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Why blowing up?
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Some sheaf theory

Let X be a topological space.

Definition

O(X ) is the poset category of open sets of X .

A presheaf on X is a functor O(X )op −→ Set.

A presheaf F is a sheaf if the following diagram is an equalizer:

F (U) Πi∈IF (Ui ) Πi ,j∈IF (Ui ∩ Uj)

Example

F : U 7→ C0(U,R) with restriction defines a sheaf on X . In this case, the
sheaf condition corresponds to the fact that a family fi : Ui −→ R satisfying

(fi )|Ui∩Uj
= (fj)|Ui∩Uj

can be amalgamated into a unique f :
⋃

i Ui −→ R.
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The fundamental correspondance

Theorem

There is an adjunction between Psh(X ) and Top/X that restricts to an
equivalence

ϕ : Sh(X ) ∼= Et(X )

Definition

Let F be a sheaf on X . Let x ∈ X . The set of germs of F at x is given by

Fx := colimU∋x F (U)

For s ∈ F (U), the germ of s at x , noted sx , is the equivalence class of s in
Fx .

To build a bundle out of F , just take the projection p :
⊔

x∈X Fx −→ X .
The open sets are generated by

Us := {sx | x ∈ U} (s ∈ F (U))
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The blowup construction

Let X be a locally ordered space.

Definition

The sheaf of n-traversals O (n)
X is defined by:

O (n)
X (U) := {A ⊆ U |A ∼= E with E n-euclidean local order}

for an open set U ⊆ X , the restriction map O (n)
X (V ) −→ O (n)

X (U) for U ⊆ V
being given by intersection with U.

Definition

The n-blowup of X is defined by

X̃ := ⊔x∈X{Ax ∈ O (n)
X , x | x ∈ A} ⊆ ϕ(O (n)

X )

(with the induced topology and local order). The n-blowup map is the
projection βX : X̃ −→ X .
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Back to the example

x The ghost space,

i.e. the elements ∅x , x ∈ X
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The universal property

Theorem

The n-blowup X̃ satisfies the following universal property: for any
n-euclidean local order E , for any local embedding f : E −→ X, there is a
unique continuous map f̃ : E −→ X̃ making the following diagram commute

X̃

E X

βX

f

f̃

Moreover, f̃ is a local embedding.

Corollary

The category of n-euclidean local orders and local embeddings is a
coreflective subcategory of the category of local orders and weakly
euclidean morphisms (or local embeddings).
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The concrete case

Definition

A graph is a presheaf on the category 0 ⇒ 1.

□ is the free monoidal category on 0 ⇒ 1 with unit 0.

A precubical set is a presheaf on □.

Informally, a precubical set is a set of n-cubes for every n ∈ N, glued
together on their bounderies. A precubical set can be realized as a locally
ordered space.

Proposition

The blowup of the locally ordered realization of a precubical set admits a
combinatorial expression.

This description is encapsulated in a presheaf over the opposite of the
category of elements of the precubical set.
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More formally

Let P be a precubical set.∫
P is the category of cubes of P and face inclusions.

1
2P is the 2-subdivision of P. In particular, every cube c of P has a
central vertex m(c) in 1

2P.

We define CombP :
∫
P −→ Set as follows :

CombP(k , c) := {e : (−1 −→ 0 −→ 1)n
1

6
P | e(0) = m(c)} ∪ {∅c}

This can also be seen as a relational presheaf over P.
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Back to the (other) example...

v

Yorgo Chamoun Ecole polytechnique 17 / 20



The set CombP(0, v)
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Final words

The tools developped can be used to prove rigidity results on locally
ordered realizations.

We can see this contruction as an instance of an abstract
construction on geometric contexts à la Toën.

We conjecture the existence of a smooth atlas on the blowup of a
precubical set.
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