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Abstract. Information Retrieval (IR) systems combine a variety of tech-
niques stemming from logical, vector-space and probabilistic models.
This variety of combinations has produced a significant increase in re-
trieval effectiveness since early 1990s. Nevertheless, the quest for new
frameworks has not been less intense than the research in the optimiza-
tion and experimentation of the most common retrieval models. This
paper presents a new framework based on Discrete Fourier Transform
(DFT) for IR. Basically, this model represents a query term as a sine
curve and a query is the sum of sine curves, thus it acquires an ele-
gant and sound mathematical form. The sinusoidal representation of the
query is transformed from the time domain to the frequency domain
through DFT. The result of the DFT is a spectrum. Each document of
the collection corresponds to a set of filters and the retrieval operation
corresponds to filtering the spectrum – for each document the spectrum
is filtered and the result is a power. Hence, the documents are ranked by
the power of the spectrum such that the more the document decreases
the power of the spectrum, the higher the rank of the document. This
paper is mainly theoretical and the retrieval algorithm is reported to
suggest the feasibility of the proposed model. Some small-scale experi-
ments carried out for testing the effectiveness of the algorithm indicate
a performance comparable to the state-of-the-art.

Keywords: Discrete Fourier Trasform, Digital Filters, Information Re-
trieval Models.

1 Introduction

Different views of Information Retrieval (IR) have been proposed and imple-
mented in a series of models in the last four decades, the most famous being
the logical models, the vector space models, and the probabilistic models. The
variety of combinations of techniques originated from these models produced the
significant increase in retrieval effectiveness observed within the Text Retrieval
Conference (TREC) initiative [1]. However, the current retrieval technology is far
from being optimal within every domain, medium, language or context. For this
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reason, in addition to the numerous attempts to optimize and experiment the
current retrieval models for different media, languages and contexts, the quest
for new theoretical frameworks has been intense. [2, 3, 4, 5]

This paper illustrates a new framework which is based on Discrete Fourier
Transform (DFT) and is called Least Spectral Power Ranking (LSPR). The LSPR
framework provides the conceptual devices for designing and implementing an
innovative class of retrieval systems. An intuitive description of the framework
is provided in the remainder of this section while the other sections of the paper
explain LSPR in detail.

(a) Spectrum for the query of the example. (b) Detail of the spectrum near point 200.

Fig. 1: Spectrum for a query (1a) and a detail (1b).

Basically in the LSPR model the query is viewed as a spectrum and each
document as a set of filters, with one filter for each document term. Each term
of the query is associated with a discrete time sinusoidal signal Ai sin (2πfinT ),
where Ai is the weight of the term i in the collection (e.g. IDF) and fi is the
signal frequency (not related with the frequency of a term in a document); an
example is depicted in Figure 1a. How the signal frequency is chosen for each
term is explained in Section 4.1. Thus, the query becomes a sum of sinusoidal
signals for which the DFT can be computed. After the DFT module of the query
has been computed, the spectrum looks like a curve which has peaks of amplitude
proportional to Ai at the frequency fi and the values of the curve monotonically
decrease in the neighborhood of fi as depicted in Figure 1b. The behaviour of
the spectrum is crucial because the utilization of a sinusoidal signal combined
with the variation in the amplitude of the spectrum causes variations in retrieval
effectiveness (see Section 4.1 for more details) – the latter phenomenon has been
observed in the experiments carried out during the research reported in this
paper. In general, the DFT samples are complex numbers; computing the DFT
module means substituting each complex sample with its module.

To obtain the ranked document list, the spectrum of the query is filtered by
the documents, i.e. the filters. As a matter of fact, each document is represented
as a set of filters, each of them is similar to the one in Figure 2: the breadth
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Fig. 2: Example of frequency response for the used filter.

(a) A fragment of a spectrum with a filter. (b) The obtained filtered spectrum.

