, it is not always possible to obtain Q-states. We propose a partial
procedure for computing them, then discuss in which cases it might fail.

Algorithm 5.1 (Partial procedure for computing Q-states). Let P and Q be regular
predicates, and (Pi) be the states of P. We denote by P∗i a reordering of the arguments of
Pi, i.e., P∗i is (λ(xk)k. Pi(xσ(k))k) for some permutation σ. Note that the characterization
of states of Proposition 5.23, can be adapted to be of the form ∀~x. (Pi~x � (~x = C) ⊕
(∃~y. ~x = C′~y ⊗ ∃~y′. P∗j~y~y

′) ⊕ . . . where C′ is non-erasing. We shall use that form in the
proof below.

The algorithm generates Q-states of the form (λ~x. ~x = C) or (λ~x. ∃~y. ~x = C~y ⊗
∃~z. P∗j~y~z) for some state P j and a non-erasing pattern C. Strictly speaking, we need
to generalize slightly over that format in order to handle erasing transitions of Q: we
allow extra vacuous abstractions at any position, but limit the total arity to not exceed
that of the transitions of C. This is shallow, and can be ignored in the following by
considering the non-erasing restriction of a transition of Q, and adjusting the corre-
sponding decomposition afterwards.

We build a set of Q-states as the fixed point6 of the following transformation, start-
ing with the singleton λ~x. ∃~y. ~x = ~y ⊗ P0~y. The transformation consists in computing
a decomposition of the right form for each P′i of our tentative set of Q-states and each
transition CQ of Q, and adding the components of the decomposition to our collection:

• If P′i is of the form (λ~x. ~x = C) then P′i(CQ~x) is provably equivalent to some
~x = C′ if CQ and C are compatible, which degenerates into 1 when CQ = C and ~x
is empty; and it is equivalent to 0 if the patterns are incompatible. In both cases
we have a valid decomposition, empty in the second case.

• Otherwise, our Q-state P′ is of the form (λ~x. ∃~y. ~x = C~y ⊗ ∃~z. P∗i~y~z).

– If CQ and C are incompatible, P′(CQ~x) is simply equivalent to 0.

– If CQ has no rigid structure, it is enough to observe that P′(CQ~x) � P′∗(~x).

6The iteration might diverge, if there is no finite fixed point.

90 Chapter 5 – Proof-theory and model-checking

– If C has no rigid structure, P′(CQ~x) is equivalent to ∃~z. P∗i (CQ~x)~z. The
predicate Pi is equivalent to its characterization as a state, i.e., the sum of
all its transitions and final patterns: Pi~x′ � (⊕ j F j~x′) ⊗ (⊕k Tk~x′). We
decompose recursively7 each F∗j (CQ~x)~z and T ∗k (CQ~x)~z as a sum of Q-states,
and manipulate the results to obtain a decomposition for P′(CQ~x).
Our P′(CQ~x) is equivalent to ∃~z. ⊕k (P′′k ~x~z), that is ⊕k ∃~z. (P′′k ~x~z). It
remains to adapt the disjuncts into well-formed Q-states. We only show
how to treat the case of a transition clause P′′k , the treatment of a final
clause being a particular case. We start with:

∃~z. ∃~y′. (~x,~z) = C′~y′ ⊗ ∃~z′. P∗j~y
′~z′

Splitting C′ into (C′1,C
′
2) and ~y′ into (~y′1, ~y

′
2) accordingly, we obtain:

∃~y′1. ~x = C′1~y
′
1 ⊗ ∃~z∃~y

′
2∃~z

′. ~z = C′2~y
′
2 ⊗ P∗j~y

′
1~y
′
2~z
′

Finally, we can remove the useless information about~z, without loosing the
equivalence:

∃~y′1. ~x = C′1~y
′
1 ⊗ ∃~y

′
2∃~z

′. P∗j~y
′
1~y
′
2~z
′

– When CQ and C both have some rigid structure, then CQ~x = C~y can be
decomposed into ~x1 = C′~y1 ⊗ ~y2 = C′Q~x2, where ~x1, ~x2 (resp. ~y1, ~y2) is
a partition of ~x (resp. ~y). This decomposition is obtained by destructing
the common rigid structure of C and CQ, aggregating in C′ (resp. C′Q)
the residual constraints corresponding to branches where CQ (resp. C)
becomes flexible first.
So we have an equivalence between P′(CQ~x) and:

∃~y1~y2. ~x1 = C′~y1 ⊗ ~y2 = C′Q~x2 ⊗ ∃~z. P∗i~y1~y2~z

Or simply:
∃~y1. ~x1 = C′~y1 ⊗ ∃~z. P∗i~y1(C′Q~x2)~z

We recursively8 compute the decomposition of P∗i for the pattern
(I|~y1 |,C

′
Q,I|~z|). As before, we shall obtain a decomposition of P′ from that

of P∗i . We detail the case of transition clauses, for which we obtain a dis-
junct of the following form:

∃~y1. ~x1 = C′~y1 ⊗

∃~z. ∃~y′1∃~y
′
2∃
~y′z. (~y1, ~x2,~z) = (C1 ~y′1,C2 ~y′2,Cz~y′z) ⊗ ∃~z′. P∗j ~y

′
1
~y′2~y
′
z
~z′

We combine patterns:

∃~y′1 ~y
′
2. (~x1, ~x2) = (C′(C1 ~y′1),C2 ~y′2) ⊗ ∃~z. ∃~y′z. ~z = C′z~y′z ⊗ ∃~z′. P∗j ~y

′
1
~y′2~y
′
z
~z′

7This recursive decomposition can loop if there is a cycle of trivial transitions in the states of P.
8This can create a loop if C′Q does not decrease, i.e., if C only has rigid structure on components where

CQ does not.

5.2. Regular formulas 91

And finally remove the constraint on hidden variables~z, to obtain a decom-
position of the right form:

∃~y′1 ~y
′
2. (~x1, ~x2) = (C′(C1 ~y′1),C2 ~y′2) ⊗ ∃~y′z. ∃~z′. P∗j ~y

′
1
~y′2~y
′
z
~z′

As is visible in the definition, several problems can cause the divergence of our
algorithm. We propose some constraints under which it terminates, but also show why
it is interesting in a more general setting.

Proposition 5.27. Let P be a regular predicate such that its states have an arity of at
most one, and there is no cycle of ε-transitions in it. Then it admits Q-states for any
regular Q. Hence the derivability of ∀x. Qx (Px is decidable, and holds whenever
Q ⊆ P.

Proof. We only have to check that P admits Q-states, the rest being a consequence of
Theorem 5.26. Algorithm 5.1 always return valid Q-states by its definition, we show
that it terminates under the assumptions on P. The algorithm proceeds by iterating
a transformation until a fixed point is reached. We check that the transformation is
well-defined, and that the fixed point is reached in a finite number of iterations.

There are two possible loops in the computation of a decomposition, in the last two
cases. In the case where C is trivial, there is a recursive call on the same CQ, but on a
different state of P: this can loop only if there is a cycle of trivial transitions in P, which
is excluded by hypothesis in our case. In the case where C and CQ are non-trivial, there
is a recursive call on C′Q, which may not be smaller than CQ in general: in our case,
since C is unary, some structure is necessarily removed from CQ.

It remains to check that the fixed point is reached in a finite number of iterations.
It follows from the observation that the algorithm can only generate a finite number
of distinct formulas of the right form, because generated patterns have their height
bounded by the maximum height of the patterns of P. This is true with the initial Q-
state which uses a trivial pattern. It is preserved by the decomposition algorithm, the
only non-trivial case being the last one where we compose C′C1. But since P is unary
and C is non-erasing, C has at most one input variable ~y = y. Hence, either CQ forces
some structure on y, in which case C′ has no input (~y2 = y, ~y1 and C1 are empty),
or CQ does not constrain y, in which case ~y2, ~x2 and C′Q are empty, and P∗i y simply
decomposes to itself (C1 is an identity). In both cases C′C1 has the height of C′ which
is less than that of C, itself less than the maximum height of the patterns of P. �

A regular formula constrained as in the previous proposition is not much more than
a finite automata: we have essentially shown that Theorem 5.17 is a particular case of
the results on regular formulas. A noticeable difference is the ε-acyclicity condition:
there is no difficulty in extending the work on finite automata to handle ε-transitions.
In fact, we conjecture that this assumption can also be removed from the previous
result. But it would require a much more complex algorithm for computing the Q-
states: the idea is that in order compute the decomposition of a state which belongs to
an ε-cycle, one has to decompose at the same time all states of the cycle and merge their
decompositions, using an induction rule to handle the cycle in the associated derivation
of equivalence.

92 Chapter 5 – Proof-theory and model-checking

Example 5.28. In Proposition 5.27, the condition on the arity of P is essential. We
show a simple binary example where our procedure diverges. Consider the regular
predicates P and Q resulting from the following definition:

p (s2x) (s y) 4= p x y q (sx) (sy) 4= . . .

We compute the Q-states of P using Algorithm 5.1. We start with p, and there is only
one transition to consider: (λxy.sx, λxy.sy). This is a rigid-rigid case, the decomposi-
tion of p (sx) (sy) yields ∃x′∃y′. x = sx′ ⊗ y = y′ ⊗ p x′ y′. This new Q-state has to be
decomposed for the same transition, and we obtain ∃x′∃y′. x = s2x′ ⊗ y = y′ ⊗ p x′ y′.
The same pattern keeps applying, and new Q-states keep being generated.

Example 5.29. Consider the definitions of nat and hal f from Example 5.10, trans-
lated as fixed points. They are regular predicates. Let Q = λx. ∃h. hal f x h,
Q′ = λh. ∃x. hal f x h. The algorithm successfully computes Q-states and Q′-
states for nat. The obtained Q-states are: λx. nat x, λxλh. nat x and λxλh. 1. The
Q′-states are: λh. nat h, λxλh. nat h and λxλh. 1. This yields µMALL proofs for
∀x. (∃h. hal f x h)(nat x and ∀h. (∃x. hal f x h)(nat h.

Example 5.30. In Example 5.10, we gave an informal proof of the totality of hal f by
seeing nat and hal f as finite automata. We can now avoid that step and obtain directly
a derivation. The states of H = λx.∃h. hal f x h are:

H0 ≡ λx.∃h. hal f x h

H1 ≡ λxλh. hal f x h

Its nat-states can be obtained by our procedure:

H′0 ≡ λx. ∃h. hal f x h

H′1 ≡ λx. x = 0
H′2 ≡ λx. ∃p. x = sp ⊗ ∃h. hal f p h

H′3 ≡ λx. 1

Starting from H′0, and taking the successor transition of nat, we obtain H′1 and H′2
corresponding to the two transitions of H1 that are compatible with the successor. Fi-
nally, H′3 is obtained for the decomposition of all others against the zero transition.
Notice that it is crucial that our algorithm eliminates the information learned about h
as some constraints are applied on x, otherwise we could not obtain a finite number of
nat-states.

Applying the proof of completeness, we essentially obtain the following invariant:

S := λx. (∃h. hal f x h) & (x = 0 ⊕ ∃y. x = s y ⊗ ∃h. hal f y h)

Completing the proof is rather simple once we have that invariant. Let us write S
as H & BH where B is the body of the fixed point nat: it trivially implies the expected
theorem, that is H; for the base case of invariance we must show H0 & (0 = 0 ⊕ . . .);

5.2. Regular formulas 93

the heredity case is more interesting:

` H(s0) Hy ` H(s2y)
BHx ` H(sx)

Hx & BHx ` H(sx)
Hx ` Hx

Hx & BHx ` BH(sx)
Hx & BHx ` H(sx) & BH(sx)

Notice here the useful invariant scheme &i=0...n BiS , which yields an induction with
access to the n predecessors.

5.2.2 Beyond cyclic proofs
As said in Section 2.3.2, cyclic proofs are appealing from an automated reasoning per-
spective, as they avoid the invention of invariants, but they are very weak. It is our hope
that the work presented in this chapter eventually leads to an useful theorem proving
technique that would keep the practical aspect of cyclic proofs but be much more pow-
erful, in particular be complete for inclusions of automata, and still meaningful for
regular formulas.

On the particular inclusion problem, cyclic proofs seem related to simulations, as-
sociating one state with another. The proofs obtained from our completeness theorems
use invariants that express the less restrictive notion of multi-simulation, where one
state can be related to several. This offers an interesting trade-off between expressive-
ness and the subformula property, since the invariants under consideration are made of
subformulas of the goal.

It is interesting to attempt to present our proofs in an extended cyclic style, which
takes into account failures and alternatives, as well as loops between alternatives. For
example:

` even 0

∞

nat y ` odd y
nat y ` even (sy)

nat x ` even x ⊕

⊥

` odd 0

∞
nat y ` even y

nat y ` odd (sy)
nat x ` odd x

nat x ` even x ⊕ odd x

Establishing the correctness of such objects is complex, but we probably have most
of the tools at hand. It is likely to be related to the inclusion of nat in the underlying
automata:

> nat y ` odd y

((

nat y ` even y

vv

⊥

nat x ` even x

s

OO

0

eeKKKKKKKKKKK
nat x ` odd x

s

OO
0

99sssssssssss

Our work on regular formulas shows that there are two main steps when proving
an implication of regular formulas ∀~x. P~x (Q~x: first, one should obtain the P-states
of Q; then one should try to build invariants from those P-states. The first step might
fail, the second one is decidable. It seems possible to interpret this in terms of proof-
search. The computation of the P-states would correspond to an exhaustive proof-
search for P~x ` Q~x, only unfolding fixed points and detecting loops. This is visible on

94 Chapter 5 – Proof-theory and model-checking

the example of the totality of hal f :

` hal f 0 H

` 0 = 0
⊥

` sz = 0
nat y ` y = 0

nat y ` sy = s0 ⊗ H = 0 ⊕

⊥

` 0 = sZ ⊗ . . .

∞

nat z ` hal f z H′

nat z ` sz = sZ ⊗ hal f Z H′

nat y ` y = sZ ⊗ hal f Z H′

nat y ` sy = s2Z ⊗ H = sH′ ⊗ hal f Z H′

nat y ` hal f (sy) H
nat x ` hal f x H

nat x ` ∃h. hal f x h

If that exploration succeeds, the information about loops, failed and proved branches
would be checked for correctness. This second step, when successful, could build a
proof by explicit induction. It would also be interesting to study how to generate a
counter-example in case of failure.

