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Abstract: The Packing Equal Circles in a Square (PECS) problem is a nonconvex nonlinear optimization problem which
involves a high degree of symmetry. The Branch-and-Bound algorithms work bad due to the presence of
symmetric optima, because the Branch-and-Bound tree becomes large, and the time to reach the leaves (i.e.,
the optimal solutions) increases. In this paper, we introduce some inequalities which reduce the symmetry of
the problem, and we present some numerical results.

1 INTRODUCTION

Circle Packing in a Square is a well-known problem
in mathematics. There exist different but equivalent
mathematical formulations for it: if an optimum for
one of these is known, then we can easily find the op-
timal solutions for the others. In (Szabó et al., 2007)
there is a detailed description of the relationships be-
tween the existing formulations.

Among the most known settings for this problem,
we have the followings:

• Find the maximum common radius r for n non-
overlapping circles arranged in the unit square; we
refer to this description as Packing Equal Circle in
a Square (PECS);

• Place n points in the unit square such that the min-
imum pairwise distance is maximal; this problem
will be addressed as Point Packing in a Square
(PPS).

The previous descriptions represent some exam-
ples of the optimization version of the problem; there
exists also the decision version, like the following:

Given L and n, can n non-overlapping circles
of radius 1 be arranged in a square of side L ?

This problem is hard to solve by Branch-and-
Bound algorithms for two main reasons: first, more
than one optimal solution is possible, and the presence
of symmetric optima makes the search process longer.
Second, it is a nonlinear nonconvex problem. How-
ever, we chose to use the PECS formulation, since

some experiments showed it is easier to solve in prac-
tice.

1.1 Related Works

In the literature several techniques were proposed
to solve Circle Packing in a Square. One of the
approaches is to use geometrical properties of the
optimal solutions to derive a particular Branch-and-
Bound algorithm (Locatelli and Raber, 2002); another
Branch-and-Bound based technique uses the interval
arithmetics instead (Szabó et al., 2007).

However, it should be remarked that most of the
existing approaches are heuristics. In the billiard
simulation method (Graham and Lubachevsky, 1996),
each circle is a ball with radius, speed and direction;
then the radius is increased while the structure of the
packing becomes fix. A similar idea is used in the
Pulsating Disk Shaking (PSD) algorithm (Szabó et al.,
2007).

TAMSASS-PECS algorithm combines both the
Threshold Accepting method (TA) (where, as in the
Simulated Annealing, a new solution is accepted if it
decreases the quality of the current solution less than
a given threshold), and a modified version of SASS
(Single Agent Stochastic Search) for the PECS prob-
lem (Casado et al., 2001; Szabó et al., 2007).

The perturbation method tries to find good solu-
tions for PPS by moving the points in the square up,
down, left or right; how much we can move the points
is determined by a parameter, and its value decreases
during the process. After that, the position of a point



is updated if the distance between the point and the
neighbours increases (Boll et al., 2000).

Another approach to solve PPS, which is related
to a physical interpretation of the problem, is the min-
imization of an energy function (Szabó et al., 2007).
The points are viewed as electrical charges repulsing
each others: if the distance between two points in-
creases, the energy decreases. A similar approach was
used also in (Nurmela and Östergård, 1997).

It is also possible to describe the structure of the
optimal packing by means of a quadratical system
of equations. After some manipulation, the problem
can be reformulated as the solution of a polynomial,
where the smallest positive root is the optimal solu-
tion for PPS (Szabó, 2005; Szabó et al., 2007).

A different way to solve the problem consists
in trying to predict the structure of optimal pack-
ings. It was noticed that in the optimal solutions
there are some repeated patterns, thus it was possi-
ble to divide some packings into classes (Graham and
Lubachevsky, 1996; Nurmela and Östergård, 1997).
Even if not all the packings belong to one of the
known pattern classes, it is very likely that not all
classes has been discovered yet.

1.2 Effect of Symmetries in the
Mathematical Programming
Approach

In this paper, we do not propose a new specific algo-
rithm to solve PECS. We try to describe it as a math-
ematical programming problem, and to solve it with
general Mixed-Integer Nonlinear Program (MINLP)
solvers as COUENNE (Belotti et al., 2009) or BARON
(Sahinidis and Tawarmalani, 2005), which implement
the spatial Branch-and-Bound (sBB) algorithm, based
on a search tree; in fact, sBB can be used to obtain
an ε-approximation for general nonconvex NLPs and
MINLPs (Belotti et al., 2009; Liberti, 2006; Smith
and Pantelides, 1999).

When we try to solve PECS by using sBB algo-
rithms, we do not obtain good results: in fact, the
presence of several symmetric solutions makes the
BB tree very large, so the time to reach the leaves
(which represent the optimal solutions) becomes very
high.