Fig. 3: Representation of the filtering operation.

depends on the weight (e.g. TFIDF or BM25) of the term, while the position of
the filter is set so that if a query has a term qi, associated with a peak in the
frequency fi in the spectrum, and in the document there is qi, the corresponding
filter has ZL and ZR near fi (as depicted in Figure 3a). The filtered spectrum
is depicted in Figure 3b. The documents are then ranked by the power of the
spectrum obtained as the sum of the components of the filtered spectrum. If a
document is associated with a low power, it is considered highly relevant by the
system, hence, the documents are ordered by increasing power. This is why the
model is called Least Spectral Power Ranking (LSPR).

The paper is organized as follows. In Section 2 an overview of the main
frameworks of the current IR models is presented. Section 3 presents the theory
and the methods of DFT and digital filters, which is required to understand the
rest of the paper, especially for those unfamilar with digital signal processing.
Section 4 introduces LSPR. After that, Section 5 shows how LSPR works with
an example (three documents and a query), while Section 6 suggests some future
research directions.
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2 Related Work

One of the quests in IR is whether a theory exists or not. The question is not
without merit because if the answer were affirmative this discipline would have a
solid framework in which the methodologies and experiments could be developed
with the same efficacy as that of the models and experiments used in Physics
to interpret the macro- or microscopic world. A model is the methodological
instrument for formulating theories about IR. Currently, IR systems combine
a variety of techniques stemming from logical, vector-space and probabilistic
models. It is this variety of combinations investigated over the last four decades
that has produced a significant increase in retrieval effectiveness in the last
almost twenty years as reported in [1].

The models proposed in the literature aim at capturing some of the variables
which affect the retrieval process. Although they are somehow complex, these
models are however quite oversimplified because they deliberately ignore many
other variables, especially those related to the user and to the context in which
the end users operate. What the models proposed in the literature have in com-
mon is the use of a “metaphor” for describing them in a simplified manner, thus
making their experimentation and dissemination possible.

The classical Boolean (or logical) model refers to set theory which views terms
as document sets (operands) and queries as set operations [6] – non-classical log-
ical models have been investigated by van Rijsbergen since 1980s [7]. The vector-
space models view terms as basis vectors, documents and queries as vectors of
the same space as conceived in the 1960s by Salton [8, 9] before being developed
into Latent Semantic Indexing [10] which computes alternative basis vectors for
expressing complex terms. The probabilistic models for IR refer to the theories
of probability (there are many [11]) which view terms or documents as events
(or random variables). There have been many contributions to the development
of the probabilistic models for IR, to cite but a few [12, 13, 14, 15, 3, 5]. Specific
classes of probabilistic models refer to the Bayesian networks [16] and more re-
cently to statistical language models [17, 3] inspired by speech recognition. The
recent book by van Rijsbergen attempts to unify the logical, vector-space and
probabilistic models into a single framework – the one used to describe quantum
mechanics [4] – which views documents and terms as vectors, retrieval operations
as projectors and probability as a trace-based function.

The LSPR framework proposed in this paper differs from those proposed in
the past because the underlying mathematical basis is different, yet there are
some points in common. In our opinion, the main difference is the view through
which the terms or in general the information content of the documents and
of the queries are represented. In LSPR, the terms are sine curves which are
a mathematical representation of signals. As these curves are functions, they
can be treated algebraically. This property allows us to express queries and
documents as functions which can be transformed for capturing salient features.
In this paper, the DFT is the transform investigated.

