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Abstract. We describe a framework for reasoning about programs veith diar-
rying integer numerical data. We use abstract domains witbesand manipulate
complex constraints on configurations of these programsngnigonstraints on
the shape of the heap, sizes of the lists, on the multisetsataf stored in these
lists, and on the data at their different positions. Morepwe provide power-
ful techniques for automatic validation of Hoare-tripleslanvariant checking,
as well as for automatic synthesis of invariants and proeedummaries using
modular inter-procedural analysis. The approach has lmpleinented in a tool
called CELIA and experimented successfully on a large benchmark of gnugyr

1 Introduction

Reasoning about heap-manipulating programs can be quitple® and its automatiza-
tion is a real challenge both from the theoretical and thetjmal point of view. Indeed,
the specification of such a program (consider for instancetang algorithm), includes
in general various types of constraints, for instance cairgt on the structure of the
heap (i.e., being a list, acyclic, etc.), on the (unboundées of the different parts of
the heap (i.e., equality of the lengths of two lists), on tmeiff)sets of elements stored
in different parts of the heap (i.e., equality between thétiseis of data stored in two
different lists), as well as on the relations existing beiwthe data (potentially ranging
over infinite domains) stored in the heap (i.e., sortednkadist).

For example, the procedugeai cksort given in Fig. 1 sorts the input list pointed
to by the variable. The specification ofui cksort includes (1) the sortedness of the
output list pointed to byes, expressed by the formula:

Vy1,¥2.0<y1 <y, <len(res)=-data(res,y1) < data(res,ys) ()

wherey; andy, are interpreted as integers and used to refer to positiotiseitist
pointed to byr es, 1en(r es) denotes the length of this list, addt a(r es,y;1) denotes
the integer stored in the elementr@fs at positiony;, and (2) the preservation property
saying that input and output lists have the same (multifg@tslements. This property
is expressed by the equation

ms(a®) = ms(res) (ii)
wherens (a°) (resp.ms(r es)) denotes the multiset of integers stored in the list pointed
to bya at the beginning of the procedure (resps at the end of the procedure).

* This work was partly supported by the French National Retedgency (ANR) project
Veridyc (ANR-09-SEGI-016).



typedef struct list { 21 |ist* quicksort(list* a){

struct |ist *next; 22 list *left,*right, *pivot, *res, *start;
int data; 23 int d;
} list; 24 if (a==NULL || a->next == NULL)
25 copy(a, res);
void split(list *a, int v, list **sm |ist **gr){ 26 el se {
list *x=a; 27 d = a->data;
while (x !'= NULL){ 28 alloc( &pi vot, 1) ;
if (x->data <= v){ 29 pi vot->data = d;
30 start = a->next;
/* adds the el enent pointed 31
to by x to smx/ 32 split(start, d, & eft, & i ght);
} 33
el sef{ 34 left = quicksort(left);
35 right = quicksort(right);
/* adds the el enent pointed 36
to by x to gr */ 37 res = concaf | eft, pivot, right);
} 38 }
X = X->next; 39 return res;
1} o}

Fig. 1: Thequi cksort algorithm on singly-linked lists.

Therefore, reasoning on the correctness of such prograjases designing formal
frameworks where such kind of constraints (and their comidms) can be manipu-
lated, i.e., expressed, proved valid, and synthesized.

From the expressiveness point of view, multi-sorted logitsrpreted on labelled
graphs over infinite alphabets can be naturally considertds context. As said above,
such a logic should allow expressing (1) structural pragemn graphs using reacha-
bility predicates, as well as (2) constraints on (multgseft reachable elements: con-
straints on their sizes using some arithmetics like Pregarithmetics for instance,
equality/inclusion constraints on the multisets of datythre carrying, etc., and also
(3) constraints on the data attached to the different nodieigraph using some theory
on the considered type of data, for instance in the caseedéns, it would be possible
to consider again Presburger arithmetics to express datdramts.

Given such an expressive specification language, the dgallthen is to provide
algorithmic techniques allowing to carry out automatigabrrectness proofs of pro-
grams w.r.t. some specifications. (Here we consider pactialectness proofs, i.e.,
checking safety properties.) This task is not trivial sin€eourse the considered prob-
lem is undecidable in general for the considered class afraras and specifications.
Nevertheless, our aim is to provide sound techniques tegi@werful enough to handle
most of the cases that arise in practice.

A first objective is to provide automatic support for prefscsndition reasoning,
assuming that we are given a program together with annataspecifying assump-
tions and requirements on the configurations at its diffecentrol points, including
loop invariants and procedure specifications. The aim isitoraatize each step in the
correction proof using algorithms for checking the validif Hoare triples, i.e., given a
program statemersf a pre-conditiorp and a post-conditioty, check that starting from
any configuration satisfying, executings always leads to a configuration satisfying
Y. Phrased in the logic-based framework mentioned abov@ctrresponds to check-
ing whether the formulgost(@, St) = Y is valid, wherepost(@, St) is supposed to
be a formula that characterizes the set of all immediateesstrs ofp after executing



St Therefore, we need to have (1) procedures for computirectfely the formula
post(q, St) for any givenStandg, and (2) algorithms for deciding entailments between
two formulas in order to check thabst (@, St) = @ holds.

Beyond that, a more ambitious objective is to provide atpans for automatic syn-
thesis of invariants and procedure summaries (i.e., asssrspecifying the relations
between the inputs and outputs of the procedures). Thigslio augment the degree
of automation since the user would not need to provide alh#heessary annotations
for the correctness proof, which is usually cumbersome aritk gomplex. Instead,
he would be able to rely on synthesis techniques that camvisautomatically the
missing assertions (e.g., strong enough loop invariaotsymplete the proof.

To achieve these goals, several problems must be faced. w&snust be able to
decide the validity of the manipulated formulas. The proble that it is very hard to
define classes of formulas for which this is possible and #natexpressive enough
to cover relevant program properties such as those meutialpe@ve, mixing complex
constraints on the shape, sizes, and data. In fact, in maescthe needed assertions
are expressed using formulas that are outside the knowdatdeilogics.

As for assertion synthesis, the additional problem is thatdpace of assertions
is infinite, and it is hard to discover the relevant propertieat hold for all possible
configurations at some point in the program. Especiallys itriportant to have clever
techniques for the generation of universally quantifiedfiolas that capture such prop-
erties that may involve in general quite intricate relasibetween elements of the heap.
Naive procedures would not be able to generate accurat@hbrassertions.

In this work, we propose an approach for addressing thesesskased on the
framework of abstract interpretation [11]. We focus on tlasec of (sequential) pro-
grams manipulating dynamic linked lists carrying integemerical data.

