
Static symmetry breaking in circle packing

Alberto Costa, Pierre Hansen ∗, Leo Liberti

LIX (UMR CNRS 7161), École Polytechnique, 91128 Palaiseau, France.

Key words: symmetry breaking constraints, packing of equal circles,
reformulation, narrowing, nonconvex NLP.

1 Introduction

We present new Static Symmetry-Breaking Inequalities (SSBI) [11,6] for the
problem of packing equal circles in a square [9]. The new SSBIs provide a
marked computational improvement with respect to past work [1], though not
yet at the level where a purely Mathematical Programming (MP) based spatial
Branch-and-Bound (sBB) can be competitive with a Branch-and-Bound (BB)
“boosted” by combinatorial and geometrical devices such as [9]. We consider
the following formulation of Circle Packing in a Square (CPS) problem:
given N ∈ N and S ∈ Q+, can N non-overlapping circles of unit radius
be arranged in a square of side 2S? This is equivalent to the more usual
formulation where one maximizes the number of non-overlapping circles of
unit radius in a square of side 2S with S ∈ Q+: it suffices to consider the
usual correspondence (via bisection) of optimization and decision problems.

Let N = {1, . . . , N} and N ′ = {1, . . . , N − 1}. The CPS is formulated as the
following MP:

max{α | ∀i < j ∈ N (xi − xj)2 + (yi − yj)2 ≥ 4α ∧ x, y ∈ [1− S, S − 1]N} (1)

where (xi, yi) ∈ R2 are the coordinates of the center of the i-th circle, for all
i ∈ N . For any given N,L > 1, if a global optimum (x∗, y∗, α∗) of (1) has
α∗ ≥ 1 then the CPS instance is a YES one. The CPS formulation (1) can
be solved with standard off-the-shelf Mixed-Integer Nonlinear Programming
(MINLP) sBB solvers such as Couenne [2]. As the instance size increases,

? Financial support by grants: ANR 07-JCJC-0151 “ARS”, Digiteo 2009-14D “RM-
NCCO”, Digiteo 2009-55D “ARM” is gratefully acknowledged.
∗ Also at GERAD and HEC Montreal, Canada.

Email addresses: costa@lix.polytechnique.fr (Alberto Costa),
pierre.hansen@gerad.ca (Pierre Hansen), liberti@lix.polytechnique.fr
(Leo Liberti).

Preprint submitted to CTW 2010 4 May 2010

these solvers yield search trees of disproportionate sizes. This is mostly due to
the symmetries of the problem.

The concepts of solution symmetries and formulation symmetries were intro-
duced in Constraint Programming [3] and brought to MP in the early 2000’s
[10,11]. If z is a solution of a problem P and πz is also a solution (where π
permutes the components of z), π is a solution symmetry. A solution sym-
metry is a formulation symmetry if π also fixes the MP formulation of P .
Most symmetry breaking techniques (including SSBIs) are based on formula-
tion symmetries, because these are easier to detect. The formulation group of
MINLPs (including nonconvex NLPs such as (1)) can be detected automati-
cally using the method described in [6]. This method was shown in [7] to yield
an interesting reformulation for another sphere packing problem, namely the
Kissing Number Problem (KNP) [4]. Adjoining SSBIs to a formulation results
in a reformulation of the narrowing type [5,8]: if Q is a narrowing of P then
there is a mapping from the global optima G(Q) to the global optima G(P)
— thus, if one is able to solve the simpler reformulation Q, then one can find
a global optimum of P through the given mapping.

The automatic symmetry detection method of [6] was deployed in [1] on in-
creasingly larger CPS instances to formulate the conjecture, and then prove,
that the formulation group of the CPS is C2×SN , where C2 (the cyclic group
of order 2) refers to swapping x and y axes and SN (the symmetric group of
order N) refers to reindexing the circles in an arbitrary way. The constraints
∀i ∈ N ′ (xi ≤ xi+1) were shown in [1] to provide a narrowing of the CPS when
adjoined to (1). In the rest of this paper we present a different narrowing of
the CPS and discuss its impact on Couenne’s performance.