The LSPR framework employs the mathematical constructs proposed in [18,
19] which report a complex framework for document retrieval. In particular, [19]
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addresses the problem of matching queries and documents in which query terms
occur at different positions and then with a variety of patterns. As matching doc-
uments by considering all the possible patterns is a difficult task, the authors
propose to transform the spatial view of the query term occurrences into another
domain. Therefore, each term of each document is represented as a signal and
each document is divided into components. The term signals are transformed
into term spectra which are a function of the magnitude and of the phase of the
term occurring within each component of each document (magnitude and phase
are then indexed by term, document and component). Document scores can be
obtained by combining the term spectra components across terms under the as-
sumption that a relevant document would have a high occurrence of query terms
(implying a high magnitude of components) and a similar position of each pat-
tern of query terms (implying similar phase). Unfortunately, this framework did
not produce significant improvements over the standard TFIDF-based vector-
space model. What makes LSPR different from those models is that the spectrum
and filtering are computed on the query and that the documents are the filters.
Moreover, LSPR models the query terms as signals independently of the problem
addressed in [19], the latter being a specific problem of text retrieval. Indeed,
LSPR aims at making the sinusoidal signals a modeling paradigm (as the vector
spaces, for example, are the paradigm of the vector-space model) rather than
the approach of addressing the problem addressed in [19].

3 Background

3.1 Discrete Fourier Transform

The Fourier transform is essential in digital signal processing, because it allows
us to analyze signals in the frequency domain in a more effective and efficient way
than the time domain analysis [20, 21]. For continuous time signals the Fourier
transform is employed, but if the signals are periodic the Fourier transform
can be replaced with the Fourier series. In the discrete time domain, there is
something similar and the transform related to discrete time periodic signals
is the Discrete Fourier Transform (DFT). DFT is the only transform that can
be computed numerically. Our interest in DFT derives from the need to analyze
periodic sinusoidal discrete signals in the frequency domain. To this end the Fast
Fourier Transform (FFT) is an O (N logN) algorithm [22, 23]. This approach is
a “divide-and-conquer” algorithm and was conceived by Cooley and Tuckey in
1965.3

In the following, the DFT is more formally introduced. Let x (nT ) be a
discrete time signal sample where T represents the distance between two samples.
The DFT of this signal is

X̃ (k) = T

N−1
∑

n=0

x (nT ) e−i2πkFnT F =
Fc

N
(1)

3 Actually, the first who spoke of this algorithm was Gauss, in 1805.
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where i =
√
−1, Fc is called sampling frequency, N is the number of samples

and k identifies the k-th sample of the DFT. In the remainder of this paper,
Fc = 1/T , therefore F = 1

NT
. In this way, Eq. 1 is

X̃ (k) = T

N−1
∑

n=0

x (nT ) e−i
2πn

N
k. (2)

In order to obtain the power of the spectrum, the module of Equation 2 has
to be computed from the complex numbers of the DFT. When x(nT ) is the
sampling of a real periodic function, the module of the DFT is symmetric with
respect to N/2, hence, we only need to operate with half of the spectrum.

3.2 Spectral Leakage

As stated earlier, the signals used in LSRP are supposed to be periodic, sinusoidal
and discrete. The general form for these signals is

Ai sin (2πfinT ) . (3)

The module of the DFT for the signal (3) has a peak proportional to am-
plitude Ai at the frequency fi (see Figure 4a), but if the frequency fi of the
signal is not a multiple of F , a distorted DFT is obtained; Figure 4b shows this
phenomenon, which is called spectral leakage. Usually, in digital signal process-
ing spectral leakage is avoided because it makes the recognition of the correct
frequencies of the signals difficult.

In contrast in the LSPR model, spectral leakage is kept because the presence
of some components with reduced amplitude at the frequencies close to fi makes
it possible to better estimate the relevance of a document – the reason will be
more clear in Section 4.1 – and introduces some constraints in the choice of F
and fi for the signals (3).

One of the most important theorems in digital signal processing is the sam-
pling theorem (or Whittaker-Nyquist-Kotelnikov-Shannon theorem). There are
a lot of equivalent definitions for this theorem. In this paper, the following is
used:

Theorem 1 (Sampling theorem [20]). Let x(t) be a signal with no frequen-

cies higher than fM Hertz. Then x(t) is uniquely determined by its samples

x(nT ) if Fc ≥ 2fM .

