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In a recent paper, Zhan, Zhang, Guan, and Zhou [Phys. Rev. E 83, 066120 (2011)] presented
a modified adaptive genetic algorithm (MAGA) tailored to the discovery of maximum modularity
partitions of the node set into communities in unipartite, bipartite, and directed networks. The
authors claim that “detection of communities in unipartite networks or in directed networks can
be transformed into the same task in bipartite networks.” Actually, some tests show that it is not
the case for the proposed transformations, and why. Experimental results of MAGA for modularity
maximization of untransformed unipartite or bipartite networks are also discussed.
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Networks, or graphs, are increasingly used for model-
ing and optimization of complex systems in many fields
[1]. A network G = (V,E) consists of a set V of nodes,
represented by points, and a set E of edges, represented
by lines joining pairs of points. A simple, unipartite net-
work has no multiple edges or loops. A bipartite network
G = (V1, V2, E) has two subsets of nodes V1 and V2 and
all its edges join pairs of nodes in different subsets. A
network is directed if its edges have an orientation, i.e.,
go from an initial node to a terminal one.
A basic problem is to find communities, or modules, in

such networks, i.e., subsets of nodes that are more likely
to be joined pairwise by an edge than nodes in different
modules. Various authors have given mathematical ex-
pressions for this problem. In particular, Newman and
Girvan [2] have proposed an attractive objective function
called modularity, and defined it as

Q =(fraction of edges within communities)
- (expected fraction of such edges).

Modularity maximization has been extensively stud-
ied, first in unipartite networks, and more recently, in
bipartite networks and other generalizations. Scores of
heuristics have been proposed as well as a few exact al-
gorithms. Heuristics rely on a large variety of approaches.
In a recent paper [3], Zhan, Zhang, Guan, and Zhou
present a modified adaptive genetic algorithm (MAGA)
and apply it to modularity maximization in unipartite
and bipartite networks. Moreover, these authors claim
that “detection of communities in unipartite networks or
in directed networks can be transformed into the same
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task in bipartite networks.” In order to discuss this claim,
we first recall the definition of modularity [2]:

Q =
1

2M

N
∑

i=1

N
∑

j=1

[

Ai,j −
kikj

2M

]

δ(gi, gj), (1)

where M is the number of edges of the network, N is the
number of nodes, Ai,j is an element of the adjacency ma-
trix equal to 1 if nodes i and j are joined by an edge and
0 otherwise, and ki and kj are, respectively, the degrees
of nodes i and j, that is, the number of edges incident
with i and with j. Finally, gi and gj are the commu-
nities to which belong nodes i and j, and δ is the Kro-
necker symbol equal to 1 if gi and gj are the same and
0 otherwise. The values of Q range from -1/2 to 1 ([4],
Lemma 1). Modularity maximization in unipartite net-
works is NP-complete in the strong sense ([4], Theorem
3). To the best of our knowledge, the complexity status
of modularity maximization in bipartite networks is an
open problem.
Consider now a bipartite network. According to Bar-

ber [5] and Leicht and Newman [6], modularity becomes

Qb =
1

M

p
∑

i=1

N
∑

j=p+1

[

Ãi,j −
kikj

M

]

δ(gi, gj), (2)

where V1 = {1, . . . , p}, V2 = {p + 1, . . . , N}, and the
adjacency matrix Ab is

Ab =

[

0p×p Ãp×q

(ÃT)q×p 0q×q

]

.

Optimization problems with or without constraints can
either be solved directly or transformed into another
problem and then solved. Such transformations must be
justified in every case. They have two advantages which
would be, for modularity maximization, to unify some-
what the field and to bring to bear heuristics for bipartite
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FIG. 1. Transformation of a simple unipartite network into a
bipartite one. (a) A unipartite network with five nodes and
six edges. (b) The bipartite network corresponding to (a).

maximization on the solution of modularity maximiza-
tion problems in unipartite or directed networks.

Zhan et al. [3] propose the following transformation
from a unipartite to a bipartite network: each node i of
the original network is represented by two nodes Ai and
Bi, and each edge i− j is represented by two edges Ai −
Bj and Aj − Bi. This transforms a unipartite network
with N nodes andM edges into a corresponding bipartite
network with 2N nodes and 2M edges. An illustration
is given in Fig. 1, borrowed from their paper.