First, we consider that constraints are expressed as etswfabstract domains, the
latter being equipped with appropriate meet, join, andienéant operations. These op-
erations correspond to approximations of the logical djra of conjunction, disjunc-
tion, and logical implication in the sense that the meetp(r@sin) under-approximates
conjunction (resp. over-approximates disjunction), amal éntailment is a sound ap-
proximation of logical implication, i.e., if the entailmeholds, then necessarily the
implication holds also. In addition to these operationstrdrt transformers are intro-
duced allowing to define an over-approximatiorpokt (@, St), for every statemerft
and constraing in the considered abstract domain. Therefore, validatiogr triples
in this framework amounts to checking an entailment betweenelements of some
abstract domain. Notice that entailment checking in thistext does not need to be
complete in general. But then, the difficulty is of coursetie tlesign of the abstract
domains (and the associated operations mentioned abotlgtdbey allow expressing
the kind of constraints that are needed for reasoning abiguifisant classes of pro-
grams, and they offer powerful mechanisms for computingrabispost-images and for
checking entailment that are accurate enough to be suatassf efficient in practice.

Furthermore, invariant synthesis and procedure summargrgéon can naturally
be done in this framework using intra/inter-proceduralyses. These analyses are de-
fined as fixpoint computations using the abstract domaingioresd above. However,
an additional, and quite delicate, issue that must be aseldeis this case is how to



guarantee termination while ensuring accuracy of the aealyin particular, quite elab-
orate extrapolation (or widening) techniques are needegtierate universally quan-
tified formulas that combine ordering and data constrafm®ther important issue to
address is scalability of the analyses. A natural approacketkling this issue is to

design modular inter-procedural analyses where the a@ralygach procedure call is
performed locally, by considering only the part of the helagt is accessible by the
variables of the procedure. Then, a delicate problem avidgsh is how to maintain

the relations that might exist between the elements of tbal loeap before and after
the procedure call and the rest of the elements in the heap.

We propose in this paper abstract domains allowing to realsout the various kind
of constraints that we have mentioned above, i.e., constraih the shape of the heap,
on the lengths of the lists starting at some locations, omthiisets of the data in these
lists, and on the values of the data at different positionthese lists. We show that the
proposed domains allow to reason accurately about complesti@ints, in particular,
our entailment checking techniques allow to establish #ieliy of formulas that are
beyond the capabilities of the existing tools, including tturrently most advanced
SMT solvers such as CVC3 [2] and Z3 [14].

Moreover, we propose modular inter-procedural analysibrtgjues allowing to
generate automatically invariants as well as proceduraranes. We show that in
order to be accurate, modular reasoning requires nortadeimbinations of abstract
analyses using different domains, in particular the doroimiversally quantified for-
mulas and the domain of multiset constraints. We have impiged the abstract do-
mains and the techniques described in the paper in a toeldc@iiLiA, and we have
carried out a large set of experimentations showing thegtheand the efficiency of
our approach.

2 Programs

We consider a class of strongly typed sequential progranishwhanipulate singly
linked lists. We suppose that all manipulated lists havestimae type, i.e., pointer to
a record called i st consisting of one pointer fieldext and one data fieldat a of
integer type. The generalization to records with severtal fields is straightforward.

Syntax: Let PVar be a set of variables of type pointerltost (PVarincludes the con-
stantNULL) andDVar a set of variables interpreted as integersragramis defined
by a set of procedures, each of them defined by a tBpie(fpi,fpo,loc,G), where
loc C PVarU DVar is the vector of local variable§i C loc andfpo C loc are the vec-
tors of formal input, resp. output, parameters, éid anintra-procedural control flow
graph(CFG, for short). The edges of the CFG are labeled by (1)rstaiés of the form
p=new, p=q, p- >next =q, p- >dat a=dt, andy=Q(x), wherep,q € PVar, dt is a term
representing an integeQ is a procedure name, aiydx C PVarU DVar, (2) boolean
conditions on data built using predicates o¥%gK(3) boolean conditions on pointers of
the form p==q, wherep,q € PVar, or (4) statementassert ¢ andassume ¢, where

¢ is a formula in the logisSL3 defined in Section 3. The semantics assumes a garbage

collector and consequently, the statemferde is useless. We assume a call-by-value



semantics for the procedure input parameters and that eackgure has its own set of
local variables. We forbid pointers to procedures and poiatithmetic.

NULL, X 4927  NULLx 3”1"251’”?;]””*1 et 15 )
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JOSEEEERES a[ne}— ¢ Aalna) A A gr(ng) AX(2)
7 Universally quantified formula:
sm@_> 2 42 Ahd(ng) < VAhd(ng) >V
sm| n. Alen(ng) = len(ns) +len(ng)
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AVY.y € tl(ns) = nsly] <v
AVY.y € t1(ng) = ngly] > v

97 Multiset formula:
or Ams(Na) =ms(ns) Ums(ng))
(a) (b) (©)

Fig.2: Heap (a), heap decomposition (b), a1 (c) representations of a program
configuration in the proceduspl it .

Semantics:A program configuration consists of a valuation of the vddalnterpreted
as integers and a configuration of the allocated memory. dtterlis represented by a
labeled directed graph where nodes represent list eleraadtedges represent values
of the fieldnext (every node has exactly one successor). The constnt is rep-
resented by the distinguished nadeNodes are labeled with values of the fidata
and program pointer variables. Such a representationledcaheap For example, the
valuation|v +< 6] and the graph in Fig. 2(a) represents a program configurafitime
procedurespl it from Fig. 1.

Definition 1 (Heap).A heap ovePVarandDVar is a tuple H= (N,SV,L,D) where:
(1) N is a finite set of nodes which contains a distinguishederfp(2) S: N — N is
a successor partial function s.t. onlyt$is undefined, (3) V PVar— N is a function
associating nodes to pointer variables s.tNULL) = £, (4) L: N — Z is a partial
function associating nodes to integers s.t. only)lis undefined, and (5) DDVar — Z
is a valuation for the data variables.

Definition 2 (Simple/Crucial node).A node labeled with a pointer variable or which
has at least 2 predecessors is cal@dcial Otherwise, it's called @imple node O

For example, the circled nodes in Fig. 2(a) are crucial nodghe other nodes
are simple. Since the semantics we consider is based onggacb#iection, the heaps
do not contain garbage, i.e., all the nodes of the graph acheble from nodes labeled
with pointer variables.

Theintra-procedural semantids defined by a mappingwhich associates to each
control pointcin the program a set of heaps oWRarandDVar, representing the set of
program configurations reachablecafAs usual, the mappingis obtained as the least
fixed point of a system of recursive equations. For any steté8tand any set of heaps
#{ overPVarandDVar, post.(# ,St) denotes the concrete post-condition operator.