This theorem is important in the framework proposed in this paper because
it gives some conditions for the choice of the frequencies fi of the sinusoidal
signals (3), and for the choice of the parameters of DFT. This will be explained
better in Section 4.
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(a) DFT of sinusoidal signal with fi (i = 0) multiple of F .

(b) DFT of sinusoidal signal with fi (i = 0) not multiple of F .

Fig. 4

3.3 Digital Filtering

One of the most important subjects in digital signal processing is digital filter
design. A digital filter is a component that transforms an input signal x(nT )
to an output signal y(nT ) through the convolution of the input by the filter.
Convolution is quite difficult to compute if the Fourier transform is not used. In
contrast, after DFT has been applied to the signals and the filter, the computa-
tion is feasible. Let X̃(k), Ỹ (k) and H̃(k) be, respectively, the DFT of the input
signal, the DFT of the output signal and the DFT of the filter; the relationship
among these transforms can be written as:

Ỹ (k) = H̃(k)X̃(k). (4)

This equation performs filtering in the LSPR model with a simple multiplication
between two functions.

There are a lot of filters which could be used in this context. In this pa-
per, we used something similar to a notch filter which eliminates the spectrum
near a predefined frequency (called cut-off frequency), and keeps the spectrum
in corrispondence with the other frequencies unchanged. The design of a filter
appropriate for IR is still under investigation. Figure 5 shows an example of the
module for a notch filter.

Actually, in our tests we used a simplified filter, that is, a filter with a trian-
gular form. This is better explained in Section 4.
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Fig. 5: Module of the transform for a notch filter with cut-off frequency of 10
kHz.

4 Least Spectral Power Ranking

In this section Least Spectral Power Ranking (LSPR) which implements the
DFT-based framework is introduced. LSPR consists of three main steps:

1. transformation of a query into a spectrum,
2. transformation of a document into a notch filter set,
3. document ranking.

Before these three main steps some preprocessing is performed. The preprocess-
ing phase includes all the operations usually done by every IR system, such as
stemming and stopwords removal. In this first implementation of the model, we
used the well-known TF-IDF weighting scheme for the documents in the col-
lection. Actually, we used the normalized version of TF-IDF: if we call wij the
TF-IDF weight for the term i in the document j, the normalized version is

ŵij =
wij

√

∑

i w
2

ij

. (5)

This expression has been used to implement the strength of the filter. The
IDF weighting scheme has been used for implementing the amplitude of the
peaks in the spectrum. Other weighting schemes can be used as well.

4.1 Query to Spectrum Transformation

The first step is to set the parameters of the DFT (such as F and N) and of the
sinusoidal signals. We choose to set F = 2 Hz, and to set every frequency of the
signals (3) as an odd number: in this way it is not possible for a frequency to be
an integer multiple of F , and this guarantees the spectral leakage. This choice
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allows us to write equation (3) in another way. Recalling that T = 1

NF
:

Ai sin (2πfinT ) = Ai sin

(

πfin

N

)

. (6)

Before explaining how we choose the frequency of each signal, the parameter N
has to be set. It is important to remember that the spectrum is associated with
the query, and that for each query term there is a sinusoidal signal. In this way
the query is a sum of sinusoidal signals. The DFT of this sum is computed using
N samples (N is both the number of samples of the sinusoidal signals used as
input for the DFT and the number of points of the spectrum). For each term of
the query there are 300 points of the spectrum and the peak of the relative signal
is near point 200. These values are chosen because some experiments showed that
the amplitude of the spectrum was less than 1% of the peak value 100 points
after and before the peak. The use of 300 points assures that each sinusoidal
signal is related to a disjoint interval of the spectrum; for example, if the query
has 2 terms, there are 2 × 300 = 600 points. The number of points is the same
for each term. Methods for choosing the number of points depending on the
terms will be studied in the future. The FFT algorithm requires that this value
is rounded at the closest power of two, and that this value has to be doubled
due to the symmetry of the DFT (this last operation also has the advantage
of fulfilling the conditions of Theorem 1); for example, 600 is rounded to 1024
and finally N = 2048 = 1024 × 2. Fc = NF = 2048 × 2 = 4096 Hz, where
the maximum frequency fM among the sinusoidal signals is 1001 Hz, as shown
below, so the condition of Theorem 1 (Fc ≥ 2fM ) is verified.

