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Abstract. The performance of Branch-and-Bound algorithms is severely impaired by the pres-
ence of symmetric optima in a given problem. We propose here a method to automatically find

MINLP formulation symmetries. We show an application of our method to the “circle packing

in a square” problem, in order to get a reformulation that should cut away symmetric optima.

1. Introduction

It is well known that problems involving a high degree of symmetry are particularly difficult to solve
with Branch-and-Bound (BB) techniques. Intuitively, since optimal solutions are to be found at
leaf nodes of the BB tree, the presence of many optima causes fewer prunings, longer branches, and
hence a higher number of nodes to explore. One possibility for breaking symmetries, proposed in
[2], is to reformulate the problem by adjoining symmetry-breaking constraints (SBC) to the original
formulation, yielding a reformulation of the narrowing type [1]. The main theoretical contribution
of this paper is the determination of the group structure of circle packing problem.

2. Automatic symmetry detection

In this section we discuss a method for computing Mathematical Program (MP) symmetries auto-
matically; conceptually, it is the same as in [2] but the formal presentation is different. We consider
a Mixed-Integer Nonlinear Program (MINLP) P :

min{f(x) | g(x) ≤ 0 ∧ x ∈ X}, (2.1)

where f : Rn → R, g : Rn → Rm, x ∈ Rn, and X ⊆ Rn is a set which might include variable
ranges xL ≤ x ≤ xU as well as integrality constraints on a subset of variables {xi | i ∈ Z} for some
Z ⊆ {1, . . . , n}. Let G(P ) be the set of global optima of P and F(P ) be its feasible region. The
group G∗

P = stab(G(P ), Sn) is called the solution group of P (where Sn is the symmetric group
of order n). The solution group is the largest subgroup of Sn which maps every global optimum
into another global optimum. Since G∗

P depends on G(P ) it cannot, in general, be found before the
solution process. We therefore try to find subgroups of G∗

P . In particular, we consider the subgroup
of G∗

P consisting of all variable permutations which “fix the formulation” of P . For π ∈ Sn and
σ ∈ Sm we define σPπ to be the following MINLP:

min{f(πx) | σg(πx) ≤ 0 ∧ πx ∈ X}, (2.2)

where σ acts on g = (g1, . . . , gm) by σg = (gσ−1(1), . . . , gσ−1(m)). Consider the group ḠP = {π ∈
Sn | ∃σ ∈ Sm (σPπ) = P}. Whenever P is a Mixed-Integer Linear Program (MILP), ḠP is called
the LP relaxation group [3]. For general MINLPs, determining whether ∀x ∈ dom(f) f(πx) = f(x)
and ∀x ∈ dom(g) σg(πx) = g(x) is an undecidable problem.

We therefore introduce the following restriction: f, gi (i ≤ m) must be strings of the formal
language L on the alphabet A given by the operators in {+,−,×,÷, ↑, log, exp, (, )} (where a ↑
b = ab), the variable symbols in {x1, . . . , xn} and the constant symbols in R. This restriction allow
us to define the formulation group GP = {π ∈ Sn | ∃σ ∈ Sm (σPπ ∼= P )} of P (where the symbol
∼= indicates that the formulations are equal respetct to this restriction). It is easy to show that
GP ≤ ḠP ≤ G∗

P . For MILPs, GP = ḠP [2].
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Keywords: MINLP, spatial Branch-and-Bound, Global Optimization, group, reformulation.

1



Alberto Costa, Leo Liberti, & Pierre Hansen

Once GP is known, we aim to find a reformulation Q of P which ensures that at least one
symmetric optimum of P is in G(Q). Such reformulations are known as narrowings [1]. A set of
constraints h(x) ≤ 0 are SBCs with respect to π ∈ GP if there is y ∈ G(P ) such that h(πy) ≤ 0.
Adjoining SBCs to P yields a narrowing Q of P [2].

3. Circle Packing in a square

We consider the following problem.

Circle Packing in a Square (CPS). Given N ∈ N and L ∈ Q+, can N non-
overlapping circles of unit radius be arranged in a square of side 2L?

We formulate the CPS as the following nonconvex NLP:

max{α | ∀i < j ≤ N ‖xi − xj‖2 ≥ 4α ∧ x ∈ [1− L,L− 1]2N} (3.1)

For any given N,L > 1, if a global optimum (x∗, α∗) of (3.1) has α∗ ≥ 1 then the CPS instance is
a YES one. Using the theory above, we are able to prove this

Theorem
The formulation group of the CPS is isomorphic to S2 × SN .

This result allow us to add some SBCs to the original formulation. Some preliminary tests show
that solving the reformulated circle packing problem is more easy than solve the original one, in
term of time and nodes generated by the Spatial Branch and Bound.
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