We consider annter-procedural semanticbased on relations between program
configurations. To have a compositional semantics, we otlee approach ofocal



heap semanticetroduced in [25], where at each procedure call, the cdleseaccess
only to the part of the heap that is reachable from its actaedipeters, called tHecal
heap For example, in Fig. 3(a), the local heap for the procedaliejai cksort (1 eft)
contains only the nodes reachable from the node labeléefty. This approach sim-
plifies the semantics since it avoids the representatiohetall stack in the program
configurations. However, its use is delicate because thesimdthe local heap of the
callee may be shared with the local heaps of other procediiicsring the call these
nodes become locally unreachable or deleted, the localshafaihe other procedures
must also be updated accordingly. To solve this probleni,j&&poses to maintain for
each procedure call the nodes of the local heap from whickhheed paths start, but
which are not pointed to by the procedure parameters. Theesrare calledut-points
Notice that, in general, the number of cut-points may be unded. However, there is a
significant class of programs for which cut-points are ngesrerated during the execu-
tion. This class, calledut-point free programf6], includes programs such as sorting
algorithms, traversal of lists, insertion, deletion, étahis paper, we consider cut-point
free programs and we focus on the problems induced by datguiation.

For any procedur® = (fpi,fpo,loc,G) and any control point in P, we consider
relations between a program configuration at the entry mdiRtand a program config-
uration atc. These relations are represented using a double vocatotarjoc®, where
loc® = {\? | v € loc} denote the values of the variableslat at the entry point oP.
A relation associated tB at c is represented by a heap ovecUloc® consisting of a
valuation for the integer variables {focn DVar) U (locn DVar)® and a graph which is
the union of two sub-graph&° represents the local heap at the entry poinPaind
G represents the local heap at the control peirfeor example, a relation associated
toqui cksort atline 33 is represented by the valuatikni”? +—0,d <+ 6] and the graph
in Figure 3(a) (we suppose that integer variables are liziéd to 0). The subgraph
containing only the nodes reachable from the node labelesf bgpresents the input
configuration while the rest of the graph represents the gordtion at line 33.

3nd, na,ny,np, Ny, .
a0 64927 (1s(ng,j)*ls(na,ﬁ)*ls(n|,ﬁ)

0 *1s(nr, ) * 1s(Np, )
@ 4= 9=22=7 a%|na A2°(n2) Aa(na) Aleft(n)
NULL a
N 64923 Aright(n;) Apivot(np)
Universally quantified formula:
al|n NULL
a /) . ! Ahd(n) < hd(np) Ahd(n;) > hd(np)
2 Ad=hd(ny) Alen(np) =1

42
Alen(ng) = len(n)+len(n;) +1len(ny)

right @ 7 teft | N AVyY.y € £1(n) = ni[y] <hd(np)
pi vot AVY.y € t1(n;) = ne[y] > hd(np)
A€ty (na,nd)
right Mp | pivot Multiset formula:
97 6

Ams(Na) =ms(n) Ums(n,) Ums(np)
Ams(n3) =ms(ny))
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Fig. 3: Heap (a), heap decomposition (b), 8@ (c) representations of a relation be-
tween program configurations in the proceduurecksort .



The inter-procedural semantics is defined by a mappindpich associates to each
control pointc in the CFG of a procedure a set of heaps ovéwcU loc®. The mapping
p is obtained as the least fixed point of a system of recursivatamns [12,29]. The
extension of the postcondition operateist, over relations is also denoted pyst,.

3 Specification logic

We introduce hereafteBingly-Linked List LogiqSL3, for short) whose models are
heaps. Its definition is based omlacompositiof heaps obtained as follows. Given a
heapH, its decompositiofd is defined by (1) keeping only some nodes freinbut at
least all the crucial nodes, (2) adding an edge between amynbdes which are reach-
able inH, and (3) labeling every nodewith a sequence, which contains the integers
on the path fronH starting inn and ending in its successor in the new gr&phThe
valuation for the program integer variables is unchangedekample, Fig. 2(b), resp.
Fig. 3(b), gives a decomposition for the heap in Fig. 2(agpré&ig. 3(a).

Syntax of SL3: Formulas inSL3 describe heap decompositions. IN¥ar be a set of
node variablesnterpreted as nodes of the decomposition.SAB formula is a disjunc-
tion of formulas of the forndN. ¢c A dp A dp, N C NVar, without free node variables:

— ¢¢ defines the edges of the decomposition; it contains a sebofiaformulas of
the form1s(n,m) denoting an edge between the nodesndm, which are con-
nected using the operator (notation borrowed from separation logic [24DeT
operatork states that there is no sharing between the list segmentseyed by
the edges of the decomposition;

— ¢p is a conjunction of formulas of the form(n) with x € PVar andn € NVar,
expressing the fact thatlabels the node;

— ¢p, called adata formulais a first-order formula that describes the integer vaeiabl
and the integer sequences labeling the nodes of the decdimpos

Syntax of data formulas: In the following, the sequence of integers labeling the node
nis denoted also bg. The formuladpp has the following form:

(EA A\ W.Gy)=U(y) A (A ti=th), where
G(y)eg i

— E is a Presburger formula, callezkistential constraintwhich characterizes the
first elements of the sequences labeling the nodes of thengexsition (denoted
by hd(n)), the lengths of the integer sequences (denotexklyn)), and the values
of the variables fronDVar,

— yis a set ofposition variablesnterpreted as integers representing positions in the
sequences labeling the nodes of the decomposition,

— ¢ is a set of guard&(y), which are conjunctions of (1) formulas that associate
vectors of position variables with sequencgs=(t1(n) means that the position
variables from the vectorare interpreted as positions in the tail of the sequece
and (2) a conjunction of linear constraints over the positiariables that may use
terms of the fornlen(n),



— U(y) is a Presburger formula over terms of the fornm[y], denoting the integer at
positiony in the sequenca, 1en(n), andhd(n). A termnly] appears itJ (y) only
if the guardG(y) contains a constraigte t1(n) with y € y. This restriction is used
to avoid undefined terms. For instance) ilenotes a sequence of length 2 then the
termnly] with y interpreted as 3 is undefined,

- til,ti2 are multiset terms of the formm U --- Uus (s> 1 andU is the union of mul-
tisets) where basic terms are of the form (1nhd(n) (resp.d) representing the
singleton containing the first integer of the sequence iagei (resp. the value of
d), or (2) mt1(n) representing the multiset containing all the integers ef 4b-
guencen except the first one. As a shorthanld(n) Umt1(n) is denoted bys(n).

For example, the formula from Fig. 2(c) describes the deamsitipn from Fig. 2(b).
Analogously, the formula from Fig. 3(c) describes the deposition from Fig. 3(b),
where the equality of sequences is described by:

eqy(n,n°) := hd(n) = hd(n°) A len(n) = len(n°) A
Vy1,Ya. (1 € t1(n) Ayz € £1(n°) Ay =Y2) = nlya] = n°ly,] (iii)

Semantics ofSL3: For simplicity, we assume that any two distinct node vagabl
represent two distinct nodes in the decomposition. Givee@uohpositiorH and an
sL3 formula ¢, H satisfies¢ if there exists a disjunap of ¢, which is of the form
AN. éc A dp A dp, and an interpretatiom of the node variables i) as nodes irH
s.t. (1)(1(n),1(m)) is an edge iH iff ¢ contains the formulas(n,m), (2) 1(n) is
labeled withx € PVar iff ¢p contains the atomic formubgn), and (3) the integer data
in H satisfies the properties given lpy. Then, a heapl satisfies arsL3 formula¢ if
there exists a decompositibhof H that satisfie$. The set of heaps satisfying 8h3
formula¢ is denoted by¢].