We can characterize the symmetries of PECS by
means of the so called formulation group GP: it is
a subgroup of the permutations on the variables of
a problem P which maps optimal solutions in other
optimal solutions, and it is possible to calculate it
by looking at the formulation of the problem, as ex-
plained in (Costa et al., 2010a; Liberti, 2010). In
particular, the following theorem is proved in (Costa

et al., 2010a) (it is actually proved for the decision
version of Circle Packing, but the proof is almost the
same for PECS):
Theorem 1.1. The formulation group of Circle Pack-
ing in a Square is isomorphic to C2 x Sn.

Here, C2 (the cyclic group of order 2) refers to
swapping x and y axes and Sn (the symmetric group of
order n) refers to reindexing the circles in an arbitrary
way.

In order to break these symmetries, we add some
Symmetry Breaking Constraints (SBCs) to the origi-
nal formulation (Liberti, 2008; Liberti, 2010). Recall
that a set of constraints h(x) ≤ 0 are SBCs with re-
spect to π ∈ GP if there is an optimal solution y such
that h(πy)≤ 0. Adjoining SBCs to a problem P yields
a narrowing Q of P: this means that in Q some sym-
metric optima of P become infeasible, but at least one
is kept (Liberti, 2009).

In (Costa et al., 2010a) some classes of SBCs were
proposed, and the better results were obtained after
adding a set of order constraints on the variables, that
is

xi ≤ xi+1, ∀i < n. (1)
These constraints are called strong in (Costa et al.,
2010a). However, it should be underlined that not all
the symmetric optima are eliminated by constraints
(1): that is the reason of our investigation for other
SBCs.

The rest of the paper is organized as follows: in
Section 2 we introduce more formally the PECS; in
Section 3 we present some new constraints for this
problem. In Section 4 we show some numerical re-
sults, and at the end in Section 5 there are the conclu-
sions and future work.

2 PACKING EQUAL CIRCLES IN
A SQUARE

The PECS problem can be described in this way:

maxr (2)
∀i < j ≤ n (xi− x j)

2 +(yi− y j)
2 ≥ 4r2 (3)

∀i≤ n xi ≤ 1− r (4)
∀i≤ n yi ≤ 1− r (5)
∀i≤ n xi ≥ r (6)
∀i≤ n yi ≥ r (7)

r ≥ 0 (8)
∀i < n xi ≤ xi+1. (9)

The positive variable r is the radius we want to max-
imize, while xi, yi are the coordinates of the center of
the circle i.



Inequalities (3) represent the non-overlapping
conditions, and they are also the responsible for the
complexity of this problem (since they are nonlinear
and nonconvex), while conditions (4)-(7) mean that
the circles are inside the square. Constraints (9) are
the order inequalities (1) presented at the end of Sec-
tion 1.2.

3 NEW CONSTRAINTS FOR
PECS

In order to make infeasible more symmetric solutions
we introduce two other classes of SBCs in Sections
3.1 and 3.2. Furthermore, in Section 3.3 we propose
another class of inequalities which strengthen the for-
mulation.

3.1 Fixing Points Constraints

In (Locatelli and Raber, 2002), the authors present
the following theorem for PPS (proof can be found
in (Locatelli and Raber, 1999; Raber, 1999)):

Theorem 3.1. There always exists an optimal solu-
tion of problem PPS such that at each vertex v of the
unit square, formed by the edges e1 and e2, one and
only one of the following statements holds:

• a point of the optimal solution is in the vertex v;
• two points of the optimal solution belong to the

edges e1 and e2 and have distance equal to the
optimal one.

Starting from this theorem, and calling point a
center of a circle, we can prove the following:

Theorem 3.2. Consider the PECS with n≥ 4. There
is always an optimal solution where at least two
points are at distance r from the left side of the square,
and at least two points are at distance r from the right
side of the square.

Proof. The first thing to notice is that Theorem 3.1
refers to PPS. To adapt it for PECS, we have to re-
call that when a point belongs to an edge in PPS, this
means that the point is at distance r from that edge in
PECS.

Consider the left side of the square, and call v1
the bottom-left vertex, while v2 is the top-left one; by
Theorem 3.1, we can have four different situations:

1. we have a point in v1 and one in v2;
2. we have a point in v1, and we have 2 other points:

one on the left side of the square, one on the top
side;

3. we have a point in v2, and we have 2 other points:
one on the left side of the square, one on the bot-
tom side;

4. we have one point on the left side of the square
and one on the top side; furthermore, we have an-
other point on the left side and one on the bottom
side.

In all these cases, we have at least two points on
the left side of the square. A similar idea can be used
to prove the same for the right side of the square.

For PECS, as explained earlier, this means that at
least 2 points are at distance r from the left side, and
at least 2 points are at distance r from the right side.
Moreover, it is true even if we consider the other pair
of opposite edges (that is top/bottom) in place of the
left/right one.

