
On Atomicity in Presence of Non-atomic Writes⋆

Constantin Enea1 and Azadeh Farzan2

1 Univ. Paris Diderot, cenea@liafa.univ-paris-diderot.fr
2 University of Toronto, azadeh@cs.toronto.edu

Abstract. The inherently nondeterministic semantics of concurrent programs is
the root of many programming errors. Atomicity (more precisely conflict seri-
alizability) has been used to reduce the magnitude of this nondeterminism and
therefore make it easier to understand the behaviour of the concurrent program.
Serializability, however, has not been studied well for programs executed under
memory models weaker than sequential consistency (SC), where writes are not
atomic, i.e., they may be committed to the main memory later than issued. In this
paper, we define the notion of conflict serializability for the Total Store Ordering
(TSO) memory model, and study the relation between TSO-serializability and
the well-known notions of SC-serializability and robustness. We investigate the
algorithmic problem of monitoring program executions for violations of serial-
izability, and provide lower bound complexity results for the problem, and new
algorithms to perform the monitoring efficiently.

1 Introduction

While writing a concurrent program, a programmer often prefers to have non-interfered
access to shared data that is manipulated by a thread, since this permits the reasoning
about the correctness of the code to be done locally and therefore simplifies the process.
Atomicity is a generic correctness criterion that is inspired by this view. Informally, an
atomic code block has the same behaviour under interfering actions of other threads as
it does when executed without interference (serially). Establishing atomicity of code
blocks eases the task of reasoning about the program by substantially reducing the
number of interleavings that need to be considered. Moreover, non-atomicity hints at
the existence of potential bugs; a study of concurrency errors [20] shows that a majority
of reported errors in concurrent programs (around 69%) are atomicity violations.

Several notions of atomicity have been introduced in the literature. A widely recog-
nized notion is conflict serializability [21], introduced as a correctness criterion with a
tractable monitoring algorithm that guarantees atomicity. It is assumed that a program’s
code is divided into code blocks (such as procedures, loop bodies, or even single state-
ments) that are called transactions. An execution is conflict serializable if it is equiv-
alent to a serial execution, i.e. an execution in which all transactions are executed in
a sequential non-interleaved fashion. The key element of this definition is the notion
of equivalence which allows permutation of non-conflicting statements to establish an
equivalent serial execution.

⋆ An extended version of this paper including the missing proofs can be found at [1].

There has been a huge body of research in the recent years that studies the problems
of static and dynamic checking of atomicity, which is almost entirely based on the as-
sumption that the programs are executed under a sequentially consistent (SC) memory
model. Weak memory models have been duly getting a lot of attention in the program-
ming languages and systems research communities, and yet the question of atomicity
under a weak memory model has not been studied well. Let us start by an example to
motivate why weak memory models require a carefully tailored notion of atomicity.

(a) (b)

head++;

if (head <= tail) {
task = pool [head - 1];

pool [head - 1] = NULL;

// Execute task

}
else

head--;

tail--;

if (head <= tail) {
task = pool [tail];

pool [tail] = NULL;

// Execute task

}
else

tail++;

�

��

↵

Fig. 1. Task pool (transactions marked by brackets).

Consider the program with
two methods in Fig. 1. Ar-
ray pool implements a pool of
tasks with two pointers head
and tail pointing to its be-
ginning and end. The invariant
is head ≤ tail and the pool is
empty if head = tail. The pro-
cedures (a) and (b) take ele-
ments from the pool’s head and tail, respectively. Imagine a program that is running
these two procedures in two threads (transactions are marked by brackets in the figure).
Once a thread atomically modifies head/tail, interference from the other thread is
tolerated. But, when it is about to modify the pool, it requires mutual exclusion. It
is easy to verify that every execution of this program is conflict serializable (under se-
quential consistency). Even though both (a) and (b) potentially write to an element of
the array pool, the conditional ensures that it is never the same element. Now consider
the same program executed under the Total Store Order (TSO) memory model where
writes are first stored in a thread-local buffer and non-deterministically flushed into the
shared memory at a later time. When head + 1 = tail, the if condition may succeed
in both (a) and (b). A write to head performed by (a) may be propagated to (b) after
the condition is tested in (b), conversely a write to tail performed by (b) may be prop-
agated to (a) after the condition is tested in (a). This is the behaviour that is strictly
disallowed under SC. In that case, both threads access the same element of the array
pool by first reading it and then writing to it. This is a classic violation of atomicity.
Moreover, assuming that the threads are grabbing tasks from this task pool to execute,
this non-atomic behaviour can lead to a real program error if a non-idempotent task
ends up being executed twice by two different threads. We need a notion of atomicity
that is aware of such erroneous TSO-executions, and declares them as non-atomic.

