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Alberto Costa¶

LIX, École Polytechnique, F-91128 Palaiseau, France

(Dated: March 21, 2012)

Finding communities, or clusters, or modules, in networks can be done by optimizing an objective
function defined globally and/or by specifying conditions which must be satisfied by all communities.
Radicchi et al. [Proc. Natl. Acad. Sci. U.S.A. 101, 2658 (2004)] define a susbset of vertices of
a network to be a community in the strong sense if each vertex of that subset has a larger inner
degree than its outer degree. A partition in the strong sense has only strong communities.

In this paper we first define an enumerative algorithm to list all partitions in the strong sense
of a network of moderate size. The results of this algorithm are given for the Zachary karate
club dataset, which is solved by hand, as well as for several well-known real-world problems of the
literature. Moreover, this algorithm is slightly modified in order to apply it to larger networks
keeping only partitions with the largest number of communities. It is shown that some of the
partitions obtained are informative, although they often have only a few communities, while they
fail to give any information in other cases, having only one community. It appears that degree
two vertices play a big role in forcing large inhomogeneous communities. Therefore, a weakening
of the strong condition is proposed and explored: we define a partition in the almost-strong sense
by substituting a non-strict inequality to a strict one in the definition of strong community for all
vertices of degree two. Results, for the same set of problems as before, then give partitions with a
larger number of communities and are more informative.

PACS numbers: 89.75.Hc, 02.10.Ox, 02.70.-c

I. INTRODUCTION

Networks, or graphs, are composed of a set of vertices
and of a set of edges which join pairs of vertices [1–6]. As
vertices can be associated with entities and edges with
relations defined on all pairs of vertices, networks are
extensively and increasingly used in many areas of science
and its applications.
An ubiquitous phenomenon in networks is the presence

of communities (also called clusters or modules) where in-
ner edges, joining two vertices of the same community,
are dense and cut edges, joining two vertices of differ-
ent communities, are sparse. As shown below, there are
many ways to define and/or evaluate communities as well
as partitions of the vertex set into communities. There
are three main approaches to the evaluation of a partition
of the vertex set of a network:
(i) one can specify a heuristic and evaluate informally

the result obtained. For instance, Girvan and Newman
[7] present a hierarchical divisive heuristic in which the
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edge with largest betweenness is iteratively removed and
communities correspond to connected components ob-
tained each time a community is split into two. This
heuristic therefore proceeds from an initial (trivial) par-
tition in a single community containing all vertices to a
final partition in which each community contains a single
vertex. Divisions of communities are graphically repre-
sented by a dendrogram;

(ii) a criterion function, to be maximized or minimized,
is chosen. There are many examples, the best known of
which is modularity, initially proposed as a stopping rule
for the divisive heuristic mentioned above and later con-
sidered as an independent criterion. Other well-known
criteria are the k-way cut [8, 9], the normalized cut
[10, 11], the ratio cut [9], the modularity density and its
variants [12, 13], and strength maximization subject to
strong or weak constraints on the communities (see Sec-
tion II) [14, 15]. More recently, several promising crite-
ria have been put forward: information compression [16],
maximum likelihood and the expectation maximization
algorithm [17] and the constant Potts model [18].

(iii) conditions to be satisfied by a community are spec-
ified. Several such conditions have been proposed; the
early ones are reviewed in the book [2]. They include the
cliques, in which every pair of vertices must be joined by
an edge, the k-cliques in which the indegree of each ver-
tex must be at least k, and LS (Luccio-Sami) set [19], i.e.,
a set of vertices S such that each of its proper subsets has
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more ties to its complement within S than to the outside
of S. These three criteria tend to be too stringent and/or
too difficult to compute, except on the smallest networks.
Two others intuitive and well-known criteria have been
proposed by Radicchi et al. [20]: a subset S of vertices
of a network forms a community in the strong sense if
the number of neighbors of each vertex within S is larger
than the number of neighbors outside S. A set of vertices
S forms a community in the weak sense if the sum, for
all of its vertices, of the difference between the number
of neighbors within S and the number of neighbors out-
side S is positive. As these concepts capture the intuitive
idea of a community, they are very often cited. Recently,
weakened versions have been proposed, in which instead
of comparing the numbers of neighbors within and out-
side the community, one compares the numbers of neigh-
bors within a community, and outside that community
but within another specific community [13].

In this paper we focus on communities in the strong
sense. We first give an exact algorithm for finding all par-
titions of a network into communities in the strong sense.
There are several reasons to consider exact algorithms in-
stead of heuristics: while exact algorithms are limited to
problems of moderate size (in modularity maximization
the largest instance solved exactly up to now is the s838
dataset which has 512 vertices and 819 edges, solved by
the column generation algorithm [21]), smaller networks
are of interest in several domains, e.g., sociology, math-
ematical psychology and ecology. Then, using an exact
algorithm allows discrimination of errors due to an inade-
quate model or to a non-optimal resolution by heuristics.
Moreover, exactly solved problems provide a benchmark
for evaluating and comparing heuristics. Comparing the
exact solution with those obtained by some heuristic fo-
cuses on parts of the problem which are badly solved and
can suggest how to improve the heuristic. Conversely,
heuristics can be used in order to accelerate one or sev-
eral steps of the exact algorithm, e.g., by providing a hot
start. A more complete discussion of merits and demer-
its of exact algorithms and heuristics is given in the first
section of [21].

