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Abstract. Bilinear, trilinear, quadrilinear and general multilinear terms
arise naturally in several important applications and yield nonconvex
mathematical programs, which are customarily solved using the spatial
Branch-and-Bound algorithm. This requires a convex relaxation of the
original problem, obtained by replacing each multilinear term by appro-
priately tight convex relaxations. Convex envelopes are known explicitly
for the bilinear case, the trilinear case, and some instances of the quadri-
linear case. We show that the natural relaxation obtained using duality
performs more efficiently than the traditional method.
Keywords: Global optimization, MINLP, mathematical programming.

1 Introduction

The general multilinear term is given by:

w(x) = x1 · · ·xk (1)

for some k ∈ N, and is possibly the most common nonlinear term occurring
naturally in Mathematical Programming (MP) applications. As the need arises,
we might also write (1) as w(x) = xj1 · · ·xjk with J = {j1, . . . , jk}, and let
WJ = {(x,wJ ) | wJ =

∏

j∈J xj ∧ x ∈ [xL, xU ]}. The bilinear case is shown in

Fig. 1. We let P be the set of vertices of the hyperrectangle [xL, xU ] and PW be
the lifting of P in the space spanned by (x,wJ ), where, for each point x̄ ∈ P ,
the corresponding point in PW is obtained by setting wJ = w(x̄).

Convex envelopes for multilinear terms are available explicitly in function of
xL, xU for k = 2, 3 and partly k = 4. Such envelopes consist of sets of constraints
to be adjoined to the MP formulation. We argue in this paper that formulations
obtained this way (called primal relaxations) are larger and less accurate than
those obtained using a dual representation of such envelopes (called dual relax-

ations), i.e. the convex combination of points in PW . One further advantage of
these dual envelopes is that they are the same for all k and need no special
case-by-case treatment.

1.1 Contributions

The relaxations for multilinear MPs proposed in this paper, which are based on
duality, are a simple application of ideas which have been present in LP and
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Fig. 1. The bilinear surface w(x1, x2) = x1x2.

MILP theory for a long time. They constitute an original contribution insofar as
they have never been tested computationally in the context of multilinear terms.
This contribution would be negligible, had we not found empirically that dual
relaxations provide a far superior way of relaxing multilinear MPs than “tradi-
tional (primal) relaxations”. The fundamental purpose of this paper is to convey
an important message: it is possible that, until now, multilinear terms have been

relaxed in the wrong way. On the other hand, we think that the compact and
elegant formulation of dual relaxations might provide a successful tool for future
theoretical research: the primal relaxation involves remarkably different formu-
lations for each value of k and it is difficult to see how it can be exploited in a
uniform way.

We remark that duality has been used in the context of multilinear relax-
ations in [6]. The authors exploited in several ways the same dual relaxations we
propose here. The term-wise computational comparison we perform, however,
which we feel is so important to convey the message above simply, clearly and
unequivocally, is absent from their treatment.

1.2 Applications

Several applications involve bilinear products between binary and continuous
variables that model situations where a continuous variable takes different val-
ues depending on whether a certain boolean variable is 0 or 1 [35]. In pool-
ing and blending problems [1, 4, 11, 14, 17, 29], bilinear products (k = 2) occur
whenever x1 represents a (dimensionless) percentage and x2 an oil flow in a pipe.
The Hartree-Fock Problem [24] minimizes a quartic energy expression (involving
quadrilinear terms) subject to some orthogonality constraints (involving bilin-
ear terms). The Molecular Distance Geometry Problem [23] involves bilinear
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or quadrilinear terms depending on which formulation is used. General mul-
tilinear terms involving continuous variables occur in multilinear least-squares
problems [30]. In general, such products occur over bounded variables: most
applications require the variables x = (x1, . . . , xk) to be bounded to the hyper-
rectangle [xL, xU ], where xL = (xL

1 , . . . , x
L
k ) and xU = (xU

1 , . . . , x
U
k ). We remark,

however, that there exists an application from code debugging [15, 25] exhibiting
bilinear terms x1x2 where x1 ∈ {0, 1} and x2 must be unbounded for the model
to be correct (such variables are used to ensure that loops terminate whenever
no upper bound is explicitly known for the loop counter).

