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Abstract. High-performance multithreaded software often relies on optimized
implementations of common abstract data types (ADTs) like counters, key-value
stores, and queues, i.e., concurrent objects. By using �ne-grained and non-blocking
mechanisms for e�cient inter-thread synchronization, these implementations
are vulnerable to violations of ADT-consistency which are di�cult to detect: bugs
can depend on speci�c combinations of method invocations and argument values,
as well as rarely-occurring thread interleavings. Even given a bug-triggering
interleaving, detection generally requires unintuitive test assertions to capture
inconsistent combinations of invocation return values.
In this work we describe the Violat tool for generating tests that witness violations
to atomicity, or weaker consistency properties. Violat generates self-contained
and e�cient programs that test observational re�nement, i.e., substitutability of
a given ADT with a given implementation. Our approach is both sound and
complete in the limit: for every consistency violation there is a failed execution of
some test program, and every failed test signals an actual consistency violation.
In practice we compromise soundness for e�ciency via random exploration of
test programs, yielding probabilistic soundness instead. Violat’s tests reliably
expose ADT-consistency violations using o�-the-shelf approaches to concurrent
test validation, including stress testing and explicit-state model checking.

1 Introduction

Many mainstream software platforms including Java and .NET support multithreading
to enable parallelism and reactivity. Programming multithreaded code e�ectively is
notoriously hard, and prone to data races on shared memory accesses, or deadlocks on
the synchronization used to protect accesses. Rather than confronting these di�culties,
programmers generally prefer to leverage libraries providing concurrent objects [29, 19],
i.e., optimized thread-safe implementations of common abstract data types (ADTs)
like counters, key-value stores, and queues. For instance, Java’s concurrent collections
include implementations which eschew the synchronization bottlenecks associated
with lock-based mutual exclusion, opting instead for non-blocking mechanisms [28]
provided by hardware operations like atomic compare and exchange.

Concurrent object implementations are themselves vulnerable to elusive bugs: even
with e�ective techniques for exploring the space of thread interleavings, like stress
testing or model checking [7, 30, 47], bugs often depend on speci�c combinations of
method invocations and argument values. Furthermore, even recognizing whether a



given execution is correct is non-trivial, since recognition generally requires unintu-
itive test assertions to identify inconsistent combinations of return values. Technically,
correctness amounts to observational re�nement [18, 21, 32], which captures the substi-
tutability of an ADT with an implementation [23]: any combination of values admitted
by a given implementation is also admitted by the given ADT speci�cation.

In this work we describe an approach to generating tests of observational re�nement
for concurrent objects, as implemented by the Violat tool, which we use to discover
violations to atomicity (and weaker consistency properties) in widely-used concurrent
objects [9, 10, 12]. Unlike previous approaches based on linearizability [20, 46, 4], Violat
generates self-contained test programs which do not require enumerating linearizations
dynamically per execution, instead statically precomputing the ADT-admitted return-
value outcomes per test program, once, prior to testing. Despite this optimization, the
approach is both sound and complete, i.e., in the limit: for every consistency violation
there is a failed execution of some test program, and every failed test witnesses an
actual consistency violation. In practice, we compromise soundness for e�ciency via
random exploration of test programs, achieving probabilistic soundness instead.

Besides improving the e�ciency of test execution, Violat’s self-contained tests can
be validated by both stress testers and model checkers, and double as regression and
conformance tests. Our previous works [9, 10, 12] demonstrate that Violat’s tests reliably
expose ADT-consistency violations in Java implementations using the Java Concurrency
Stress testing tool [42]. In particular, Violat has uncovered atomicity violations in over
50 methods from Java’s concurrent collections; many of these violations seem to
correspond with their documentations’ mention of weakly-consistent behavior, while
others indicate con�rmed implementation bugs, which we have reported.