The paper is organized as follows: definitions and no-
tation are specified in the next section. The main algo-
rithm, called Strong Communities (SC), is presented in
Section III. Its application is illustrated step-by-step by
hand resolution of the classical Zachary karate club net-
work [22]. A variant of SC, called Almost-Strong Com-
munities (ASC), and in which the definition of strong
community is weakened, is presented in Section IV. Re-
sults obtained by both algorithms for several real-world
networks, described in the Pajek database (http://
vlado.fmf.uni-lj.si/pub/networks/data/), are pre-
sented and discussed in Section V. Conclusions are drawn
in Section VI.

II. DEFINITIONS AND NOTATION

We denote a network, or graph, by G = (V,E) where
V is the set of n vertices, and E is the set of m edges
which join pairs of vertices. A vertex vj is represented
by a point and an edge ei,j = {vi, vj} by a line joining its
two end vertices vi and vj . The shape of this line does
not matter, only the presence or absence of an edge is
important. A loop ei,i = {vi, vi} is an edge for which
both end vertices coincide. In a simple graph, there is at
most one edge between any pair of vertices, and no loops.
The degree ki of a vertex vi ∈ V is the number of edges
incident with vi. In this paper, we focus on unweighted
simple graphs.
The adjacency matrix A = (ai,j) of G is a square n

by n matrix such that ai,j = 1 if vertices vi and vj are
joined by an edge, and equal to 0 otherwise.
A subgraph GS = (S,ES) of a graph G = (V,E) in-

duced by a set of vertices S ⊆ V is a graph with vertex
set S and edge set ES equal to all edges with both ver-
tices in S. Such a subgraph corresponds to a community
and many heuristics, as well as exact algorithms, aim at
finding a partition of V into pairwise disjoint nonempty
subsets S1, S2, . . . , SN inducing subgraphs of G. Vari-
ous objective functions have been proposed for evaluating
such a partition. Roughly speaking, one seeks modules
which contain more inner edges (with both vertices in the
same module) than cut edges (with vertices in different
modules). The degree ki of the vertex vi can be split in
two parts: the indegree kini or number of neighbors of vi
within its community and the outdegree kouti or number
of neighbors of vi outside its community. Several con-
cepts of community follow.
A set S of vertices is a clique if all pairs of vertices of S

are joined by an edge, i.e., ki = |S| − 1, ∀vi ∈ S. A set S
is a k-clique if every vertex of S has at least k neighbors
within S, where k is a parameter.
In 2004, Radicchi et al. [20] defined a community in

the strong sense as a subgraph all vertices of which have
larger indegree than outdegree: kini > kouti , ∀vi ∈ S or
equivalently

∑
j∈S ai,j >

∑
j∈V \S ai,j , ∀vi ∈ S. Note

that the concept of defensive alliance, studied in graph
theory (see the thesis [23] and references therein), is very
close to that of community in the strong sense and is
obtained by substituting non-strict inequalities to strict
ones.
In the same paper [20], a community in the weak

sense is defined as a subgraph for which the sum
of vertex indegrees is larger than the sum of vertex
outdegrees:

∑
vi∈S kini >

∑
vi∈S kouti or equivalently

∑
vi∈S

∑
vj∈S ai,j >

∑
vi∈S

∑
vj∈V \S ai,j . As an inner

edge contributes by two to the sum of the indegrees
and a cut edge contributes by one to the sum of out-
degrees, the number of inner edges in a community in
the weak sense must be at least as large as half the
number of cut edges. As cut edges contribute by one
to the sum of degrees of two communities, this defini-
tion entails that for the network as a whole the num-
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ber of inner edges is larger than the number of cut
edges. Recently, several extensions of the definition
of the community in the strong and weak sense have
been proposed [13]. In these extensions one considers
all outgoing edges from the set S to another subset St

of V instead of the sum for all such sets: kini (S) >

maxt=1,...,M |St 6=S

∑
vj∈St

ai,j , ∀vi ∈ S, where M is the

number of communities. The second extension is similar
but uses sums of degrees instead of individual degrees:∑

vi∈S kini (S) > maxt=1,...,M |St 6=S

∑
vi∈S

∑
vj∈St

ai,j .

One may also consider the difference for each commu-
nity of the sum of indegrees and the sum of outdegrees.
Then summing these contributions for all communities
gives a k-way cut problem. Another approach is to nor-
malize the contribution of each community by dividing
it by its number of vertices [12]. The resulting function,
to be maximized, is called modularity density. Alterna-
tively, contributions of communities may be divided by
their number of edges [15]. Finally, one may consider
maximizing, in a divisive hierarchical method, the mini-
mum ratio of the number of edges in a community divided
by the number of cut edges [24].

III. ALGORITHM SC

We next present the rules of an algorithm, called SC
(Strong Communities), for enumerating all the partitions
in the strong sense of a given network G = (V,E). Note
that this problem always has a solution, i.e., the trivial
partition consisting in a single community containing all
the vertices. The algorithm will make use of two types
of labels associated with the vertices and the edges of
G respectively: label li associated with vertex vi, i =
1, . . . , n (initially li = i for all vertices, and at the current
iteration the label of the vertex vi is equal to the smallest
label of a vertex of the community to which vi belongs);
the label ti,j associated with edge (vi, vj) can take three
values (−1, 0, 1). It is equal to -1 if it has already been
decided that the vertices vi and vj belong to different
communities; it is equal to 1 if it has already been decided
that vertices vi and vj belong to the same community. If
no decision has been taken, ti,j = 0.