5.3 Conclusion
We have shown that µMALL offers enough expressiveness for reasoning about au-
tomata inclusions. More importantly, the connection was natural, and brought new ob-
servations in both automata and proof theory. We have seen that the logical treatment
of Büchi automata raises several interesting problems; we consider it as an important
direction for further exploration of µMALL. The study of tree automata would also be
a natural next step, calling for a similar extension of regular formulas. Finally, another
direction for future work is to consider the implementation of proof-search ideas based
on regular formulas.

An advantage of having adapted automata techniques to proof theory is that they
should extend well to other features of logic. For example, it would be interesting to
consider higher-order terms and unification. Together with support for generic quantifi-
cation (which is the topic of the next chapter) this would extend the scope of our study,
for example, to process calculi such as π-calculus, whose labeled transition system
involves bindings.

Chapter 6

Reasoning about generic judgments

We have seen that logics supporting fixed points are good frameworks for representing
objects and reasoning about the relationships between these objects. We have lead a
proof-theoretical study of such a logic, namely µMALL, and discovered some impor-
tant structure of its derivations. Proof-theory offers a particularly interesting method-
ology to develop and study such frameworks, as it is usually modular. For example,
the structure of focused derivations for µMALL has been extended to µLJ. We shall
see another example of this modularity in this chapter, by showing how to integrate the
notion of generic quantification into sequent calculus in a completely orthogonal way.

Generic quantification has been introduced by Miller and Tiu [MT03a, MT05] in
order to support reasoning about specifications involving variable bindings. Such speci-
fications are very common in computer science: type systems, programming languages,
logics, etc. But their formal treatment is delicate, and is still subject to active research.
Miller and Tiu’s simple design allows for equally simple proofs expressing rich rea-
soning about generic variables. Unfortunately, that initial formulation of generic quan-
tification is not so orthogonal to other features of logic: it turns out to have a poor
interaction with fixed points, which limits the expressiveness of the resulting logic. In
this chapter, we come back to that early design and refine it. We shall work with µLJ
as it is our practical target, but it would work equally well, for example, in µMALL.

In our introductory Chapter 2, we have outlined three increasingly demanding steps
in that program: computing, model-checking and reasoning — from the proof-as-
program viewpoint, representing objects, then finite and finally infinite behavior func-
tions on those objects. In Section 6.1, we introduce the original design of generic
quantification, showing how it addresses the finite behaviors but is limited concerning
infinite ones. In Section 6.2 we propose the logic µLJ∇ as a replacement that brings the
expected expressiveness, by allowing a better interaction between fixed point construc-
tions and generic quantification; we explore the meta-theory of µLJ∇, notably giving
evidence of its expressiveness. Finally, we illustrate how the logic can be practically
used on a few significant examples in Section 6.3. Before concluding, we shall discuss
related systems in Section 6.4.

96 Chapter 6 – Reasoning about generic judgments

6.1 The original design of ∇
We motivate the introduction of a new quantifier for expressing generic quantification,
before formally presenting its proof-theoretic design.

6.1.1 Motivation
The higher-order abstract syntax (HOAS) approach [HL78, MN87, PE88] allows for
elegant, high-level representations of objects involving variable binding, such as pro-
grams or formulas, but also of transformations and relations involving such objects,
e.g., evaluation or type checking. It basically consists in leveraging the notion of bind-
ing already present in logic to represent binding at the object-level. In the proof-as-
program approach, one uses the abstraction of proofs terms. In the λ-tree approach,
term-level abstractions are used, and generic variables are introduced by first-order
universal quantifications. Tools such as Twelf [PS99] and λProlog [MNPS91] can be
used to compute on HOAS specifications.

As we have seen in Chapter 2 with the example of negation as failure, when the
adequacy of a representation is justified by an extra-logical argument, it might not be
possible to reason properly about the represented objects from within the logic. The
design of Twelf reflects this limitation by having two levels. The lower level is the
logical framework (LF) used to represent objects. Twelf’s metatheorem prover uses a
different formalism which manipulates LF objects to establish properties about them,
e.g., termination or totality. Taking a different approach, Miller and Tiu developed the
generic quantifier ∇ [MT03a, MT05] in order to obtain a proper logic which could both
serve to represent and reason about HOAS specifications.

In order to see why Miller and Tiu needed to introduce a new quantifier, we shall
consider the example of simple typing for Church-style λ-calculus:

(x : T) ∈ Γ

Γ ` x : T
Γ ` M : T ′ → T Γ ` N : T ′

Γ ` MN : T
Γ, x : T ` Mx : T ′

Γ ` (λx : T. Mx) : (T → T ′)

Following the higher-order abstract syntax approach, let us encode this specification as
a least fixed point — or a definition, the distinction does not matter at this point. We
assume two term types tm and ty, constants app : tm → tm → tm and abs : (tm →
tm) → tm for representing terms, and arrow : ty → ty → ty for types. We shall
represent the context Γ as a list of pairs, using usual associated types and constructors.
We define the predicate o f : (tm ∗ ty) list → tm → ty → o, and write {Γ `Λ→ M : T }
for (o f Γ M T) for better readability:

{Γ `Λ→ X : T } 4
= 〈X,T 〉 ∈ Γ

{Γ `Λ→ app M N : T } 4
= {Γ `Λ→ M : arrow T ′ T } ∧ {Γ `Λ→ N : T ′}

{Γ `Λ→ abs T M : arrow T T ′} 4
= ∀tmx. {〈x,T 〉 :: Γ `Λ→ Mx : T ′}

This natural encoding of typing judgments relies on the extra-logical observation
that derivations of ∀x.Px are derivations of Px for a generic x. This does not cor-
respond, however, to the logical meaning of the universal quantifier, which is “for

6.1. The original design of ∇ 97

all”. To see why this is a problem, let us reason about our typing judgments. Con-
sider, for example, the following observation about λ-calculus: if (λαxλβy. x) has type
α → β → β then it must be that α and β are the same. That observation follows from
a simple examination of the possible derivations of the typing judgment: it must start
with two abstraction rules, introducing the variables x and y, then finish with a variable
rule on x, which requires α = β. In µLJ, that observation is stated as follows:

∀α∀β. {nil `Λ→ (abs α (λtmx. abs β (λtmy. x))) : arrow α (arrow β β)} ⊃ α = β

In order to prove it, we proceed by case analysis on the typing judgment, in which
only the abstraction case is not absurd. We are left with an universal quantification
on the left: we have to choose the variable that shall represent x. If we have two
different constants of type tm, we can choose to represent x and y by them, which
allows to conclude by case-analysis on the typing judgment that α and β must be equal.
This does not correspond at all to the intuitive proof, because the left ∀ rule does not
correspond to the meta-level “generic” reading of the right ∀ rule but to the logical “for
all” meaning of the quantifier. In particular, it is possible to instantiate two universal
quantifiers with the same term, e.g., when deriving ∀x∀y. Pxy ` ∀x. Pxx.

Miller and Tiu designed the ∇ quantifier to express logically the notion of generic
quantification. As long as it is in positive position, ∇ behaves as ∀, hence it does not
change the represented objects. But ∇ is self-dual: both its left and right introduction
rules correspond to the introduction of a generic variable. We shall come back to our
example after a formal presentation of the original design of generic quantification.

6.1.2 The logic µLJ∇0

The ∇-quantifier was first introduced with the logic FOλ∆∇ [MT03a], an extension
of LJ with higher-order terms, definitions and ∇. That system was then extended to
inductive and coinductive definitions, resulting in the logic LINC [MT03b, Tiu04]. We
consider the closely related logic µLJ∇0 given in Figure 6.1, featuring least and greatest
fixed points and the ∇ quantifier. The difference between LINC and µLJ∇0 , i.e., the
difference between fixed points and definitions, is not relevant to the original design of
generic quantification. We shall see, however, that working with fixed point formulas
is conceptually important in our refinement of the system.

Let us introduce a few definitions and notations. Generic contexts are lists of typed
term variables, denoted by σ or ζ. If σ is a generic context (x1 : γ1, . . . , xn : γn)
we denote by σ → γ the type γ1 → . . . → γn → γ, and call it γ lifted over σ.
Analogously, we talk of lifted variables when they have a lifted type. We also use
a generic context as a list of terms, writing (Fσ) for ((Fx1) . . . xn). Similarly, f (xi)i

stands for ((f x1) . . . xn). As usual, type annotations are omitted for conciseness most
of the time, but can be recovered from the context. In order to make type inference
easier, we use the convention of naming x′ a lifted version of x. Finally, when we write
a formula P~x, it indicates that the variables ~x can occur in it, and assumes that they
don’t occur free in P anymore; conversely, we use the convention that when we write
(λa.t), the variable a does not occur free in t.

98 Chapter 6 – Reasoning about generic judgments

Propositional intuitionistic logic

Σ; Γ, σ B ⊥ ` G Σ; Γ ` σ B >

Σ; Γ, σ B Pσ,σ B Qσ ` G
Σ; Γ, σ B Pσ ∧ Qσ ` G

Σ; Γ ` σ B Pσ Σ; Γ ` σ B Qσ
Σ; Γ ` σ B Pσ ∧ Qσ

Σ; Γ, σ B Pσ ` G Σ; Γ, σ B Qσ ` G
Σ; Γ, σ B Pσ ∨ Qσ ` G

Σ; Γ ` σ B Piσ

Σ; Γ ` σ B P0σ ∨ P1σ

Σ; Γ ` σ B Pσ Σ; Γ, σ B Qσ ` G
Σ; Γ, σ B Pσ ⊃ Qσ ` G

Σ; Γ, σ B Pσ ` σ B Qσ
Σ; Γ ` σ B Pσ ⊃ Qσ

First-order structure

Σ, x′ : σ→ γ; Γ, σ B Pσ(x′σ) ` G
Σ; Γ, σ B ∃γx.Pσx ` G

Σ ` t′ : σ→ γ Σ; Γ ` σ B Pσ(t′σ)
Σ; Γ ` σ B ∃γx.Pσx

Σ ` t′ : σ→ γ Σ; Γ, σ B Pσ(t′σ) ` G
Σ; Γ, σ B ∀γx.Pσx ` G

Σ, x′ : σ→ γ; Γ ` σ B Pσ(x′σ)
Σ; Γ ` σ B ∀γx.Pσx

{(Σ; Γ ` G)θ : (λσ.uσ)θ .
= (λσ.vσ)θ}

Σ; Γ, σ B uσ = vσ ` G Σ; Γ ` σ B tσ = tσ

Σ; Γ, (σ, x) B Pσx ` G
Σ; Γ, σ B ∇x.Pσx ` G

Σ; Γ ` (σ, x) B Pσx
Σ; Γ ` σ B ∇x.Pσx

Fixed points

Σ; Γ, σ B S (tσ) ` P x; · B BS x ` · B S x
Σ; Γ, σ B µB(tσ) ` P

Σ; Γ ` σ B B(µB)(tσ)
Σ; Γ ` σ B µB(tσ)

Σ; Γ, σ B B(νB)(tσ) ` P
Σ; Γ, σ B νB(tσ) ` P

Σ; Γ ` σ B S (tσ) x; · B S x ` · B BS x
Σ; Γ ` σ B νB(tσ)

Σ; Γ, σ B µB(tσ) ` σ B µB(tσ) Σ; Γ, σ B νB(tσ) ` σ B νB(tσ)

Figure 6.1: Inference rules for µLJ∇0

6.1. The original design of ∇ 99

The formulas of µLJ∇0 are obtained by adding the ∇ quantifier to the constructions
of µLJ:

P ::= P ∧ P | P ∨ P | P ⊃ P | > | ⊥

| ∃γx.Px | ∀γx.Px | ∇γx.Px | s
γ
= t | s

γ
, t | µγ1...γn B~t | νγ1...γn B~t

The sequents of µLJ∇0 are obtained by extending the structure of intuitionistic se-
quents with a local generic context surrounding each formula, writtenσBPσ. That con-
text binds generic variables in the formula. A formula and its context form a generic
judgment, denoted by G.

The deduction rules of µLJ∇0 are given in Figure 6.1. Propositional logical rules are
extended orthogonally to generic contexts. Variables are introduced in generic contexts
by the ∇ quantifier, in the same way on both sides. Unlike propositional connectives,
the first-order quantifiers ∀ and ∃ interact with the generic context, causing a lifting of
terms and term variables. For example, in the right ∀ rule, if x has type γ then x′ has
type σ → γ. This treatment preserves the global aspect of universal variables, while
expressing the local dependency on the generic context. Finally, the generic context is
interpreted as a λ-abstraction in the equality rules.

At this point, we have described how the logic treats finite behavior formulas, i.e.,
those that do not involve fixed points. In that setting, the deduction rules can be read
as equivalences, for example ∇x. Px ∧ Qx ≡ (∇x. Px) ∧ (∇x. Qx), which allow to
eliminate ∇ by pushing it down through logical connectives, eventually disappearing,
for example thanks to (∇x. ux = vx) ≡ u = v. A similar observation is that any proof of
a finite behavior can be η-expanded until it does not use the axiom rule anymore, but
only >,⊥ and equality rules as initial ones. Both observations imply that there is no
need to ever compare two generic contexts: the question of the identity of formulas is
irrelevant.

We can extend the setting where identity does not matter by considering proofs
involving fixed points unfoldings, naturally extended to generic contexts, but no axiom:

Γ, σ B B(µB)(tσ) ` G
Γ, σ B µB(tσ) ` G

Γ ` σ B B(µB)(tσ)
Γ ` σ B µB(tσ)

It is in such a framework that Miller and Tiu obtained a fully declarative specification of
finite π-calculus and its bisimulation [Tiu05], which is probably the best demonstration
of the success of FOλ∆∇. It is also in that setting that the previous example lies.

