
Chapter 1
Applications of Systems Architecture concepts∗

[POSTER SESSION]

Fabio Roda†, Alberto Costa, and Leo Liberti

Abstract Systems Architectureis a comprehensive discipline that aims to manage
complex systems which can not be operated adopting conventional techniques due
to the strong heterogeneity of their sub-elements. Architects exploit several tech-
niques which help to get this purpose and, among them, we can mention the more
important ones:abstraction, concretization, decompositionandintegration. We pro-
pose two examples of application of the techniques proposedby Systems Architec-
ture to a classical trasportation problem. The underlying idea is that Systems Archi-
tecture and Optimization are complementary. These examples are still very initial
at this stage of our work and involves onlyabstractionandconcretization. They are
propedeutic to the development of a unified system modellingmethod which is in
progress and which uses all the techniques provided by Systems Architecture on a
coherent pipeline.

1.1 Introduction

Systems Architectureis a comprehensive discipline which aims to managecom-
plex systemswhich can not be operated adopting conventional techniquesdue to the
strong heterogeneity of their sub-elements. In order to precise what we mean with
the termcomplex system, we sketch a (very) brief explanation of this term.

Roda, Costa, Liberti,
LIX, École Polytechnique, 91128 Palaiseau, France.
e-mail:{roda,costa,liberti}@lix.polytechnique.fr

∗ Partially supported býEcole Polytechnique-Thales “Engineering of Complex Systems” Chair.

† Corresponding author.

1

2 Fabio Roda, Alberto Costa, and Leo Liberti

• Firstly, we recall that INCOSE defines informally a system as:

1.1.1 Definition (System (INCOSE))
“an interacting combination of elements to accomplish a defined objective. These
include hardware, software, firmware, people, information, techniques, facilities,
services, and other support elements”

• Secondly, we remark which is the meaning of “complex” in a Systems Architec-
ture context.
“At a superficial level, complex refers here to the fact that the design and the en-
gineering of these industrial systems are incredibly complicated technical and
managerial operations. . . . At a deeper level, complex industrial systems are
characterized by the fact that they are resulting of a complex integration process.
This means that such systems are obtained by integrating in acoherent way, that
is to say assembling through well defined interfaces altogether a tremendously
huge number of heterogeneous sub-systems and technologies[9]”

The design and management of complex systems is difficult andexpensive. In order
to facilitate the realisation of a new system we need methodswhich allow to “built
it up” from known components. Conversely, to make a given system easier to man-
age and to understand we would profit techniques which “breakit down” into its
sub-systems.
Systems Architecture proposes some interesting techniques:abstraction, concretiza-
tion, integration, decomposition[2, 3, 9].

• Abstractionis the process that allows to shift from a specific level of details to a
properly lower one so that we can focus on the features which are really relevant
and “hide” the others.

• Concretizationis the opposite process, namely the precisation of the analysis,
which is pushed to a finer-grained level producing a model that has more param-
eters, variables and, generally speaking, elements.

• DecompositionandIntegrationrefers respectively to the action of modelling the
original system as a set of subsystems, and to move again fromthe subsytems to
the system after having done some operations with the subsystems.

The analysis of a systemS, according to the System Architecture approach, consists
in a recursive application of these operations in order to “reduce”Sto its component
subsystemssk which are assumed well known and hence to reveal the “architecture”
of the system,S= I(α(s1), . . . ,α(sn)), whereI meansintegrationandalphameans
abstraction. Thus, the process consists in the identification (when possible) of a
recursive structure which shows that the main systemS is obtained by means of an
integration of abstracted sub-systems.

This approach is (or should be) general, hence we are trying to apply it to known
classic problems rooted in the field of Operations Research.Thus, we report our
experience in the application of these key concepts of Systems Architecture to an
optimization problem. This example is still partial at thisstage of our work and

1 Applications of Systems Architecture concepts [POSTER SESSION] 3

involves onlyabstractionandconcretization, however we believe that Systems Ar-
chitecture and Optimization are complementary and that it is worth to investigate
possible synergies.