It turns out that the rules of our algorithm are simple
and effective. To illustrate, we next list these rules and
show at the same time that all partitions in the strong
sense of the Zachary karate club network [22] can be
found by hand.
Rules of the algorithm SC are the following:

• Rule 1 (pending edges): if the edge (vi, vj) is a
pending one, set its label ti,j to 1 and set both
li and lj to min(li, lj). In words, both vertices of a
pending edge must belong to the same community.

– Example 1 (Karate club): this network has
a single pending edge, i.e., (1, 12), so we set
t1,12 = 1 and l12 = 1.

• Rule 2 (degree two vertices): if vertex vi has degree
ki = 2, and its neighbors are vj and vk, set ti,j =
1, ti,k = 1 and li = lj = lk = min(li, lj , lk). In
words, if a vertex vi has degree 2 and neighbors vj
and vk, it follows from the strong condition that all
three vertices vi, vj , vk must belong to the same
community.

– Example 1 (continued): this network has
eleven degree two vertices; applying Rule 2 we
get the following labels (see Fig. 1):

∗ t3,10 = t10,34 = 1; l3 = l10 = l34 = 3;

∗ t1,13 = t4,13 = 1; l1 = l4 = l13 = 1;

∗ t15,33 = t15,34 = 1; l15 = l33 = l34 = 3;

∗ t16,33 = t16,34 = 1; l16 = l33 = l34 = 3;

∗ t6,17 = t7,17 = 1; l6 = l7 = l17 = 6;

∗ t1,18 = t2,18 = 1; l1 = l2 = l18 = 1;

∗ t19,33 = t19,34 = 1; l19 = l33 = l34 = 3;

∗ t21,33 = t21,34 = 1; l21 = l33 = l34 = 3;

∗ t1,22 = t2,22 = 1; l1 = l2 = l22 = 1;

∗ t23,33 = t23,34 = 1; l23 = l33 = l34 = 3;

∗ t27,30 = t27,34 = 1; l27 = l30 = l34 = 3.

Note that the Rules 1 and 2 should be applied only
once, at the beginning of the resolution. Moreover,
the order of selection of the vertices for Rule 2 does
not change the communities found (regardless of
the labels for each community). As a matter of
fact, at this stage of the algorithm the only possible
labels for edges are 0 and 1, and in this case Rule
2 can be always applied to a vertex of degree two
for merging the communities whose its neighbors
belong.

FIG. 1. Zackary karate club communities after application
of Rule 2; empty vertices are isolated at the current stage of
resolution (color online).

• Rule 3.a (positive transitivity): if li = lj and ti,j =
0, set ti,j = 1. In words, if two vertices vi and vj
belong to the same community, and are joined by
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an edge which does not specify that, set the label
of this edge as positive.

– Example 1 (continued): after application of
Rule 3.a we get the following edge labels:

∗ t1,2 = 1 due to t1,22 = t2,22 = 1;

∗ t1,4 = 1 due to t1,13 = t4,13 = 1;

∗ t6,7 = 1 due to t6,17 = t7,17 = 1;

∗ t3,33 = 1 due to t3,10 = t10,34 = t19,34 =
t19,33 = 1;

∗ t33,34 = 1 due to t19,34 = t19,33 = 1;

∗ t30,34 = 1 due to t27,30 = t27,34 = 1;

∗ t30,33 = 1 due to t33,34 = t30,34 = 1.

• Rule 3.b (negative transitivity): if li 6= lj and
ti,j = −1, set ta,b = −1∀(va, vb) : la = li, lb =
lj , and ta,b = 0. In words, if two vertices belong to
different communities and are joined by a negative
edge, set to -1 all the edges with label 0 joining two
vertices of these communities.

– Example 1 (continued): this Rule does not ap-
ply yet because no edges have a negative label.

• Rule 4.a (majority 1 ): if the majority of neighbors
of the vertex vi belong to the same community and
the label of the vertices belonging to this commu-
nity is l, set li = l = min(l, li) and apply the pos-
itive transitivity Rule. In words, if half or more of
the neighbors of vi have the same label l, the only
way to satisfy the strict inequality of the strong
condition is to add the vertex vi to the community
where its vertices have label l.

– Example 1 (continued): after application of
Rule 4.a we get the following labels (see
Fig. 2):

∗ l8 = 1, t1,8 = t2,8 = t4,8 = 1 due to l1 =
l2 = l4 = 1 (3 out of 4 labels of vertex v8);

∗ l14 = 1, t1,14 = t2,14 = t4,14 = 1 due to
l1 = l2 = l4 = 1 (3 out of 4 labels of
vertex v14);

∗ l20 = 1, t1,20 = t2,20 = 1 due to l1 = l2 =
1 (2 out of 3 labels of vertex v20);

∗ l9 = 3, t3,9 = t9,33 = t9,34 = 1 due to
l3 = l33 = l34 = 3 (3 out of 5 labels of
vertex v9);

∗ l31 = 3, t9,31 = t31,33 = t31,34 = 1 due to
l9 = l33 = l34 = 3 (3 out of 4 labels of
vertex v31);

∗ l24 = 3, t24,30 = t24,33 = t24,34 = 1 due to
l30 = l33 = l34 = 3 (3 out of 5 labels of
vertex v24);

∗ l28 = 3, t3,28 = t24,28 = t28,34 = 1 due to
l3 = l24 = l34 = 3 (3 out of 4 labels of
vertex v28);

∗ l29 = 3, t3,29 = t29,34 = 1 due to l3 =
l34 = 3 (2 out of 3 labels of vertex v29);

∗ l32 = 3, t29,32 = t29,33 = t29,34 = 1 due to
l29 = l33 = l34 = 3 (3 out of 6 labels of
vertex v32);

∗ l25 = 3, t25,38 = t25,32 = 1 due to l28 =
l32 = 3 (2 out of 3 labels of vertex v25);

∗ l26 = 3, t24,26 = t25,26 = t26,32 = 1 due to
l24 = l25 = l32 = 3 (3 out of 3 labels of
vertex v26).