Example 6.1. Let us come back to the example of simply typed λ-calculus, when
generic quantification is used to represent the introduction of a variable in the abstrac-
tion rule:

{Γ `Λ→ X : T } 4
= 〈X,T 〉 ∈ Γ

{Γ `Λ→ app M N : T } 4
= {Γ `Λ→ M : arrow T ′ T } ∧ {Γ `Λ→ N : T ′}

{Γ `Λ→ abs T M : arrow T T ′} 4
= ∇x. {〈x,T 〉 :: Γ `Λ→ Mx : T ′}

We consider the same observation as before, and derive it in µLJ∇0 . The essential

100 Chapter 6 – Reasoning about generic judgments

steps of the derivation closely correspond to the informal idea of the proof:

α, β; x, y B 〈x, β〉 = 〈y, β〉 ` α = β
=L

α; ` α = α

α, β; x, y B 〈x, β〉 = 〈x, α〉 ` α = β
=L

α, β; x, y B 〈x, β〉 ∈ 〈y, β〉 :: 〈x, α〉 :: nil ` α = β

α, β; x, y B {〈y, β〉 :: 〈x, α〉 :: nil `Λ→ x : β} ` α = β

α, β; x B {〈x, α〉 :: nil `Λ→ (abs β (λtmy. x)) : arrow β β} ` α = β

α, β; · B {nil `Λ→ (abs α (λtmx. abs β (λtmy. x))) : arrow α (arrow β β)} ` α = β

; ` ∀α∀β. {nil `Λ→ (abs α (λtmx. abs β (λtmy. x))) : arrow α (arrow β β)} ⊃ α = β

That derivation proceeds by case analysis, i.e., left fixed point unfoldings. For each
abstraction case, a new generic variable is introduced in the local context. Notice how
there are binders all the way down: the object-level binder encoded as an abstraction
in higher-order terms is manipulated in the specification by means of generic quan-
tification, and changed during deduction into a sequent-level abstraction as part of the
generic context. Finally, there are two possibilities when looking up the typing context:
〈x, β〉 is either 〈y, β〉 or 〈x, α〉. The former possibility is ruled out, as it requires to iden-
tify two generic variables, i.e., to unify distinct bound variables. The latter possibility
implies α = β.

The logical treatment of infinite behaviors, through the rules of (co)induction and
axioms, is more problematic. The axioms on fixed points require an exact match (mod-
ulo α-equivalence) of the generic contexts. The extended unfolding rules state that
liftings of a fixed point unfold just like the original version. The induction rule seems
less natural, essentially stating that liftings of the invariants of a fixed point are invari-
ants of its liftings. Tiu noticed [Tiu04] that it is too weak, since it does not allow any
modification of the generic context when inducting under it. As a consequence, it is
impossible to prove things like ∀x. (∇a. nat x) ⊃ nat x. This seems unfortunate because
nat, defined as a least fixed point, clearly does not rely on the generic context.

There are two possible ways to address this lack of expressiveness. The first one
is to change the axiom rule. This is essentially what is done in [Tiu06] where the
author adds structural rules for generic contexts; we shall come back to this approach
in Section 6.4. The second possibility is to work with the (co)induction rule, which is
the natural thing to consider in this thesis. In the following, we are going to fix the logic
in order to be able to express the missing properties, such as ∀x. (∇a. nat x) ⊃ nat x,
by relying on the structure of formulas. It is thus very important that we work in a
logic where every construction is fully defined, i.e., canonical. This excludes atoms,
i.e., predicate constants, as well as retracts (i.e., arbitrary fixed points). If one wants

to obtain ∀x. (∇a. px) ⊃ px for a predicate constant p, there is no other option than
adding it as a rule in the logic, whereas with a canonical fixed point the theorem could
be obtained by (co)induction. Not considering atoms is motivated practically, because
users of a logic usually work on defined notions, but also theoretically, as we find it
important for the logician to study what can be derived from the simplest definition
before playing the game of choosing which axioms to force uniformly. As we shall
see, this approach allows to preserve the essence of what we call minimal generic
quantification for the absence of any structural rule for generic contexts.

6.2. µLJ∇: treating ∇ as a non-logical connective 101

6.2 µLJ∇: treating ∇ as a non-logical connective
The self-duality of generic quantification, as well as its ability to commute with almost
all connectives of µLJ∇0 , suggests that it might not be a logical connective but rather a
defined one, like negation in classical logics. The logic µLJ∇ is the result of this obser-
vation. We shall define a formula transformation that produces formulas where the ∇
quantifiers only occur above bound predicate variables inside fixed point constructions.
This is in slight contrast with the classical negation which can be eliminated statically
even inside fixed points, because of the monotonicity constraint. The important point
remains: since ∇ does not occur anymore at toplevel in a sequent, it loses its logical
role.

The logic µLJ∇ has the same formulas as µLJ∇0 but the same rules as µLJ (see
Figure 2.1). The sequents of µLJ∇ are standard intuitionistic sequents. The rules for
fixed points are unchanged, but the implicit elimination of toplevel ∇ quantifiers which
might occur in BS will play a critical role in (co)induction:

Γ, S t ` P BS x ` S x
Γ, µBt ` P

Γ ` B(µB)t
Γ ` µBt

We define the connective ∇ by identifying a formula F at toplevel in a sequent with
φ(F) where ∇ does not occur anymore except inside fixed point bodies. The inductive
definition of φ is given on Figure 6.2. The transformation is parametrized by two
contexts initially empty, and written φΓ

σ(P|Γ|σ). Here, σ is a generic context, i.e., a list
of term variables. The context Γ contains associations of the form 〈p, σ, p′〉 where p is
a predicate variable of type γ → o, σ = x1 : γ1, . . . , xn : γn is a generic context and
p′ is an other predicate variable of type (γ1 → . . . → γn → γ) → o. The support of
Γ, written |Γ|, is the variables p. As indicated by the notation in P|Γ|σ, the predicate
variables of |Γ| and the term variables of σ may occur in the original formula. These
occurrences are bound by the two contexts. In the transformed formula only the p′ will
be found. Finally, the order does not matter in Γ, unlike in σ.

We shall write φ applied not only to formulas but also to predicates and predicate
operators, by defining:

φΓ
σ(λx. Px) ≡ λx′. φΓ

σ(P(x′σ)) φΓ
σ(λp. Bp) ≡ λp′. φΓ,〈p,σ,p′〉

σ (Bp)

In fact, the definition of φ can be reduced to these two definitions extended in an or-
thogonal way to all logical connectives. For doing so, one should carefully separate the
binding and logical aspects of ∀,∃, µ and ν.
Example 6.2. The elimination of ∇ on finite-behavior formulas described for µLJ∇0 in
Section 6.1.2 is now an identity. In µLJ∇ the two following formulas are identified:

∇x.∀y.∇z.y = z ⊃ ⊥ ≡ ∀y′.(λxz.y′x) = (λxz.z) ⊃ ⊥

Example 6.3. We define the well-formedness of terms in a purely abstractive language,
assuming constants nil : lst, cons : tm → lst → lst and abs : (tm → tm) → tm, as
follows:

mem
de f
= µ(λMλxλΓ. ∃hd∃tl. Γ = (cons hd tl) ∧ (x = hd ∨ M x tl))

term
de f
= µ(λTλΓλt. mem t Γ ∨ ∃ f . t = abs f ∧ ∇tmx. T (cons x Γ) (f x))

102 Chapter 6 – Reasoning about generic judgments

φΓ
σ(∇x. P|Γ|σx) ≡ φΓ

σ,x(P|Γ|σx)

φΓ
σ(∀x. P|Γ|σx) ≡ ∀x′. φΓ

σ(P|Γ|σ(x′σ)) φΓ
σ(∃x. P|Γ|σx) ≡ ∃x′. φΓ

σ(P|Γ|σ(x′σ))

φΓ
σ(µ(λpλ~x. B|Γ|pσ~x) ~(tσ)) ≡ µ(λp′λ~x′. φΓ,〈p,σ,p′〉

σ (B|Γ|pσ ~(x′σ)))~t

φΓ
σ(ν(λpλ~x. B|Γ|pσ~x) ~(tσ)) ≡ ν(λp′λ~x′. φΓ,〈p,σ,p′〉

σ (B|Γ|pσ ~(x′σ)))~t

φ
Γ,〈p,σ,p′〉
σσ′ (p(tσσ′)) ≡ ∇σ′. p′(λσ. tσσ′)

φΓ
σ(uσ = vσ) ≡ u = v φΓ

σ(>) ≡ > φΓ
σ(>) ≡ >

φΓ
σ(P|Γ|σ ∧ Q|Γ|σ) ≡ φΓ

σ(P|Γ|σ) ∧ φΓ
σ(Q|Γ|σ)

φΓ
σ(P|Γ|σ ∨ Q|Γ|σ) ≡ φΓ

σ(P|Γ|σ) ∨ φΓ
σ(Q|Γ|σ)

φΓ
σ(P|Γ|σ ⊃ Q|Γ|σ) ≡ φΓ

σ(P|Γ|σ) ⊃ φΓ
σ(Q|Γ|σ)

Figure 6.2: The transformation φ defining ∇

It does not look very different from µLJ∇0 . But the ∇ inside the body of the fixed
point term should be read as a suspended lifting, waiting for the instantiation of T . In
a sense, the fixed point does not only define a predicate, but rather a family of liftings.
Let us now consider the lifting of the definitions of mem and term. For readability we
lift over an other type than tm, called γ:

φ(y:γ)(mem)
de f
=

µ(λM′λx′λΓ′. ∃hd′∃tl′. Γ′ = (λγy. cons (hd′ y) (tl′ y)) ∧ (x′ = hd′ ∨ M′ x′ tl′))

φ(y:γ)(term)
de f
= µ(λT ′λΓ′λt′. φ(y:γ)(mem) t′ Γ′ ∨

∃ f ′. t′ = (λγy.abs (f ′y)) ∧ ∇tmx. T ′ (λγy. cons x (Γ′y)) (λγy. f ′yx))

In other words, the induction on φ(y:γ)(term) corresponds to the following principle,
where S is the candidate invariant:

(∀Γ′∀x′. φ(y:γ)(mem) x′ Γ′ ⊃ S Γ′ x′)
⊃ (∀Γ′∀ f ′. φ(x:tm)(S) (λxλy. cons x (Γ′y)) (λxλy. f ′yx) ⊃ S Γ′ (λy. abs (f ′y)))
⊃ (∀Γ′∀t′. φ(y:γ)(term) Γ′ t′ ⊃ S Γ′ t′)

For example it can be used with the invariant:

S := λΓ′λx′.∀Γ∀x. (Γ′ = (λy.Γ) ∧ x′ = (λy.x)) ⊃ term Γ x

After a similar sub-induction on φ(y:γ)(mem) one will have obtained a derivation of:

` ∀Γ∀x. (∇y. term Γ x) ⊃ term Γ x

6.2.1 Proof theory of µLJ∇

The lifting transformation behaves nicely with respect to first-order abstraction, i.e.,
φσ(Fσ(tσ)) ≡ ((λx′. φσ(Fσ(x′σ)))t). Unfortunately, the same does not hold for

6.2. µLJ∇: treating ∇ as a non-logical connective 103

second-order abstraction: φσ(B)φσ(S) is not necessarily the same as φσ(BS). Con-
sider an abstraction B := (λp . . .∇σ′(. . . p . . .)). In φσ(BS) the occurrence of p will
become φσσ′ (S) whereas in φσ(B)φσ(S) it becomes φσ′ (φσ(S)).

This is technically complicating the metatheory, but our attempts to change the
definition and avoid that have been unsuccessful. In fact, this permutation of names
can be understood as inherent to the identification of ∇σ. µB and µφσ(B). Indeed, these
two fixed points reveal two different prefixes of generic quantifiers after n unfoldings,
respectively σ(σ′)n and (σ′)nσ.

We shall establish, however, that the permutation of names does not affect prov-
ability. This can be derived in the logic itself, not only at the meta level. It will provide
a way to bridge the gap between φσ(BS) and φσ(B)φσ(S) by translating all permuted
instances.

Proposition 6.4. For any formula P, and any two generic contexts σ and σ∗ permuta-
tions of each other, it is provable that (∇σ. Pσ) ⊃ (∇σ∗. Pσ).

The proof basically builds a corrected η-expansion, carrying the permutability from
elementary formulas (equality, > and ⊥) through all connectives including µ and ν. In
a sense, there is nothing clever in it: at any point there is only one choice that keeps
things well-typed. That said, it is a good test for the logic to check that everything goes
as expected.

Proof. For any term abstraction F, for any σ and σ′ permutations of each other, we
denote by [F]σσ′ the formula λx. F(λσ′.xσ). In that proof let us refer to the original σ
as σ0. For any extension σ0σ

′ of the context σ0 we shall denote by (σ0σ
′)∗ the context

σ∗0σ
′.

We shall prove the following generalization, by induction on B. Let (σi) be a family
of extensions of σ0, (Fi)i be a family of fixed points of types (σ∗i → γ) → o, and σ be
an extension of all the σi. Then we have:

(λ~p′. φΓ
σ(Bσ~p))([Fi]

σi
σ∗i

)i ` (λ ~p∗. φΓ∗

σ∗ (Bσ~p))(Fi)i

Where Γ := 〈p1, σ1, p′1〉, . . . , 〈pn, σn, p′n〉 and Γ∗ := 〈p1, σ
∗
1, p∗1〉, . . . , 〈pn, σ

∗
n, p∗n〉,

which implies that if pi is of type γi → o then p′i has type (σi → γi) → o and p∗i
has type (σ∗i → γi)→ o.

• The cases of units (>,⊥) and covariant propositional connectives (∧,∨) can be
easily checked. The case of ⊃ relies on the symmetry of our goal, which allows
us to conclude by induction hypothesis after a negation, with the respective roles
ofσ0, (σi)i, σ, Fi andσ∗0, (σ

∗
i)i, σ

∗, [Fi]
σi
σ∗i

being exchanged — notice in particular

that [[F]σσ∗]
σ∗

σ ≡ F. The case for equality consists in checking that u = v `
(λσ∗.uσ) = (λσ∗.vσ).

• If B starts with a generic quantification thenσ are extended, and we can conclude
by induction hypothesis.

• For first-order quantification, the two cases are symmetric. We treat only the
universal case, that is when B is of the form (λσλ~p. ∀x. B′σx~p). For clar-
ity we ignore the fixed point parameters, which do not interfere. Essentially,

104 Chapter 6 – Reasoning about generic judgments

we have to establish φσ(∀x. Fσx) ` φσ∗ (∀x. Fσx), that is ∀x. φσ(Fσ(xσ)) `
∀x. φσ∗ (Fσ(xσ∗)). This is done by introducing an universal variable h for the
right hand-side universal quantification, and instantiating the left hand-side one
by (λσ. hσ∗). The resulting goal φσ(Fσ(hσ∗)) ` φσ∗ (Fσ(hσ∗)) is obtained by
induction on B := λσ.Fσ(hσ∗).

Notice that although we have made some terms larger when moving from Fσx to
Fσ(xσ), the formula structure of B is always kept intact, which is what matters
in this induction.