Previous work used Violat in empirical studies, without artifact evaluation [9, 10, 12].
This article is the �rst to consider Violat itself for evaluation, the �rst to describe its
implementation and usage, and includes several novel extensions. For instance, in
addition to stress testing, Violat now includes an integration with Java Path�nder [47];
besides enabling complete systematic coverage of a given test program, this integration
enables the output of the execution traces leading to consistency violations, thus
facilitating diagnosis and repair. Furthermore, Violat is now capable of generating tests
of any user-provided implementation, in addition to those distributed with Java.

2 Overview of Test Generation with Violat

Violat generates self-contained programs to test the observational re�nement of a
given concurrent object implementation with respect to its abstract data type (ADT),
according to Figure 1. While its methodology is fairly platform agnostic, Violat currently
integrates with the Java platform. Accordingly, its input includes the fully-quali�ed
name of a single Java class, which is assumed to be available either on the system
classpath, or in a user-provided Java archive (JAR); its output is a sequence of Java
classes which can be tested with o�-the-shelf back-end analysis engines, including
the Java Concurrency Stress testing tool [42] and Java Path�nder [47]. Our current
implementation integrates directly with both back-ends, and thus reports test results
directly, signaling any discovered consistency violations.
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Fig. 1. Violat generates tests by enumerating program schemas invoking a given concurrent
object, annotating those schemas with the expected outcomes of invocations according to ADT
speci�cations, and translating annotated schemas to executable tests.

Violat generates tests according to a three-step pipeline. The �rst step, described
in Section 3, enumerates test program schemas, i.e., concise descriptions of programs
as parallel sequences of invocations of the given concurrent object’s methods. For
example, Figure 2 lists several test schemas for Java’s ConcurrentHashMap. The second
step, described in Section 4, annotates each schema with a set of expected outcomes,
i.e., the combinations of return values among the given schema’s invocations which are
admitted according to the given object’s ADT speci�cation. The �nal step, described in
Section 5, translates each schema into a self-contained3 Java class.

Technically, to guide the enumeration of schemas and calculation of outcomes,
Violat requires a speci�cation of the given concurrent object, describing constructor
and method signatures. While this could be generated automatically from the object’s
bytecode, our current implementation asks the user to input this speci�cation in JSON
format. By additionally indicating whether methods are read-only or weakly-consistent,
the user can provide additional hints to improve schema enumeration and outcome
calculation. For instance, excessive generation of programs with only read-only methods
is unlikely to uncover consistency violations, and weakly-consistent ADT methods
generally allow additional outcomes — see Emmi and Enea [12]. Furthermore, Violat
attempts to focus the blame for discovered violations by constructing tests with a small
number of speci�ed untrusted methods, e.g., just one.

3 Test Enumeration

To enumerate test programs e�ectively, Violat considers a simple representation of
program schemas, as depicted in Figure 2. We write schemas with a familiar notation,
as parallel compositions {...}||{...} of method-invocation sequences. Intuitively,
schemas capture parallel threads invoking sequences of methods of a given concurrent
object. Besides the parallelism, these schemas include only trivial control and data
�ow. For instance, we exclude conditional statements and loops, as well as passing
return values as arguments, in favor of straight-line code with literal argument values.
Nevertheless, this simple notion is expressive enough to capture any possible outcome,

3 The generated class imports only a given concurrent object, and a few basic java.util classes.
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java.util.ConcurrentHashMap
Schema / Method Outcome

{ put(0,0); put(1,1); put(1,1)} || { put(0,1); clear() } N,N,N,N,()
{ put(0,0); remove(1) } || { put(1,0); contains(0) } N,0,N,F
{ get(1); containsValue(1) } || { put(1,1); put(0,1); put(1,0) } 1,F,N,N,1
{ put(0,1); put(1,0) } || { elements() } N,N,[0]
{ put(0,1); put(1,0) } || { entrySet() } N,N,[1=0]
{ put(1,1) } || { put(1,2); isEmpty() } N,1,T
{ put(0,1); put(1,1) } || { keySet() } N,N,[1]
{ keys()} || { put(0,1); put(1,1) } [1],N,N
{ put(1,0); put(1,1); mappingCount()} || { remove(1) } N,N,2,0
{ put(1,0); put(1,1); size()} || { remove(1) } N,N,2,0
{ put(0,1); put(1,1) } || { toString() } N,N,1=1
{ put(0,1); put(1,0) } || { values() } N,N,[0]