1.3 Exact linearizations

It was observed in [13, 16] that if k = 2 and x1, x2 ∈ {0, 1}, then w(x) can
be replaced by an added variable w12 ∈ [0, 1] whilst the Fortet inequalities are
adjoined to the model:

w12 ≤ x1, w12 ≤ x2, w12 ≥ x1 + x2 − 1. (2)

It is easy to show that this reformulation is an exact linearization [21, 22] of the
original bilinear program.

Whenever x ∈ [xL, xU ] and at least k − 1 variables out of k are constrained
to be integer, the corresponding multilinear term can be linearized exactly. Each
general integer variable is replaced by an aggregation of binary variables (for
example choosing the value taken by the original integer variable), and the orig-
inal multilinear term w(x) is replaced by a sum of multilinear terms with at
least k− 1 binary variables. A sequence of k− 1 Fortet’s linearizations will then
yield a Mixed-Integer Linear Programming (MILP) formulation of the original
multilinear term.

1.4 Products of continuous variables

Whenever at least 2 variables in a multilinear term are continuous, exact lin-
earizations are in general no longer possible, and one must resort to solution
techniques for nonconvex programs, such as the spatial Branch-and-Bound (sBB)
algorithm [2, 8, 12, 20, 32, 33]. This involves repeatedly solving the original prob-
lem and a convex relaxation thereof over appropriate sets of ranges [xL, xU ]. The
relaxation is obtained by replacing each multilinear term with an added variable
wJ and adjoining some constraints to the formulation which define a convex
relaxation of WJ . In general, the tighter these relaxations are, the more efficient
the sBB will be. This has spawned a growing interest in finding constraints which
define the convex and concave envelopes ŵ(x) and w̌(x) of multilinear terms. By
definition, the set

W̆J = {(x,wJ ) | wJ ≥ ŵ(x) ∧ wJ ≤ w̌(x) ∧ x ∈ [xL, xU ]} (3)

is the convex hull of the set WJ . With a slight abuse of notation, the constraints
on wJ appearing in the definition of W̆J are also called convex envelopes of the
multilinear terms.
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2 Convex envelopes of multilinear terms

It was shown in [31] that the convex envelopes of multilinear terms are vertex

polyhedral [34], i.e. W̆J is a polyhedron having PW as vertex set. This makes it
possible to write the convex envelopes of multilinear terms by means of linear
constraints.

2.1 McCormick’s inequalities

Figure 2 shows the lower convex (left) and upper concave envelopes for the
bilinear term x1x2, each consisting of two linear constraints. The corresponding

Fig. 2. Lower convex (left) and upper concave (right) envelopes for the bilinear term.

constraints:

w12 ≥ xL
1 x2 + xL
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L
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called McCormick inequalities, were first described in [26] and later shown to be
envelopes in [3].

The McCormick inequalities are expressed explicitly in terms of xL, xU , and
are therefore referred to as explicit envelopes. By contrast, there exists software,
such as PORTA [10] (which implements the Fourier-Motzkin algorithm), which,
given specific values for xL, xU , is able to write the corresponding constraints
for the convex envelopes of the points in PW . Finding the explicit envelopes of
the multilinear term for each k is of practical interest because calling PORTA
to relax each multilinear term would be inefficient if there are several of them;
and ever since McCormick’s seminal paper, it has been a long-standing open
question. The matter is settled in general for the case where [xL, xU ] = [0, 1]
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[31]; but since the use of such envelopes in the sBB algorithm implies that the
bounds change at each node, this result may at best be useful only at the root
node.

2.2 Meyer-Floudas inequalities

Significant progress was made with Meyer and Floudas’ work [27, 28], who were
able to write the explicit envelopes for the trilinear term w(x) = x1x2x3. Their
exact form depends on the relative sign of the variable bounds xL, xU . The
paper [27] discusses 6 cases where the bound signs are equal (each case giving
rise to 12 inequalities), whereas the other 9 cases are discussed in [28]. Several
of these cases also involve checking nontrivial bound relations. Although Meyer
and Floudas’ results are conceptually simple to apply (it suffices to establish
which is the case at hand, and adjoin the corresponding inequalities to the MP),
the inequalities themselves are way more involved than McCormick’s, and it is
very easy to make mistakes when integrating them in a computer program.

Worst of all, however, is the fact that some coefficients appearing in Meyer-
Floudas inequalities involve nontrivial floating point operations. For example,

the coefficient of x1 in [28, Case 3.5, p. 133] is
xU

1
xU

2
xL

3
−xL

1
xL

2
xL

3
−xU

1
xU

2
xU

3
+xU

1
xL

2
xU

3

xU

1
−xL

1

.