FIG. 2. Zackary karate club communities after application of
Rule 4.a (color online).

• Rule 4.b (majority 2 ): if a vertex vi has degree
ki = 2d, and there are d neighbors with label l1
and d neighbors with label l2, set li = min(l1, l2),
and for all the vertices vk with lk = l1 or lk = l2, set
lk = li. Then, apply the positive transitivity Rule.
In other words, we merge the communities with
labels l1 and l2, and we put in this new community
the vertex vi, too.

– Example 1 (continued): after application of
Rule 4.b we get the following labels (see
Fig. 3):

∗ v3 has 10 neighbors, 5 of which have
label 1, and the 5 others have label
3. So, to have coherent labels, these
two communities must be merged. All
labels of vertices are equal to 1, ex-
cept for v5, v6, v7, v11, v17. All la-
bels of edges are equal to 1 except for
t1,5, t1,6, t1,7, t1,11, t5,6, t5,11, t6,11 which
are equal to 0.

• Rule 4.c (majority 3 ): if the number of negative
edges, i.e., edges labeled with -1, incident with the
vertex vi is equal to ⌈ki

2
⌉ − 1, for all the neighbor

vertices vj of vi having ti,j = 0, set ti,j = 1, and
for all the vertices vk with lk = lj , set lk = li. In
words, when the number of negative edges incident
to vi is almost the majority there is only one way
to satisfy the strong condition at vertex vi, i.e., set
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FIG. 3. Zackary karate club communities after Rule 4.b (color
online).

the label associated to all other incident edges to
1.

– Example 1 (continued): this Rule does not ap-
ply yet because no edges have a negative label.

Rules 3 and 4 must be repeated as long as there is
at least one change of label.

• Rule 5 (branching): if no more labels of edges can
be modified according to the previous rules, select
an edge with label 0 which joins the two largest
communities. Set the label of this edge to -1 (left
branch), then set separately this label to 1 (right
branch). The application of Rule 5 so generates al-
ways two subproblems of the current problem, cor-
responding respectively to label -1 and label 1 for
the selected edge. The two subproblems are stored
and the algorithm proceeds returning to Rule 3.a
to process each of the stored subproblems (one at
a time).

• Rule 6.a (no majority): if the number of nega-
tive edges incident with the vertex vi is larger than
⌈ki

2
⌉ − 1, apply Rule 8 below.

• Rule 6.b (no coherent labels): if there exist two
vertices vi and vj with li = lj and ti,j = −1, apply
Rule 8 below.

• Rule 7 (feasible solution): if all edges have a label -1
or 1, store the corresponding partition, then apply
Rule 8.

• Rule 8 (backtracking): return to the latest appli-
cation of the branching rule and consider the right
hand-side branch as current subproblem.

– Example 1 (continued): the branching is done
on edge (1, 6) which first gets a label equal to
-1, and later to 1.

∗ t1,6 = −1. For the negative transitiv-
ity also t1,7 = −1. For the majority
3 Rule applied to vertex v6 we can set
t6,11 = 1 and l11 = 6. Again, for the
negative transitivity t1,11 = −1. Then,
for the majority 1 Rule applied to ver-
tex v5, l6 = l7 = l11 = l17 = 5 and
t5,7 = t5,11 = 1 and at the end for the
negative transitivity t1,5 = −1. Since all
the labels are now fixed, we apply Rule
7, and save the solution, whose labels
are: l5 = l6 = l7 = l11 = l17 = 5,
and all the other vertices have label 1;
t1,5 = t1,6 = t1,11 = −1 and all the other
edges have label 1. The obtained parti-
tion is presented in Fig. 4. After storing
this partition we apply Rule 8, and we
continue with the right branch below.

∗ t1,6 = 1. For the positive transitivity also
t1,7 = 1 and l6 = l7 = l17 = 1. For the
majority 1 Rule applied to vertex v5 we
can set l5 = 1 and t5,7 = t1,5 = 1. Then,
we apply again the majority 1 Rule to
vertex v11 and we can set l11 = 1, t1,11 =
t5,11 = t6,11 = 1. Since all the labels are
now fixed, we apply Rule 7, and save the
solution, where all the vertices have label
1 and all the edges have label 1. After
storing this partition we apply Rule 8, and
the algorithm stops.

So, only two partitions have been found, including
the trivial partition with a single community. The
other one isolates a small and dense community
connected to the remaining part of the network by
a cut vertex, i.e. v1 whose removal disconnects the
network. This partition is far from that one ob-
served by Zachary in which there were two clusters
of equal size. Note however that the small cluster
is contained in one of the clusters of Zachary’s par-
tition. A similar result was obtained by Medus and
Dorso in [15], Fig. 1, when optimizing their strong
figure of merit subject to the constraint that com-
munities are strong ones.