The rest of this work is organized as follows: section 1.2 introduces the Asym-
metric Capacitated Vehicle Routing Problem, section 1.3 isdecicated to an example
of abstractionand 1.4 to an example ofconcretization. In the last section we sketch
some conclusions.

1.2 Asymmetric Capacitated Vehicle Routing Problem

The problem we consider belongs to the “family” of the Vehicle Routing Problem.
We can figure it in the following way. A group of delivery vehicles have to service
known customers which demand for a certain quantity of a specific commodity.
The vehicles have a fixed capacity and commodities arrive from a common depot.
The objective is to find a set ofm vehicle routes (a simple circuit for each vehicle)
such that: each customer is visited by a single vehicle route, the starting point and
the end of each circuit is the depot, the sum of the the demandsof the customers
visited by each vehicle is inferior than its capacity, the cost is minimum. The fixed
capacity of the vehicles, and the orientation of the roads determines the specific
variant, called Asymmetric Capacitated Vehicle Routing Problem (ACVRP) [11, 1],
that we consider.

1.2.1 First Formulation

We provide a (first) formulation of the ACVRP, introducing some formal elements.
Let G = (V,A) be a complete directed graph (modelling a road network) with

vertex setV = 0, . . . ,n and arc setA. Every arc has an associated costci j . Vertices
j represent customers. Each customer requires a quantityd j . The vertexv0 is the
depot. A single commodity is to be delivered to each customeri ∈ N = {1, . . . ,n}
from a central depot usingm independent delivery vehicles of identical capacityC.
A binary variable x is associated with each arc of the graphG. Moreover,σ(S) is
the minimum number of vehicles necessary to satisfy all clients,∀ S⊆V \ {v0}.

1. Decision variables

∀(i, j) ∈ A xi j =

{

1 if the arc(i, j) is in the solution
0 otherwise

(1.1)

2. Objective function.

z= min
x ∑

i∈V
∑
j∈V

ci j xi j

4 Fabio Roda, Alberto Costa, and Leo Liberti

3. Constraints.

∀ j ∈V \ {v0} ∑
i∈V

xi j = 1 (1.2)

∀i ∈V \ {v0} ∑
j∈V

xi j = 1 (1.3)

∑
i∈V

xiv0 = m (1.4)

∑
j∈V

xv0 j = m (1.5)

∀S⊆V \ {v0}, S 6= /0, ∑
i /∈S

∑
i∈S

xi j ≥ σ(S) (1.6)

∀i, j ∈V xi j ∈ {0,1} (1.7)

The model provided is the section above is the basis for the application of two
of the operations suggested by System Architecture:abstractionandconcretization.
We applay the first one to the graph which represents the instance of the problem
and the second one to the model itself.

1.3 Abstraction

If the road network and the representing graph are huge algorithms may fail to treat
them efficiently. A reduction of the graph size would help. Inorder to achive this
objective we should hide subsets of edges or vertices which represent information
which is not necessary. We reduce the level of detail, dropping only the ones which
are not useful. This operation is a realization ofabstractionwhich is operated on the
graph. This idea is already present in literature, but thereis not a common frame-
work.

• Holte et al. [8] applay abstraction to graphs which represent problem spaces.
“An abstraction of a problem space P is a mapping from P to someother prob-
lem space, P. . . . The abstract solution will not usually be a valid solution in the
original space. The abstract solution serves as a skeleton for the final solution.”

• Botea and Muller [4] propose, in the context of path-finding on grid-based maps,
a method which “abstracts a map into linked local clusters[which] return a com-
plete path of sub-problems. The first sub-problem can be solved, giving . . . first
few moves along the path. At[this] level clusters are traversed in a single big
step.”