• We now treat the case of the least fixed point, greatest fixed point being obtained
in a symmetric way. For clarity we suppose that the fixed point has arity one, and
leave out the other fixed point parameters of B which can be re-introduced with-
out interfering at the cost of very heavy notations. We have to build a derivation
of φΓ

σ(µ(B′σ)(tσ)) ` φΓ∗

σ∗ (µ(B′σ)(tσ)), that is:

µ(λp′λx. φΓ,〈p,σ,p′〉
σ (B′σp(xσ)))~t ` µ(λp∗λx. φΓ∗,〈p,σ∗,p∗〉

σ∗ (B′σp(xσ∗)))(λσ∗.tσ)

We proceed by applying the induction rule with the right hand-side as the invari-
ant:

S := [µ(λp∗λx. φΓ∗,〈p,σ∗,p∗〉
σ∗ (B′σp(xσ∗)))]σσ∗

One premise of the induction rule is thus an instance of the identity, the other is
the proof of invariance, which conclusion must be:

(λp′λx. φΓ,〈p,σ,p′〉
σ (B′σp(xσ)))S x ` S x

After an unfolding of µ on the right hand-side, we finally obtain a goal which
can be obtained by induction hypothesis, with an extended family of Fi and σi:

(λp′. φΓ,〈p,σ,p′〉
σ (B′σp(xσ)))[µ(λp∗λx. φΓ∗,〈p,σ∗,p∗〉

σ∗ (B′σp(xσ∗)))]σσ∗

` (λp∗. φΓ∗,〈p,σ∗,p∗〉
σ∗ (B′σp(xσ)))(µ(λp∗λx. φΓ∗,〈p,σ∗,p∗〉

σ∗ (B′σp(xσ∗))))

Recall that we are doing an induction on B: although we unfolded a fixed point,
the process shall not go through the recursive occurrences of the fixed point (e.g.,
the S substituted for p′) but treats the predicate variables in B as a base case.

• If B is of the form λσ~p. pi(tσ), then σ = σiσ
′ and σ∗ = σ∗iσ

′ for some σ′, and
we have:

λ~p′. φΓ
σ(Bσ~p) = λ~p′. ∇σ′.p′i(λσi.tσ) λ ~p∗. φΓ∗

σ∗ (Bσ~p) = λ ~p∗. ∇σ′.p∗i (λσ∗i .tσ)

Our goal is thus to build a derivation of:

∇σ′. [Fi]
σi
σ∗i

(λσi.tσ) ` ∇σ′. Fi(λσ∗i .tσ
∗)

which is simply an instance of the identity:

∇σ′. Fi(λσ∗i .tσ) ` ∇σ′. Fi(λσ∗i .tσ)

6.2. µLJ∇: treating ∇ as a non-logical connective 105

�

Corollary 6.5. Proposition 6.4 actually provides a mean to transform a derivation into
another one establishing the same sequent where some instances of φσ(F) have been
replaced by some permutation φσ∗ (F): this is done by cutting against η-expansions of
the derivations provided by the proposition. In particular, it allows to compensate the
difference between φσ(B)φσ(S) and φσ(BS).

Definition 6.6. We extend the notion of lifting to sequents:

φσ
(
x1, . . . , xn; P1(xi)i, . . . , Pm(xi)i ` Q(xi)i

)
:=

x′1, . . . , x
′
n; φσ(P1(x′iσ)i), . . . , φσ(Pm(x′iσ)i) ` φσ(Q(x′iσ)i)

Proposition 6.7 (Lifting derivations). For any σ, the provability of Σ; Γ ` P implies
that of φσ(Σ; Γ ` P)1.

This allows one to read a proof of (∀t. (∇a. p t) ⊃ p t) as not only establishing that
the provability of p in the context of one unused generic variable entails that of p in
the empty context, but more generally that the provability is stable by removal of an
unused variable from any context. This is what makes our system expressive without
any need for concrete manipulations of the context and other complex devices such as
quantifications over all generic contexts.

Proof. By a simple induction on the structure of the proof, which is preserved by the
transformation. We show here a couple key cases. Propositional cases are most trivial.
Equality is trivial on the right, slightly less on the left, where

{((xi)i; Γ(xi)i ` C(xi)i)θ : θ ∈ mgu(u(xi)i
.
= v(xi)i}

(xi)i; Γ(xi)i, u(xi)i = v(xi)i ` C(xi)i

is transformed by induction hypothesis into

{((x′i)i; φσ(Γ(x′iσ)i) ` φσ(C(x′iσ)i))θ′ : θ′ ∈ mgu((λσ.u(x′iσ)i)
.
= (λσ.v(x′iσ)i))}

(x′i)i; φσ(Γ(x′iσ)i), (λσ.u(x′iσ)i) = (λσ.v(x′iσ)i) ` φσ(C(x′iσ)i)

The cases of first-order quantifications are straightforward:

(xi)i, x; . . . ` P(xi)ix
(xi)i; . . . ` ∀x. P(xi)ix

(x′i)i, x′; . . . ` φσ(P(x′iσ)ix′σ)
(x′i)i; . . . ` ∀x′. φσ(P(x′iσ)ix′σ)

(xi)i; . . . ` P(xi)i(t(xi)i)
(xi)i; . . . ` ∃x. P(xi)ix

(x′i)i; . . . ` φσ(P(x′iσ)i(t(x′iσ)i))
(x′i)i; . . . ` ∃x′. φσ(P(x′iσ)i(x′σ))

x′ := λσ.t(x′iσ)i

Finally, thanks to Corollary 6.5, fixed point rules can also be translated into lifted
instances of themselves, plus some corrective cuts. �

1We do not follow the notational conventions here: of course, the variables of Σ can occur in Γ and P,
unlike those of σ.

106 Chapter 6 – Reasoning about generic judgments

Proposition 6.8 (Conservativity & expressiveness). We call 0-provability the provabil-
ity without any use of the (co)induction rules. Let P be a formula, possibly involving ∇
quantifications.

1. The 0-provability of P in µLJ∇0 is equivalent to its 0-provability in µLJ∇.

2. Moreover, the provability of P in µLJ∇0 implies its provability in µLJ∇,

3. but the converse is false.

Proof. Each direction of (1) is done by induction on the 0-derivation. Both are straight-
forward proof transformation similar to those detailed before, including corrective cuts
(cf. Corollary 6.5) as in Proposition 6.7. For (2) we add the translation of an induction
in µLJ∇0 to µLJ∇, which amounts to lift the invariant and the invariance proof. Finally,
(3) shall be seen later, with the ability to weaken the generic context in some cases in
µLJ∇, which is impossible in µLJ∇0 . �

6.2.2 Cut-elimination
We adapt the proof reductions involved in cut-elimination, and argue that the termina-
tion is not affected, leaving a detailed proof of that for future work. The only novelty is
the transformation φ. It only affects second-order instantiations in fixed point unfold-
ings, induction and coinduction. It does not affect several important properties of the
system: proofs can be instantiated, the signature can be enriched, etc. The non-trivial
part is adapting the reduction for eliminating a cut on a fixed point. We only show the
case of the least fixed point, the greatest being similar.

The essential reduction for least fixed point is the following:

ΠS

BS ~x ` S ~x
Π′

Γ, S~t ` P
Γ, µB~t ` P

Π

Γ ` µB~t
Γ ` P −→

Π′

Γ, S~t ` P

f old(Π,ΠS)

Γ ` S~t
Γ ` P

Where the f old(Π,ΠS) transformation replaces in Π all unfoldings of µB by a
cut against ΠS . More precisely, since the unfoldings might be lifted, occurrences of
φσ(µB) = µ(φσ(B)) are replaced by φσ(S):

...

Γ ` φσ(B)(µ(φσ(B)))~t

Γ ` µ(φσ(B))~t
µR
−→

...

φσ(B)φσ(S)~t ` φσ(S)~t Γ ` φσ(B)φσ(S)~t

Γ ` φσ(S)~t
cut

To complete this, one must build from ΠS , for a given σ and~t, a proof of φσ(B)φσ(S)~t `
φσ(S)~t. Using Proposition 6.7 on ΠS we get a derivation of φσ(BS ~x) ` φσ(S ~x). Then,
Corollary 6.5 gives a proof of φσ(B)φσ(S)~x ` φσ(S)~x where ~x can finally be instanti-
ated by ~t.

We leave the termination of the reduction for further work. Strictly speaking, cut-
elimination has not been established even for µLJ∇0 , which does not have the stratifi-
cation constraints on which is built the proof for LINC [Tiu04]. However, based on

6.2. µLJ∇: treating ∇ as a non-logical connective 107

our work on µMALL, we believe that it holds under the simple constraint of mono-
tonicity. But even with the stratification constraint on fixed points, the termination
of cut-elimination for LINC does not carry easily to µLJ∇, because of the extra cuts
inserted in the above reduction for translating between φ(BS) and φ(B)φ(S).

6.2.3 Structural rules on the generic context
Minimal generic quantification is characterized by the absence of strengthening or ex-
change on generic contexts. This has not been changed with µLJ∇. For example,
(∇γx. >) ⊃ (∃γx. >) still cannot be derived without assuming the non-vacuity of γ,
which would make even (∃γx. >) alone derivable. Symmetrically, ∀ does not imply ∇
in general. And vacuous generic quantifications cannot a priori be added or removed.

We show, however, that the missing generic strengthening and weakening are ac-
tually derivable for a reasonable class of formulas. On such formulas, the minimal-
ity does not make generic quantification weaker than other approaches, just as in the
finite behavior case. The essential idea for obtaining generic strengthening, that is
(∇x. P) ⊃ P, is to forbid positive occurrences of existential quantification, unless they
are guarded by a formula that ensures that the existential variable does not depend on
the extra generic variable x.

Definition 6.9. A guard is a formula G such that for any σ:

∀y′. φxσ(Gσ(y′xσ)) ⊃ ∃y. y′ = (λx. y) ∧ φσ(Gσ(yσ))

A typical guard would be an equality (λσλy. uσy = vσy) such that all unifiers of
(λxσ. uσ(y′xσ) = vσ(y′xσ)) set y′ := λxλσ.yσ for some y. This holds for equalities
found in most fixed point definitions, which fully define newly introduced existential
variables as compounds or sub-terms of pre-existing terms.

Definition 6.10. The fragmentsW and S (respectively standing forWeakening and
Strengthening) are mutually defined by the following grammar, where G denotes a
guard:

W ::= W∧W | W ∨W | > | ⊥ | u = v | ∇x.W | µW | νW
| S ⊃W | ∃x. W | ∀x. Gx ⊃ W

S ::= S ∧ S | S ∨ S | > | ⊥ | u = v | ∇x.S | µS | νS
| W ⊃ S | ∀x. S | ∃x. Gx ∧ S

Proposition 6.11. For any formula W ∈ W (resp. S ∈ S) it is provable that W ⊃

∇x. W (resp. ∇x. S ⊃ S).

An other way to put it, for example, is that the following rules are admissible in
µLJ∇:

Γ, σ, σ′ B Sσσ′ ` G
Γ, σ, x, σ′ B Sσσ′ ` G

Γ ` σ,σ′ BWσσ′

Γ ` σ, x, σ′ BWσσ′

Proof. Let α be the type of x, the unused generic variable. We denote by [F]↑ the
formula λx′. ∀x. x′ = (λ . x) ⊃ F x. If F has type γ → o, then [F] has type (α→ γ)→

108 Chapter 6 – Reasoning about generic judgments

o. Conversely, we denote by [F′]↓ the formula λx. F′(λ . x). These conversions satisfy
the following equivalences:

∀x. Fx ≡ [F]↑(λ . x) ∧ F′(λ . x) ≡ [F′]↓x

We establish by simultaneous induction on S and W, for any generic context σ
and any families of fixed points (Fi)i of types ((σi → γi) → o)i and (F′j) j of types
((αζ j → δ j)→ o) j, that for B ∈ S:

(λ ~p′′λ ~q′′. φΓ′

x:α,σ(Bσ~p~q))([Fi]↑)i(F′j) j ` (λ~p′λ~q′. φΓ
σ(Bσ~p~q))(Fi)i([F′j]

↓) j

and for B ∈ W:

(λ~p′λ~q′. φΓ
σ(Bσ~p~q))(Fi)i([F′j]

↓) j ` (λp′′λq′′. φΓ′

x:α,σ(Bσ~p′ ~q′))([Fi]↑)i(F′j) j

Where Γ := (〈pi, σi, p′i〉)i, (〈q j, ζ j, q′j〉) j and Γ′ := (〈pi, ασi, p′′i 〉)i, (〈q j, αζ j, q′′j 〉) j.
The two inductive processes of weakening and strengthening are interleaved, the

switching from one to the other being done when treating the negation involved in
⊃. When encountering a least fixed point on the left, an induction step will be done,
adding on the left a corrected parameter ([•]↑ or [•]↓) and its bare version on the right.
With greatest fixed points, the corrected version appears on the right. When in the
strengthening (resp. weakening) phase, the new parameters will be fixed points over
strengthenable (resp. weakenable) bodies νS or µS (resp. νW or µW). By mono-
tonicity, only strengthenable parameters will be used in the strengthening phase in the
base case where B is a projection, e.g., λ~pλ~q.pi(tσ). However, this is not exploited in
the proof, allowing us to mix weakenable and strengthenable parameters, thus having
two instead of four families of parameters.

Having outlined the proof, we now only detail a few key steps of strengthening:

• For strengthening, universal quantification is harmless. We basically have to
derive:

∀x′′. φxσ(Bσ(x′′xσ)) ` ∀x′. φσ(Bσ(x′σ))

After introducing the universal variable x′ : σ → γ on the right we instantiate
the universal on the left with (λ λσ.x′′σ).

• The case of existential quantification crucially relies on guardedness, but is
straightforward by definition of the guard. An universal variable x′′ : ασ→ γ is
introduced on the left, together with a guard hypothesis. After a cut against the
formula provided by Definition 6.9, the unification of the left equality restricts
x′′ to be some (λ . x′) and provides a proof of the guard for x′. This is all we
need to instantiate the right hand-side existential, prove the guard, and conclude
by induction hypothesis.

• Suppose B = λσλ~pλ~q. pi(tσ), with σ of the form σiσ
′. Then φΓ′

x:α,σ(Bσ~p~q) is
∇σ′. p′′i (λ σi. tσiσ

′) and φΓ
σ(Bσ~p~q) is ∇σ′. p′i(λσi. tσiσ

′). Thus, we have to
prove the following, which is actually an equivalence as remarked above:

∇σ′. [Fi]↑(λ σi. tσiσ
′) ` ∇σ′. Fi(λσi. tσiσ

′)

6.2. µLJ∇: treating ∇ as a non-logical connective 109

• If B is a least fixed point λσλ~pλ~q. µ(B′σ~p~q)(tσ), then we apply the induction
rule with the invariant [S]↑ where

S := µ(λX′λx. (λ~p′λ~q′. φΓ,〈X,σ,X′〉
σ (B′σ~p~qXx))(Fi)i([F′j]

↓) j)

The main premise of the induction rule is trivial, of the form [S]↑(λ . t) ` S t. In
the invariance premise (roughly of the form φ(B)[S]↑x′ ` [S]↑x′), the universal
and implications resulting from the conversion from S to [S]↑ are introduced,
and the left rule for equality changes the universal variable x′ into some vacuous
abstraction (λ . x). After a right unfolding the resulting sequent can be derived
by induction, with an extended family of (Fi)i.