Note that, due to the branching, all possible choices for
labelling edges (according to the strong community defi-
nition) are considered, and consequently all the partitions
corresponding to that definition are generated. Such par-
titions correspond to the leaves of the branching tree.
According to Rule 7, only leaves (subproblems) giving
rise to feasible solutions are stored.

IV. A VARIANT OF THE ALGORITHM SC:

ASC

From the discussion of the real-word example of com-
munity detection in the strong sense presented in the
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FIG. 4. Solution with two strong communities found by algo-
rithm SC for Zachary karate club network (color online).

previous section it appears that: (i) results are often
satisfactory in terms of individual communities, as the
strong conditions are not easily satisfied; (ii) communi-
ties are however often too large and correspond in fact
to the union of several distinct communities; (iii) in the
limit one finds a single community regrouping all vertices,
which of course is not informative; (iv) the main reason
for having large heterogeneous communities appears to
be due to the degree two vertices. Indeed, the strong con-
dition imposes that them and both of their two neighbors
belong to the same community, while these neighbors can
be very different in terms of their own neighbors.
This suggests to weaken the strong condition when it

appears to be unjustified, i.e., for the degree two vertices.
We call a community almost-strong if it satisfies the con-
dition kini ≥ kouti for all vertices of degree two, and the
strong condition kini > kouti for the remaining vertices.
Modifications to be brought to the algorithm of the

previous section in order for it to find partitions in the
almost-strong sense are minimum. They lead to a modi-
fied algorithm called ASC (Almost-Strong Communities).
Indeed, it suffices to remove Rule 2 and update Rules 4.a,
4.b, 4.c and 6.a by specifying that in the case of a vertex
vi of degree 2, one uses majority and not strict majority.
Rules of the modified algorithm ASC are the following:

• Rule 1 (pending edges): if the edge (vi, vj) is a
pending one, set its label ti,j to 1 and set both
li and lj to min(li, lj). In words, both vertices of
pending edge must belong to the same community.

• Rule 3.a (positive transitivity): if li = lj and ti,j =
0, set ti,j = 1. In words, if two vertices vi and vj
belong to the same community, and are joined by
an edge which does not specify that, set the label
of this edge as positive.

• Rule 3.b (negative transitivity): if li 6= lj and
ti,j = −1, set ta,b = −1∀(va, vb) : la = li, lb =
lj , and ta,b = 0. In words, if two vertices belong to

different communities and are joined by a negative
edge, set to -1 all the edges with label 0 joining two
vertices of these communities.

• Rule 4.a.1 (majority 1 ): if the majority of neigh-
bors of the vertex vi with ki 6= 2 belong to the same
community and the label of the vertices belonging
to this community is l, set li = l = min(l, l1) and
apply the positive transitivity Rule.

• Rule 4.a.2 (majority 1’ ): if both neighbors of the
vertex vi with ki = 2 belong to the same commu-
nity and the label of the vertices belonging to this
community is l, set li = l = min(l, l1) and apply
the positive transitivity Rule.

• Rule 4.b (majority 2 ): if a vertex vi has degree
ki = 2d 6= 2, and there are d neighbors with label
l1 and d neighbors with label l2, set li = min(l1, l2),
and for all the vertices vk with lk = l1 or l2, set
lk = li. Then, apply the positive transitivity Rule.
In other words, merge the communities with labels
l1 and l2, and put in this new community the vertex
vi, too.

• Rule 4.c.1 (majority 3 ): if the number of negative
edges incident with the vertex vi with degree ki 6= 2
is equal to ⌈ki

2
⌉− 1, for all the neighbor vertices vj

of vi having ti,j = 0, set ti,j = 1, and for all the
vertices vk with lk = lj , set lk = li.

• Rule 4.c.2 (majority 3’ ): if the number of negative
edges incident with the vertex vi with degree ki = 2
is equal to 1, for all the neighbor vertices vj of vi
having ti,j = 0, set ti,j = 1, and for all the vertices
vk with lk = lj , set lk = li.

Rules 3 and 4 must be repeated as long as there is
at least one change of label.

• Rule 5 (branching): if no more labels of edges can
be modified according to the previous rules, select
an edge with label 0 which joins the two largest
communities. Set the label of this edge to -1 (left
branch). Then set separately this label to 1 (right
branch), store the current subproblem and return
to Rule 3.a.

• Rule 6.a.1 (no majority): if the number of negative
edges incident with a vertex vi with degree ki 6= 2
is larger than ⌈ki

2
⌉ − 1, apply Rule 8 below.

• Rule 6.a.2 (no majority’ ): if the number of negative
edges incident with a vertex vi with degree ki = 2
is larger than 1, apply Rule 8 below.

• Rule 6.b (no coherent labels): if there exist two
vertices vi and vj with li = lj and ti,j = −1, apply
Rule 8 below.

• Rule 7 (feasible solution): if all edges have a label -1
or 1, store the corresponding partition, then apply
Rule 8.
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• Rule 8 (backtracking): return to the latest appli-
cation of the branching rule and consider the right
hand-side branch as current subproblem.

V. RESULTS

In this section we compare the results obtained by
the SC and the ASC algorithms to find partitions in
the strong and the almost-strong sense. As partitions in
the almost-strong case may be very numerous, we only
store those which have the largest number of commu-
nities. Further discriminations between them could be
obtained according to the values they give to some ob-
jective function. This topic will not be discussed here.
Let us first consider again Zachary’s karate club. The

largest number of communities in almost-strong parti-
tions is three. There is only one partition with three
communities and it is represented in Fig. 5. There are
also 22 partitions into two clusters, including one where
the diamond and triangle shaped communities are joined
into a single one. This partition coincides with the par-
tition between followers of the karate club administrator
and the instructor in the split observed by Zachary ex-
cept for member 10 (which is often misclassified). An-
other partition into two clusters is of course the strong
partition of Fig. 4 and finally there is also the trivial
partition.