2 New SSBI-based CPS narrowing

Let L = bSc, N ′′ = {1, L + 1, 2L + 1, . . . , (dN/Le − 2)L + 1}, and define the
following constraint sets: S = {xi ≤ xi+1 | i ∈ N ′}, Ai = {xh ≤ xh+1 | h ∈
N ′ r {i+L− 1}} and Ci = {yi ≤ yi+L} for all i ∈ N ′′. Notice that these sets
contain strings belonging to the formal MP language [1]: thus, when writing
{yi ≤ yi+L}, for example, we do not refer to the set of all points y satisfying
yi ≤ yi+L but rather to the singleton set containing the string “yi ≤ yi+L” as
its element. Accordingly, we consider the following MP formulations: CPS′ ≡
CPS∪S , CPSi ≡ CPS∪Ai∪Ci for all i ∈ N ′′ and CPS′′ ≡ CPS∪⋃

i∈N ′′(Ai∪
Ci), where P ∪D denotes the MP formulation derived by adjoining constraints
in D to P . The formulation CPS′ was shown in [1] to be a narrowing of CPS.

Proposition 1 For all i ∈ N ′′, CPSi is a narrowing of CPS.

Proof. Let i ∈ N ′′ and (x̄, ȳ, ᾱ) ∈ G(CPS). For a permutation π ∈ SN we assume

π(x̄, ȳ, ᾱ) = (πx̄, πȳ, ᾱ) where π acts on a vector in RN by permuting the indices of

its components; notice that since π is simply a reindexing of the circles, π(x̄, ȳ, ᾱ) ∈

2

G(CPS). Furthermore, since CPS′ is known to be a narrowing of CPS, we can assume

WLOG that (x̄, ȳ, ᾱ) satisfies S . If ȳi ≤ ȳi+L the result holds, otherwise assume

ȳi > ȳi+L. Consider the permutation σi =
∏L−1

`=0 (i + `, i + L + `) in SN ; σi(x̄, ȳ, ᾱ)

has the following properties: (a) by the action of the 2-cycle (i, i + L) (appearing

in σi when ` = 0) we have ȳi < ȳi+L; (b) ∀` ∈ {0, . . . , L − 2} we have σix̄i+` =

x̄i+L+` ≤ x̄i+L+`+1 = σix̄i+`+1 and σix̄i+L+` = x̄i+` ≤ x̄i+`+1 = σix̄i+L+`+1; (c)

∀h ∈ N ′ such that h 6∈ Hi = {i, . . . , i+2L−1} we have σix̄h = x̄h ≤ x̄h+1 = σix̄h+1

because σi fixes all h 6∈ Hi. Thus σi(x̄, ȳ, ᾱ) ∈ G(CPS) and satisfies the constraints

of CPSi. 2

Lemma 2 Let n = dN/Le − 1 and Σ = {σi | i ∈ N ′′}. Then 〈Σ〉 ∼= Sn.

Proof. Notice N ′′ = {(j−1)L+1 | 1 ≤ j ≤ n}, and define a map ϕ((j−1)/L+1) =

j, under which ϕ(Σ) = {(1, 2), (2, 3), . . . , (n − 1, n)}. This map induces a group

homomorphism ϕ̄ : 〈Σ〉 → Sn given by ϕ̄(σi) = (ϕ(i), ϕ(i) + 1), which can be

verified to be injective and surjective. 2

Similarly, for all h < k ∈ N ′′ we have 〈Σhk〉 = 〈{σi | h ≤ i < k}〉 ∼=
Sym(Ihk), the symmetric group on the set Ihk = {ϕ(h), . . . , ϕ(k)}. Thus, for
all h, k ∈ N ′′, the permutation τhk =

∏L−1
`=0 (h + `, k + `) can be obtained

as a certain product of the σi’s for i ∈ ϕ−1(Ihk). More precisely, we have
τhk = (ϕ(k)− 1, ϕ(k))(ϕ(k)− 2, ϕ(k)− 1) · · · (ϕ(h), ϕ(h) + 1)(ϕ(h) + 1, ϕ(h) +
2) · · · (ϕ(k)− 1, ϕ(k)).

Theorem 3 CPS′′ is a narrowing of CPS.