�

The previous proposition is very useful in practice. Indeed, most common fixed
points (nat, append, typeo f , etc.) are both in S and W: they do not involve any
universal quantification and the existential quantifications are guarded by equalities.
Most of the time, the existentials are actually very weak in that they do not even require
any invention, such as in ∃y. x = s y ∧

Another example of guard would be nat itself, as it forces its parameter to be fully
defined in terms of the constants zero and successor. We let the reader check that the
following can be derived in µLJ∇: ∇x. nat(y′x) ⊃ ∃y. y′ = (λx.y) ∧ nat y. More
interestingly, it should be possible to characterize a fragment of valid guards, which
could build on top of guards like ourW and S did, such that from a basic guard (e.g.,
λy. x = s y) one could derive an other (e.g., nat), and an other (e.g., natlist), etc.

Example 6.12. The typical example of a fixed point that does not fall in S is provability
in a first-order logic. Some of the key clauses of its specification would be:

prove Γ P 4
= P ∈ γ

prove Γ (P⊃̂Q) 4
= prove (P :: Γ) Q

prove Γ (∀̂(λx. Px)) 4
= ∇x. prove Γ (Px)

prove Γ (∃̂(λx. Px)) 4
= ∃x. prove Γ (Px)

With minimal generic quantification, the generic context exactly represents the sig-
nature of the object sequent. The fixed point prove is not in S because the last
clause involves an existential quantification that is not guarded at all, and can no-
tably range over variables present in the object-level signature (that is the generic
context) even though not anywhere in Γ and P. Indeed, it does not always hold that
prove Γ (∀̂(λx. P)) ⊃ prove Γ P, which is essentially a generic strengthening on
prove Γ P. For example, ∀x. ∃y. > is provable in the object logic, but ∃y. > is not
unless we assume the existence of a term.

110 Chapter 6 – Reasoning about generic judgments

6.3 Practical use of µLJ∇

We describe here a few significant examples of what can be done with µLJ∇. These ex-
amples have been checked2 using the interactive theorem prover Taci [SBM07], which
is described in more details in the next chapter. Starting with the initial implemen-
tation of µLJ in Taci, we added support for the transformation φ, thereby obtaining
a convenient implementation of µLJ∇. Formulas are converted to φ-normal form as
late as possible, since it is more readable to display generic variables in an explicit
generic context. The φ-normal form is used, for example, by the automated inductive
proof-search strategy implemented in Taci. This automatically extends the tactic from
µLJ to µLJ∇. That basic amount of automation relieves the user from proving bureau-
cratic lemmas such as strengthening of the generic context, which alleviates the cost of
working with minimal generic quantification instead of a stronger variant.

6.3.1 The copy program
In this example we shall work on a representation of untyped λ-terms. We assume a
signature with a type tm and two constants: app of type tm → tm → tm and abs of
type (tm → tm) → tm. Notice that since these are term-level constants and not fixed
point definitions, there is nothing wrong with negative occurrence of tm in the type of
abs. The copy program is defined as follows in λProlog:

copy (app M N) (app P Q) := copy M P, copy N Q.

copy (abs M) (abs P) :=

pi x\ pi y\ copy x y -> copy (M x) (N y).

It can be used for example to substitute a term into another: copy A B -> copy M N
requires that N is M where some (but not necessarily all) occurrences of A are changed
into B.

There are mainly two approaches for encoding such a program in our logic. The
first one is essentially the two-level approach [MM02] taken for example in the Abella
system [Gac08]. It consists in specifying λProlog proof-search as an object logic, and
reasoning about its behavior on the copy program. Given the initial formulation of the
problem, this is best from an adequacy point of view, but it is heavy and notably does
not allow direct inductions on the structure of copy. Instead, we encode the program
directly. We argue that this preserves most essential points, and is adequate.

The encoding of the universal quantification in the abstraction clause is a ∇ quan-
tification, reflecting the introduction of a generic variable. In order to encode in a
monotonic way the implication in that abs clause, we introduce a context parameter
representing the copy atoms present in the λProlog context. In the encoding, a new
clause appears, stating that if copy M N is found in the context, then it holds.

copy := µ copy. λΓMN.

〈M,N〉 ∈ Γ

2However, the code shown in this section is often not valid for Taci, but has been simplified for readability.

6.3. Practical use of µLJ∇ 111

∨ (∃M1M2N1N2. M = (app M1 M2) ∧ N = (app N1 N2) ∧
copy Γ M1 N1 ∧ copy Γ M2 N2)

∨ (∃M1N1. M = (abs M1) ∧ N = (abs N1) ∧
∇xy. copy (〈x, y〉 :: Γ) (M1x) (N1y))

We shall prove an useful fact about that inductive definition:

∀MN. copy [] M N ⊃ M = N

This property should be proved by induction over copy. A naive invariant would
be that the context contains only pairs (m,m). It does not hold: when going under an
abstraction, two generic variables are introduced, marked equal in the context Γ. Since
they are generic, it does not break the result, but does make the invariant more complex.

In fact, we proceed by proving that copy implies eq, where eq is defined as a least
fixed point mostly like copy except for its abstraction clause:

eq (abs M) (abs N) := ∇x. eq (〈x, x〉 :: Γ) (M x) (N x)

For eq, it is now easy to show that if the context contains only pairs (m,m), it will
remain true and hence eq implies equality. It remains to show that copy implies eq,
which actually holds for any Γ. This is done by induction over copy, the interesting
case being that of abstraction:

∀ΓMN. (∇ab. eq (〈a, b〉 :: Γ) (M a) (N b))
⊃ (∇a . eq (〈a, a〉 :: Γ) (M a) (N a))

This goal really expresses the heart of our problem with the shape of the context. It
requires an induction under two generic quantifications. Basically, the invariant should
state that two generic variables can be merged. After having lifted eq over the generic
quantifications on a and b, this can actually be written elegantly as a simple invariant,
and the proof of invariance is straightforward:

λΓ′′M′′N′′. ∇a. eq (Γ′′ a a) (M′′ a a) (N′′ a a)

We do not know of any other system where it is possible to obtain that name merg-
ing principle in such a direct way. The proofs cited above can however be carried
out in other logics, for example in LG [Tiu06] as pointed out by Gacek, thanks to the
strengthening on generic variables. Since that principle is admissible in µLJ∇ for the
particular case of copy and eq, that observation gives us an alternative, less concise
proof.

6.3.2 λ-calculus
We now discuss the specification of simply typed, Church-style λ-calculus, and the
proofs of subject reduction and determinacy of typing. The signature for terms will
consist of two types: ty for simple types and tm for λ-terms; two constants for terms:
app : tm→ tm→ tm and lambda : ty→ (tm→ tm)→ tm; the constant arrow : ty→
ty→ ty for types, as well as some arbitrary base types.

112 Chapter 6 – Reasoning about generic judgments

We shall not detail the definition of a predicate bind such that when Γ is a list of
pairs representing bindings, bind Γ k v expresses that 〈k, v〉 ∈ Γ. We define a least
fixed point typeof such that the typing judgment (Γ `Λ→ m : t) is represented by
(typeof Γ m t):

inductive typeof G M T :=

(bind G M T) ;

(sigma t\m1\m2\

M = (app m1 m2), typeof G m1 (arrow t T), typeof G m2 t) ;

(sigma t\t’\f\

M = lambda t f, T = arrow t t’,

nabla x\ typeof (cons (pair x t) G) (f x) t’).

Along these lines, we also specify one-step β-reduction as a least fixed point called
one, and prove subject reduction as well as determinacy of typing. However, the state-
ment of the theorems required particular care. In this style of specification, a variable is
nothing but a placeholder for a term. For example, nothing forbids the typing context Γ

to contain constructed terms, instead of only variables as usual. This seems interesting,
but certainly differs from the informal practice. One can try to stick to the usual notion
of context; for example, we established subject reduction under the assumption that the
context does not contain constructed terms:

theorem subject_reduction :

pi m\n\ one m n =>

pi G\

(pi t\a\t’\ bind G (lambda t a) t’ => false) =>

(pi a\b\t’\ bind G (app a b) t’ => false) =>

pi t\ typeof G m t => typeof G n t.

The corresponding proof of subject reduction in µLJ∇ could not be completely built
within Taci: a small gap is left because our tool currently strictly supports only higher-
order pattern unification. In any case, this is only a problem of the implementation, not
of the logic.

For typed determinacy, we used an alternative notion of context. Instead of assum-
ing that keys are unique and not constructed, we assumed that each binding satisfied
type determinacy:

context G := pi x\t\ bind G x t => pi t’\ typeof G x t’ => t=t’.

theorem type_determinacy :

pi g\x\t\ typeof g x t => context g =>

pi t’\ typeof g x t’ => t=t’.

This formulation implies new branches in the proof compared to the informal one.
However, they are trivially treated, and overall the proof is as simple as expected from
the informal practice. Moreover, the resulting theorem is also slightly stronger than the
usual one, as it allows richer contexts.

6.4. Related work 113

6.4 Related work

There are other approaches to reasoning on specifications involving variable binding.
The nominal approach [Pit03] is popular, notably because of its good support in Is-
abelle with the nominal package [UT05]. However, it is not a proof-theoretic but an
axiomatic solution: variables are treated as names, a special kind of objects about
which some axioms are postulated, and some machinery is developed to automate the
definition and seamless manipulation of notions such as substitution or freshness for
data-types involving binding.

Several systems have been designed to manipulate HOAS specifications. We have
already evoked Twelf’s metatheorem prover, based on the meta-logic M2 [SP98], a
restricted logic whose terms are LF objects. There are various attempts to develop
programming languages supporting binders in data-types, notably Delphin [PS08] and
Beluga [Pie08]. The latter system seems closely related in spirit to minimal generic
quantification, since it keeps track of contexts in a precise and rigid way. But there are
also some differences3, and it remains difficult to relate the two systems.

The logics most closely related to µLJ∇ are certainly LG [Tiu06] and G [GMN08].
LG was designed by Tiu to solve the expressiveness problems of LINC. To obtain LG,
he essentially added strengthening, weakening and exchange to generic contexts, hence
obtaining ∀x. Px ⊃ ∇x. Px and ∇x. Px ⊃ ∃x. Px. Although it might be practical, this
does not answer the initial proof-theoretic question, since it changes the meaning of
∇. Moreover, it should be noted that the stronger semantic of generic quantification
does not match the needs of some specifications. Recall Example 6.12: with the same
specification of prove in LG we would not be representing the same object logic as
in µLJ∇, but a more liberal one where ∃x.> is always provable. By admitting generic
weakening and strengthening in LG, one implicitly assumes infinitely many available
generic variables, and this assumption colors the object logic specified in LG. This
inadequacy can be seen as analogous to the impossibility to represent directly a linear
logic in an intuitionistic framework.

In fact, LG still lacks in expressiveness. For example, it seems impossible to derive
∀l∀x′. (∇n. mem (x′ n) l) ⊃ ∃x. x′ = (λn. x) in that logic. It would be interesting
to study the possibility of solving this issue by applying the lifting idea that is behind
µLJ∇. Following another approach, Gacek et al. [GMN08] have developed the logic G
as an extension of LG that retrieves enough expressiveness. G extends the notion of
definition by allowing∇ quantifications in the head of clauses4, which allows to express
properties like freshness, being a name, and generally brings enough expressiveness to
handle large examples. This is put into practice in the theorem prover Abella [Gac08],
which implements the logic G.

3In µLJ∇, nat x implies that x is some sn0, whatever the generic context. Conversely, (∇x. nat x) is
absurd. But in Beluga, any type can be open: sx is a valid natural number in a context containing x : nat.

4By the way, the resulting notion of definition cannot be encoded as fixed points anymore.

114 Chapter 6 – Reasoning about generic judgments

6.5 Conclusion
Thanks to a reformulation of the ∇ quantifier as a defined connective, we have revealed
the expressiveness of minimal generic quantification in presence of fixed points. This
resulted in the logic µLJ∇, which is a good system for writing specifications in the
HOAS style, and reasoning in an expressive way about them. Satisfyingly, µLJ∇ seems
to be a natural logic to consider, since its inference rules, the same as µLJ, are standard.

We have shown the implications, in terms of adequacy, of using logics with a more
liberal treatment of generic variables, i.e., admitting generic weakening and strength-
ening. And we have seen that the recovered expressiveness of µLJ∇ allows to derive
these principles for important classes of formulas. There is no reason to doubt that it
extends beyond these classes, whenever a principle is valid with respect to the mini-
mal semantic of ∇. It should also be possible to build other classes corresponding to
other common logical principles, such as (∇x. Px) ⊃ (∀x. Px), or more exotic ones like
(∇xy. Pxy) ⊃ (∇x. Pxx). More practically, such results should be integrated in mecha-
nized theorem provers to simplify their use. A strength of µLJ∇ in that respect is that it
is a very mild extension of µLJ, hence results and heuristics for µLJ easily extend to it.
This has been verified in the proof assistant Taci, where the automated tactic designed
for µLJ became, after straightforward modifications, an helpful one for µLJ∇0 .

From a theoretical point of view, we expect that the essential ideas behind the de-
sign of µLJ∇ could be put to work in other settings. It remains, however, to fully
develop the proof-theoretical study of µLJ∇, notably concerning the termination of cut-
elimination. First-order connectives usually play a negligible role in the complexity of
cut-elimination; we hope that a different presentation of the essential idea behind µLJ∇

could make this true for ∇.

Chapter 7

Implementations

This thesis would be incomplete without an overview of the tools that we developed
during its course. Not only do these implementations concretely establish the applica-
bility of the work presented before, but they were actually a key part in designing and
understanding our systems, notably µMALL, µLJ and their µ-focusing, but also our
treatment of generic quantification in µLJ∇.

We shall present two tools in that chapter: Bedwyr and Taci. Bedwyr [BGM+07a,
BGM+07b] is a logic programming language mostly implementing ideas from earlier
work on definitions and generic quantification [TNM05], but which fits nicely in our
study of focusing for fixed points. Taci [BSV08] is an interactive theorem prover for
µLJ∇, developed as a framework for testing automated proof-search ideas, in particular
applying our µ-focusing to inductive theorem proving.

