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Some sheaf theory

Let X be a topological space.
@ O(X) is the poset category of open sets of X.
@ A presheafon X is a functor O(X) — Set.
@ A presheaf F is a sheaf if the following diagram is an equalizer:
F(U) —— Mie/F(Ui)) —= Ni e F(UiN L))
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Some sheaf theory

Let X be a topological space.
@ O(X) is the poset category of open sets of X.
@ A presheafon X is a functor O(X) — Set.
@ A presheaf F is a sheaf if the following diagram is an equalizer:

F(U) — Mig/F(Ui) —= Njje/F(UiN U))

Example

F : U+ C°(U,R) with restriction defines a sheaf on X. In this case, the
sheaf condition corresponds to the fact that a family f; : U; — R satisfying

(Duinu; = (Huiny

can be amalgamated into a unique f : | J; Ui = R.

— = — = = =
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The fundamental correspondance

Definition
p: E — X is a local homeomorphism if every x € E has an open
neighborhood U such that pjy is a homeomorphism. Et(X) is the category

of local homeomorphisms over X.
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The fundamental correspondance

p: E — X is a local homeomorphism if every x € E has an open
neighborhood U such that pjy is a homeomorphism. Et(X) is the category
of local homeomorphisms over X. )
(Theorem |
There is an adjunction between Psh(X) and Top/X that restricts to an
equivalence

¢ : Sh(X) = Et(X)

A\

Let M be a manifold. The above correspondance sends the tangent bundle
p: TM — M of M to the sheaf of vector fields of M defined by:

U {s: U — TM|s continuous, pos = id}

= = =
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In the other direction...

Let F be a sheaf on X.

Definition
Let x € X. The set of germs of F at x is given by

Fy := colimysy F(U)

For s € F(U), the germ of s at x, noted sy, is the equivalence class of s in
F.
o

To build a bundle out of F, just take the projection p: | | ox Fx = X.
The open sets are generated by

Us .= {sx | x € U}
for s € F(U).
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The blowup construction

Let X be a locally ordered space.

The sheaf of n-traversals O)({’) is defined by:

OV (U) := {AC U|A= E with E n-euclidean local order}

for an open set U C X, the restriction map OY(V) — O (V) for U C V
being given by intersection with U.

v

Definition
The n-blowup of X is defined by

X = Uxex{Ax € 00 | x € A} C ¢(OF)

(with the induceNd topology and local order). The n-blowup map is the
projection Bx : X — X.

— = = — SaNe
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Back to the example

The ghost space,
>< i.e. the elements @,, x € X
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The universal property

The n-blowup X satisfies the following universal property: for any
n-euclidean local order E, for any local embedding f : E — X, there is a
unique continuous map f : E — X making the following diagram commute

"\l

e lﬁx

Moreover, f is a local embedding.

Corollary

The category of n-euclidean local orders and local embeddings is a
coreflective subcategory of the category of local orders and weakly
euclidean morphisms (or local embeddings).

Yorgo Chamoun Ecole polytechnique 13/18



Outline

© Motivations
© Some sheaf theory
© The blowup construction

@ Precubical sets

Yorgo Chamoun Ecole polytechnique 14 /18



The concrete case

Definition
@ A graph is a presheaf on the category 0 = 1.

@ [l is the free monoidal category on 0 = 1 with unit 0.

@ A precubical set is a presheaf on .

Informally, a precubical set is a set of n-cubes for every n € N, glued
together on their bounderies. A precubical set can be realized as a locally
ordered space.

Proposition
The blowup of the locally ordered realization of a precubical set admits a
combinatorial expression.

This description is encapsulated in a presheaf over the category of
elements of the precubical set.
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Back to the (other) example...
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Final words

@ The tools developped can be used to prove rigidity results on locally
ordered realizations.

@ We can see this contruction as an instance of an abstract
construction on geometric contexts.

@ We conjecture the existence of a smooth atlas on the blowup of a
precubical set.
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