Proof. Let (x̄, ȳ, ᾱ) ∈ G(CPS), and consider the set V of all constraints Ci ≡
{yi ≤ yi+L} violated by (x̄, ȳ, ᾱ). Let ψ be the (invertible) map given by ψ(Ci) =

(ϕ(i), ϕ(i) + 1); then ψ(V) is a set of transpositions that can be partitioned into

maximal non-disjoint subsets Shk = {(ϕ(h), ϕ(h) + 1), . . . , (ϕ(k)− 1, ϕ(k))}; let T

be the set of pairs (h, k) for which Shk is in the partition of ψ(V). It is easy to verify

that if πhk =
∏

`∈Ihk
h+`L<k−`L

τh+`L,k−`L then πhkȳ satisfies the constraints in ψ−1(Shk).

Furthermore, by maximality of the Shk, the permutations πhk are disjoint. Now, if

π =
∏

(h,k)∈T πhk, π(x̄, ȳ, ᾱ) is such that πȳ satisfies all constraints in V and πx̄

satisfies all constraints in
⋃

i∈N ′′ Ai by Prop. 1. Thus π(x̄, ȳ, ᾱ) ∈ G(CPS′′). 2

3 Computational results

CPS′ CPS′′

Inst. f∗ nodes tree f∗ nodes tree

16 4 0.660 2381772 642285 1 2795501 839240

25 5 1 461224 188835 1 521487 222846

36 6 0 49962 23784 1 76409 34825

49 7 0 12577 6090 1 21366 10136

68 8 0 4 1 0.943 1057 497

86 9 0 4 1 0.640 5 1

We compare Couenne’s
performance on formula-
tions CPS′ and CPS′′ for
some “limit” instances of
CPS (i.e. N circles fit
in the square but N + 1
do not). Our compara-
tive results, shown below, have been obtained on a 2.4GHz Intel Xeon CPU

3

with 24 GB RAM running Linux. The table displays the following statistics at
termination (10h of CPU time): objective function value f ∗ of the incumbent,
number of BB nodes closed, number of BB nodes still on the tree. The best
upper bound at termination was fixed at 2 (and hence the gap was always
> 100%) for all reformulations and instances. However, the statistics on the
number of nodes show that CPS′′ is a better reformulation than CPS′. The
incumbent statistics also show that CPS′′ behaves better than CPS′ when used
to derive heuristic solutions.

References

[1] P. Hansen A. Costa and L. Liberti. Formulation symmetries in circle packing.
In R. Mahjoub, editor, ISCO 2010 Proceedings, Electronic Notes in Discrete
Mathematics, Amsterdam, accepted. Elsevier.

[2] P. Belotti, J. Lee, L. Liberti, F. Margot, and A. Wächter. Branching and
bounds tightening techniques for non-convex MINLP. Optimization Methods
and Software, 24(4):597–634, 2009.

[3] D. Cohen, P. Jeavons, C. Jefferson, K. Petrie, and B. Smith. Symmetry
definitions for constraint satisfaction problems. In P. van Beek, editor,
Constraint Programming, volume 3709 of LNCS. Springer, 2005.

[4] S. Kucherenko, P. Belotti, L. Liberti, and N. Maculan. New formulations for
the kissing number problem. Discrete Applied Mathematics, 155(14):1837–1841,
2007.

[5] L. Liberti. Reformulations in mathematical programming: Definitions and
systematics. RAIRO-RO, 43(1):55–86, 2009.

[6] L. Liberti. Reformulations in mathematical programming: Symmetry.
Mathematical Programming, in revision.

[7] L. Liberti. Symmetry in mathematical programming. In J. Lee and S. Leyffer,
editors, Mixed Integer Nonlinear Programming. IMA, Minneapolis, in revision.

[8] L. Liberti, S. Cafieri, and F. Tarissan. Reformulations in mathematical
programming: A computational approach. In A. Abraham et al., editors,
Foundations of Computational Intelligence Vol. 3, number 203 in Studies in
Computational Intelligence, pages 153–234. Springer, Berlin, 2009.

[9] M. Locatelli and U. Raber. Packing equal circles in a square: a deterministic
global optimization approach. Discrete Applied Mathematics, 122:139–166,
2002.

[10] F. Margot. Pruning by isomorphism in branch-and-cut. Mathematical
Programming, 94:71–90, 2002.

[11] F. Margot. Symmetry in integer linear programming. In M. Jünger et al.,
editors, 50 Years of Integer Programming, pages 647–681. Springer, Berlin, 2010.

4