• Bulitko et al. [5] refine the work of Botea and Muller and propose “a clique-
based abstraction mechanism” and show that “general clique computation is NP-

1 Applications of Systems Architecture concepts [POSTER SESSION] 5

complete, finding cliques in two-dimensional grid-based search graphs can be
done efficiently”.

• Harry and Lindquist [7] propose “k-clique minimization with centrality reduc-
tion, [which] attempts to transform a complex graph into its abstract components,
creating new graphs that are representative of the originals but of a structure
which is[simpler]”

Despite of this utilisation of the termabstraction of the graphin the mentioned
works, there is not a shared, fully developed formalizationof this concepts . We
propose some initial distinctions.

1.3.1 Abstraction as graph contraction

The problem of graph abstraction reduces to the research of adifferent graph which
shares some features with the original one. In others words,we look for two graphs
whichmatchone each other.

Graph Matching is a classical problem in Graph Theory and in Optimization. We
can distinguish basically two kinds ofmatchingbetween graphs:

• exact matching
• inexact matching

Theexact graph matchingrequires that there is a perfect correspondence between
the graphs. This is obtained by means of an isomorphism.

Definition 1.1.
Given two graphsG1 = (V1,E1) andG2 = (V2,E2), with |V1|= |V2|, if exists a one-
to-one mappingI : V1 → V2 such that(u,v) ∈ E2 i f f (f (u), f (v)) ∈ E1, thenI is
called anisomorphismandG1 andG2 are calledisomorphic.

When it is not possible to find a perfect correspondence we canlook for graphs
which correspond “inexacly”. This happens, for example, when the number of ver-
tices and edges are different or when we consider attributedgraphs (the same num-
ber of vertices and edges does not assure always that there isan isomorphism).
Basically, we do not look for a perfect match but for the best possible one, assuming
that between the two graphs there is a difference. An interesting way to measure
this difference is the edit distance [6], namely the cost of the minimum number of
operations (insert, delete, and relabel the vertices and edges) that are necessary to
transform a graph in the other one (we assume that each operation has a cost).

Thus, we present below the operations on a graph which are relevant (in our
opinion) in order to reduce the complexity of a graph saving some kind of matching
(even if inexact) with the original one and to formalize the idea of “graph abstrac-
tion”.

1. For two graphsG = (V,E) andG′ = (V ′,E′), we haveG ⊆ G′ if V ⊆ V ′ and
E ⊆ E′; G is asubgraphof G′.

6 Fabio Roda, Alberto Costa, and Leo Liberti

2. For a graphG = (V,E) andU ⊆ V let E[U] = {{u,v} ∈ E | u,v ∈ U}; G[U] =
(U,E[U]) is the subgraph ofG inducedby U .

3. Forv ∈ V(G) let δ (v) = {u∈ V | {u,v} ∈ E} be thestar aroundv and δ̄ (v) =
{{u,v} | {u,v} ∈ E} be thecutof v.

4. Stars and cuts can be extended to sets of vertices: forU ⊆ V let δ (U) = {v ∈
V | ∃u∈U ({u,v} ∈ E) andδ̄ (U) = {{u,v} ∈ E | u∈U ∧v∈V rU}.

5. ∀{u,v} ∈ E(G) let G−{u,v}= (V(G),E(G)/ {u,v}) theedge deletionof the
edge{u,v} in the graphG.

6. Forv∈V(G), let G− v= (V(G)/ {v},E(G)/ δ̄ (v)) thevertex deletionof the
vertexv in the graphG.

7. ∀ U ⊆ V(G) let G−U = G[V(G)/ U] thesubgraph deletionof the subgraph
U in the graphG.

8. ∀U ⊆V(G) let G/U = (V(G−U)∪{u},E(G−U)∪{{u,v}|v∈V(G−U)∧
∃w∈U({v,w} ∈ E(G))}) thecontractionof G relating toU .

���
���
���
���

���
���
���
���

H
vH

Fig. 1.1 The subgraphH is contracted tovH , leaving the minor on the right.