In this paper, we propose a new notion of atomicity, called TSO-serializability,
which is inspired by the standard notion of conflict serializability under SC, in the
sense that is syntactic, efficient to monitor, and helpful for the programmer to facili-
tate local reasoning. Yet, it makes special considerations for (i) non-atomicity of writes
to the shared memory under TSO, and (ii) possible reorderings of shared memory ac-
cesses made by the same thread, allowed under TSO but not under SC. The idea is that
TSO-serializability lifts the relaxedness of the orderings of individual statements under
TSO to the level of atomic blocks (viewed as composite statements). For example, since
TSO allows for two statements write(x)read(y) to be reordered to read(y) write(x)
(indicating that the write is committed later), therefore we expect the two-transaction

sequence [write(x1)write(x2)] [read(y1)read(y2)] to be allowed to be reordered to[read(y1)read(y2)] [write(x1)write(x2)] in an equivalent execution.
We provide a formal justification for the notion of TSO-serializability presented in

this paper by stating its precise relation to SC-serializability and robustness. Robust-
ness [6] is a property of a program stating that the program does not exhibit non-SC
behaviour if executed on a weaker memory model such as TSO. If a program is ro-
bust, and it is SC-serializable, then for any reasonable notion of TSO-serializability,
one should expect it to be serializable under TSO. That is exactly what we prove for our
proposed notion of TSO-serializability. The converse, however, does not always hold. If
a program exhibits strictly more behaviours under TSO (compared to SC), it is expected
that some of these behaviours may not serializable, while all SC behaviours are.

Since TSO-serializability is formulated based on the concept of a syntactic con-
flict relation (similar to standard SC-serializability), a monitoring algorithm for TSO-
serializability can be adapted from the classic algorithm for conflict serializability ef-
fortlessly; a program execution can be monitored for TSO-serializability violations us-
ing a similar algorithm as SC-serializability [21] and in the same polynomial time com-
plexity. There is, however, a practical impediment in the way of monitoring programs
for TSO-serializability violations, and that is how to obtain an execution to monitor
in the first place. To obtain a detailed TSO execution (including the information about
when writes were committed to memory), the monitor needs access to inner workings
of the cache coherence protocol. This implies a very complicated monitor design which
will likely have huge performance setbacks. Conceptually, there is a lightly distributed
system that needs to be monitored, and observing global snapshots of which are costly.

We propose the notion of traces, as an abstraction of executions (in the form of a
set of executions) which forgets information about the exact time of write commits. In
a trace, once a write is issued by a thread, it can be committed at any point in the future,
consistently with all the other accesses in the trace. We pose and solve the problem of
monitoring a trace for TSO-serializability violations. Since a trace represents a set of
executions, it is expected that this problem should be more complex than the monitoring
problem of a single execution. We prove that the problem is in general NP-complete,
but fixed-parameter tractable. We propose an algorithm to solve it in polynomial time if
the number of threads in the program is considered to be a constant.

2 Multithreaded Programs and Their Executions

Events. A program consists of a number of threads running concurrently and commu-
nicating through shared variables. Each thread runs a sequence of transactions, which
are themselves sequences of events. We fix arbitrary sets T, Tr, V, and D of thread
identifiers, transaction identifiers, variable names, and values.

For a given thread identifier t, we fix the sets Rt = {rd t(x, v)i ∶ i ∈ Tr, x ∈ V, v ∈ D}
and Wt = {wr t(x, v)i ∶ i ∈ Tr, x ∈ V, v ∈ D} of read and write events. Events are
indexed by thread and transaction identifiers. Fence events (which concern the internal
workings of TSO and which are explained later in this section) are denoted by fnit. We
omit the transaction identifier iwhen it is understood from the context, or it is irrelevant.
Let Et = Rt ∪Wt ∪ {fnit ∶ i ∈ Tr} and E = ⋃tEt.