In order to have the peak of the sinusoidal signal near to point 200 of the
relative 300-point interval and to guarantee spectral leakage, its frequency is set
to

(300 · (i− 1) + 200)F + 1 Hz (7)

where i refers to the i-th term of the query. Finally, the amplitude of the sinu-
soidal signal is the IDF weight of the term.

Now we can show with an example how this method works. Suppose there is
a query with 2 terms; for the sake of clarity, suppose also that the amplitudes of
the two original terms are equal, and we call this value A. When N = 2048, the
frequencies of the 2 signals are, respectively, 401 Hz and 1001 Hz using formula
(7). The input for the FFT algorithm is a N -points vector S, and it is calculated
as

S [n] = A sin

(

401πn

2048

)

+A sin

(

1001πn

2048

)

, n = 1, 2 . . . , N. (8)

The FFT algorithm returns the DFT of this vector and the module is some-
thing similar to Figure 1a. In this figure we can see that the spectrum is sym-
metric with respect to N/2 (point 1024, which corresponds to 2048 Hz), and the
peaks are near the points 200 and 500. Figure 1b shows more clearly the spec-
trum near point 200. Another important aspect showed by Figure 1b is the side
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effect of the spectral leakage. The decrease in importance follows the decrease in
amplitude of the spectrum: this is an important hypothesis, and the efficacy of
the presented model is based on it. Without spectral leakage, the figure would
show a single peak at point 200 and the function would be zero at the other
points, removing the decrease in the amplitude and making it impossible to es-
timate the decrease in importance, thus making futile the effect of the filtering
operations.

4.2 Document to Filter Transformation

Each document is transformed into a filter set (one for each document term). As
stated before, in LSPR, each filter is similar to a “notch” with triangular form.
To be precise, there are two points, ZL (Zero Left) and ZR (Zero Right), where
the module is 0, and there is a parameter called breadth such that the value
of the filter before ZL−breadth and after ZR+breadth is 1. Finally, to connect
ZL (ZR) with ZL−breadth (ZR+breadth) points, there is a linear function. An
example of this filter is represented in Figure 2, where Figure 3 shows a fragment
of a spectrum with a filter, and the obtained filtered spectrum.

Two issues needs some explainations: the selection of the breadth (which
represents the strength of the filter) and the position of the filter.

The former is the weight TF-IDF of the document term normalized by the
document length (ŵij), multiplied by a constant called selectivity. The value of
this constant was set to 24, because some experiments showed that for values
greater or smaller than 24, the MAP decreased. Probably, this value depends
on the collection, but the interesting fact is that 24 is a sort of maximum for
a function that relates selectivity and MAP. This reminds us of BM25 thus
suggesting some possible future research directions.

The latter is computed as follow: If the term was occurring in the query,
ZL and ZR were points 200 and 201 of the relative interval; this means that
for example if this term is the second of the query, ZL=500 and ZR=501, while
ZL=200 and ZR=201 for the first query term, as in Figure 2. Otherwise, the
filter is not created.