7.1 Bedwyr
B— Exactly. So, logically. . .
V— If. . . she. . . weighs. . . the same as a duck, . . . she’s made of wood.
B— And therefore?
V— A witch!

Monthy Pythons, The Holy Grail, Scene 5

We have seen in Chapter 2 that the notion of fixed point gives an account of usual
logic programming, but also supports case analysis. Building on that idea, Bedwyr
offers a generalization of logic programming that allows model checking directly on
syntactic expressions. Moreover, Bedwyr supports the λ-tree approach [Mil00] to
higher-order abstract syntax [MN87, PE88], using term-level λ-binders and generic
quantification.

7.1.1 Architecture
Bedwyr essentially builds focused derivations in µLJL (cf. Section 4.2), i.e.,allowing
only synchronous connectives on the left, but considering both kinds of fixed points

116 Chapter 7 – Implementations

as synchronous. Bedwyr only unfolds fixed points, and never uses the axiom rule, so
it is not shocking that least and greatest fixed points are treated equally. This simple
fragment is enough for expressing finite failure logically, and more generally capture
simple model checking problems as well as may and must behavior in operational
semantics.

We restrict ourselves to sequents whose goal lies in the fragment G, and hypothesis
inH :

G ::= G ∧ G | G ∨ G | s = t | ∃x.Gx | µ(λpλ~x.G)~t | ν(λpλ~x.G)~t | p~t
| ∀x.Gx | H ⊃ G

H ::= H ∧H | H ∨H | s = t | ∃x.H x | µ(λpλ~x.H)~t | ν(λpλ~x.H)~t | p~t

In this fragment, all the left rules are invertible. Consequently, we use a simple
proof strategy that alternates between left and right rules, with the left rules taking
precedence over the right rules. The resulting proofs correspond to reasoning by ex-
haustive case analysis, and never involve the axiom rule. The focusing system for µLJL
reflects this strategy, but precises that completeness requires the ability to freeze fixed
points. Indeed, Bedwyr only finds proofs that never freeze a fixed point, and hence
never use the axiom rule.

This fragment, and the associated proof-search strategy, was first identified in
LINC [Tiu04] as the Level-0/1 fragment [TNM05]. We still refer to G formulas as
Level-1 formulas, andH as Level-0 formulas, since it corresponds well to their opera-
tional proof-search treatment.

Two provers

Level-0 formulas are essentially a subset of goal formulas in λProlog, with ∇ replac-
ing ∀. Proof search for a goal of Level-0 is thus the same as in λProlog, and Bedwyr
implements that fragment following the basic ideas described in [EP91].

The novelty in Bedwyr is the support of implication in Level-1 formulas. Its op-
erational treatment relies on the symmetries of sequent calculus: a derivation by ex-
haustive case analysis of ∀x. Px ` Qx consists in derivations of ∀~y. Q(t~y) for each (t~y)
such that ` P(t~y) is provable. A subtle aspect of this is the dual roles of existential and
universal variables, reflected by our treatment of equality. For example:

` s0 = s0
` ∃z. s0 = sz

x; x = s0 ` ∃z. x = sz

y; ` sy = sy
y; ` ∃z. sy = sz

x, y; x = sy ` ∃z. x = sz
x, y; x = sy ` ∃z. x = sz

x;∃y. x = sy ` ∃z. x = sz
x; x = s0 ∨ ∃y. x = sy ` ∃z. x = sz

To reflect this operational reading of implications, the Level-1 prover is the same
usual depth-first goal-directed prover as for Level-0, except for the treatment of impli-
cation. When the Level-1 prover reaches an implication P ⊃ Q, it calls the Level-0
prover on P and gets in return a collection of answer substitutions: the Level-1 prover

7.1. Bedwyr 117

then checks that, for every substitution θ in that collection, Qθ holds. In particular, if
Level-0 finitely fails with P, the implication is proved.

During proof search, existential and universal variables arise — we can ignore
generic quantification for now. In the Level-1 prover, existential variables, introduced
by the ∃ quantifier, are the usual instantiatable logic variables; universal variables are
scoped constants, introduced by ∀. But in Level-0, ∃ introduces universal variables,
which are instantiated by the left equality rule. Unfortunately, proof-theory does not
give an account of existential variables: in proof-theory, ∃ does not introduce a variable
but is instantiated by a term. In particular, the observation that underlies our treatment
of implication does not explain how to treat existential variables. It is in fact a difficult
problem, of a very different nature, that involves disunification. Consider, for example,
proving ∃x. x = 0 ⊃ x = 0: despite the obvious solution x := 0, there may be infinitely
many others, such as x := 1, which make the left equality absurd. Consequently, we
reject that situation: if a logic variable occurs in Level-0, the system issues an error.

As with most depth-first implementations of proof search, Bedwyr suffers from
other aspects of incompleteness: for example, the prover can easily loop during a
search although different choices of goal or clause ordering can lead to a proof, and
certain kinds of unification problems should be delayed instead of attempted eagerly.
For a more detailed account on these incompleteness issues, we refer the reader to
[BGM+06].

Generic quantification

As explained in Chapter 6, generic quantification is a rather orthogonal extension of
sequent calculus. The same is true about its implementation in Bedwyr: the provers
simply have to keep track of the generic context, in order to lift introduced variables
over it, and treat the generic context as a λ-abstraction in equalities. In particular, since
Bedwyr does not use the axiom rule, the original treatment of ∇ is fully satisfying, and
there is no need to consider the lifting approach developed in this thesis, or more liberal
treatments of generic quantification.

We described how to support generic quantification by relying on higher-order
terms and unification. But the latter is in general an undecidable problem. A com-
mon approach in logic programming is to restrict unification to higher-order pattern
unification, which can solved efficiently and guarantees a most general unifier. In prac-
tice, it suffices for most applications. We follow that approach in Bedwyr, adapting the
treatment of higher-order pattern unification due to Nadathur and Linnell [NL05].

Tabling

We introduced tabling in Bedwyr to cut-down exponential blowups caused by redun-
dant computations, and to detect loops during proof-search. The first optimization is
critical for applications such as weak bisimulation checking. The second one proves
useful when exploring reachability in a cyclic graph.

Tabling is currently used in Bedwyr to experiment with proof search for inductive
and coinductive specifications: it is the only place where fixed points are not only
treated as retracts. A loop over an inductive predicate that would otherwise cause a

118 Chapter 7 – Implementations

divergence can be categorized using tabling as a failure. Similarly, in the co-inductive
case, loops yield success. This interpretation of loops as failure or success is not part of
µLJ, but such cyclic proofs could be justified by being transformed into µLJ derivations
using explicit (co)inductions.

Inductive proof-search with tabling is implemented effectively in provers like
XSB [SSW+06] using, for example, suspensions. The implementation of tables in
Bedwyr fits simply in the initial design of the prover but is much weaker. We only
table a goal in Level-1 when it does not have free occurrences of variables introduced
by an existential quantifier; and in Level-0 when it does not have any free variable
occurrence. Nevertheless, this implementation of tabling has proved useful in several
cases, ranging from graph examples to bisimulation.

It should be noted that tabling involves comparing formulas, which raises the ques-
tion of the identity of generic judgments. Currently, Bedwyr requires exact matches of
the generic contexts, strictly implementing the original minimal generic quantification.

7.1.2 Examples
We give here a brief description of the range of applications of Bedwyr. We refer
the reader to http://slimmer.gforge.inria.fr/bedwyr and the user manual for
Bedwyr [BGM+06] for more details about these and other examples.

Finite failure

Negation of a Level-0 formula P can be written as the Level-1 formula P ⊃ ⊥. Op-
erationally, this negation is provable in the Level-1 prover if all attempts to prove P
in the Level-0 prover fail. For example, the formula ∀y. ((λx.x) = (λx.y) ⊃ ⊥) is a
theorem: i.e., the identity abstraction is always different from a constant-valued ab-
straction. A less trivial example, using the specification of simply typed λ-calculus
from Example 6.1, would be that (λx.xx) cannot be typed:

∀t∀t′. {nil `Λ→ (abs t (λtmx. app x x)) : t′} ⊃ ⊥

Model-checking

If the two predicates P and Q are defined using Horn clauses, then the Level-1 prover
is capable of attempting a proof of ∀x. Px ⊃ Qx. This covers most (un)reachability
checks common in model-checking. Related examples in the Bedwyr distribution in-
clude the verification of a 3 bits addition circuit and graph cyclicity checks. Exam-
ple 6.1 also falls in that category:

∀α∀β. {nil `Λ→ (abs α (λtmx. abs β (λtmy. x))) : arrow α (arrow β β)} ⊃ α = β

Simulation in process calculi

If the Level-0 formula P
A
−−→ Q specifies a one-step transition (process P does an

action A and results in process Q), then simulation can be written in Bedwyr as fol-

7.2. Taci / µLJ 119

lows [MMP03]:

sim P Q 4
= ∀A∀P′. P

A
−−→ P′ ⊃ ∃Q′. Q

A
−−→ Q′ ∧ sim P′ Q′

In dealing with the π-calculus, where bindings can occur within one-step transitions,

there are two additional transitions that need to be encoded: P
↓X
−−⇀ P′ and P

↑X
−−⇀ P′,

for bound input and bound output transitions on channel X. In both of these cases, P
is a process but P′ is a name abstraction over a process. The full specification of (late,
open) simulation for the π-calculus can be written using the following [MT05]:

sim P Q 4
= [∀A∀P′ . P

A
−−→ P′ ⊃ ∃Q′. Q

A
−−→ Q′ ∧ sim P′ Q′] ∧

[∀X∀P′ . P
↓X
−−⇀ P′ ⊃ ∃Q′. Q

↓X
−−⇀ Q′ ∧ ∀w.sim (P′w) (Q′w)] ∧

[∀X∀P′ . P
↑X
−−⇀ P′ ⊃ ∃Q′. Q

↑X
−−⇀ Q′ ∧ ∇w.sim (P′w) (Q′w)]

Notice that the abstracted continuation resulting from bound input and bound output
actions are treated by the ∀-quantifier and the ∇ quantifier, respectively. In a similar
way, modal logics for the π calculus can be captured [Tiu05]. Interestingly, if the
occurrences of sim are tabled during proof search, the resulting table contains an actual
simulation. Bisimulation is easily captured by simply adding the symmetric clauses for
all those used to define sim.

7.2 Taci / µLJ
Taci is a framework for interactive proof-search, currently implementing µLJ and some
variations of it. It is low-level in that one has to implement in OCaml every detail of
a logic, but provides a common interface for tactic-based proof development. Taci has
been developed with automated proof-search in mind, a difficult task where the ability
to interactively experiment with examples and semi-automated attempts can help a lot.
Thus, Taci does not focus only on interactive proof-development but is also designed to
fully support automated (backward) proof-search tactics. This essentially means that
its notion of tactic supports efficient backtracking and complex control flows, which is
implemented using a convenient continuation-passing style.

The logic µLJ has been simply implemented in Taci using the same library as Bed-
wyr for the representation and unification of higher-order terms1. The logic offers
a set of primitive tactics corresponding to the rules of sequent calculus. On top of
that, we designed the tactic prove which implements a focused proof-search. Since
that automated tactic is only a strategy for applying sequent calculus rules, the issue
of soundness is restricted to these core tactics. In the next section, we give a brief
overview of the design of the prove tactic. It is an early prototype, which clearly
does not compete with state of the art inductive theorem provers like ACL2 or Twelf.
Nevertheless, we believe that it is interesting, as it demonstrates that an useful tactic

1Hence, some limitations of Bedwyr still hold: for example, there is no way to treat left equalities where
existential variables occur. The restriction to higher-order patterns is also problematic in the general context
of theorem proving, as evoked in Section 6.3.2 with the example of subject reduction.

120 Chapter 7 – Implementations

can be designed while staying very close to proof-theory. Indeed, only a few standard
techniques are applied to derive the prove tactic from our µ-focused calculus. Based
on that promising first step, we hope that our fundamental study of the structure of
(co)inductive proofs eventually brings new advances.

7.2.1 The prove tactic
The prove tactic implements a simplified version of focused proof-search for µLJ,
as described in Figure 4.6. These simplifications allow for a relatively fast depth-
first semi-decision procedure. Obviously, the prove tactic is very incomplete: it adds
essential sources of incompleteness to the more technical ones listed above.

Finding (co)invariants

The biggest difficulty with µLJ is obviously to guess the right (co)invariants. It is a vast
question, and several techniques exist for guessing more and more clever invariants.
But our goal with the prove tactic is to find simple proofs efficiently. It is already
a non-trivial task involving many choices. As usual in proof-search, the key to suc-
ceeding quickly is to fail quickly. Hence, we shall try only one invariant per possible
induction site, and otherwise apply unfolding or freezing. That invariant is obtained
from the context:

Σ; Γ, S~t ` G · ; BS ~x ` S ~x
Σ; Γ, µB~t ` G with S := λ~x. ∀Σ. ~x = ~t ⊃

∧
H∈Γ H ⊃ G

With that invariant, the first premise is trivially provable, as it is basically an instance of
the identity. The second premise is where proof-search follows. This “trivial induction”
is also available to the user in interactive mode, simply by not providing an invariant
to the induction tactic. This can be compared to proof development in Coq: when
one uses the induction tactic in Coq, the invariant is always the current goal; if that
is not sufficient, one has to generalize the goal, which corresponds to providing Taci’s
induction tactic with an explicit invariant.

We proceed dually for coinduction:

Σ; Γ ` S~t · ; S ~x ` S S ~x
Σ; Γ ` νB~t with S := λ~x. ∃Σ. ~x = ~t ∧

∧
H∈Γ H

Such trivial (co)inductions suffice for the examples of Section 3.4. For example,
when proving ∀p. sim p p, the context does provide a coinvariant: λp1λp2. ∃p. p1 =

p ∧ p = p2, that is λp1λp2. p1 = p2.

Infinite branches

Contractions, performed in the intuitionistic focusing system (cf. Figure 4.6) when
choosing a focus on the left hand-side, are a source of infinite search. Rather than
bounding the number of nested contractions, we remove them from the focusing rule.
This gives a linear aspect to derivations, but it still intuitionistic in that, for example,
there is never any splitting of the context.