Programs. A sequence of events σ is called serial when every two events of the same
transaction are not separated by an event of another transaction, and well-formed when
each transaction identifier is used at most once and for each thread t, the projection
of σ on events of thread t is serial. A program P is abstractly represented as a prefix-
closed set of well-formed sequences of events (representing all possible interleavings
of events of different threads). The semantics of a program P for a specific memory
model consists only of those sequences that are feasible under that memory model.
Memory models. An SC-execution is a sequence of events η ∈ E∗ where roughly, each
read event reads the value written by the last preceding write. An SC-execution of a
program P is an SC-execution η such that η ∈ P .

Under TSO, a write wr t(x, v)i (called also a write-issue) is first stored in a thread-
local FIFO buffer, called the store buffer, before being non-deterministically flushed
into the shared memory. The written value may become visible to other threads at
a later time. Flushing the store buffers introduces additional events wr -comt(x, v)i,
called write-commit events, for removing a write wr t(x, v)i from the store buffer of t
and execute it on the shared memory. We say that the write-commit wr -comt(x, v)i
corresponds to that write, and denote it by wr t(x, v)i ∼ wr -comt(x, v)i. Write-
commits inherit the transaction identifier of the corresponding write-issue (regardless
of when they occur). A read rd t(x, v) prefetches the value v written by the last write
to x in the buffer of t, and if no such write exists, the value v is retrieved from the
shared memory. A fence event fnt is enabled only when the buffer of t is empty. Let
Wct = {wr -comt(x, v)i ∶ i ∈ Tr, x ∈ V, v ∈ D}, Etsot = Et ∪Wct, and Etso = ⋃tEtsot.
For any e ∈ {rd t(x, v)i,wr t(x, v)i,wr -comt(x, v)i}, th(e) = t and var(e) = x. A
sequence of events η ∈ (Etso)∗ satisfying this semantics is called a TSO-execution. A
TSO-execution of a program P is a TSO-execution η such that the projection of η on E
belongs to P . Fig. 2(a) pictures a TSO-execution of the program in Fig. 1.

3 Conflict Serializability

Conflict serializability was introduced in [21] as a syntactic (and tractable to monitor)
notion that ensures atomicity. Instead of considering the data manipulated by transac-
tions, a conservative “conflict relation”, relating the individual actions of transactions,
is defined which guarantees atomicity regardless of the data values read and written by
individual actions. A conflict relation relates events with their values projected away,
that we also call events (and inherit all the notations from Sec. 2 for sets of events). Con-
flict serializability is a property of a sequence of events (without values), which are also
called SC/TSO-executions. Note that such a sequence represents a set of executions,
where different values can be assigned to individual events (consistently).

Formally, a conflict relation is an irreflexive binary relation ⊚ ⊆ E × E. For a pair
of events e, e′ ∈ E, we write e ⊚ e′ to stand for (e, e′) ∈ ⊚ and e /⊚ e′ to stand for(e, e′) /∈ ⊚. Intuitively, whenever e ⊚ e′, the effect of executing e after e′ may differ
from that of executing e before e′. The conflict relation depends on the underlying
memory model. For instance, the conflict relation ⊚SC from [10] assumes sequential
consistency: e ⊚SC e′ whenever e and e′ are events of the same thread (i.e., th(e) =

th(e′)) or they access the same variable, and one of them is a write (i.e., (e, e′) ∈(R ∪W)2 ∖R2 and var(e) = var(e′)).
Given an execution η = η1ee′η2 (where e and e′ are events and η1 and η2 are exe-

cutions), we say an execution η′ = η1e′eη2 is derived from η by a ⊚-valid swap if and
only if e /⊚ e′. A permutation η′ of an execution η is ⊚-preserving if and only if η′ can
be derived from η through a sequence of ⊚-valid swaps.

An execution η is conflict serializable w.r.t. the conflict relation ⊚ if and only if
there exists an execution η′ that is a ⊚-preserving serial permutation of η. We call the
notion of conflict serializability based on ⊚SC SC-serializabiliy for short. A program
P is SC-serializable iff every SC-execution of P is SC-serializable.

An equivalent characterization of conflict serializability can be established through
conflict graphs [21], where the graph was constructed for a specific conflict relation.
The same definition can be easily adapted for any conflict relation.