Basically, when we contract a graph, we look at it “modulo” one of its subgraphs
H ⊆ G. The results of the contraction is aminor G′ of G whereV(G′) = V(G)r
V(H)∪{vH} andE(G′) is like E(G) with δ̄ (V(H)) replaced by a cut̄δ (vH). More
precisely, if{u,v} ∈ δ̄ (V(H)) with v∈V(H), then{u,v} is replaced by{u,vH}.
In Fig. 1.1 we show a simple example of graph contraction.

We think that we could formalize the idea of abstraction by means of the ideas
of (inexact) matching and edit distance, exploiting special operations such as the
“graph contraction”.
Thus, we are working to fully develop this idea and to understand both the compu-
tational gain and the optimality loss we get from this method.
We plan to solve the ACVRP for graph istances representing a road networks which
“inexactly match” (or, may say, are abstracted from the initial one) and to evaluate
the outcome.
In fig. 1.2 we can sketch the outcome of the contraction of a portion of the road
network of the metropolitan area of Paris.

1 Applications of Systems Architecture concepts [POSTER SESSION] 7

(a) Complete graph (b) Abstracted graph

Fig. 1.2 The road network of Paris

1.4 Concretization

The second idea that we borrow from System Architecture is theconcretization. We
apply this technique to the model of the ACVRP proposed in a previous section,
in order to get a different formulation. Despite of the fact that they both provide a
proper model, the second formulation goes deeper in detail and represents acon-
cretizationof the first one. Different models of the same problem are not unusual
in Operations Research.“It is well known that several different formulations may
share the same numerical properties (feasible region, optima) though some of them
are easier to solve than others with respect to the most efficient available algorithms.
Being able to cast the problem in the best possible formulation is therefore a crucial
aspect of any solution process. When a problem with a given formulation P is cast
into a different formulation Q, we say that Q is a reformulation of P.” [10]. From
this point of view, we may say thatconcretizationis a reformulation technique.

1.4.1 Second Formulation

We introduce the second formulation of the ACVRP. A binary variablez is associ-
ated with each couple(arc,vehicle) and a variableywith each couple(vertex,vehicle).

8 Fabio Roda, Alberto Costa, and Leo Liberti

1. Decision variables.

∀(i, j) ∈ A,k∈ K zi jk =

1 if the arc(i, j)
is crossed by vehicle k

0 otherwise
(1.8)

∀(i) ∈V,k∈ K yik =

1 if the vertex(i)
is crossed by vehicle k

0 otherwise
(1.9)

2. Objective function.

z= min
y,z ∑

i∈V
∑
j∈V

ci j

m

∑
k=1

zi jk

3. Constraints.

∀i ∈V \ {v0}
m

∑
k=1

yik = 1 (1.10)

m

∑
k=1

yv0k = m′ (1.11)

∀k∈ m ∑
i∈V

diyik ≤ D (1.12)

∀i ∈V,k≤ m ∑
j∈V

zi jk = yik (1.13)

∀i ∈V,k≤ m ∑
j∈V

zjik = yik (1.14)

∀S⊆V \ {v0},h∈ S,k≤ m, ∑
j /∈S

∑
j∈S

zi jz ≥ yhk (1.15)

∀i ∈V,k≤ m yik ∈ {0,1} (1.16)

∀i, j ∈V,k≤ m zi jk ∈ {0,1} (1.17)

1.4.1.1 Relations between formulations

In this section we investigate the relations between the twoformulations described
above. We introduce a connection be the variablesx andz.

• Variables Connection.