7.2. Taci / µLJ 121

Fixed points are obviously another source of infinitely deep branches. We avoid
it by bounding the number of unfoldings allowed on a branch of the derivation being
built. Notice that unfoldings on both sides of the sequent have to be taken into account,
but not the induction rule, as it is impossible to have an infinite chain of (co)inductions.
We use iterative deepening to obtain faster successes: the bound is iteratively increased,
from 0 to its maximum — 3 by default. It does not cost much as proof-search with
bound n only takes a negligible time compared to the search with bound n + 1. And it
brings faster successes since a bound higher than necessary yields a longer search time,
as the tactic spends more time on wrong attempts.

The obtained strategy is still fairly simple, and would not give very good results
without some refinements. The natural next step is to adapt the cost of unfoldings
depending on how likely they seem to lead to a success. In our case, we decided to
not decrease the bound on progressing unfoldings. Intuitively, we say that an argument
of a fixed point is progressing when one learns something by unfolding the fixed point
when it has a rigid parameter at that position. In that case the unfolding is said to
be progressing. For example, nat is progressing in its only argument because if it
has a rigid parameter then it can be unfolded to either disappear, obtain the absurdity
or obtain nat for its subterm. Also, list membership (mem) is progressing in its list
argument: if the head of the list is defined we can go through it immediately. Although
currently it is the user who indicates which are the progressing arguments of a fixed
point, we plan to infer it in the future2. The optimization based on the notion of progress
yields very good results, quickly finding proofs for many interesting properties since
they rarely require a high bound on non-progressing unfoldings.

Unfortunately, progressing unfoldings can still go wrong, i.e., yield infinite
branches. Consider for example eq, the inductive specification of equality on natural
numbers: on the left hand-side, one can infinitely unfold eq x (s x) where x is an uni-
versal variable3; similarly on the right hand-side, one can infinitely unfold eq X (s X),
looking for a successful instantiation of the existential variable X. Such problems rarely
occur, and are avoided without impacting on the benefit of progressing unfoldings, by
bounding the number of progressing unfoldings on a given formula and its descendants
— applying this limitation on a formula-basis rather than globally on the sequent avoids
fairness problems. Practical experiments show that this bound can be set quite high (10
in Taci). Indeed, when this kind of situation occurs, it typically quickly consumes the
bound without generating side branches.

Organization

We have introduced all the ingredients of the prove tactic, but a couple remarks can
be made about how they are organized in the focusing framework.

The implementation of the synchronous phase is straightforward, but the same is
not true of the asynchronous phase. A novelty of focused proof-search with fixed

2In some cases it is good to be able to not set progress on a progressing fixed point: for example, when
working with the Ackermann function, it avoids that Taci tries to partially unfold its computation.

3Although the infinite behavior is obvious in that cyclic example, it is simple to produce up examples
which do not cycle. Zach Snow actually observed that the halting problem could be reduced to that of
detecting non-terminating progressing unfoldings.

122 Chapter 7 – Implementations

points is that backtracking becomes necessary in the asynchronous phase, because of
the choice on fixed points: they might be frozen, unfolded or (co)inducted on. This
necessary difficulty should be kept away from the usual asynchronous steps, so that
they can still be done without backtracking. Backtracking can also be avoided on
progressing unfoldings as it never seems useful to not take these invertible steps4. In
practice, the following organization of the asynchronous phase yields a reasonably fast
search:

1. First perform the asynchronous steps that are not related to fixed points, and
progressing fixed point unfoldings. This step is repeated on bodies obtained
from unfoldings, and would for example obtain nat x from nat (s (s x)). There is
no backtracking on that step.

2. Then try for each remaining asynchronous fixed point, in the following order, to
either freeze, unfold or (co)induct on it with the trivial invariant. There is some
backtracking on that choice. After each attempt, come back to Step 1.

This organization of the asynchronous phase usefully restricts the number of alter-
natives to backtrack on. However, this comes at a cost. Indeed, since the (co)inductions
use the context as invariant, their success depends on when they are performed. Such
(co)inductions commute with some asynchronous rules (e.g., ∀R, ∃L, ∧L) but it is not
true, for example, of the ∧R rule. It is possible that P ∧ Q is an invariant for some
operator while P and Q alone are not, for example in inductions using P (resp. Q) at
some rank to establish Q (resp. P) at the next one. We accept that problem rather than
introducing the cost of more attempts.

At this point, one might wonder what is the benefit of focusing. Although we have
a theoretical system that is complete, we had to make several trade-offs and restrictions
in order to obtain a practical proof-search strategy. We insist that focusing is still useful
as an underlying framework, as it achieves the critical task of reducing the redundancies
in proof-search by identifying choices upon which backtracking is useless. This is a
huge optimization, especially when dealing with fully synchronous fixed points, which
are very common.

From the previous discussion, it should be clear how important it is to precisely
control where backtracking occurs or not. It turns out to be difficult to obtain exactly
the right behavior using the naive approach consisting in designing elementary blocks,
e.g., synchronous or asynchronous steps, and combining them using common combi-
nators like then, cut, orelse and repeat. Instead, the correct control flow has to be
specially implemented. For that task, the continuation-based tactic system reveals both
flexible and efficient.

Lemmas

Sometimes, the simple invariant generation used by prove will fail. For example,
define sublist L L′ to hold if L′ can be obtained by concatenating elements before and
after L, and consider the following theorem: ∀l. list l ⊃ sublist l l. It is obvious, because

4Progressing unfoldings could exhaust their bound and cause proof-search to fail, but that problem is
negligible compared to the state explosion caused by backtracking.

7.2. Taci / µLJ 123

it suffices to concatenate the empty list on both sides of l to obtain itself. However
λl. sublist l l is not an invariant of list, so Taci will fail to prove this automatically. In
order to obtain a derivation of that theorem, one must use as the invariant the fact that
the empty list is neutral for concatenations.

An interesting way to overcome that limitation is to introduce support for lemmas.
This is done in a very restricted way: at the end of the asynchronous phase, instead
of proceeding with the synchronous one, the system attempts to conclude fully from
lemmas. This is done by cutting in one or several lemmas and searching for a proof
without doing any unfolding at all. Again, the maximal number of lemmas to use shall
be limited by a bound to avoid infinite search.

This brings a natural solution to the our example. Typical lemmas about lists would
be that the empty list is neutral for concatenation on both sides. Then, if the system
attempts to use these lemmas instead of inducting, it will indeed obtain the facts that
allow to complete the derivation.

Now, let us ignore for a moment the bounds on unfoldings and the missing contrac-
tions in our strategy. Then we have in fact a general recipe: every time an induction
fails when it should hold, one can first establish the corresponding lemma, thus in-
forming the system about a new non-trivial invariant. This technique is enough for
obtaining any theorem: if a lemma itself cannot be proved automatically, it must be
because another non-trivial induction is needed, which can in turn be expressed as a
lemma first. The essential difficulty here does not lie in the technical details that we
ignored. It is to find where, among lots of failed attempts, the automated strategy was
not smart enough, and invent the right lemma to help it.

Generic quantification

In the previous chapter, we refined the proof-theoretical design of minimal generic
quantification, showing with the logic µLJ∇ that minimal generic quantification could
be treated in an expressive way. In that system, generic quantification is not treated as
a logical connective, and is hence very orthogonal to the rest of the logic. From the
implementation viewpoint, it is easy to obtain an implementation of µLJ∇ from one
of µLJ: it basically consists in implementing the transformation φ which eliminates
toplevel occurrences of the ∇ quantifier. Moreover, the prove tactic is then automati-
cally extended into an useful tool when working with generic quantification.

7.2.2 Examples
We show here a few examples of fully automated use of Taci. Of course, an interest
of our system is that the user can guide the prover when the automated tactics fail.
We invite the reader to visit the project’s homepage [BSV08] to learn more about our
current set of examples.

• One can describe natural numbers, and relational specifications of several arith-
metic operations, using fixed points. In that domain, Taci proves automatically
the examples from Section 3.4. Surprisingly, the totality of hal f is also obtained,
although none of the two proofs given in the previous chapters (cf. Section 3.4

124 Conclusion

and Example 5.30) fits into the fragment of trivial proofs that the prove tactic
builds. Instead, the tactic obtains a derivation that uses an inner induction which
establishing hal f x h ` ∃h′. hal f (sx) h′. Several others theorems can be found
in Taci’s examples, notably many properties of the addition (commutativity, as-
sociativity, totality, etc). However, most properties of the multiplication cannot
be proved directly, but would require to use lemmas.

• Another set of examples comes with the common specifications of lists and asso-
ciated operations, such as length, concatenation, reversal. The automated tactic
proves several related properties in a few seconds: associativity of concatena-
tion, involutivity of reversal, as well as properties of reversal and concatenation
with respect to the length. We also obtained the correction of the insertion sort
algorithm.

• The tactic is useful to prove trivial subgoals as well as bureaucratic lemmas when
working with higher-order specifications. For example, it suffices to derive sev-
eral variations of generic strengthening on context lookup:

∀Γ∀x∀t. (∇a. 〈x, t〉 ∈ Γ) ⊃ 〈x, t〉 ∈ Γ

∀Γ∀x∀t′. (∇a. 〈x, (t′a)〉 ∈ Γ) ⊃ ∃t. t′ = (λa.t) ∧ 〈x, t〉 ∈ Γ

∀Γ∀x′∀t′. (∇a. 〈(x′a), (t′a)〉 ∈ Γ) ⊃ ∃x∃t. x′ = (λa.x) ∧ t′ = (λa.t) ∧ 〈x, t〉 ∈ Γ

7.3 Conclusion
We have shown how most of the proof-theoretical notions studied in this thesis are put
in practice in the tools Bedwyr and Taci. The logic programming language Bedwyr ex-
ploits the closed-world assumption that fixed points reflect, as well as generic quantifi-
cation, offering model-checking abilities directly on higher-order specifications. Taci
implements the full logic µLJ∇ and relies heavily on two developments of this thesis:
the µ-focused system for µLJ and the refined treatment of minimal generic quantifica-
tion in µLJ∇. It is an useful tool to develop proofs in that logic, as we did for example in
Section 6.3.2, and it constitutes a first example of the practical impact of our focusing
system.

Both tools share some limitations. First, the treatment of equalities is limited to
higher-order patterns and excludes logic variables from left hand-side equalities. A
simple enhancement in that respect would be to delay problematic unifications until
they become solvable. This would be especially interesting in Taci, where the incom-
pleteness is less tolerable; moreover, its current architecture should allow it easily. But
these problems call for a better solution, maybe a new theoretical approach to equality
and quantifiers, that would give a full account of the symmetrical roles of universal
and existential variables. Finally, we are interested in experimenting with proof-search
procedures other than backwards and depth-first, which would not be limited to a very
local treatment of goals; the ideas outlined in Chapter 5 go in that direction.

Not the end.

List of Figures

1.1 The LK sequent calculus for first-order classical logic 7
1.2 One-sided dyadic sequent calculus for LL 12
1.3 The focused proof-system for LL . 14

2.1 Inference rules for µLJ . 24

3.1 Inference rules for µMALL . 36

4.1 The µ-focused proof-system for µMALL 53
4.2 Focused proof system for µLJL . 64
4.3 The ν-focused proof-system for µMALL 65
4.4 The µ-focused proof-system for µLL 67
4.5 Focused proof system for νLJL . 70
4.6 The µ-focusing system for µLJ . 72

6.1 Inference rules for µLJ∇0 . 98
6.2 The transformation φ defining ∇ . 102

Index

α-equivalence, 6, 8
β-reduction, 6
µLJ, 23, 24

µLL, 44
µMALL, 36

Ackermann’s function, 46
Additive, 10

Adequacy, 20
Atom, 8, 26, 34, 100

Automated reasoning, 47, 93

Büchi automata, 83
Bipole, 15

Canonicity, 16, 26, 100
Capture, see α-equivalence

Connective, 11, 101
Cyclic proofs, 93

Defined atoms, 20
Defined connective, see Connective

Disequality, 34

Equality, 83
Exponentials, 44

Finite state automaton, 74
Freezing, 54

Freshness, see α-equivalence
Frozen fixed point, see Freezing

Functoriality, 36

Identity, 99, 101

Infinite terms, 83
Infinite words, 83

Labeled transition system, 75
Linear logic, 10

LJ, 8
Location, 55

Logic programming, 19, 51
Logical connective, see Connective

MALL, 10
Mobility of binders, 8

Model-checking, 20
Mono-sided, 11

Monotonicity, 21, 35, 36, 39, 42
Multi-simulation, 75

Multiplicative, 10

Negation, 11, 35
Negation-as-failure, 19, 117, 118

Negative, 15
Noetherian, 37, 63

Non-canonical, see Canonicity

Occurrence, 55
Open question, 42

Operator, 34

Positive, 15
Primitive recursive functions, 47

Renaming, see α-equivalence, 8
Retract, 22

Structural rules, 42, 100
Subformula property, 9

Substitution, see β-reduction
Syntax, 5

System T, 47

Bibliography

[AFFM06] Sandra Alves, Maribel Fernández, Mário Florido, and Ian Mackie. The
power of linear functions. In CSL, pages 119–134, 2006.

[And92] Jean-Marc Andreoli. Logic programming with focusing proofs in linear
logic. J. of Logic and Computation, 2(3):297–347, 1992.

[AP91] J. M. Andreoli and R. Pareschi. Linear objects: Logical processes with
built-in inheritance. New Generation Computing, 9(3-4):445–473, 1991.

[AvE82] K. R. Apt and M. H. van Emden. Contributions to the theory of logic
programming. J. of the ACM, 29(3):841–862, 1982.

[Bae05] David Baelde. Logique linéaire et algèbre de processus. Technical report,
INRIA Futurs, LIX and ENS, 2005.

[Bae08a] David Baelde. On the expressivity of minimal generic quantification. In
A. Abel and C. Urban, editors, LFMTP 2008: International Workshop on
Logical Frameworks and Meta-Languages: Theory and Practice, 2008.
To appear.

[Bae08b] David Baelde. On the expressivity of minimal generic quantifica-
tion: Extended version. Technical report, 2008. Available from
http://hal.inria.fr/inria-00284186.

[BGM+06] David Baelde, Andrew Gacek, Dale Miller, Gopalan Nadathur, and Al-
wen Tiu. A User Guide to Bedwyr, November 2006.

[BGM+07a] David Baelde, Andrew Gacek, Dale Miller, Gopalan Nadathur, and Al-
wen Tiu. Bedwyr. 2007.

[BGM+07b] David Baelde, Andrew Gacek, Dale Miller, Gopalan Nadathur, and Al-
wen Tiu. The Bedwyr system for model checking over syntactic expres-
sions. In Frank Pfenning, editor, 21th Conference on Automated Deduc-
tion (CADE), number 4603 in LNAI, pages 391–397. Springer, 2007.