Definition 1 (Event-Graph). The event-graph of an execution η is the directed graph
EGη = ⟨V,E⟩ where there is a node in V for each event in η, and E contains an edge
from u to v iff e(u) ⊚ e(v) and e(u) occurs before e(v) in η (where e(v) is the event
of execution η corresponding to the graph node v).

Intuitively, one can think of the event-graph of an execution η as a structure that repre-
sents the order between all conflicting events in η.

The conflict-graph of an execution η is defined based on the event-graph of η by
grouping all events indexed by the same transaction identifier as a new node, and con-
sidering the directed graph that is induced on these new transaction nodes. Let tr(v) be
the set of events that belong to a transaction node v.

Definition 2 (Conflict-Graph). The conflict-graph of an execution η is the directed
graph CGη = ⟨V ′,E′⟩ where V ′ includes one node for each transaction identifier in
η, and we have (v, v′) ∈ E′ iff there exists events e ∈ tr(v) and e′ ∈ tr(v′) such that(e, e′) ∈ E where EGη = (V,E) is the event-graph of η.

Theorem 1. (from [21]) For a conflict relation⊚, an execution η is conflict-serializable
if and only if CGη is acyclic.

In [21], a polynomial time algorithm is presented that uses the conflict graph and
Th. 1 to monitor an execution under SC for violations of serializability.

Event-graphs and conflict-graphs of SC-executions are defined as in Def. 1 and
Def. 2, respectively, using ⊚SC instead of ⊚.

4 Serializability Under TSO

In this section, we propose a conflict relation for TSO and justify the suitability of the
obtained notion of conflict serializability by relating it to the classic SC serializability.

4.1 TSO Conflict Relation

The TSO conflict relation ⊚TSO is formally defined as follows:

(1)

(2)

(i)

(ii)

(iii)

4 Serializability Under TSO

In this section, we propose a conflict relation for TSO and justify the suitability
of the obtained notion of conflict serializability by relating it to the classic SC
serializability.

4.1 TSO Conflict Relation

The TSO conflict relation �TSO is formally defined as follows:

SC-serializability: We call the notion of conflict serializability based on the
conflict relation �SC SC-serializabiliy for short. A program P is SC-serializable
i↵ every SC-execution of P is SC-serializable.

Event-graphs and conflict-graphs of SC-executions are defined as in Defini-
tion 1 and Definition 2, respectively, using �SC instead of �.

4 Serializability Under TSO

We define a conflict relation for TSO and show the pertinence of the obtained
notion of conflict serializability by relating it to the classical SC serializability.

4.1 TSO Conflict Relation

Essentially, the TSO conflict relation �TSO relates events accessing the same
shared memory location and events of the same thread (but not all such pairs
as in the SC case). Since the read events that access the shared memory can
be identified only by knowing the placement of write-commit events, �TSO is
defined in the context of an execution. Thus,

e�TSO e′ ⇔ � th(e) ≠ th(e′) ∧ (e, e′) ∈ (R ∪Wc)2 �R2 ∧ var(e) = var(e′)
except the following cases:

e = rd t1(x) ∧ e′ = wr -comt2(x) ∧ e �� e′
e = wr -comt1(x) ∧ e′ = rd t2(x) ∧ e′ �� e

� th(e) = th(e′) except the following cases:

e ∈ Rt ∪Wt ∧ e′ ∈Wct ∧ ¬e ∼ e′
e ∈Wct ∧ e′ ∈ Rt ∪Wt ∧ ¬e ∼ e′
e = wr t(x) ∧ e′ = rd t(y) ∧ x ≠ y

e = rd t(x) ∧ e′ = rd t(y) ∧ x ≠ y ∧ rd t(x) is bu↵ered

� e = fnt for some t

wr t1(x,)

rd t1(x,)

wr -comt1(x,)

wr -comt2(x,)

wr t2(x,)

First, �TSO includes every pair of write-commits
on the same variable, and pairs of reads and write-
commits with some exceptions (note that write-issues
do not access the shared memory but only the store
bu↵er). A read rd t1(x) that occurs between a write-
issue wr t1(x) and the corresponding write-commit
wr -comt1(x) prefetches its value from the store bu↵er and does not access the
shared memory. We assume wr t1(x) is the last such write-issue before rd t1(x)
(since reads prefetch the last written value from the store bu↵er). Therefore,
rd t1(x) commutes 1 with respect to any write-commit wr -comt2(x) of another
thread occurring between the same pair of events wr t1(x) and wr -comt1(x).
1 That is, the sequence of events obtained by permuting these two events is still valid

under TSO.