In order to check for equivalence, the maximum mod-
ularity of the network in Fig. 1(a) has been computed
with the clique-partitioning algorithm [7, 8]. This maxi-
mum modularity is equal to 0.111111, and corresponds to
a partition in two modules g1 = {1, 2, 4} and g2 = {3, 5}.
To the best of our knowledge there is, as yet, no exact
algorithm for modularity maximization in bipartite net-
works. Therefore we used a heuristic, i.e., LPAb’ [9] to
compute the maximum modularity of network 1(b). The
near-optimal (or possibly optimal) partition obtained has
a modularity of Qb = 0.347222 corresponding to a par-
tition in two modules g1 = {A1, A3, B2, B4, B5} and
g2 = {A2, A4, A5, B1, B3} (this solution is not unique,
another near-optimal one is g1 = {A1, A2, A3, B4, B5}
and g2 = {A4, A5, B1, B2, B3}). This example refutes
the claim cited above.

Justification of the authors’ claim is based on the three
equations:

Qb =
1

2M

N
∑

i=1

2N
∑

j=N+1

[

Ãi,j −
kikj

2M

]

δ(gi, gj)

=
1

2M

N
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N
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=
1
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N
∑

i=1

N
∑
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[

Ai,j −
kikj

2M

]

δ(gi, gj) = Q.

The first line of (3) follows from the definition of Qb, tak-
ing into account that the bipartite network (b) has 2N
nodes and 2M edges. Going from the first equation to
the second one, is a standard change of indices. The last
equation is obtained by going back from Ab to A (or, in
other words, focusing on the right upper square subma-
trix Ã of Ab). It is implicitly assumed that the partition
into communities does not change. This is expressed by
the statement “where we have made use of the fact that
the node Ai and Bi should be in an identical commu-
nity,” but as clearly shown by the example, this is not
always true. Ai and Bi can be in different communities
of the bipartite network. Indeed, it is likely to be so as,
by construction, they are never joined by an edge.

One could then add explicit constraints specifying that
each pair of nodes Ai and Bi must belong to the same
community. Such constraints are usually easy to ex-
press, e.g., by identifying boolean variables for the as-
signment of entities to communities. However, if one
adds some constraints, one gets into a different class of
problems than modularity maximization in bipartite net-
works. This optimization problem with constraints will
need a new or modified heuristic, as the heuristics for
modularity maximization in bipartite networks of the lit-
erature do not apply anymore. Of course, one could use
the constraints for each pair of nodes to merge them, but
that brings one back to the original unipartite case.

It is hard to see what advantage there would be to
transform a unipartite network into a larger bipartite one
with constraints. Indeed, in the paper upon which we
comment, when considering unipartite networks in their
computational experiments the authors apply MAGA di-
rectly to these networks, without transforming them into
bipartite ones.

Zhan et al. [3] (see also [10]) propose a transforma-
tion analogous to the previous one of a directed network
into a bipartite one. A node i is represented by two
nodes Ai and Bi and a directed edge from i to j as an
(undirected) edge between Ai and Bj . This transforms
a directed network with N nodes and M directed edges
into a corresponding bipartite network with 2N nodes
and M undirected edges. An illustration is given in Fig.
2. The argument defending the claim that this transfor-
mation does not change the modularity value is similar
to the case of the transformation from the unipartite to
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FIG. 2. Transformation of a simple directed network into a
bipartite one. (a) A directed network with five nodes and six
edges. (b) The bipartite network corresponding to (a).

the bipartite. It relies on the three equations (4):

Qb =
1

M

N
∑

i=1

2N
∑

j=N+1

[
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]
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where the symbols are defined above, except for the half-
degrees kouti and kinj , which are equal to the number of
directed edges going out of i and into j, respectively.
Once more, it is assumed that each pair of nodes Ai and
Bi belongs to the same community.
Optimizing modularity of network 2(a), with the clique

partitioning algorithm previously mentioned, gives an op-
timal partition into two communities g1 = {3, 5} and
g2 = {1, 2, 4} with a modularity of Q = 0.111111. Com-
puting the maximum modularity of the network 2(b)
with LPAb’ leads to a partition into four communities
g1 = {A1, B2}, g2 = {A2, B4}, g3 = {A3, B5}, and g4 =
{A4, A5, B1, B3} with a modularity of Qb = 0.666667
Zhan et al. [3] mention that MAGA can be applied di-

rectly to modularity maximizing in unipartite or bipar-
tite networks without transforming them, and in their
abstract they claim “Experimental results show that the
MAGA outperforms existing methods in terms of modu-
larity for both bipartite and unipartite networks.” They
report empirical results for both kinds of problems. In
the bipartite case, they compare the results of MAGA
with a standard genetic algorithm (SGA) and with a mul-
tiobjective genetic algorithm (MOGA) [11]. The superi-
ority of MAGA and SGA over MOGA is very clear for