FIG. 5. Partition into three almost-strong communities ob-
tained by algorithm ASC for Zachary karate club network
(color online).

A second real-world dataset concerns informal com-
munications within a sawmill on strike [25]. Vertices are
associated with the 24 employees of a wood processing
facility where a new management team proposes changes
to the compensation package. The workers refuse and a
strike ensues. Facing a stalemate, the management asks
a consultant to analyze the communications among the
employees. Edges of the network correspond to frequent
discussions on the strike between pairs of colleagues. Two
partitions into strong communities were obtained with

the SC algorithm; one of them is a clique on 4 vertices
(10, 11, 12, 13) corresponding to all spanish-speaking em-
ployees, the remaining 20 employees are english-speaking;
see Fig. 6(a). The ASC algorithm gives 20 partitions. A
single one of them has 4 communities (see Fig. 6(b)), and
none had more. The small community with 4 spanish-
speaking employees remains the same. The second com-
munity of 20 employees is split into 3 communities: a first
one corresponds to 9 english-speaking employees with age
less than or equal to 30. The second community with 9
employees and the third one with 2 employees correspond
to older english-speaking workers. The partition of the 24
employees in three communities, i.e., spanish-speaking,
young english-speaking and older english speaking em-
ployees obtained by joining the two last communities cor-
responds exactly to the partition obtained by the consul-
tant. As the strong conditions and the almost-strong con-
ditions remain satisfied when communities are merged,
the ASC algorithm did also find the optimal three com-
munity partition. Detection of the small community with
employees 16 and 21 may be interpreted in that these em-
ployees are less talkative, or less concerned by the strike,
than most of the others.

It thus appears that algorithm SC recognizes well a
small, almost isolated community but groups unduly the
others. Algorithm ASC finds the optimal partition and
it perhaps provides a little more information.

A next example purports to graph theory. Mr.
Cherowitzo compiled a glossary of graphs and digraphs
[26]. The version of 2003, in Pajek format, contains 72
vertices associated with terms. An arc from vi to vj
means that the concept associated with vi is used in the
definition of vj . We neglected orientation of arcs and con-
sidered only the largest connected component, which has
60 vertices and 114 edges. Applying algorithm SC only
the trivial partition was found. Turning to algorithm
ASC, many partitions were obtained, 5 of which have
the largest number of communities, i.e., 6. The most
intuitively appealing of them is presented on Fig. 7.

We next comment on these communities going from
the smallest to the largest. The first community corre-
sponds to two terms, i.e., {complete, clique}. They are
clearly close, as a complete graph is a clique. The second
community also has two terms, pertained to computer
search, i.e., {child, ordered tree}. These two communities
appeared unchanged in all 5 partitions into 6 communi-
ties. A third community contains 7 terms, i.e., {decision
tree, binary search tree, m-ary tree, rooted tree, offspring,
level, height}. All those terms correspond, as did those
of community 2, to computer search. Community three
is similar in the 4 other partitions into 6 communities ex-
cept for that the term decision tree is assigned to another
community. A fourth community contains 8 terms, i.e.,
{diameter, distance, hamiltonian, walk, trail, path, aci-
clyc graph, cycle}. These terms correspond to concepts
related to paths and cycles. A fifth community contains
17 terms, i.e., {strongly connected, tournament, digraph,
orientation, arc list, neighborhood, node, order, internal
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(a) (b)

FIG. 6. Partitions into strong communities and into almost-strong communities obtained by algorithms SC and ASC respectively
for the strike dataset (color online).

FIG. 7. Partition into almost-strong communities obtained by algorithm ASC for the graph and digraph glossary dataset (color
online).

vertex, vertex, pendant vertex, leaf, degree, regular, ad-
jacency structure, adjacent, closure}. It seems difficult
to find a concept encompassing all of these terms. The
five first, i.e., {strongly connected, tournament, digraph,
orientation, arc list} correspond to oriented graphs. The
remainder corresponds to vertices and adjacency. Note
that this community contains several pairs of synonyms,
i.e., {node} and {vertex}, and {pendant vertex} and
{leaf}. The sixth community contains 24 terms, i.e.,
{label, isomorphic, planar, edge, size, topological order,
adjacency matrix, loop, reduced graph, condensed graph,
homeomorphic, bipartite graph, spanning subgraph, sub-
graph, spanning tree, connected component, bridge, con-
nected, forest, tree, graph, cromatic number, k-colorable,
arc}. This community appears to be less homogeneous

than the others. Some concepts are related to edges, i.e.,
{edge, loop, size, label}. Others correspond to properties
or families of graphs: {isomorphic, homeomorphic, con-
densed graph, reduced graph, bipartite graph, spanning
subgraph, spanning tree, subgraph, connected compo-
nent, connected, bridge, tree, k-colorable, cromatic num-
ber, graph}. Although this partition appears to be quite
informative, it is not perfect, e.g. because {forest} and
{acyclic graph} are synonyms but attributed to differ-
ent communities. Or yet close terms such as {adjacency
matrix} and {adjacency structure} are also attributed to
different communities.
A fourth example comes from the well-known paper

on dolphins due to Lusseau et al. [27]. However, it does
not concern the set of all 62 dolphins, but another net-
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work giving the sociogram of the community for groups
followed between 1995 and 2001. This network has 40
vertices and 70 edges. When trying to find communities
in the strong sense four partitions were obtained, one
with three communities, represented on Fig. 8(a), two
obtained by merging pairs of adjacent communities, and
the trivial partition.