Fragments of SL3: The fragment ofSL3 which contains formulas without multiset
constraints is denoted 83V while the fragment o6L3 which describes the integer
data using only multiset constraints is denotedsng". An SL3 formula is called
succinctf it describes heap decompositions that do not contain lsimpdes.

4 Reasoning about programs without procedure calls

In this section, we present solutions based on abstraaiioehiecking and synthesizing
assertions for programs without procedure calls.

4.1 Pre/post condition reasoning

We describe a framework for pre/post-condition reasonirgemwthe annotations
are given inSL3. In general, the difficulty is to check entailments of thenfior
post(dpre, St) = Ppost Wherepost(dpre, St) is anSL3 formula that models exactly
(over-approximates) the set of heamsst ([$prel, St). In the following, we consider
only entailments where the heap decompositions descripggda: do not contain sim-
ple nodes, i.e$postis succinct. This implies that the invariants and the posteitions
we can check must satisfy this restriction, which is usutiléycase in practice.



As a running example, we consider the problem of checkinghaariant for the
whi | e loop in the procedurspl it from Fig. 1. This invariant, denoted bdyv, con-
tains several disjuncts. Two of them, denotedyyandys,, are pictured in Fig. 4(c)
and Fig. 4(d); the sub-formula that describes the edgestanthbeling with pointer
variables of the heap decomposition is represented by ahgifdpe disjuncts ofnv
not represented in Fig. 4(c) are similar, i.e., they consile cases where, sm or
gr point to NULL. Instead of checking the validity gfost(Inv,St) = Inv, whereSt
is the body of the loop, we consider the problem of checkirgsimpler entailment
(W VW) = (Y1 v ), wherew? andy) are given in Fig. 4(a) and Fig. 4(b), respec-
tively (Y is a sub-formula opost (1, St) while ¥ is a sub-formula opost (Y2, St)).

Let¢ and¢’ be twosL3 formulas and consider the problem of checking the validity
of the entailment) = ¢'. To efficiently handle the disjunction, we check if for any
disjuncty of ¢ there exists a disjunay’ of ¢’ such thatp = (/. For example(y} v
Wh) = (W1 V Wy) is valid if Y} = w1 andyb = Y,. This approach is complete only
if both SL3 formulae$ and ¢’ are succinct and if any two disjuncts ¢f describe
non-isomorphic heap decompositions (the isomorphismrggithe integer sequences).

Next, to check an entailment of the fonn=- ¢/, wherey is of the form3N. ¢ A
dp A dp andy’ is of the form3aN’. o A dp A 0p, a first approach is to check that the
labeled graphs described yandy’ are isomorphic and thap entailsdp. This check
is complete only if bothp andy’ are succinct. Then, the entailment betwagnand
dp is valid if (1) the existential constraint ¢ implies the existential constraint ¢f,,

(2) the right part of any universally quantified implicationgp, is implied by the right
part of an universally quantified implication b having a similar guard, and (3) the
multiset constraints ipp imply the multiset constraints ifi;. A sufficient condition
to test the validity ofC,, is: for every multiset equality iy of the formt; = tp,
dp contains the multiset equalities= t{ Ut?--- UtP, t; =t} UtZ--- Ut}, and for any
1<i < p,t; =t). The approximation for the entailment that we obtain in théy is
denoted by_. For example, in Fig. 4|J§ C Yo and consequentlwg = Y.

The operator fold”: To prove entailments of the formy = (/, wherey is not suc-
cinct, we define an operatén1d”, which computes a succinst.3 formula that over-
approximateg) (i.e., it eliminates the existential node variableslinvhich represent
simple nodes). The extension B§1d* to SL3 formulas is defined byo1d*(\/; 4i) =

Vi fold”(W). Clearly, if fold”() C @/ theny = (. Such entailments arise naturally
when checking loop invariants. Even if we consider a su¢éma@riantinv, the post-
condition operatopost will unfold the structures and introduce simple nodes. @ens
quently,Inv describes heap decompositions that are not isomorphicap tiecompo-
sitions inpost(Inv, St) andpost(Inv, St) C Invdoes not hold. However, it may happen
thatfold*(post(Inv,St)) C Inv which is enough to provgost(Inv,St) = Inv. In the
running example, we have thea1d”(f) = @1 which impliesy? = ;.

Let Y be the disjunct of somsL3 formula. In generalfo1d*(y) is defined such
that every maximal pathg,ny,...,nx_1,nk in the graph described by between two
crucial nodesy andng is replaced by one edge betweefiand ng and the integer
sequence labeling in the models off o1d”(y) is the concatenation of the integer se-
quences labelingg, ny,...,nk_1 in Y. For examplefold#(lpf) is defined such that the
pathsna, 0, Nk andng, ng, £ are replaced by an edge fram to ny and an edge fromy
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Fig. 4: Checking the invariant for the loop in the procedspki t .

to f, respectively. Also, the sequences Iabeh’vagmdné in fold#(lpf) are the concate-
nation of the sequences labeling n;, andné, ng, respectively. The multiset constraints
are handled independently of the other constraints. Tnhﬂsi#(wf) contains the mul-
tiset constrainis(na) = ms(ng), which is obtained by (1) applying an inference rule in
_qﬂl’ that infers the constraimts () Ums(na) = ms(ng) Ums(ng) (the hypotheses of the
inference rule arehd(n}) = mhd(ng), ms(na) = ms(ng), andlen(n) = len(ny) = 1)
and (2) substitutingis(n},) Ums (na) with ms(na) andms (ng) Ums(ng) with ms(ng).

The other type of constraints are computed as follows. Tloggaties of the se-
quences labeling, in the models offold#(tpf) are easy to obtain because there are
no universal formulas that describe the sequences labelirgdn, in qu. We have
to update only the length constraints, i.e., substitete(n;) by 1len(ng) — len(n}) and
project out the ternlen(n}). Then, the properties of the sequences Iabm@m the
models ofy} are obtained as follows:

— we update the length constraints as in the previous casayeeubstitutd en(ng)
by len(ng) — len(ng) and project out the termen(nyg).

— the universal formula that describesin fold*(YP) has the same guard as the one
describingng in qu. It is obtained by taking into consideration that the taih@fn
fo1d*(y?P) is the concatenation between the head and the tajj nf ¢} Thus, we
obtain a formula of the formy. y € t1(ng) = (U1 Vv Uz), whereU, is the property
of hd(ng) andUy is the property of1(ng). The formulaly is E [hd(ng) < ng[y]],
whereE is the existential constraint uﬁf, andU; is obtained from the right part
of Vy.y € t1(ng) = ngly] > v by substitutingig[y] with nj[y], i.e.,Uz is ng[y] > v.