As is well known, floating point additions and subtractions are error-prone [19,
4.2.1]. This will yield an inaccurate constraint representation of W̆J ; to make
things worse, the simplex method will identify optimal solutions at the vertices
of the polyhedron rather than at the interior, which implies that this inaccuracy
will impact the optimal solution. In particular, if variables are constrained to be
integer, a feasible integer solution on or near the vertex of the polyhedron might
be deemed infeasible. However, this can be avoided when using PORTA, which
uses exact rational arithmetic.

By contrast, each coefficient of the the McCormick inequalities (k = 2) only
involves floating point multiplication, which is a much safer operation.

2.3 Quadrilinear terms

One of us (LL) has often heard Prof. C. Floudas state, at various Global Op-
timization conferences, that “the explicit envelopes of the quadrilinear terms
haven’t been found yet” to entice research in that direction. Accordingly, we un-
dertook some effort in that direction in the past few years; although we failed to
settle the question for k = 4, we managed to show how to choose the associative
expression for x1x2x3x4 yielding the tightest convex relaxation [7, 9], and we
extended this result to associative expressions of general sequences of functions.

Very recently, Ms. S. Balram of the National University of Singapore (su-
pervised by Prof. Karimi) continued the “race” towards multilinear envelopes
for higher k: her M.Sc. thesis [5] includes 44 inequalities for the simplest of the
quadrilinear cases (all bounds in the nonnegative orthant). That thesis does not
mention how many cases there will be in total for k = 4, but several coefficients
of this simplest case involve even more floating point additions and subtractions
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than the Meyer-Floudas’ inequalities, and are therefore expected to yield inaccu-
rate formulations. As for the trilinear case, when integer variables are involved,
some feasible solutions might be incorrectly deemed infeasible.

2.4 Critique

From the cases k = 3 and k = 4 it appears clear that the explicit form of
the inequalities describing W̆J , in function of xL, xU , considerably increases in
complexity (from the point of view of floating point additions and subtractions)
as k increases, thereby causing numerical instability. But this is not all: the
number of such inequalities, even when they are found explicitly with PORTA,
also increases, thereby yielding ever more sizable formulations. While it is known
that this number increases as O(2k), the first column of Table 1 suggests that
the increase is more like O(k2k). Lastly, finding explicit envelopes of multilinear
terms for each separate value of k lacks elegance. The Meyer-Floudas inequalities
required two papers and 15 separate cases, each with its own proof. However, one
redeeming feature is that they only involve the primal variables of the original
formulation.

In the remainder of this paper, we shall propose dual envelopes: these are
derived in a natural way using well-known duality theory, they hold for each
k, and yield more compact, accurate and numerically stable formulations. We
shall henceforth refer to the convex envelopes presented in this section as primal

envelopes.

3 Dual envelopes

The fact that the envelopes of multilinear terms are vertex polyhedral immedi-
ately suggests the following dual approach: express a point in W̆J as the convex
combination of the set PW of extreme points of W̆J . We look for a vector λ of
2k nonnegative Lagrange multipliers such that:

x =
∑

i≤2k

λipi ∧
∑

i≤2k

λi = 1,

where PW = {p1, . . . , p2k} ⊆ Rk+1. Now all that remains to do, in order to make
(3) explicit envelopes, is to express the pi’s in function of xL, xU . To this aim,

we define two parameter sequences d ∈ {0, 1}k2
k

and b : {0, 1}k → PW . Each dij
is either 0 or 1 according as to whether the j-th component of pi is a lower or
upper bound, and bj(dij) returns the correct component:

∀i ≤ 2k di = (dij |j ≤ k) =

(⌊

i− 1

2k−j

⌋

mod 2 | j ≤ k

)

(8)

∀j ≤ k bj(0) = xL
j ∧ bj(1) = xU

j . (9)
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We relax the k-linear term w(x) = x1 · · ·xk as follows. We add 2k new
nonnegatively constrained variables λi ≥ 0 (for i ≤ 2k) and k+1 new constraints:

∀j ≤ k xj =
∑

i≤2k

λibj(dij) (10)

w =
∑

i≤2k

λi

∏

j≤k

bj(dij) (11)

∑

i≤2k

λi = 1, (12)

where (11) is obtained by (10) and the fact that w =
∏

j<k xj . Let W̄J =

{(x,w, λ) | (10) − (12) ∧ λ ≥ 0}. It is well known that the projection of W̄J on
the (x,w) variables is precisely W̆J .