(1)

(2)

(3)

(i)

(ii)

(iii)

e�TSO e′ ⇔ � th(e) ≠ th(e′) ∧ (e, e′) ∈ (R ∪Wc)2 �R2 ∧ var(e) = var(e′)
except the following cases:

e = rd t1(x) ∧ e′ = wr -comt2(x) ∧ e �� e′
e = wr -comt1(x) ∧ e′ = rd t2(x) ∧ e′ �� e

� th(e) = th(e′) except the following cases:

e ∈ Rt ∪Wt ∧ e′ ∈Wct ∧ ¬e�SC e′
e ∈Wct ∧ e′ ∈ Rt ∪Wt ∧ ¬e�SC e′
e = wr t(x) ∧ e′ = rd t(y) ∧ x ≠ y

e = rd t(x) ∧ e′ = rd t(y) ∧ x ≠ y ∧ rd t(x) is bu↵ered

Similar to the SC conflict relation, �TSO declares events accessing the same
shared memory location, where at least one of them is a write-commit conflicting
(see (1) above). However, since under TSO, some read events may access values
by reading a local bu↵er (instead of fetching the value from shared memory),
there are exceptions that involve such reads.

wr t1(x,)

rd t1(x,)

wr -comt1(x,)

wr -comt2(x,)

wr t2(x,)

A read rd t1(x) event that occurs between a wr t1(x)
event and the corresponding wr -comt1(x) event, and
where wr t1(x) is the most recent write-issue event
before rd t1(x), fetches its value from the store bu↵er
that holds the value written by wr t1(x). In this case,
under TSO semantics, rd t1(x) is not in conflict with
any write-commit wr -comt2(x) of another thread that is parallel to it, that is
when wr -comt2(x) occurs between the pair of events wr t1(x) and wr -comt1(x)
(see the figure on the right). Such pairs of read and write-commit events, denoted
by rd t1(x)��wr -comt2(x), are excepted from �TSO since one is to the local store
bu↵er and the other to the shared memory.

Similar to the SC conflict relation, �TSO declares events within the same
thread to be in conflict (see (2) above). The exception (over SC) is that a write-
commit is not in conflict with respect to other events in the same thread (see (ii)
above), except for the corresponding write issue (which must always precede it).
Another exception is related to the relaxation of the program order allowed by

(1)

(2)

(i)

(ii)

(iii)

e�TSO e′ ⇔ � th(e) ≠ th(e′) ∧ (e, e′) ∈ (R ∪Wc)2 �R2 ∧ var(e) = var(e′)
except the following cases:

e = rd t1(x) ∧ e′ = wr -comt2(x) ∧ e �� e′
e = wr -comt1(x) ∧ e′ = rd t2(x) ∧ e′ �� e

� th(e) = th(e′) except the following cases:

e ∈ Rt ∪Wt ∧ e′ ∈Wct ∧ ¬e ∼ e′
e ∈Wct ∧ e′ ∈ Rt ∪Wt ∧ ¬e ∼ e′
e = wr t(x) ∧ e′ = rd t(y) ∧ x ≠ y

e = rd t(x) ∧ e′ = rd t(y) ∧ x ≠ y ∧ rd t(x) is bu↵ered

Similar to the SC conflict relation, �TSO declares events accessing the same
shared memory location, where at least one of them is a write-commit conflicting
(see (1) above). However, since under TSO, some read events may access values
by reading a local bu↵er (instead of fetching the value from shared memory),
there are exceptions that involve such reads.

wr t1(x,)

rd t1(x,)

wr -comt1(x,)

wr -comt2(x,)

wr t2(x,)

A read rd t1(x) event that occurs between a wr t1(x)
event and the corresponding wr -comt1(x) event, and
where wr t1(x) is the most recent write-issue event
before rd t1(x), fetches its value from the store bu↵er
that holds the value written by wr t1(x). In this case,
under the TSO semantics, rd t1(x) is not in conflict
with any write-commit wr -comt2(x) of another thread that is parallel to it, that
is when wr -comt2(x) occurs between the pair of events wr t1(x) and wr -comt1(x)
(see the figure on the right). A pair of read and write-commit events like this,
denoted by rd t1(x)��wr -comt2(x), should not be conflicting (according to �TSO)