The previous theorem allows us to fix 2 points at
distance r to the left side of the square, and other 2
points at distance r from the right side of the square.
Since we want to respect also the order inequalities
(9), we can express Theorem 3.2 by means of these
new constraints:

∀i ∈ {1,2} xi = r (10)
∀i ∈ {n−1,n} xi = 1− r. (11)

3.2 Bounds Constraints

As remarked in (Anstreicher, 2009), the following
statements hold wlog:
• at least nx = d n

2e points are on the left half of the
square (we call it x bounds constraints);

• among the previous nx points, at least ny = d nx
2 e

are on the bottom half (y bounds constraints).
Unluckily, this is not true if we have also the order
constraints (9): for example, the optimal solution of
PECS when n = 8 does not respect all these con-
straints together. In fact, as can be seen in Figure 1, if
the solution respects both the order constraints and the
x bounds constraints we cannot have the circles 1 and
2 in the bottom half of the square (that is y1 ≤ 0.5 and
y2 ≤ 0.5, since ny = 2), so the y bounds constraints do
not hold.

We can conclude that the x bounds constraints can
be adjoined to the PECS model with order constraints,
but not with the y bounds constraints. Actually, as
claimed in (Anstreicher, 2009), it is possible to have
together the order constraints (9), the x bounds con-
straints and the y bounds constraints if we drop the
order constraint xny ≤ xny+1. However, we need to
preserve the order constraints to derive the “triangu-
lar inequality constraints” presented in Section 3.3.
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Figure 1: Optimal solution of PECS for n = 8 (this figure is
taken from http://www.packomania.com).

Hence, we will show how to formulate in another
way the y bounds constraints, in order to add them to
the model, and how to add the x bounds constraints
using a single inequality.

The latter can be done this way: since the order
constraints hold, it is sufficient to add the following
inequality:

xnx ≤ 0.5. (12)
Thus, the inequalities xi ≤ 0.5, ∀i ≤ nx are automati-
cally satisfied.

The former problem is basically the following:
among the nx points that are on the left half of the
square, at least ny are on the bottom half, but we can-
not know which points are on the bottom half; never-
theless, we can obtain an inequality on the sum of the
y components of the first nx points.

More precisely, ny points have the coordinates y
which are less or equal to 0.5. For the others nx− ny
the y coordinates are less or equal to 1− r. Hence, we
can write the following inequality:

nx

∑
i=1

yi ≤ (ny) ·0.5+(nx−ny) · (1− r). (13)

Using the same idea, we can obtain something
similar for the sum of the x components of all the
points.

Basically, nx points have the coordinates x that are
less or equal to 0.5; among them, two have coordi-
nates fixed to r, as shown by (10). For the others
n−nx the x coordinates are less or equal to 1− r. So,
we can write this inequality:

n

∑
i=1

xi ≤ (nx−2) ·0.5+2r+(n−nx) · (1− r). (14)

3.3 Triangular Inequality Constraints

From the triangular inequality, we can write

|x j− xi|+ |y j− yi| ≥ di j ≥ 2r, ∀i < j ≤ n, (15)

where di j represents the distance between the centers
of the circles i and j.

The order constraints (9) imply that x j − xi ≥
0, ∀i < j ≤ n. Hence, we can remove the absolute
value on the x variables from (15) obtaining

x j− xi + |y j− yi| ≥ 2r, ∀i < j ≤ n. (16)

Our aim is to remove the absolute value from the
y variables, since it is a source of non-linearity and
makes the inequality not easy to solve. In order to
get the final set of constraints, we should prove the
following proposition:

Proposition 3.1. Given the constraints (3)-(9) of the
PECS, the following inequalities hold:

y j + yi ≥ |y j− yi|+2r, ∀i < j ≤ n. (17)

Proof. We can suppose wlog that y j ≥ yi. Hence y j +
yi ≥ y j − yi + 2r, ∀i < j ≤ n. This is equivalent to
yi ≥ r, ∀i < j ≤ n, that is obviously true, since these
inequalities are equivalent to (7).

At this point, we can remove the absolute value on
the y variables by replacing |y j− yi| with y j + yi:

x j−xi+y j+yi−2r≥ x j−xi+|y j−yi| ≥ 2r, ∀i< j≤ n.
(18)

Finally we obtain the constraints:

x j− xi + y j + yi ≥ 4r, ∀i < j ≤ n. (19)

4 NUMERICAL RESULTS

In this section we compare two formulations of PECS
for the instances where 4 ≤ n ≤ 20: the original for-
mulation with the order constraints (2)-(9) (PECS +
ordering), and the same formulation with all the new
constraints proposed in Section 3, i.e., (10)-(14),(19)
(PECS + all). Our comparative results, shown in Ta-
ble 1, have been obtained on a 2.4 GHz Intel Xeon
CPU with 24 GB RAM running Linux and the solver
COUENNE (Belotti et al., 2009); the table displays
the following statistics for the two formulations: ob-
jective function value f ∗ of the incumbent, gap still
open (we use the CPLEX definition (ILOG, 2009):(

100·| f ∗− fUB|
| f∗+10−10|

)
%, where fUB is the best upper bound

found in the case of maximization problems), number
of BB nodes closed, number of BB nodes still on the
tree and the second of CPU time taken (with a time



Table 1: Results obtained by running COUENNE on some PECS instances.