Fig. 2. Program schemas generated by Violat for Java’s ConcurrentHashMap class, along with
outcomes which are observed in testing, yet not predicated by Violat.

i.e., combination of invocation return values, of programs with arbitrarily complex
control �ow, data �ow, and synchronization. To see this, consider any outcome y
admitted by some execution of a program with arbitrarily-complex control and data
�ow in which methods are invoked with argument values x, collectively. The schema
in which each thread invokes the same methods of a thread of the original program
with literal values x, collectively, is guaranteed to admit the same outcome y.

For a given concurrent object, Violat enumerates schemas according to a few
con�gurable parameters, including bounds on the number of threads, invocations,
and (primitive) values. By default, Violat generates schemas with exactly 2 threads,
between 3 and 6 invocations, and exactly 2 values. While our initial implementation
enumerated schemas systematically according to a well-de�ned order, empirically
we found that this strategy spends too much time in neighborhoods of uninteresting
schemas, i.e., which do not expose violations. Ultimately we adopted a pseudorandom
enumeration which constructs each schema independently by randomly choosing the
number of threads, invocations, and values, within the given parameter bounds, and
randomly populating threads with invocations. Methods are selected according to a
weighted random choice, in which the weights of read-only and untrusted methods
is 1; trusted mutator methods have weight 3. The read-only and trusted designations
are provided by class speci�cations — see Section 2. Integer argument values are
chosen randomly between 0 and 1, according to the default value bound; generic-typed
arguments are assumed to be integers. Collection and map values are constructed
from randomly-chosen integer values, up to size 2. In principle, all of these bounds are
con�gurable, but we have found these defaults to work reasonably well.

Note that while the manifestation of a given concurrency bug can, in principle, rely
on large bounds on threads, invocations, and values, recent studies demonstrate that
the majority (96%) can be reproduced with just 2 threads [25]. Furthermore, while our
current implementation adheres to the simple notion of schema in which all threads
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are execute in parallel, Violat can easily be extended to handle a more complex notion
of schema in which threads are partially ordered, thus capturing arbitrary program
synchronization. Nevertheless, this simple notion seems e�ective at exposing violations
without requiring additional synchronization — see Emmi and Enea [12, §5.2].

4 Computing Expected Outcomes

To capture violations to observational re�nement, Violat computes the set of expected
outcomes, i.e., those admitted by a given concurrent object’s abstract data type (ADT),
for each program schema. Violat essentially follows the approach of Line-Up [4] by
computing expected outcomes from sequential executions of the given implementation.
While this approach assumes that the sequential behavior of a given implementation
does adhere to its implicit ADT speci�cation — and that the outcomes of concurrent
executions are also outcomes of sequential executions — there is typically no practical
alternative, since behavioral ADT speci�cations are rarely provided.

Violat computes the expected outcomes of a given schema once, by enumerating
all possible shu�es of threads’ invocations, and recording the return values of each
shu�e when executed by the given implementation. For instance, there are 10 ways to
shu�e the threads of the schema

{ get(1); containsValue(1) } || { put(1,1); put(0,1); put(1,0) }

from Figure 2, including the sequence

get(1); put(1,1); put(0,1); put(1,0); containsValue(1).

Executing Java’s ConcurrentHashMap on this shu�e yields the values null, null, null, 1,
and true, respectively. To construct the generated outcome, Violat reorders the return
values according to the textual order of their corresponding invocations in the given
schema; since containsValue is second in this order, after get, the generated outcome is
null, true, null, null, 1. Among the 10 possible shu�es of this schema, there are only
four unique outcomes — shown later in Figs. 3 and 4.