Similar to the SC conflict relation, ⊚TSO declares events accessing the same shared
memory location, where at least one of them is a write-commit conflicting (see (1)
above). However, since under TSO, some read events may access values by reading
from a local buffer (instead of the shared memory), there are exceptions to this general
rule involving such reads.

wr t1(x,)

rd t1(x,)

wr -comt1(x,)

wr -comt2(x,)

wr t2(x,)

A read rd t1(x) event that occurs between a wr t1(x)
event and the corresponding wr -comt1(x) event, and
where wr t1(x) is the most recent write-issue event be-
fore rd t1(x), fetches its value from the store buffer that
holds the value written by wr t1(x). In this case, accord-
ing to the TSO semantics, event rd t1(x) should not be
in conflict with a write-commit wr -comt2(x) of another thread that happens in paral-
lel with it; that is, when wr -comt2(x) occurs between the pair of events wr t1(x) and
wr -comt1(x) (as illustrated in the figure on the right). Such a pair of parallel read and
write-commit events, which we denote by rd t1(x) ∣∣wr -comt2(x), should not be con-
flicting since one is a read from a local store buffer and the other a write to the shared
memory (accesses to two different resources).

Similar to the SC conflict relation, ⊚TSO declares events within the same thread to
be in conflict (see (2) above). Again, there are exceptions to this rule. A write-commit is
not in conflict with other read and write events in the same thread (see (ii) above), except
for its corresponding write issue (which must always precede it). Other exceptions (see
(iii) above) are related to the relaxations of the program order allowed by the TSO
semantics. There is no conflict between a write and a read event of the same thread
on different variables. This exception is natural since it extrapolates the behaviour of
the memory model at the level of events to the level of transactions, i.e., write-only
transactions can be reordered with respect to later read-only transactions. Finally, TSO
semantics relaxes the program order between a rd t(x) event that fetches its value from
the store buffer and a future rd t(y) event of a different variable y ≠ x (see also [1]).
Buffered Reads. The relative ordering of wr t(x)/wr -comt(x) events corresponding to
the read event rd t(x) (of the same thread) determines whether the read fetches its value
from the buffer (or the shared memory). Therefore, every read event rd t(x), that is
preceded by a write wr t(x) of the same thread and no fence event fnt in between, may
or may not be fetching its value from the local buffer, depending on when the write gets
committed to the memory. This runtime information is unavailable when a programmer
is reasoning at the level of the source code. We choose to call any such read, that may

rd1(head, 1)�

rd1(tail, 1)�

wr -com1(head, 1)↵

rd1(pool[0],)�

wr1(pool[0],)�

wr1(head, 1)↵

wr2(tail, 0)�

rd2(head, 0)�

rd2(tail, 0)�

wr -com1(pool[0],)�
wr -com2(pool[0],)�

wr2(pool[0],)�

wr -com2(tail, 0)�

rd2(pool[0],)�

wr1(head, 1)↵

rd1(head, 1)�

rd1(tail, 1)�

wr1(pool[0],)�

wr2(tail, 0)�

rd2(head, 0)�

rd2(tail, 0)�

wr2(pool[0],)�

rd1(pool[0],)�

rd2(pool[0],)�

(a) (b)

(c)

(d)

↵

�

�

�

↵

�

�

�

Fig. 2. (a) A TSO-execution η (events are ordered from top to bottom) and its ⊚TSO event-graph
EGη . (b) Ignoring dashed edges, the write-contraction ofEGη . Dashed edges represent conflicts
added by ⊚TSO−po . Ignoring dashed edges and redefining the highlighted edges to be undirected,
the trace event-graph EGτ of τ = trace(η). (c) The conflict-graph induced by EGη . (d) The
conflict-graph induced by EGτ .

fetch its value from the buffer, a buffered read and exclude the mutual conflicts between
these reads and later reads to other variables from ⊚TSO (see (iii) above). This way, we
feel that the definition of conflict relation stays true to its main purpose, i.e. defining a
notion atomicity that is helpful to programmers reasoning about their code.