PECS + ordering PECS + all
n r∗ f∗ gap n. closed n. on tree CPU time f∗ gap n. closed n. on tree CPU time
4 0.25 0.25 0% 0 0 0.12 0.25 0% 0 0 0.13
5 0.207107 0.207107 0% 2 0 0.44 0.207107 0% 2 0 0.19
6 0.187681 0.187703 0% 8456 0 17.90 0.187713 0% 110 0 7.25
7 0.174458 0.174458 0% 245102 0 728.69 0.174458 0% 564 0 17.11
8 0.170541 0.170541 17.71% 1853359 117869 7200 0.170541 0% 7822 0 65.78
9 0.166667 0.166667 30.55% 1365445 279773 7200 0.166667 0% 66070 0 525.75
10 0.148204 0.148201 65.10% 1230472 334114 7200 0.148204 32.22% 611560 201488 7200
11 0.142399 0.142399 75.62% 1068775 290037 7200 0.142339 39.61% 498050 179367 7200
12 0.139959 0.139959 78.64% 899535 273315 7200 0.139959 59% 365384 136656 7200
13 0.133994 0.133993 110.67% 816573 232735 7200 0.133993 53.57% 337112 133403 7200
14 0.129332 0.129332 119.10% 615348 182939 7200 0.129332 74.04% 250406 97740 7200
15 0.127167 0.126478 124.75% 853025 245904 7200 0.127167 77.19% 204853 81901 7200
16 0.125 0.125 100.38% 382247 121598 7200 0.125 77.40% 173767 70580 7200
17 0.117197 0.116293 115.19% 275094 98707 7200 0.117111 91.16% 148004 61668 7200
18 0.115521 0.113218 175.46% 433224 140861 7200 0.115521 101.74% 129641 53367 7200
19 0.112265 0.11174 179.20% 454058 158505 7200 0.111911 104.83% 111486 44392 7200
20 0.111382 0.111382 210.63% 342260 116599 7200 0.111382 108.65% 90274 35542 7200

limit of 2h). Moreover, we show also the optimal so-
lutions r∗ for the instances, which can be found on
(Szabó et al., 2007) or in http://www.packomania.
com.

5 CONCLUSIONS

The new constraints proposed in this paper increase
significantly the performance of COUENNE with re-
spect to the formulation (2)-(9), as shown in Table 1.
As a matter of fact, the time to obtain the optimal so-
lution is lower, and when the time limit is reached for
both formulations, the gap is smaller. This means that
the formulation “PECS + all” leads to a lower value
of the Upper Bound for r.

Looking at the number of nodes, we can see that
the trees associated to the “PECS + all” formulation
are smaller than the trees obtained with “PECS + or-
der”, as expected.

Furthermore, in four cases the incumbent found
with the “PECS + all” formulation is better than the
one found with the “PECS + ordering” formulation
(in two cases, n = 15 and n = 18, the value is equal to
the optimum).

Hence, even if we test these formulations on a
small number of instances, it is quite evident that
“PECS + all” outperforms “PECS + ordering”.

Looking at the n = 6 case in the table, we see that
the incumbent values found are higher than the op-
tima, but this is due to the numerical approximation
of COUENNE.

It is also interesting to notice that the constraint

(14) might seem redundant if we have the constraints
(4), (6), (9), (10) and (12). Actually, some tests
show that this inequality helps to obtain better Up-
per Bounds, above all with big instances of PECS.
The reason for this behaviour could be that COUENNE
uses this constraint to derive some cuts, which are au-
tomatically adjoined to the mathematical model.

The future work has two main directions: first, we
want to investigate more the PECS problem, in order
to find new SBCs. For instance, another class of SBCs
proposed in (Costa et al., 2010b), which mix inequal-
ities on the x and on the y variables, leads to better
results with respect to the order constraints. We can
try to use these constraints in our model, but some ad-
justments are required, since the new constraints pro-
posed in this paper depend on the hypothesis that the
order inequalities are satisfied.

Second, we want to perform some experiments
with bigger instances and bigger time limits, in order
to find the maximal size of PECS that it is possible to
solve with this mathematical programming approach.
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