The relation Closure: In the example above, the input givenfte1d” contains only
universally-quantified implications over one positioniaate. When these implications
contain at least two position variables, the computaticgheiiniversally-quantified im-
plications describing the concatenations is more invalizetius consider the following
formula expressing the fact that the sequences labalirgdn; are sorted:

W3 1= 3ng, My, (1s(ng,np) *1s(np, §) AX(M) Asorted(ny) Aless(ng) Asorted(ny) Aless(n))
sorted(n) == Vy1,Yz. ([y1,Y2] € t1(N) Ay1 < ¥2) = nly1] < nlyy]
less(n) :=Wy. [y] € t1(n) = hd(n) < nfy].

In fold*(Y3), the sequence labeling; should be the concatenation of the se-
quences labeling; andn, in Y3 (n2 represents a simple node @n). The universal
formulas describing this sequence should have the samdgaarthe formulas i3,
i.e.,G1(y1,Y2) = [Y1,Y2] € t1(n) Ay1 < y2 andGy(y) =y € t1(n). In the following,
we focus on the first guard. An approach similar to the one tmegluards of the form
y € t1(n) could take the union of the properties expressed using theddgs (y1,Y2)
on each sequencaj(andn,) and define it as a property of the concatenation. Unfortu-
nately, this definition is unsound. The formulgy,y2. Gi1(y1,Y2) = ni[y1] < nifyz] is
not implied by because the concatenation of two sorted words is not alveateds

The definition offo1d” is based on a relation between guards and sets of guards,
called Closure (see [1] for more details). If we go back to the formujathen
sorted(n;) A less(n;) characterizes the data values in the first part of the con-
catenation andsorted(nz) A less(ny) characterizes the data values in the second
part. But, out of two positions in the concatenation, one hhige in n; (differ-
ent from the first element ofi;) and the other one imy. Therefore, to define a
soundfold” operator, we need a universally-quantified implicationihgwas guard
G3(y1,Y2) = y1 € t1l(n1) Ay2 € t1(ng). In fact, Closure(Gi(y1,y2)) is the set of
guards{Gi (y1,Y2),Gz(y), Gs(y1,Y2) }. The operatofold” combines universal formu-
las with guards fron€losure(Gi(y1,Y2)) in order to compute the formula of the form
Vy1,Y2. G1(y1,¥2) = U (see [5, 1] for more details). If these formulas are not prese
the input formula thedo1d” over-approximates it ttrue.

4.2 Invariant synthesis

We consider a static analysis for programs with singly-didkists based oabstract in-
terpretation[11]. We define in [5] a generic abstract domain whose elesnamresent
sets of heaps. Two important instances agg (k, 4y) andags(k, 4n) (the parameter
k may be omitted). The elements afys(k, 4y) aresL3Y formulas and the elements
of agg(k, 4p) aresL3™ formulas. The conjunctions of universally-quantified irnat
tions fromsL3" formulas are elements of an abstract domain denotegbgnd the
conjunctions of equalities between multiset terms frens™ formulas are elements
of an abstract domain denoted lay;. The elements ofigs(k, 2y) and aps(k, 4 )
are also calle@bstract heap set3 he abstract values satisfy the following restrictions:
(1) any two disjuncts describe non-isomorphic heap decaitipns and (2) any dis-
junct describes a heap decomposition with at nkosimple nodes. Alsoays(k, 4y)
has another two parameters which restrict the form of theeusally-quantified for-
mula describing the integer sequences. The first paranmseteset of guard®, also



calledguard patternsand the second one is a numerical abstract domagifsuch as
theOctagonsabstract domain [22], thieolyhedraabstract domain [13], etc.). Then, the
formulas belonging taiys (k, 4y) are disjunctions of formulas of the form:

N (bcndpAEA A WGy = U()),
G(y)€P(N)

where (1)P(N) is a set of guards obtained frofhby substituting all node variables
with elements oN and (2)E andU (y) are elements of the numerical abstract domain
A4yz. The order relation between elementsmfs(k, 4y) (resp.4ms(K, 4m)) is exactly
C restricted tosL3Y (resp.sL3Y) formulas. If we ignore integer data, the number of
heap decompositions without garbage and with at rkasimple nodes is bounded.
Consequently, the latticeys(k, 2p) is finite and there is no need to define a widening
operator. The latticerys(k, 4y) is infinite due to the numerical abstract domaip.
We define a widening operator which is parametrized by themiith operator ofi.

Unfolding/folding: The analysis over these abstract domains iterates theviatidwo
steps: (1) unfolding the structures in order to reveal thaperties of some internal
nodes in the lists, which makes necessary to introduce sam@esnodes and then,
(b) folding the structures, in order to keep the graphs fitijeeliminating the simple
nodes and in the same time collecting the informations osetiedes using a formula
that speaks about data sequences. To terminate, the widemémator is applied.

We define sound abstract transformers for the
void initEven(list* head) { statements in the class of programs we consider. The

:Lfti*hegf’i = head; statements that dereference thext pointer field

whi | e(headi 1= NULL) { SF(h_y >n§xt andx-.>next .—y) mtrodu_ce simple nodes.

headi - >data = 21 - he folding step is applied every time the ngmb_er of
headi = headi ->ne;<t' simple nodes becomes greater tHarlt consists in
i " applying the operatatold” described in Sec. 4.1. In
} particular, this is the crucial step that allows to gener-
} ate universally quantified properties from a number of
Fig.5 relations between a finite (bounded) number of nodes.
To make the operatato1d” precise, we should con-
sider abstract domainsys(k, 4y) parametrized by sets of guard patteBhahich are
closed under the relatidtlosure, i.e., they includ&€losure(G), for anyG in P.

We illustrate the unfold/fold mechanism on the procedurig Even from Fig. 5.
We analyze this program using the abstract dormaig(1, 2y) parametrized by (1) a
set of guard patterns consisting of one elenyent1(n) and (2) thePolyhedraabstract
domain. The analysis begins to unroll the loop of the proocedtarting from the first
SL3 formula given in Fig. 6. This formula represents the set bfi@hps that consist of
a path between a vertex labeledi®ad andheadi , and the distinguished noge

Every symbolic execution of the stateméwetadi =headi - >next in the loop gen-
erates a formula with two disjuncts: the first one corresgdndhe case wheheadi
points toNULL (the list traversal ends) and the second one unfolds thetstry i.e.,
introduces a new node which is pointed tolsadi. The formulas obtained after un-
rolling once and thrice the loop are given in Fig. 6. An edgetstg in some node and
labeled by 1 means that the formula contains the constraii(in) = 1. Also, a node
labeled by some integemmeans that the formula contains the constradin) = v.