The following proposition formally states the fact that all order relaxations intro-
duced in the definition of ⊚TSO are consistent with the TSO semantics:

Proposition 1. Any ⊚TSO -preserving permutation of a TSO-execution η is also a TSO-
execution.

The notion of conflict serializability based on ⊚TSO is called TSO-serializability.
A program P is TSO-serializable iff every TSO-execution of P is TSO-serializable.
Event/conflict-graphs of TSO-executions are defined as in Def. 1 and Def. 2, respec-
tively, by replacing ⊚ with ⊚TSO . An equivalent of Th. 1 then provides an effi-
cient (poly-time) procedure to monitor an execution for TSO-serializability violations.
Fig. 2(a) illustrates the event-graph of a non TSO-serializable execution of the program
in Fig. 1. The conflict-graph in Fig. 2(c) contains a cycle.

4.2 Connection to SC-serializability

Beyond Prop. 1, we substantiate our definition of TSO-serializability by formally
relating it to the widely accepted notion of SC-serializability. We show that SC-
serializability implies TSO-serializability for robust programs. Intuitively, a program
is robust if it does not exhibit non-SC behaviour; in other words, each of its TSO-
executions is equivalent to another execution of the same program under SC. Under

SC, every write-issue is immediately followed by the corresponding write-commit (i.e.
no delay in propagating the write).

Let ⊚TSO−po be a strengthening of ⊚TSO in which the program order is maintained
for all pairs of events in E in the same thread. Formally, a TSO-execution η is SC-
equivalent when there exists an execution η′ that is a ⊚TSO−po-preserving permutation
of η and every write-issue of η′ is immediately followed by the corresponding write-
commit. A program P is robust when every TSO-execution of P is SC-equivalent.
One can check SC-equivalence by letting every pair of write-issue and corresponding
write-commit events to form a transaction, and checking conflict serializability of the
execution consisting of these transactions and all other events as single transactions
(more details in [1]). The conflict graph defined this way is called a write-contraction.
For instance, the TSO-execution in Fig. 2(a) is not SC-equivalent (since there is a cycle
in Fig. 2(b)) which implies that the program in Fig. 1 is not robust.

Theorem 2. A program P is TSO-serializable if it is robust and SC-serializable.

wr1(x, 1) wr2(y, 1)

rd1(y, 0) rd2(x, 0)

wr1(x, 1)

wr2(y, 1)rd1(y, 0)

rd2(x, 0)

The reverse of Theorem 2 doesn’t hold. For instance, both programs above are TSO-
serializable although the program in the left is not robust and the program in the right
is not SC-serializable. The program in the left is TSO-serializable since every event is
a transaction and events in the same thread are not in conflict, and it is not robust since
intuitively, both reads don’t see the value written by the other thread. The program in
the right is TSO-serializable because the events in thread 1 are not in conflict while it is
not SC-serializable since it admits only one execution where the events of thread 1 take
place in between the two events of thread 2.

A program P is called transaction-fenced when for every σ ∈ P , every transaction in
σ, i.e., every maximal sub-sequence of events indexed by the same transaction identifier,
ends with a fence 3. For transaction-fenced programs, the converse of Th. 2 is true:

Theorem 3. A transaction-fenced program P is TSO-serializable iff it is robust and
SC-serializable.

5 Trace TSO-Serializability

There are practical obstacles in the way of implementing a monitor that can observe a
TSO-execution of a program. The monitor is subject to the same distributed nature of
the memory as individual program threads, and tracking write-commits of threads re-
quires a manipulation of the cache-coherence protocols running in the multi-core chip
with potentially high performance overheads. We introduce a notion of serializability
for TSO that does not require to be aware of the exact timing of write-commits. This no-
tion applies to abstractions of TSO-executions called traces that forget write-commits,

3 Transaction-fenced programs are not necessarily robust since statements inside a transaction
may not be followed by a fence.

assuming that a write-commit can happen at any point in time after its correspond-
ing write-issue (consistent with the TSO semantics). This effectively means that the
serializability of a set of executions (namely those where the forgotten write-commits
reappear at any of the consistent points) is monitored instead of a single execution.