The dual envelope adds exactly 2k new nonnegative variables and k+1 new
constraints to the formulation. Table 1 reports the size increases for the cases
k ∈ {2, 3, 4, 5}. Cases k ∈ {2, 3, 4} refer to the McCormick, Meyer-Floudas and
Balram [5] inequalities. The statistics for k = 5 are taken from [5], but devised
computationally using a method similar to PORTA.

k Primal Dual

2 4 7
3 12 12
4 44 21
5 130 38

Table 1. Per-multilinear-term size increase (new constraints and variables) for primal
and dual envelopes.

3.1 Relaxations

Given a multilinear MP P , a relaxation can be obtained by replacing each mul-
tilinear term with its corresponding primal or dual envelope. This term-wise
fashion of construction relaxations was initially proposed in [26], refined and ex-
ploited in a sBB in [33], and further improved in [8]. As stated earlier, we shall
call relaxations constructed with primal envelopes primal relaxations and those
constructed with dual envelopes dual relaxations.

4 Computational results

Our tests, carried out on an Intel Xeon CPU at 2.66GHz with 24GB RAM, show
that dual relaxations can be solved faster (as the formulation size increases)
than primal relaxations, and are also more stable. We measure speed by simply
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solving the primal and dual relaxations for the same original problem using
the CPLEX 12.2 [18] simplex solver, and comparing CPU times. We define a
method stable when its CPU time increase looks empirically proportional to
the increase in formulation size. Firstly we consider NLP problems, and we
solve the corresponding dual LP relaxation and primal LP relaxation. Then we
measure stability by enforcing integrality constraints on some of the problem
variables, obtaining MINLPs: this yields a dual MILP relaxation and a primal

MILP relaxation. Both are solved with the CPLEX 12.2 MILP solver, and the
CPU times are recorded and compared. This is meant to simulate the behaviour
of these relaxations in a Branch-and-Bound setting. It turns out that the running
times of the MILP solver on the dual MILP relaxation is proportional to the
relaxation size, whereas it varies wildly for the primal MILP relaxation.

We generated 2500 random multilinear nonseparable NLPs, involving linear,
bilinear and trilinear terms. For each such NLP P , we generated the primal LP
relaxation RP and the dual LP relaxation ΛP . Then we set some variables of the
previously generated NLPs to be integer, thus obtaining MINLPs, and for each
MINLP P , we generated the primal MILP relaxation R′

P and the dual MILP
relaxation Λ′

P . We let n (the number of original variables) vary in {10, 20}. For
n = 10 we let the number of bilinear terms β vary in {0, 10, 13, 17, 21, 25, 29, 33}
and of trilinear terms τ in {0, 10, 22, 34, 36, 58, 71, 83}. For n = 20, we let β

vary in {0, 20, 38, 57, 76, 95, 114, 133} and τ in {0, 20, 144, 268, 393, 517, 642, 766}.
Note that the total number of combinations of (n, β, τ), given n, is 63, because
the case β = τ = 0 is excluded. For each combination of the triplet (n, β, τ) we
generated 16 random instances. The variable bounds, chosen at random, were
all of magnitude ±1× 106.

The CPU time results (in seconds) comparing RP , ΛP are given in Fig. 3-4.
The horizontal axis is marked by the instance ID. Each recognizable “block”
corresponds to a fixed value of β. Since bilinear terms give rise to fewer relax-
ation variables/constraints than trilinear ones, the formulation size is strongly
proportional to τ and weakly proportional to β. Although for n = 10 (Fig. 3)
the CPU time is very slightly in favour of the primal relaxation, the situation
changes visibly for n = 20 (Fig. 4). Although the CPU times differ, we cannot
infer much on the comparative stability of the two methods.

The CPU time results (in seconds) comparing R′
P , Λ

′
P are given in Fig. 5-6.

The CPU differences are decidedly striking in the case n = 10 and even exces-
sively so for the case n = 20. The CPU time taken to solve primal relaxations
is far from proportional to formulation size, whereas the stability associated to
the dual relaxation is remarkable.
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