[BM07] David Baelde and Dale Miller. Least and greatest fixed points in linear
logic. In N. Dershowitz and A. Voronkov, editors, International Con-
ference on Logic for Programming and Automated Reasoning (LPAR),
volume 4790 of LNCS, pages 92–106, 2007.

[Bro06] James Brotherston. Sequent Calculus Proof Systems for Inductive Defi-
nitions. PhD thesis, University of Edinburgh, November 2006.

[BS07] James Brotherston and Alex Simpson. Complete sequent calculi for in-
duction and infinite descent. In LICS, pages 51–62, 2007.

[BSV08] David Baelde, Zach Snow, and Alexandre Viel. Taci: an interactive the-
orem proving framework. Active development of prototype, 2008.

[Bur86] Albert Burroni. Récursivité graphique (1ère partie) : Catégorie des
fonctions récursives primitives formelles. In Cahiers de topologie et
géométrie différentielle catégoriques, XXVII, 1, 1986.

[Cha06] Kaustuv Chaudhuri. The Focused Inverse Method for Linear Logic. PhD
thesis, Carnegie Mellon University, December 2006. Technical report
CMU-CS-06-162.

[CP02] Iliano Cervesato and Frank Pfenning. A Linear Logical Framework. In-
formation & Computation, 179(1):19–75, November 2002.

[CS02] J. Robin B. Cockett and Luigi Santocanale. Induction, coinduction, and
adjoints. Electr. Notes Theor. Comput. Sci., 69, 2002.

[DJS93] Vincent Danos, Jean-Baptiste Joinet, and Harold Schellinx. The struc-
ture of exponentials: Uncovering the dynamics of linear logic proofs.
In Georg Gottlob, Alexander Leitsch, and Daniele Mundici, editors, Kurt
Gödel Colloquium, volume 713 of LNCS, pages 159–171. Springer, 1993.

[DJS95] V. Danos, J.-B. Joinet, and H. Schellinx. LKT and LKQ: sequent calculi
for second order logic based upon dual linear decompositions of classical
implication. In J.-Y. Girard, Y. Lafont, and L. Regnier, editors, Advances
in Linear Logic, number 222 in London Mathematical Society Lecture
Note Series, pages 211–224. Cambridge University Press, 1995.

[EP91] Conal Elliott and Frank Pfenning. A semi-functional implementation of a
higher-order logic programming language. In Peter Lee, editor, Topics in
Advanced Language Implementation, pages 289–325. MIT Press, 1991.

[Gac08] Andrew Gacek. The Abella interactive theorem prover (system descrip-
tion). Available from http://arxiv.org/abs/0803.2305. To appear in IJ-
CAR’08, 2008.

[Gen69] Gerhard Gentzen. Investigations into logical deductions. In M. E. Szabo,
editor, The Collected Papers of Gerhard Gentzen, pages 68–131. North-
Holland, Amsterdam, 1969.

[Gim96] Eduardo Giménez. Un Calcul de Constructions Infinies et son Appli-
cation a la Verification des Systemes Communicants. PhD thesis PhD
96-11, Laboratoire de l’Informatique du Parallélisme, Ecole Normale
Supérieure de Lyon, December 1996.

[Gim98] Eduardo Giménez. Structural recursive definitions in type theory. In K. G.
Larsen, S. Skyum, and G. Winskel, editors, Proceedings 25th Int. Coll.
on Automata, Languages and Programming, ICALP’98, Aalborg, Den-
mark, 13–17 July 1998, volume 1443 of LNCS, pages 397–408. Springer-
Verlag, Berlin, 1998.

[Gir87] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–
102, 1987.

[Gir91a] Jean-Yves Girard. A new constructive logic: classical logic. Math. Struc-
tures in Comp. Science, 1:255–296, 1991.

[Gir91b] Jean-Yves Girard. On the unity of logic. Technical Report 26, Université
Paris VII, June 1991.

[Gir92] Jean-Yves Girard. A fixpoint theorem in linear logic. An email posting
to the mailing list linear@cs.stanford.edu, February 1992.

[Gir98] Jean-Yves Girard. Light linear logic. Information and Computation, 143,
1998.

[Gir01] Jean-Yves Girard. Locus solum. Mathematical Structures in Computer
Science, 11(3):301–506, June 2001.

[GMN08] Andrew Gacek, Dale Miller, and Gopalan Nadathur. Combining generic
judgments with recursive definitions. In F. Pfenning, editor, 23th Symp.
on Logic in Computer Science. IEEE Computer Society Press, 2008. To
appear.

[Hen93] H. Hendriks. Studied Flexibility: Categories and Types in Syntax and
Semantics. PhD thesis, ILLC, Amsterdam, 1993.

[HL78] Gérard Huet and Bernard Lang. Proving and applying program transfor-
mations expressed with second-order patterns. Acta Informatica, 11:31–
55, 1978.

[HM94] Joshua Hodas and Dale Miller. Logic programming in a fragment of
intuitionistic linear logic. Information and Computation, 110(2):327–
365, 1994.

[Hod94] Joshua S. Hodas. Logic Programming in Intuitionistic Linear Logic: The-
ory, Design, and Implementation. PhD thesis, University of Pennsylva-
nia, Department of Computer and Information Science, May 1994.

[Laf04] Yves Lafont. Soft linear logic and polynomial time. Theoretical Com-
puter Science, 318(1-2):163–180, 2004.

[Lau02] Olivier Laurent. Etude de la polarisation en logique. Thèse de doctorat,
Université Aix-Marseille II, March 2002.

[Lau04] Olivier Laurent. A proof of the focalization property of linear logic. Un-
published note, May 2004.

[LM07a] Chuck Liang and Dale Miller. Focusing and polarization in intuitionistic
logic. In J. Duparc and T. A. Henzinger, editors, CSL 2007: Computer
Science Logic, volume 4646 of LNCS, pages 451–465. Springer, 2007.

[LM07b] Chuck Liang and Dale Miller. On focusing and polarities in linear logic
and intuitionistic logic. Available via http://hal.inria.fr/inria-00167231/,
September 2007.

[LQdF05] Olivier Laurent, Myriam Quatrini, and Lorenzo Tortora de Falco. Po-
larized and focalized linear and classical proofs. Ann. Pure Appl. Logic,
134(2-3):217–264, 2005.

[LR03] Olivier Laurent and Laurent Regnier. About translations of classical logic
into polarized linear logic. In 18th Symp. on Logic in Computer Science,
pages 11–20. IEEE Computer Society Press, June 2003.

[Mat98] Ralph Matthes. Extensions of System F by Iteration and Primitive Re-
cursion on Monotone Inductive Types. PhD thesis, Ludwig-Maximilians
Universität, May 1998.

[Mat99] Ralph Matthes. Monotone fixed-point types and strong normalization. In
Georg Gottlob, Etienne Grandjean, and Katrin Seyr, editors, Proceedings
12th Int. Workshop on Computer Science Logic, CSL’98, Brno, Czech Re-
public, 24–28 Aug 1998, volume 1584, pages 298–312. Springer-Verlag,
Berlin, 1999.

[Men87] Paul Francis Mendler. Inductive Definition in Type Theory. PhD thesis,
Cornell University, 1987.

[Mil92] Dale Miller. Unification under a mixed prefix. Journal of Symbolic Com-
putation, 14(4):321–358, 1992.

[Mil93] Dale Miller. The π-calculus as a theory in linear logic: Preliminary re-
sults. In E. Lamma and P. Mello, editors, 3rd Workshop on Extensions
to Logic Programming, number 660 in LNCS, pages 242–265, Bologna,
Italy, 1993. Springer-Verlag.

[Mil96] Dale Miller. Forum: A multiple-conclusion specification logic. Theoret-
ical Computer Science, 165(1):201–232, September 1996.

[Mil00] Dale Miller. Abstract syntax for variable binders: An overview. In John
Lloyd and et. al., editors, Computational Logic - CL 2000, number 1861
in LNAI, pages 239–253. Springer, 2000.

[MM00] Raymond McDowell and Dale Miller. Cut-elimination for a logic with
definitions and induction. Theoretical Computer Science, 232:91–119,
2000.

[MM02] Raymond McDowell and Dale Miller. Reasoning with higher-order ab-
stract syntax in a logical framework. ACM Trans. on Computational
Logic, 3(1):80–136, 2002.

[MMP03] Raymond McDowell, Dale Miller, and Catuscia Palamidessi. Encoding
transition systems in sequent calculus. Theoretical Computer Science,
294(3):411–437, 2003.

[MN87] Dale Miller and Gopalan Nadathur. A logic programming approach to
manipulating formulas and programs. In Seif Haridi, editor, IEEE Sym-
posium on Logic Programming, pages 379–388, San Francisco, Septem-
ber 1987.

[MNPS91] Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov.
Uniform proofs as a foundation for logic programming. Annals of Pure
and Applied Logic, 51:125–157, 1991.

[MS06] Dale Miller and Alexis Saurin. A game semantics for proof search: Pre-
liminary results. In Proceedings of the Mathematical Foundations of
Programming Semantics (MFPS05), number 155 in Electr. Notes Theor.
Comput. Sci, pages 543–563, 2006.

[MS07] Dale Miller and Alexis Saurin. From proofs to focused proofs: a modular
proof of focalization in linear logic. In J. Duparc and T. A. Henzinger, ed-
itors, CSL 2007: Computer Science Logic, volume 4646 of LNCS, pages
405–419. Springer, 2007.

[MT03a] Dale Miller and Alwen Tiu. A proof theory for generic judgments: An
extended abstract. In 18th Symp. on Logic in Computer Science, pages
118–127. IEEE, June 2003.

[MT03b] Alberto Momigliano and Alwen Tiu. Induction and co-induction in se-
quent calculus. In Mario Coppo Stefano Berardi and Ferruccio Damiani,
editors, Post-proceedings of TYPES 2003, number 3085 in LNCS, pages
293–308, January 2003.

[MT05] Dale Miller and Alwen Tiu. A proof theory for generic judgments. ACM
Trans. on Computational Logic, 6(4):749–783, October 2005.

[NL05] Gopalan Nadathur and Natalie Linnell. Practical higher-order pattern
unification with on-the-fly raising. In ICLP 2005: 21st International
Logic Programming Conference, volume 3668 of LNCS, pages 371–386,
Sitges, Spain, October 2005. Springer.

[PE88] Frank Pfenning and Conal Elliott. Higher-order abstract syntax. In Pro-
ceedings of the ACM-SIGPLAN Conference on Programming Language
Design and Implementation, pages 199–208. ACM Press, June 1988.

[Pie05] Brigitte Pientka. Tabling for higher-order logic programming. In 20th In-
ternational Conference on Automated Deduction, Talinn, Estonia, pages
54–69. Springer-Verlag, 2005.

[Pie08] Brigitte Pientka. A type-theoretic foundation for programming with
higher-order abstract syntax and first-class substitutions. In 35th Annual
ACM Symposium on Principles of Programming Languages (POPL’08),
pages 371–382. ACM, 2008.

[Pit03] Andrew M. Pitts. Nominal logic, A first order theory of names and bind-
ing. Information and Computation, 186(2):165–193, 2003.

[PM96] Christine Paulin-Mohring. Définitions Inductives en Théorie des Types
d’Ordre Supérieur. Habilitation à diriger les recherches, Université
Claude Bernard Lyon I, December 1996.

[PS99] Frank Pfenning and Carsten Schürmann. System description: Twelf —
A meta-logical framework for deductive systems. In H. Ganzinger, edi-
tor, 16th Conference on Automated Deduction (CADE), number 1632 in
LNAI, pages 202–206, Trento, 1999. Springer.

[PS08] Adam Poswolsky and Carsten Schürmann. Delphin – a functional pro-
gramming language for deductive systems. In A. Abel and C. Urban,
editors, LFMTP 2008: International Workshop on Logical Frameworks
and Meta-Languages: Theory and Practice, 2008. To appear.

[San02] Luigi Santocanale. A calculus of circular proofs and its categorical se-
mantics. In Proceedings of Foundations of Software Science and Compu-
tation Structures (FOSSACS02), number 2303 in LNCS, pages 357–371.
Springer-Verlag, January 2002.

[Sau08] Alexis Saurin. Une étude logique du contrôle. Thèse de doctorat, École
Polytechnique, 2008.

[SBM07] Zach Snow, David Baelde, and Dale Miller. Taci: an interactive theorem
proving framework. 2007.

[SH93] Peter Schroeder-Heister. Rules of definitional reflection. In M. Vardi,
editor, Eighth Annual Symposium on Logic in Computer Science, pages
222–232. IEEE Computer Society Press, IEEE, June 1993.

[SP98] Carsten Schürmann and Frank Pfenning. Automated theorem proving
in a simple meta-logic for LF. In Claude Kirchner and Hélène Kirchner,
editors, 15th Conference on Automated Deduction (CADE), volume 1421
of Lecture Notes in Computer Science, pages 286–300. Springer, 1998.

[SSW+06] Konstantinos Sagonas, Terrance Swift, David S. Warren, Juliana Freire,
Prasad Rao, Baoqiu Cui, Ernie Johnson, Luis de Castro, Rui F. Marques,
Steve Dawson, and Michael Kifer. The XSB Version 3.0 Volume 1: Pro-
grammer’s Manual, 2006.

[Ter04] Kazushige Terui. Light affine set theory: A naive set theory of polynomial
time. Studia Logica, 77(1):9–40, 2004.

[Tiu04] Alwen Tiu. A Logical Framework for Reasoning about Logical Specifi-
cations. PhD thesis, Pennsylvania State University, May 2004.

[Tiu05] Alwen Tiu. Model checking for π-calculus using proof search. In Martı́n
Abadi and Luca de Alfaro, editors, CONCUR, volume 3653 of LNCS,
pages 36–50. Springer, 2005.

[Tiu06] Alwen Tiu. A logic for reasoning about generic judgments. In
A. Momigliano and B. Pientka, editors, Int. Workshop on Logical Frame-
works and Meta-Languages: Theory and Practice (LFMTP’06), 2006.

[TNM05] Alwen Tiu, Gopalan Nadathur, and Dale Miller. Mixing finite success
and finite failure in an automated prover. In Proceedings of ESHOL’05:
Empirically Successful Automated Reasoning in Higher-Order Logics,
pages 79–98, December 2005.

[UT05] Christian Urban and Christine Tasson. Nominal techniques in Is-
abelle/HOL. In R. Nieuwenhuis, editor, 20th Conference on Automated
Deduction (CADE), volume 3632 of LNCS, pages 38–53. Springer, 2005.