Initial configuration:
head, headi  NULL

1st unrolling:
head headi NULL

[ o {1
0

\%
head  NULL, headi

0
3rd unrolling:

head headi NULL
e -]
0 2 4

\
head NULL, headi
:
0 2 4

Folding:

|

head headi NULL

0
Y.y etl(ng) = mly] =2xy
\
head NULL, headi

0
Vy.y € t1(m) = nyy] = 2xy

Fig.6

The size of the list pointed to byead is po-
tentially unbounded, so the size of the graphs
grows at each unrolling. In order to guaran-
tee termination, the analysis manipulates graphs
that contain at most one simple node (ikes 1).
Notice that after the third unrolling of the loop,
the graphs contain two simple nodes. To keep
the size of the abstract heaps bounded, the anal-
ysis eliminates these nodes but, before that, it
collects the information that the unrolling of the
loop revealed about them. This step is called
folding the structure and consists in applying
fold®. We obtain a universal formula that de-
scribes the data properties of the nodes that
have been eliminated. Because the analysis is
parametrized by the pattevty. y € t1(n), fold”
generates a universally quantified formula of the
formVy.y e t1(ng) = U. To this, it searches for
all possible instantiations of the variabtehat
satisfy the pattern, in this case the nodes labeled
by 2 and 4, and it applies the join in the numer-
ical abstract domain between the constraints on
these nodes, i.edt(y) = 2 anddt(y) = 4. The
resulting formula is given in Fig. 6.

The unfolding and folding steps are repeated
until the analysis reaches a fixed point. To en-
sure the convergence of the fixed point computa-
tion, apart from bounding the size of the graphs,
we use the widening operator of the numerical
abstract domairy. In the considered example,

widening makes the length constraints converge to the feattthe list pointed to by
head is greater than or equal to one. Consequently, the unilegaantified formula
from Fig. 6 is generalized to the entire list.

4.3 A sound decision procedure based on abstraction

In Sec. 4.1, we have shown that for afiyand ¢’ two SL3V formulas, the entail-
ment¢ = ¢’ is valid if for any disjuncty/ of ¢’ there exists a disjunap of ¢ such
thatfold”(Y) C (/. Notice thatfold”(@) C ( holds only if/ contains universally-
quantified implications having the same guards as some rgaily-quantified impli-
cations iny. For example, the entailmendiy = Ys in Fig. 7 is valid but@, IZ Ys

(becausa)y is succinct there is no need to apply the operatsirda®). This happens
becausap, does not contain an universally-quantified implication ihgvas guard

[V1,Y2] € t1(n1) Ay2 =y1+ 1.

The operator convertp: In order to increase the precision of entailment checking
betweersL3V formulas, we define an operatasnvertp [6], parametrized by a set of



head NULL, headi head NULL, headi

{1 = 0

VY1, Y. ([Y1,¥2] € t1(Mm) Ay2 =y1+1)

Vy.y € t1(ng) = mly] = 2%y =yl = M lyr] +2

Fig. 7: An entailment between two formulas denoted|lyandyss.

guard pattern®. For anysL3" formulad, convertp(¢) is ansL3Y formula equivalent
to ¢ which contains universally-quantified implications hayias guards constraints
from P. Therefore, for any and¢’ two SL3Y formulas, if convertp(9) C ¢’ then
¢ = ¢'. The operatotonvertp is defined as follows:

— we consider a program containing sevenriil | e loops that traverse the list seg-
ments constrained by. For example, in the case of;, we consider the program:

list *headi = head;
while (headi != NULL)
headi = headi - >next;

— the program is analyzed usimgs(k, 4y) parametrized by a set of guard patterns
P’ = PUPy UClosure(PUPy), wherePy are the patterns ih. The precondition
is exactly¢. We denote byp the postcondition (i.e., the formula describing the
configurations reachable at the end of the program) syraesising this analysis.
— convertp(@) is the conjunction o anddp.

The formulaconvertp(¢) is equivalent tap because, by definitioryp is implied
by ¢. For examplegonvertp, (Y1), whereP; consists of/ € t1(n1), [y1,y2] € t1(n1) A
y2 =y1+ 1, and the closure of these two patterns, is a formula whicttados both
universally quantified implications from Fig. 7 (see [6] foore details). The fact that
convertp, (P1) C Yo proves thatp; = > is valid.

5 Reasoning about programs with procedure calls

In this section, we extend the pre/post condition reasofraigework and the static
analysis from the previous section to (recursive) prograitisprocedure calls.

5.1 Pre/post condition reasoning

We assume that, besides loop invariants, each procedunadsaded by a precondition
and a postcondition. Following the local heap semantiesy; trescribe only the part of
the heap relevant to the procedure. The precondition dechieaps where all nodes are
reachable from the input parameters and the postcondiéiscribes relations between
the input and the output configurations, i.e., heaps ovetdhble vocabulariocUloc®.
The validity of Hoare triples corresponding to proceduisazan be checked as fol-
lows. LetP be a procedure annotated by a precondifigr and a postconditiof post
and let{¢1}P(ai,a0){$p>}, be a Hoare triple, wherai, resp.ao, are the input, resp.



output, actual parameters (the validity of Hoare triplesesponding ta) = P(ai,a0)

is checked in a similar manner). This Hoare triple is vali¢lif for any heagH mod-
eled byd,, the sub-graph dafl containing all the nodes reachable from the actual input
parametersi satisfiesp pre and (2)post($,P(ai,a0)) = ¢». The first condition holds
if the entailmentocal($1) = ¢ prely] is valid, wherelocal($1) is a sub-formula ofh1
describing only nodes reachable from the actual parameteasandy is a substi-
tution that replaces formal parameters with actual pararmeEor example, consider
the Hoare triple in Fig. 10 for the first recursive call of th@gedurequi cksort in
Fig. 1. The sub-formuldocal(¢1), whered; is the formula in the left of Fig. 10, is
1s(n,8) Aleft(n) Ahd(n) < hd(np) AVY.y € t1(n) = ni[y] < hd(np). Clearly, it
implies the precondition afui cksort, which states that the input list is acyclic.

Then,post(¢1,P(ai,a0)) is a disjunction of formulas obtained by combining a dis-
junct Py of ¢4 and a disjunctpest Of ¢ post S.t. the decomposition of the input heap in
Wpost is isomorphic to the decomposition of the local heagpin(the isomorphism is
denoted byh). Thus, (1) we replace ify1 the sub-formula that describes the local heap
(withoutinteger data) with the sub-formula that descriesoutput heap i post (with-
outinteger data), (2) we redirect all edges ending in noalesléd by actual parameters
(from 1) to the nodes labeled by the corresponding formal parasiét@m posy),
and (3) integer data is described by a formula of the forea 3INo. (¢p A b posth]),
wheredp (resp.§p post) is the sub-formula ofpy (resp.Pposy) that describes integer
data and\p is the set of variables denoting nodes from the input heappia; (the
isomorphisimh is used as a substitution for node variables). Notice theaktbicSL3 is
extended by allowing existential quantification over nodedables in the part that de-
scribes the integer data. For example, given the postdonditqui cksort in Fig. 9(b)
and the formulapy in the left of Fig. 10 = post(¢1,left = quicksort(left)) is
the formula in Fig. 11¢p s+ iS given in Fig. 9).