Note that in contrast to existing approaches based on linearizability [20], including
Line-Up [4], which enumerate linearizations per execution of a given program, Violat
only enumerates linearizations once per schema. This is made possible for two reasons.
First, by considering simple test programs in which all invocations are known stati-
cally, we know the precise set of invocations (including argument values) to linearize
even before executing the program. Second, according to sequential happens-before
consistency [12], we consider the recording of real-time ordering among invocations
infeasible on modern platforms like Java and C++11, which provide only weak ordering
guarantees according to a platform-de�ned happens-before relation. This enables the
static prediction of ordering constraints among invocations. While this static enumera-
tion is also exponential in the number of invocations, it becomes an additive rather
than multiplicative factor, amounting to signi�cant performance gains in testing.

5



public class Test {
public static class StringResult5 {
@sun.misc.Contended public String r1;
@sun.misc.Contended public String r2;
...
public String toString() {
return r1 + ", " + ... + ", " + r5;

}
}

static StringResult5 results;
static HashSet<String> expected;
static ConcurrentHashMap obj;
static {
obj = new ConcurrentHashMap();
results = new StringResult5();
expected = new HashSet<String>();
expected.add("0, true, null, null, 1");
expected.add("1, true, null, null, 1");
expected.add("null, true, null, null, 1");
expected.add("null, false, null, null, 1");

}

// ...continued from the column to the left

static String stringify(Object object) { ... }

public static void main(String[] args) {
Thread thread1 = new Thread(() -> {
results.r1 = stringify(obj.get(1));
results.r2 = stringify(obj.containsValue(1));

});

Thread thread2 = new Thread(() -> {
results.r3 = stringify(obj.put(1, 1));
results.r4 = stringify(obj.put(0, 1));
results.r5 = stringify(obj.put(1, 0));

});

thread1.start(); thread2.start();
thread1.join(); thread2.join();

assert expected.contains(results.toString());
}

}

Fig. 3. Code generated for the containsValue schema of Figure 2 for Java Path�nder. Code
generation for jcstress similar, but conforms to the tool’s idiomatic test format using decorators,
and built-in thread and outcome management.

5 Code Generation and Back-End Integrations

Once schemas are annotated with expected outcomes, the translation to actual test
programs is fairly straightforward. Note that until this point, Violat is mainly agnostic
to the underlying platform for which tests are being generated. The only exception is in
computing the expected outcomes for schema linearizations, which executes the given
concurrent object implementation as a stand-in oracle for its implicit ADT speci�cation.

Figure 3 lists a simpli�cation of the code generated for the containsValue schema
of Figure 2. The test program initializes a concurrent-object instance and a hash table
of expected outcomes, then runs the schema’s threads in parallel, recording the results
of each invocation, and checks, after threads complete, whether the recorded outcome
is expected. To avoid added inter-thread interference and the masking of potential
weak-memory e�ects, each recorded result is isolated to a distinct cache line via Java’s
contended decorator. The actual generated code also includes exception handling, elided
here for brevity.

Our current implementation of Violat integrates with two analysis back-ends: the
Java Concurrency Stress testing tool [42] (jcstress) and Java Path�nder [47]. Figure 4
demonstrates the results of each tool on the code generated from the containsValue
schema of Figure 2. Each tool observes executions with the 4 expected outcomes, as
well as executions yielding an outcome that Violat does not predict, thus signaling
a violation to observational re�nement (and atomicity). Java Path�nder explores 18
program paths in a few seconds — achieving exhaustiveness via partial-order reduc-
tion [16] — while jcstress explores nearly 4 million executions in 1 second, observing
the unpredicted outcome only twice. Aside from this example, Violat has uncovered
consistency violations in over 50 methods of Java’s concurrent collections [9, 10, 12].
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ConcurrentHashMap: containsValue
{ get(1); containsValue(1) } || { put(1,1); put(0,1); put(1,0) }

outcome atomic? paths (JPF) frequency (jcstress)

0, true, null, null, 1 X 3 13,287
1, false, null, null, 1 × 3 2
1, true, null, null, 1 X 3 16,417
null, false, null, null, 1 X 6 3,638,600
null, true, null, null, 1 X 3 9,504

Fig. 4. Observed outcomes for the size method, recorded by Java Path�nder and jcstress. Out-
comes list return values in program-text order, e.g., get’s return value is listed �rst.