Network Nodes Edges Q LPAb+ Q MAGA

Southern women 18+14 89 0.3455 0.3455

Scotland interlock 86+131 348 0.7091 0.7093

TABLE I. Maximum values of modularity Q for real-world
bipartite networks obtained by heuristics LPAb+ and MAGA.

artificial bipartite networks. Moreover, they studied two
real-world networks, namely, the southern women [12]
and Scotland corporate interlock [13] networks. For the
first network MAGA gives the same modularity value as
BRIM [5], while MAGA gives better results than BRIM,
SGA, and MOGA in the second case. Recently, Liu and
Murata [9],[14] obtained an almost as good partition than
Zhan et al. [3] for the second case (the difference in value
is in the fourth decimal place), with an improved version
of the label propagation algorithm for bipartite networks
(LPAb+), as shown in Table I.
Six well-known unipartite networks were also used (i.e.,

Zachary karate club [15], jazz musicians [16], C. ele-

gans metabolic [17], e-mail [18], PGP [19], and Cond-
mat [20] networks). Results are compared with those of
the Girvan Newman heuristic [21], extremal optimization
[22], spectral relaxation [23, 24], and simulated annealing
[25]. MAGA obtained the best results in all cases, im-
proving the records for the three largest ones (e-mail,
PGP, and Condmat). However, other researchers did
recently obtain equally good results for the first three
problems and better ones for the three last ones [i.e., Liu
and Murata’s label propagation algorithm for unipartite
networks (LPAm+) [26], and Noack and Rotta with the
single-step multi-level algorithm (SS-ML) [27])], as shown
in Table II.

SS-ML LPAm+ MAGA

Network Nodes Edges Q Q Time Q Time

Zachary 34 78 0.420 0.420 0.014 s 0.420 0.1 s

Jazz 198 2742 0.445 0.445 0.368 s 0.445 19 min

C. elegans 453 2025 0.446 0.452 1.247 s 0.452 12 min

e-mail 1133 5451 0.577 0.582 3.589 s 0.581 72 min

PGP 10680 24316 0.884 0.884 114.221 s 0.881 610 min

Condmat 27519 116181 0.814 0.755 461.599 s 0.802 3517 min

TABLE II. Maximum values of modularity Q for real-world
unipartite networks obtained by heuristics SS-ML, LPAm+,
and MAGA. Computing times for LPAm+ on a 2.53-GHz
Intel Core 2 Duo CPU and MAGA on a PC with two 2.93-
GHz Intel processors.

The comparison of results of MAGA and state-of-the-
art heuristics for unipartite modularity maximization re-
ported on in this Comment shows that MAGA gets a
solution equal to the best previously known in half of
the cases and worse in the other cases. The differences in
value are twice in the third decimal place and once in the
second. Moreover, the computing time of MAGA is quite
large and increases rapidly. On comparable computers,
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MAGA takes 7 to 3000 times more time than LPAm+ to
solve the problems of Table II. Nevertheless, MAGA has
some advantages: mainly, robustness. Indeed, as other
evolutionary algorithms, it provides several near-optimal
solutions instead of a single one, as done by most heuris-

tics of other families.

ACKNOWLEDGMENTS

Financial support by Grants Digiteo 2009-14D “RM-
NCCO” and Digiteo 2009-55D “ARM” is gratefully ac-
knowledged.

[1] M. E. J. Newman, Networks: An Introduction (Oxford
University Press, Oxford, 2010).

[2] M. E. J. Newman and M. Girvan, Phys. Rev. E 69,
026113 (2004).

[3] W. Zhan, Z. Zhang, J. Guan, and S. Zhou, Phys. Rev.
E 83, 066120 (2011).

[4] U. Brandes, D. Delling, M. Gaertler, R. Görke, M. Hoe-
fer, Z. Nikoloski, and D. Wagner, IEEE Transactions on
Knowledge and Data Engineering 20, 172 (2008).

[5] M. J. Barber, Phys. Rev. E 76, 066102 (2007).
[6] E. A. Leicht and M. E. J. Newman, Phys. Rev. Lett. 100,

118703 (2008).
[7] M. Grötschel and Y. Wakabayashi, Math. Program. 45,

59 (1989).
[8] D. Aloise, S. Cafieri, G. Caporossi, P. Hansen, S. Perron,

and L. Liberti, Phys. Rev. E 82, 046112 (2010).
[9] X. Liu and T. Murata, Journal of Advanced Compu-

tational Intelligence and Intelligent Informatics 14, 408
(2010).
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