The approach based on local heaps can
caller heap be too weak for proving the validity of Hoare
triples corresponding to procedure calls. Ele-
ments in the local heap of the callee are linked
at the call point to external elements by some
data relation$, and the procedure is anno-
tated by some postconditiapy,n that relates
the input heap with the output heap. This sit-
uation is depicted in Fig. 8. The problem is
_ ) how to recover the linkp’ between the ele-
Fig.8: Relation between caller angnents in the callee output heap and the exter-
callee local heaps. nal elements in the caller heap.

Annotations in SL3Y for qui cksort: For the procedurgqui cksort, annotations in
sL3Y are not sufficient to prove that it outputs a sorted list. Toiscedure takes the
first element of the input lista as the pivot, splits the tail &f into two listsl eft and
ri ght, where all the elements okft, resp.ri ght, are smaller, resp. greater, thén
and then performs two recursive calls on the ligtst andri ght, before composing
the results, together witlh, into a sorted list.



a0
o hd(ns) <VAhd(ng) >V 0
8 m NULL Alen(ng) = len(ns) + len(ng) NULL len(Na) = len(nd) = len(Mes) > 1
Aegy(Ng,nd) ey (Ng,n3) Asortednes)
a[vl— ¢ Awyeriing - npi<v :
: s sVl = Ams(n3) = ms(Na) = ms(Nres)
AVY.y € t1(ng) = ngly] > v a 3
D.gst
sm| s Ams(n) =ms(na) = ms(ns) Ums(ng)
gr m res
(a) The postcondition ofpl i t (b) The postcondition ofui cksor t

Fig. 9: Postconditions faspl i t andqui cksort.

Assume that theL3Y postcondition okpl i t, resp.qui cksort, is the formula in
Fig. 9(a), resp. Fig. 9(b), without the multiset constraiw/e show that the approach
based on local heaps can not be used to prove the validityeoHtrare triple given
in Fig.10; for the moment, we ignore the multiset constsinthp. When computing
¢’ =post(¢},left = quicksort(left)), whered is the formulain the left of Fig.10
without the multiset equalities, the constraint that adl @lements ofeft are less than
or equal to the pivot is lost. The only constraint over thegisinted to byl ef t in ¢’ is
that the list is sorted. The reason for this is twofold: (18 #nnotations ofui cksort
describe only the input and the output list and they don&réd other variables from
the context of the call (i.e., they don’t contain the propéiiat all the elements of the
input list are less than or equal to the pivot) and (2) the qmdition ofqui cksort
contains no relation between the elements of the input andutput list becauset 3V
cannot express the fact that a list is a permutation of antitte

aD no ao nO
ti NLL  } reft=quicksort(left) { t nL
Ieft Ieft
r|ght nr Np | pi vot r|ght nr Np | pi vot
hd(n) <hd(np) Ahd(ny) > hd(np) ¢p Asortedn)

Ad=hd(np) Alen(np) = 1A egy(Na,n3)

Alen(ng) = len(n )+ len(n;) +len(np)
oo AVY.y € t1(n) = ni[y] < hd(np)

AVY.y € t1(n) = ne[y] > hd(np)

Ams(Na) =ms(n) Ums(ny) Ums(np)
Ams(nd) = ms(ny)

Fig. 10: A Hoare triple irsL3 for the first recursive call iqui cksort .
Combining universal formulas and multiset constraints: To be able to prove that

qui cksort outputs a sorted list, we must consider annotations witmédas from the
full SL3. Thatis, the list segments are now described by universgifntified formulas



andmultiset constraints. The new postconditiondpt it , resp.qui cksort, is the one
in Fig. 9(a), resp. Fig. 9(b). Now, the difficulty is to reasarthe combined theory.
With the new annotations, we have to check the validity ofHoare triple from
Fig.10 (multiset constraints are now taken into consid@nqtThe crucial pointin prov-
ing the validity ofpost(¢1,1left = quicksort(left)) = ¢, whered, is the formula
in the right of Fig.10, is to prove that the data constraint&ig. 11 imply that all the
elements of the sequenngs (the new value of the list pointed to bgft) are smaller
than or equal tad(np), i.e.,
any. (hd(m) <hd(np) AVY.y € t1(n) = ni[y] < hd(np) Ams(Nres) = ms(n|)) W)
= (hd(nres) < hd(Np) AVY. Y € t1(Nres) = Mresly] < hd(np)).

In words, if the sequences andnges have the same multisets of elements and all ele-
ments ofn, are less than the pivot then, the latter also holds abouti¢imeemts ofnyes.
Notice that the operatdr from Sec. 4.1 is not precise enough to prove this entailment.

a0 [n In;. (hd(n) < hd(np)
AVY.y € t1(m) = ny] <hd(np)
a .—>na 4 NULL 3ny. (bp APp.gst [NS < Ny
/\ms(nres) :ms(n|)) ( ,gst [ a ])
left ALL)
right Np | pi vot

Fig.11: The formul@ = post(§1,left = quicksort(left)).

We define an operator callesdir egt hen [6] which can be used to prove such im-
plications. It considers the same program agdavertp, consisting of a sequence
of loops that traverse the list segments. Then, it performaraalysis of this program
using a partially reduced product [10] between the domaiabstract heap sets with
universal formulasags(4y), and the domain of abstract heap sets with multiset con-
straints, ags(4n ). The elements of this product are pairs frams(2y) x 4ms(4m)-
Almost all the abstract transformers are definedAfyA;, A2) = (Fff(A1), R (A2)),
for any (A1,A2) € aps(ay) X Ams(4m), Where F{}‘ is the abstract transformer in
aps(4y) and F& is the abstract transformer imys(4n). The only exception is the
abstract transformer far=g- >next , denoted byG*, which is defined bya*(A;,Az) =
0(Gl;(A1),Gf;(A2)), wherea is a partial reduction operator that transfers information
between the two abstract elements. To check the validify-ef ¢, the analysis starts
from a precondition defined as a padry, dnr), wheredy is obtained fromp by re-
moving all multiset constraints and, is obtained fromp by removing all universally-
quantified implications. The output et r egt hen is the conjunction between the in-
put formula and the postcondition synthesized by the aigalyfs this case, applying
stregt hen on the formulap, we obtainp Ahd(n)) <hd(np) AVY.y € t1(n) =ny] <
hd(np). Now, the fact thath C ¢» holds proves the validity o = ¢ which implies
the validity of the Hoare triple from Fig. 10.



