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1 Introduction

In this paper we present a conjecture about the bounds on the variables for the
Point Packing in a Square (PPS) problem. There exist several formulations
for this problem, most of them are introduced in [1]; in order to semplify the
following presentation, we use this formulation:

Place n points in the unit square such that the minimum pairwise distance
is maximal.

This problem can be formulated this way:

maxα (1)

∀i < j ≤ n (xi − xj)2 + (yi − yj)2≥α (2)

∀i ≤ n xi≤ 1 (3)

∀i ≤ n yi≤ 1 (4)

∀i ≤ n xi≥ 0 (5)

∀i ≤ n yi≥ 0 (6)

α≥ 0. (7)

The positive variable α is the square of the minimum pairwise distance between
the points. Constraints (2) are the distance inequalities, while inequalities (3)-
(6) mean that the points are inside the unit square.

When we try to solve PPS by means of solvers which implement the spatial
Branch-and-Bound algorithm [2,3], like Couenne [4] or BARON [5], we notice
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that it is not easy to decrease the value of the upper bound on α during
the computation. In next Section, we will show that it depends also on the
bound on the variables, and we propose a method to obtain better results by
modifying the inequalities (3)-(6).

After that, in Section 3 we present some computational results, while in Section
4 there are the conclusions and the future work.

2 Bounds on the variables

PPS is a nonlinear nonconvex problem; when we try to solve it by means
of spatial Branch-and-Bound, usually the root node corresponds to a linear
relaxation of the problem, whose optimal solution represents an upper bound
for the original problem. For the formulation (1)-(7) the relaxation is the
following (as explained in [6,7]).

maxα (8)

∀i < j ≤ n − l(i, j)≥α (9)

∀i ≤ n xi≤ 1 (10)

∀i ≤ n yi≤ 1 (11)

∀i ≤ n xi≥ 0 (12)

∀i ≤ n yi≥ 0 (13)

α≥ 0. (14)

where l(i, j) = −(Lxi−Uxj+Uxi−Lxj)(xi−xj)−(Lyi−Uyj+Uyi−Lyj)(yi−
yj) + (Lxi−Uxj)(Uxi−Lxj) + (Lyi−Uyj)(Uyi−Lyj) is the convex envelope
of the nonlinear part of constraint (2) while L and U represent respectively
the lower and upper bounds on the variables (in this case, L = 0 and U = 1
for all the variables).

Proposition 2.1 The optimal solution of the problem (8)-(14) is α∗ = 2.

Proof. It is easy to see that when all the lower bounds have the same value L,
and the upper bounds have the same value U , then −l(i, j) = 2(U −L)2. The
problem of maximizing α, with the constraints ∀i < j ≤ n α ≤ 2(U − L)2,
has obviously optimal solution α∗ = 2(U − L)2. Since L = 0 and U = 1, then
the optimal solution of (8)-(14) is α∗ = 2. 2

The bound provided by the previous relaxation is not very good: since α is the
square of the minimum distance between the points, the upper bound on the
distance is

√
2, that is the optimal solution obtained when there are only 2

points in the square, placed in two opposite vertices. Furthermore, this bound
does not depend on the number of points n, nor on the value of the variables x
and y: due to the fact that all the lower (upper) bounds have the same value,
in the linear relaxation l(i, j) all the coefficients of the terms containing x and
y become 0.

In order to improve the bound on α, we should change the value of lower and
upper bounds for some variables; thus, the corresponding terms containing x
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Original formulation Bounds constraints formulation

n d∗ LB UB LB UB

9 0.5 0.000098 1.414213 0.300463 0.707107

10 0.421279 0.000098 1.414213 0.396156 0.707107

11 0.398207 0.000099 1.414213 0.000099 0.707107

12 0.388730 0.000099 1.414213 0.360065 0.707107

13 0.366096 0.000098 1.414213 0.339654 0.502948

14 0.348915 0.000098 1.414213 0.340830 0.502874

15 0.341081 0.000098 1.414213 0.334524 0.502793

16 0.333333 0 1.414213 0.290033 0.502793

17 0.306153 0 1.414213 0.000099 0.502793

18 0.300462 0 1.414213 0.252819 0.502793

19 0.289541 0.000047 1.414213 0.252337 0.502793

20 0.286611 0 1.414213 0.276468 0.502793

and y in the linear relaxation do not disappear. The following conjecture refers
to that idea.

Conjecture 2.2 Consider an instance of PPS with n points. Divide the unit
square in k2 equal subsquares, with k = arg min

s

∣∣∣n
2
− s2

∣∣∣, s ∈ {⌈√n
2

⌉
,
⌊√

n
2

⌋}
.

There is at least one point of the optimal solution in each subsquare.

The meaning of this conjecture is that we can change the value of the bounds
for k2 points. For example, consider the case with n = 9: here, k = 2, so there
are 4 subsquares. According to the conjecture, we can place one point in each
subsquare; for instance, if we put the point i is in the bottom left subsquare,
we can modify the bounds provided by (3)-(4) obtaining xi ≤ 0.5 and yi ≤ 0.5.

In order to change other bounds, we can use these properties of the optimal
solution, as remarked in [8]:

• at least nx = dn
2
e points are on the left half of the square (x bounds prop-

erty);
• among the previous nx points, at least ny = dnx

2
e are on the bottom half (y

bounds property).

After dividing the square in k2 subsquares, we have placed in the left half of
the square η < nx points, so for others nx− η points we can change the upper
bounds on the variable x from 1 to 0.5, according to x bounds property. A
similar idea can be used for the y bounds property.

3 Results

In this Section we present the values of the upper and lower bounds for some
instances of the PPS problem obtained at the root node, using Couenne,
with and without the bound constraints presented in the previous section.
Furthermore, we present the values of the optimal distance d∗ =

√
α∗ for these

solutions (which can be found in http://www.packomania.com and [1]).
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4 Conclusions and future work

In this paper we showed the effect of the bounds constraints: the upper bounds
obtained are better, as well as the lower bounds (namely the best solutions
found). Moreover, we can see an improvement of the upper bounds from the
instance n = 12 (where k = 3) to the instance n = 13 (where k = 4).

The future work has three main directions: first, we want to prove the conjec-
ture presented in this paper. Second, we want to try other kinds of subdivision
of the square. Finally, we will try to adapt these ideas for other formulations
of this problem where some symmetry breaking constraints are used [9,10].
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