Finding communities in the almost-strong sense gives
a partition in eight communities, which is represented in
Fig. 8(b). It refines one of the communities by isolat-
ing a small two vertices community with one vertex of
degree two. It also refines more drastically the largest
community by isolating four subnetworks with two, two,
three and four entities. Each of these subnetworks con-
tains a vertex of degree two. It appears clearly that
this almost-strong partition is more informative than any
other strong one.

We next studied the full set of 62 dolphins, for which
a real-world partition into two communities has been ob-
served by Lusseau et al. [27]. Algorithm SC found four
strong partitions, all of which have two communities, plus
the trivial partition. None of these bipartitions is close to
the optimal one, observed by Lusseau. The closest bipar-
tition is presented in Fig. 9(a) and has 14 misclassified
dolphins. Turning to the ASC algorithm it was found
that it became quite time consuming. A partial resolu-
tion gave 7 partitions into 4 communities. One of them
(see Fig. 9(b)) has a community which is the same as
the 21 dolphins community of Lusseau, and consequently
the union of the other three communities is equal to the
41 dolphins community of Lusseau [28]. We also use a
mixed-integer program [29] with the almost-strong condi-
tion on communities and as objective to find a partition
in as many communities as possible. This gives us a par-
tition very close to that one obtained by partial resolution
with ASC. It has 4 communities which are equal to those
obtained previously, except for the fact that dolphins 16
and 56 now belong to a community adjacent to their own
(diamond instead of triangle shaped community).

Our last dataset is the set of characters of Victor
Hugo’s Les Misérables [30, 31]. 77 vertices correspond
to these characters and 254 edges indicate direct inter-
action i.e., an edge joins vertices vi and vj if and only
if the corresponding characters appear jointly in at least
one of the many, usually short, chapters of the novel. Al-
gorithm SC gives a partition into 4 strong communities,
and it is represented in Fig. 10(a). Algorithm ASC was
too time and space consuming and did not give useful
results for this dataset. So we used again the mixed-
integer program mentioned above. We then obtained an
almost-strong partition with 7 communities presented in
Fig. 10(b).

Comparing results of SC and ASC we observe that
the partition of ASC is clearly more discriminant than
that of SC. The largest community is broken up into 2
communities and slightly mixed with the second largest
community. This second largest community is broken up
into 3 communities. One of the remaining communities

is unchanged, and the second one slightly modified by
moving vertices 3 and 4 to the largest community. This is
arbitrary as in both cases the ASC condition is satisfied.
Moreover, in absence of a generally accepted substan-

tively justified partition for les Misérables, we compare
both partitions obtained by SC and the mixed-integer
version of ASC, with the partition obtained by the edge
ratio (ER) algorithm [24], which has an excellent intuitive
interpretation. The ER partition contains 10 communi-
ties, represented in Fig. 11. They can be described as
follows:

• C1: two young children; C1 = {74, 75}.

• C2: Gavroche, Marius and the revolutionaries,
members of the friends of the ABC association;
C2 = {49, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 77}.

• C3: the evil innkeeper Thénardier,
his family and accomplices; C3 =
{26, 40, 41, 42, 43, 69, 70, 71, 72, 76}.

• C4: an alias of Thénardier and the wife of his ac-
complice Brujon; C4 = {47, 48}.

• C5: Bishop Myriel and the characters he met dur-
ing his long life; C5 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

• C6: protagonists of the Champmathieu affair;
C6 = {30, 35, 36, 37, 38, 39}.

• C7: students and their grisettes (except Fantine
who pertains to the main plot) whom they loved
and abandoned;
C7 = {17, 18, 19, 20, 21, 22, 23}.

• C8: Fauchelevent, saved from an accident by Jean
Valjean, who provides sanctuary at the convent of
which Mother Innocent is priores, and gardener
Gribier also living there; C8 = {29, 45, 46}.

• C9: the family of Marius;
C9 = {50, 51, 52, 53, 54, 55, 57}.

• C10: the central plot with the main hero Jean
Valjean (12), his nemesis inspector Javert (28),
as well as Fantine (24) and Cosette (27); C10 =
{11, 12, 13, 14, 15, 16, 24, 25, 27, 28, 31, 32, 33, 34, 44, 73}.

As can be seen on Fig. 10, algorithm SC finds exactly
the two communities C5 and C6. However, it groups sev-
eral other communities. Indeed, it groups the community
C2 but omitting Marius (vertex 56), together with the
two small communities C1 and C4. These two mergings
are less damaging than omitting Marius as the four pro-
tagonists of these two communities are minor characters
connected only to Gavroche (vertex 49) in community C2.
All other characters are joined into a big communities of
44 characters. So once again algorithm SC determines
exactly some of the communities, but gives a fuzzy de-
scription of another one, and merges all the remaining
ones.
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(a) (b)

FIG. 8. Partitions into strong communities and into almost-strong communities obtained by algorithms SC and ASC respectively
for the small dolphin dataset (color online).

(a) (b)

FIG. 9. Partitions into strong communities and into almost-strong communities obtained by algorithms SC and ASC respectively
for the dolphin dataset (color online).