6 Usage

Violat is implemented as a Node.js command-line application, available from GitHub
and npm.4 Its basic functionality is provided by the command:

$ violat-validator ConcurrentHashMap.json
...
violation discovered
---
{ put(0,1); size(); contains(1) } || { put(0,0); put(1,1) }
---
outcome OK frequency
----------------------- -- ---------
0, 0, true, null, null X 7
0, 1, true, null, null X 703
0, 2, true, null, null X 94,636
null, 1, false, 1, null X 2,263
null, 1, true, 1, null X 59,917
null, 2, true, 1, null X 4
...

reporting violations among 100 generated programs. User-provided classes, individual
schemas, program limits, and particular back-ends can also be speci�ed:

$ violat-validator MyConcurrentHashMap.json \
--jar MyCollections.jar \
--schema "{get(1); containsValue(1)} || {put(1,1); put(0,1); put(1,0)}" \
--max-programs 1000 \
--tester "Java Pathfinder"

A full selection of parameters is available from the usage instructions:

$ violat-validator --help

4 https://github.com/michael-emmi/violat
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7 Related Work

Terragni and Pezzè survey several works on test generation for concurrent objects [45].
Like Violat, Ballerina [31] and ConTeGe [33] enumerate tests randomly, while Con-
Suite [43], AutoConTest [44], and CovCon [6] exploit static analysis to compute po-
tential shared-memory access con�icts to reduce redundancy among generated tests.
Similarly, Omen [35, 37, 36, 38], Narada [40], Intruder [39], and Minion [41] reduce
redundancy by anticipating potential concurrency faults during sequential execution.
Ballerina [31] and ConTeGe [33] compute linearizations, but only identify generic
faults like data races, deadlocks, and exceptions, being neither sound nor complete for
testing observational re�nement: fault-free executions with un-admitted return-value
combinations are false negatives, while faulting executions with admitted return-value
combinations are generally false positives — many non-blocking concurrent objects
exhibit data races by design. We consider the key innovations of these works, i.e., re-
dundancy elimination, orthogonal and complementary to ours. While Pradel and Gross
do consider subclass substitutability [34], they only consider programs with two con-
current invocations, and require exhaustive enumeration of the superclass’s thread
interleavings to calculate admitted outcomes. In contrast, Violat computes expected
outcomes without interleaving method implementations, i.e., considering them atomic.

Others generate tests for memory consistency. TSOtool [17] generates random tests
against the total-store order (TSO) model, while LCHECK [5] employs genetic algo-
rithms. Mador-Haim et al. [26, 27] generate litmus tests to distinguish several memory
models, including TSO, partial-store order (PSO), relaxed-memory order (RMO), and
sequential consistency (SC). CppMem [2] considers the C++ memory model, while
Herd [1] considers release-acquire (RA) and Power in addition to the aforementioned
models. McVerSi [8] employs genetic algorithms to enhance test coverage, while Wick-
erson et al. [48] leverage the Alloy model �nder [22]. In some sense, these works
generate tests of observational re�nement for platforms implementing memory-system
ADTs, i.e., with read and write operations, whereas Violat targets arbitrary ADTs,
including collections with arbitrarily-rich sets of operations.

Violat more closely follows work on linearizability checking. Herlihy and Wing [20]
established the soundness of linearizability for observational re�nement, and Filipovic
et al. [14] established completeness. Wing and Gong [49] developed a linearizability-
checking algorithm, which was later adopted by Line-Up [4] and optimized by Lowe [24];
while Violat pays the exponential cost of enumerating linearizations once per program,
these approaches pay that cost per execution — an exponential quantity itself. Gibbons
and Korach [15] established NP-hardness of per-execution linearizability checking for
arbitrary objects, while Emmi and Enea [11] demonstrate tractability for collections.
Bouajjani et al. [3] propose polynomial-time approximations, and Emmi et al. [13]
demonstrate e�cient symbolic algorithms. Finally, Emmi and Enea [9, 10, 12] apply
Violat to checking atomicity and weak-consistency of Java concurrent objects.
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