4.3 Document Ranking

Suppose a query is given as input to the system by the user and consider the set of
documents retrieved by the system; they are reranked by a score computed after
applying Equation (4). As a matter of fact, the module obtained by the query-to-
spectrum transformation is filtered by the filter set obtained after the document-
to-filter transformation phase. Finally, the score obtained by each document is
the sum of the module of the spectrum (the “power”) after filtering, hence, every
document is associated with a score. The documents are ordered by increasing
power because the more the filters decrease the power of the spectrum, the more
the system consideres the document and the query related. Figure 6 summarizes
LSPR.
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Algorithm: LSPR
Input: query Q, collection of documents
Output: ranked document list

1 Compute the vector S, as described in Section 4.1
2 spectrum ← |DFT(S)|
3 I ← [] (initialize I)
4 ZL← [] (initialize ZL)
5 for each term t of the query Q

6 do

7 Retrieve the posting list of t and call it L(t)
8 I ← [I, index of t− 1]
9 ZL← [ZL, 300 · (index of t− 1) + 200]

10 for each X ∈ L(t)
11 do

12 if it is the first time that document X is selected
13 then

14 f spectrum ← spectrum

15 end if

16 for i = 1 to |I|
17 do

18 breadth ← Round(selectivity · weight of qi in X)
19 f spectrum ← Filter(f spectrum, ZL[i], breadth, I[i]− 1)
20 end for

21 power [X]←

|f spectrum|∑

k=1

f spectrum[k]

22 end for

23 end for

24 Order the documents by increasing power and save the list in result

25 return result

Fig. 6: An algorithm to summarize LSPR.

In this algorithm, the notationX ← [] represents the initialization of a vector,
while X ← [X, i] is used to add a new element i to the vector X. Basically, the
rows from 1 to 4 represent the initialization phase; the rows from 5 to 9 set the
values of ZL for the filters (as explained in Section 4.2), and the rows from 10 to
22 describe the filtering operation. At the end, the power is computed and the
algorithm returns the ranking list. The Filter function used within the algorithm
has as inputs the spectrum, the ZL point of the filter, the breadth of the filter
and the index i of the term of the query, whereas it returns as output the filtered
spectrum. Basically, this function does the multiplications of the module of the
spectrum (e.g. that in Figure 1a) by the frequency response of the filter (e.g.
that in Figure 2), as shown in Figure 3.
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4.4 Some Preliminary Results

LSPR was tested by using the CACM test collection and compared with two
baselines:

– A basic vector-space model.
– The Divergence From Randomness (DFR) model implemented by Desktop

Terrier v.1.1.

After stopword removal and stemming, the retrieved list were measured by
trec eval. The Mean Average Precision (MAP) of the vector-space model was
0.242, while the MAP of DFR was 0.329. The MAP of LSPR was 0.348, thus
indicating a performance comparable to the state-of-the-art.

5 Example

To give a global idea about how LSPR works, in this section we present an
example with a collection of three documents and a query.

Suppose we have the following documents in the collection (for the sake of
clarity, we consider them after stopword removal, and without stemming):

– D1 : (retrieval, data, author, book);
– D2 : (information, computer, system, storage, information, data);
– D3 : (information, retrieval, system, relevance, MAP, precision, recall, rele-

vance).

Suppose also that the query is Q : (information, retrieval, relevance).
Table 1 represents the index of the collection, with the normalized TF-IDF

weighting schema, and the query with the IDF weighting schema.

D1 D2 D3 Q

author 0.663 0 0 0
book 0.663 0 0 0
computer 0 0.596 0 0
data 0.245 0.220 0 0
information 0 0.440 0.136 0.585
MAP 0 0 0.367 0
precision 0 0 0.367 0
recall 0 0 0.367 0
relevance 0 0 0.735 1.585
retrieval 0.245 0 0.136 0.585
storage 0 0.596 0 0
system 0 0.220 0.136 0

Table 1: Normalized TF-IDF index matrix and IDF weights for query
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At this point, we show how LSPR creates the spectrum of the query, as
described in section 4.1. First, the frequencies of the terms “information”, “re-
trieval” and “relevance” are set respectively to 401 Hz, 1001 Hz and 1601 Hz,
while N is 2048. Now, the vector S is computed as

S [n] = 0.585 sin

(

401πn

2048

)

+ 0.585 sin

(

1001πn

2048

)

+ 1.585 sin

(

1601πn

2048

)

(9)

where n = 1, 2 . . . , N . The vector S is given as input for the FFT algorithm, and
we obtain the spectrum shown in Figure 7 (actually, due to the symmetry, we
consider only half of the spectrum).