Comparing now the partitions obtained for ASC and
ER we find that they are much closer than those of SC
and ASC, as well as of those of SC and ER. Indeed, the
ASC partition contains without errors 3 of the communi-
ties of the ER partition, i.e., C1, C4 and C6. Three other
communities, i.e., C2, C5 and C7, are slightly different
in the two partitions. As mentioned above, the sister
and the maid of Bishop Myriel (associated respectively
to vertices 4 and 3) can be arbitrarily assigned to com-
munity C5 or C10. Community C7 is larger in the ASC
partition than in the ER one, Fantine (vertex 24) and
Marguerite (vertex 13) being added. Finally, the ASC
partition groups the communities C3, C8 and C9 with the
remaining part of the main plot community, except for

vertices 40, 53 and 57 which belong to community C2. It
thus appears that the ASC criterion recognises precisely
several communities but may still unduly merge some of
them.

In order to summarize the diffences between the pro-
posed algorithms, details characterizing the best parti-
tions obtained by SC and ASC for the tested networks
are shown in Table I. We show the number of communi-
ties of the best partition found by SC and ASC (M), the
cardinality of the biggest (B) and smallest (S) commu-
nity, and the percentage of vertices which are classified
in the same way by both algorithms (SV ). To compute
SV we consider the maximum number of nodes shared
by a community found by ASC and the corresponding
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(a) (b)

FIG. 10. Partitions into strong communities and into almost-strong communities obtained by algorithms SC and ASC respec-
tively for Les Misérables dataset (color online).

FIG. 11. Partition obtained by algorithm ER for Les Misérables dataset (color online).

one provided by SC. For instance, if SC founds a com-
munity C1, while ASC identifies two communities C1a

and C1b in place of C1, with C1 ⊆ C1a

⋃
C1b, then the

number of nodes equally classified with respect to these
communities is equal to max {C1

⋂
C1a, C1

⋂
C1b}.

It is easy to see that, even though in general more
than 50% of vertices are classified in the same way, ASC
usually gives partitions into more communities than SC.
In ASC partitions, the vertices are in general more uni-
formly distributed among the communities, and usually
there is a very small community containing two elements
only. On the other hand, SC tends to create less but
larger communities, as can be seen from the sizes of the
biggest communities.

SC ASC

Network M |B| |S| M |B| |S| SV

Zachary 2 29 5 3 17 5 64,71%

Strike 2 20 4 4 9 2 54,17%

Graph 1 60 60 6 24 2 40,00%

Small dolphins 3 20 7 8 11 2 67,50%

Dolphins 2 35 27 4 27 2 74,19%

Les Misérables 4 44 6 7 33 2 75,32%

TABLE I. Comparison between the best partition found re-
spectively by SC and ASC for the tested networks. M is the
number of communities, |B| and |S| are the cardinality of the
biggest and smallest community, while SV refers to the per-
centage of nodes classified in the same way by SC and ASC.
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VI. CONCLUSIONS

Several conditions which should be satisfied by com-
munities in a network have been proposed by various au-
thors. In this paper we studied one of the most intuitively
appealing, i.e., the condition to have a community in the
strong sense proposed by Radicchi et al. [20]. It states
that to be a community in the strong sense, a subset
S ⊆ V of vertices should be such that the indegree must
be larger than the outdegree for each vertex vi ∈ S.

A too stringent condition does not have a high degree
of resolution, i.e., it may have a tendency to regroup sev-
eral natural communities into large ones. Conversely, a
too lax condition can generate a large number of small
and not necessary relevant communities. We have inves-
tigated the question of whether the definition of strong
community is too stringent or too lax. To that effect
we have proposed an exact enumeration algorithm which
guarantees finding all partitions of a network into strong
communities. This algorithm is quite intuitive, as illus-
trated by the fact that it could be applied by hand to
the well-known Zachary karate club network. Actually,
it has solved problems with up to 77 vertices. For large
networks both the resolution time and memory occupa-
tion may be very large, since all the possible choices for
labelling would lead to a very big branching tree.
In summary, computational results show that while

some not too large communities are found in a crisp way,
it is not uncommon for several network communities to
be joined in larger, heterogeneous ones. In the limit, one
can obtain only the trivial partition in which all vertices
belong to the same community. The reason for the forma-
tion of too large communities appears to be the presence
of degree two vertices. Indeed, when a vertex has degree

two, the strong condition imposes that itself and both of
its neighbors belong to the same community.
To test this simple hypothesis, we have modified the

definition of community in the strong sense in a mini-
mal but sufficient way. In the definition of community in
the strong sense we modify the strict inequality between
indegree and outdegree to a non-strict inequality for all
vertices of degree two and only them. We say that this
new condition defines a community in the almost-strong
sense. Then we have modified, slightly but sufficiently,
the algorithm SC to conform to this new condition. In-
deed, the resulting algorithm ASC usually gives parti-
tions into more communities than algorithm SC. More-
over, they are usually more intuitively appealing.
Combining a criterion for community evaluation with

constraints on each community has been pioneered by
Medus and Dorso [15]. This work can be pursued in two
ways: (i) modifying the models and the corresponding al-
gorithms or heuristics to incorporate the constraints on
the communities from the outset, or (ii) using a stan-
dard algorithm or heuristic then checking if the obtained
communities satisfy the given constraints; if not, apply
some specific heuristic to restore feasibility. Those two
approaches are the topic of a paper in preparation.
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