∀(i, j) ∈ A xi j = ∑
k≤m

zi jk (1.18)

1 Applications of Systems Architecture concepts [POSTER SESSION] 9

Let F1 andF2 the feasible regions of ACVRP(1) and ACVRP(2) respectively.
The feasible points inF2 can be mapped into a feasible point inF1 by means of a
projectionπ which uses (1.18).

xi j = π(zi jk) = ∑
k≤m

zi jk (1.19)

This relation forces a form ofconcretization. The first formulation of ACVRP
(which uses decision variablesxi j) does not specify which vehicle crosses an arc. It
only considers if an arc is crossed by a member of the whole fleet. The second for-
mulation models the behavior of each single vehicle (by means of decision variables
zi jk). The focus on the fleet rather than on a single vehicle introduces a different level
of granularity. One formulation ignores (conveniently) details which are considered
by the other one. We may say that ACVRP(2) is aconcretizationof ACVRP(1).

In general, we think that we could formalize the idea of concretization by means
of the idea of reformulation.

1.5 Conclusions and future work

In this work we provide some basic examples of the application of techniques sug-
gest by Systems Architecture in order to manage complex systems. Almost unusu-
ally, we apply these techniques to a classic transportationproblem with the aim
of exploring the synergies between systems design and optimization. We suggest
the implementation ofabstractionon graphs ascontractionandconcretizationof a
mathematical programming model asreformulation.

Nevertheless, this work is very initial and many aspects need further develop-
ments. We list below the work we plan to do.

• Abstraction should e able to reduce the effort required to solve big problem in-
stances because it reduces their size. We plan to perform computational tests to
measure exactly the effective gain.

• Graph contraction requires methods to identify convenientsubgraphs to be con-
tracted (for example cliques and clusters). We plan to test algorithms which can
this job and to evaluate their complexity.

• Apart of the impact on the computational side of the problem,abstractionand
concretizationhave an influence on the optimality of the solutions found. Weplan
to further investigate this influence in order to better define the limit of applica-
tion of these techniques. The aim is to understand when abstracted/concretized
model saves the optima and when they provide a relaxation of the problem. This
is probably the most important point we have to clarify.

This work is propedeutic to the development of a unified system modelling
method which is in progress and which uses all the techniquesprovided by Sys-
tems Architecture on a coherent pipeline.

10 Fabio Roda, Alberto Costa, and Leo Liberti

References

1. Baldacci, R., Hadjiconstantinou, E., Mingozzi, A.: An exact algorithm for the capacitated
vehicle routing problem based on a two-commodity network flow formulation. Oper. Res.52,
723–738 (2004)

2. Bliudze, S., Krob, D.: Towards a functional formalism formodelling complex industrial sys-
tems. In: P. Bourgine, F. Kepes, M. Schoenauer (eds.) European Conference on Complex
Systems (2005)

3. Bliudze, S., Krob, D.: Towards a functional formalism formodelling complex industrial sys-
tems. ComPlexUs, special Issue : Complex Systems - EuropeanConference 20052(3-4),
163–176 (2006)

4. Botea, A., Mller, M., Schaeffer, J.: Near optimal hierarchical path-finding. Journal of Game
Development1, 7–28 (2004)

5. Bulitko, V., Sturtevant, N., Lu, J., Yau, T.: State abstraction in real-time heuristic search. Tech.
rep., Journal of Artificial Intelligence Research (2006)

6. Gao, X., Xiao, B., Tao, D., Li, X.: A survey of graph edit distance. Pattern Analysis and
Applications13, 113–129 (2010)

7. Harry, D., Lindquist, D.: Graph abstraction through centrality erosion and kclique minimiza-
tion. Tech. rep., Olin College (2004)

8. Holte, R., Mkadmi, T., Zimmer, R., MacDonald, A.J.: Speeding up problem solving by ab-
straction: A graph oriented approach. ARTIFICIAL INTELLIGENCE85, 321–361 (1996)

9. Krob, D.: Modelling of complex software systems: A reasoned overview. In: FORTE, pp.
1–22 (2006)

10. Liberti, L.: Reformulations in mathematical programming: Definitions. In: CTW08 Proceed-
ings, pp. 66–70. G. Righini (ed.), New York, NY, USA (2008)

11. Toth, P., Vigo, D. (eds.): The vehicle routing problem. Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA (2001)