Fig. 7: Spectrum for the query

Now, the documents are transformed into filters, as explained in section 4.2.
Since D1 contains only the term “retrieval” of the query, with weight 0.245, it is
transofmed into a filter with ZL=500 (which corresponds to the peak of the term
“retrieval” in the spectrum) and with breadth=Round(24 · 0.245)= 6. Similarly,
D2 corresponds to a filter (“information”) with ZL=200 and breadth=Round(24·
0.440)=11. Finally, D3 is transformed into a set of three filters; the first one
(“information”) has ZL=200 and breadth=Round(24 · 0.136)=3, the second one
(“retrieval”) has ZL=500 and breadth=Round(24 · 0.136)=3, and the third one
has ZL=800 and breadth=Round(24 · 0.735)=18. At the end, after the filtering
operations on the spectrum represented in Figure 7, we obtain the filtered spectra
of Figure 8.

The power (sum of the components of the spectrum) of the spectrum of
Figure 7 is 13007.091, while the power of the spectra of Figure 8 are respectively
11836.613, 11649.498 and 6919.414; thus, according to the ranking rule of LSPR,
the first document retrieved is D3, the second is D2 and the third is D1.
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(a) D1 (b) D2 (c) D3

Fig. 8: Spectra after the filtering operations performed on the three documents.

6 Conclusions and Future Work

This paper describes an IR model, called LSPR, that uses DFT. The paper is
mainly theoretical because the focus of the paper was on the model whereas
future work will focus on large scale experimentation. Nevertheless, some exper-
iments were performed on a small scale. Preliminary results show that this model
works well, and its efficacy is comparable with the efficacy of the state-of-the-art.

LSPR was a first implementation of the framework based on DFT and a
variety of implementations can be obtained through the series of parameters
illustrated in the paper. It is our opinion that there is large room for improvement
by setting appropriate values for sample sizes, thresholds and frequencies. At
first glance, such an approach may be difficult, but the sound mathematical
framework of DFT may provide useful guidance and significant improvements.

Future work has three main objectives. First, efficiency needs to be improved.
In this first implementation, since the effectiveness evaluation of the model was
our focus, efficiency was not in the priority list. In order to test the model with
larger collections these aspects are very important, hence, an optimization of the
algorithm is necessary.

Second, we have to look for better configuration than those reported in this
paper. To obtain this, we will tune the parameters of the model. For example,
in this implementation we use the TF-IDF weighting scheme (and IDF for the
query), but other schemes such as Okapi BM25 can be tested. Another important
issue is the similarity between the terms: using some clustering algorithm [24],
we can estimate how two terms are related; these informations can be used to
increase the efficacy of the model, for example by associating other different
filters with the similar terms. In addition, the internal parameter of LSPR, such
as the number of points of DFT and the selectivity will be investigated.

Finally, the other feature of LSPR is that the functions are defined over the
complex field, the latter being a characteristic of Geometry of IR by van Rijs-
bergen [4] in which no restrictions were placed on the scalars. The use of the
complex field is a question of representation and many operations in that frame-
work are always real (thus permitting ranking). The fact that scalars are complex
and the descriptors are represented as sine curves, i.e. signals, helps enlarge the
research in IR to other media than text by leveraging the extra representation



15

power given by complex numbers. Moreover, the functions used in the Fourier
transform are mutually orthogonal. This property recalls the techniques devel-
oped within the vector space models (e.g. Latent Semantic Analysis) and the
framework developed by [4]. Further investigation will then be carried out on
these connections.

If the model leads to good results with larger experimental collections, we
can test it in other contexts, such as web information retrieval. Actually, we are
working on a modified version of LSPR for the recommender systems.
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