5.2 Synthesis of procedure summaries

For programs with procedure calls, we define a compositianalysis such that the
summary of a procedure is computed only once and then reusedeawer the proce-
dure is called. Again, in order to solve the problems raisethb use of local heaps, we
strengthen the analysis in the domain of universally-gtiadtformulas with the anal-
ysis in the domain of multiset constraints. Thus, we definatasiract domain which is
a partial reduced product betweeans(4y) and ags(Awm). The partial reduction op-
erator is exacthst rengt hen and it is used in the abstract transformers for procedure
returns andhssert statements. The analysis over this partial reduced pradiadile
for instance to synthesize the expected summary for theegdroequi cksort .
Another problem that we address for the design
of a compositional analysis is due to the use of pat-

call Proc Q terns for guards of universally-quantified implica-

/ Azs (v (P1)) tions. Indeed, the analysis of different procedures
< may need to use different sets of patterns and there-

Proc P fore, it is important to be able to localize the choice
Aus(10(B)) Ca" of these patterns to each procedure. Otherwise, it
would be necessary to use a set of patterns that in-
%\ Ays (4y(P2)) cludes the union of all the sets that are used during

the whole analysis. This would obviously make the
analysis inefficient.

Consequently, during the analysis, at procedure
calls and returns, we need to switch from an abstract donfdormulas parametrized
by some set of patterns, s&y to an abstract domain parametrized by another set of
patternsP; or P2 as shown in Figure 124@s(ay(P)) denotes the domain of abstract
heap sets with universally-quantified implications parained by the set of patteriiy.
This transformation is defined using the operatatvertp (see [6] for more details).

Fig. 12

6 Experimental results

We have implemented the inter-procedural analysis in adaléd G=LIA [9]. CELIA

is a plugin of the RAMA-C platform [8], thus taking as input annotated C programs.
CELIA instantiates the generic modulixPOINT (http: // gf orge.inria.fr/) of fix-

point computation over control-flow graphs with the implenaion of the abstract
domainsays(ay) andags(4y) and their abstract transformers. The implementation
of the aps(ay) domain considers the pattemps t1(w), (V1,Y2) € t1(w) Ay1 < yo,
(y1,¥2) €tL(W)Ay2 =Yy1+1, andy; € t1(wi) Ay2 € t1(W2) Ay1 = y2 and itis generic

on the numerical domainz used to represent data and length constraints. For this, we
use theaprRON platform [20] to access domains like octagons or polyhedra.

Benchmark: We have applied €L1A to a benchmark of C programs which is available
on the web site of ELIA. The benchmark includes the basic functions that are used
in usual libraries on singly-linked lists, for example th&ksgsl i st library which is

part of the Linux distribution. These functions belong teesal classes: (1) (recursive)
functions performing elementary operations on list: adftieleting the first/last ele-
ment, initializing a list of some length, (2) (recursivepfitions performing a traversal



of one resp. two lists, without modifying their structurbat modifying their data, (3)

functions computing from one resp. two input lists some atgarameters of type list
or integer, and (4) sorting algorithms on lists. The benatknadso contains programs
which do several calls of the above functions on lists. F@neple, we handle some
programs manipulating chaining hash tables. For that, veeabstraction techniques
(slicing, unfolding fixed-size arrays) available throufke Frama-C platform.

We have used ELIA for checking equivalence between sorting algorithms. The
st rengt hen operation plays an essential role. RetandP, be two sorting procedures
working on two input listd; andl,, and producing two outputd; andO,. The equiv-
alence ofP; andP; is reduced to the validity of the implication

(equally,l2) A sortedO1) Ams(l1) =ms(O1)
A sorted Oz) Ams(l2) =ms(0z)) (v)
= equa(04,0,),

whereequalandsortedare expressed by universally quantified implications &&.ih
Our techniques are able to find that this formula is indeeddv&lor instance, this
entailment and the one in (iv) can not be proved using SMTesslike CVC3 [2]
and Z3 [14] (the multiset equality of two sequeneagn;) = ms(np) is rewritten as
3Im. permutatiofim) AVi. n1[m(i]] = ny]i], wherepermutatiorim) expresses the fact that
the sequencm defines a permutation).

7 Conclusions and related work

The paper presents a logic-based framework the verificatimhthe analysis of pro-
grams with lists and data. It introduces a family of abstdmhains whose elements
are first-order formulas that describe the shape/size oéllbeated memory and the
scalar data stored in the list cells. The latter is charasdusing universal formulas or
multiset constraints. The elements of these abstract deean be used as annotations
within pre/post-condition reasoning. In this context, wgdduce sound procedures for
checking the validity of Hoare triples. Then, we define anuaate inter-procedural
analysis that is able to automatically synthesize invasiamd procedure summaries.
This analysis is compositional and it is based on unfoldoiding the program data
structures. The precision is obtained using partial rednaiperators, which allow to
combine analyses over different abstract domains. Overatl framework allows to
combine smoothly pre-post condition reasoning with aksesynthesis.

Related Work: Assertion synthesis for programs with dynamic data stnesthas been
addressed using different approaches, like constramirgple.qg. [3], abstract interpre-
tation, e.g., [7,12,19,15-18, 23, 28, 26, 27, 30], Craignmblants [21], and automata-
theoretic techniques [4].

Several works [19, 15, 23] consider invariant synthesis gozgrams with uni-
dimensional arrays of integers. The class of invariantg taa generate is included in
the one handled by our approach usings(4y). These techniques are based on an au-
tomatically generated finite partitioning of the array iwehi. We consider a larger class
of programs for which these techniques can not be applied.anialysis introduced in



[23] for programs with arrays can synthesize invariants aiftisets of the elements in
array fragments. This technique differs from ours basediemlomainays () by the
fact that it can not be applied directly to programs with dyimalists.

In [18], a synthesis technique for universally quantifiedrialas is presented. Our
technique differs from this one by the type of user guidinfpimation. Indeed, the
quantified formulas in [18] are of the forkty. F1 = F, whereF, must be given by the
user. In contrast, our approach fixes the formulas in lefdhgide of the implication
and synthesizes the right hand side. The two approaches priciple incomparable.

Concerning the approaches based on abstract interpretetioh can handle proce-
dure calls, most of them [7,12,17, 26, 27] focus on shapegstigs and do not consider
constraints on sizes or data. The approach in [26] can sgiathprocedure summaries
that describe data if the instrumentation predicates whidghe the abstraction speak
about data. Providing patterns is simpler than providirsgrimentation predicates on
data because patterns contain only constraints betweéve(sally-quantified) posi-
tions (in the left-hand-side of the implication) and no doaists on data. Actually,
patterns are in many cases simple (ordering/equality caingt) and can be discovered
using natural heuristics based on the program syntax omogegpby the user, whereas
constraints on data can be more complex. Our approach altodiscover (maybe un-
predictable) data constraints for given guard patterns.aralysis in [17] combines a
numerical abstract domain with a shape analysis. It is ratticted by the class of data
structures but the generated assertions describe onlh#pe and the size of the heap.
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