The trace of an execution η, denoted by trace(η), is the projection of η on E (basi-
cally leaving out all write-commits). The set of executions Execs(τ) represented by a
trace τ is the set of all TSO-executions η such that trace(η) = τ .

Definition 3 (Trace TSO-Serializability). A trace τ is TSO-serializable iff every exe-
cution in Execs(τ) is TSO-serializable.

The most important property of τ = trace(η) for some execution η is that τ can
soundly be used to check if η is not TSO-serializable.

Proposition 2. If execution η is not TSO-serializable then the trace trace(η) is not
TSO-serializable.

We introduce a conflict relation Ð⇀⊚TSO for traces and a characterization of serial-
izability based on that conflict relation. Intuitively, Ð⇀⊚TSO stands for the union of the
conflict relations for all the individual executions of that trace, where a write event rep-
resents both the write-issue and the corresponding write-commit. The relation Ð⇀⊚TSO

over traces is the union of two disjoint relationsÐ→⊚TSO and ⊚TSO. Given e, e′ ∈ E,

e
Ð→
⊚TSOe

′ iff th(e) = th(e′) except the following cases:

e = wr t(x) ∧ e′ = rd t(y) ∧ x ≠ y

e = rd t(x) ∧ e′ = rd t(y) ∧ x ≠ y ∧ rd t(x) is a buffer read

th(e) ≠ th(e′) and (e⊚SC e
′
∧ fence(e, e′)

or e = rd t(x) ∧ e
′
= wr t′(x) ∧ e is not buffered)

e⊚TSOe
′ iff th(e) ≠ th(e′) ∧ e⊚SC e

′
∧ ¬e

Ð→
⊚TSOe

′

The conflicts between events of the same thread are included in Ð→⊚TSO since the order
between such events is fixed in all the executions of the trace. Two events of different
threads are in conflict if they are so under the classic SC conflict relation, and they are
related by Ð→⊚TSO iff they are separated by a fence (since the fence ensures they are
ordered in the same way in all executions) or if they are a non-buffered read (reading
from the shared memory) together with a write (since a read cannot see the value of a
write that hasn’t been issued yet). Formally, e and e′ are fence-separated, denoted by
fence(e, e′), when e occurs before e′, e is an action of thread t, and τ contains a fence
fnt between e and e′. In contrast, ⊚TSO relates events that are conflicting under ⊚SC

but may appear in different orders in different executions of a trace, for example two
write events (of the same variable) performed by two different threads. Recall that a
write represents both the write-issue and the corresponding write-commit.

Similar to the case of executions, having a graph theoretic characterization of seri-
alizability for traces is useful for algorithm design. We define the event-graph of a trace
τ that contains a directed edge from event e to event e′ iff eÐ→⊚TSOe

′ and an undirected
edge between e and e′ iff e⊚TSOe

′.

Definition 4 (Trace Event-Graph). The event-graph of a trace τ is the graph EGτ =⟨V,E,U⟩ where there is a node in V for each event in τ , E is a set of directed edges(u, v) such that e(u) occurs before e(v) in τ and e(u)Ð→⊚TSOe(v), and U is a set of
undirected edges {u, v} such that e(u) occurs before e(v) in τ and e(u)⊚TSOe(v)
(where e(v) is the event of τ corresponding to the node v).

Formally, an orientation of a graph G = ⟨V,E,U⟩ with a set E of directed edges
and a set U of undirected edges is a directed graph ⟨V,E ∪E′⟩ such that for every
undirected edge {u, v} ∈ U , E′ contains (u, v) or (v, u). An orientation of EGτ is
valid when the resulting directed graph is acyclic.

The next result relates valid orientations of the trace event-graph and write-
contractions of the trace’s executions event-graphs. Recall that the write-contraction
of an event-graph EGη is the graph EGcη where every node representing a write event
wr t(x) is merged with the node representing the corresponding write-commit event
wr -comt(x) (note that a contracted edge disappears and does not turn into a self-loop).

Theorem 4. For an execution η ∈ Execs(τ), the write-contraction of EGη is a valid
orientation of EGτ . Conversely, every valid orientation of EGτ is the write-contracted
event-graph EGη for some η ∈ Execs(τ).

This leads to an interesting observation: EGτ of a trace τ can be viewed as the union
of the write-contractions EGcη of all η ∈ Execs(τ), so that when all EGcηs agree on the
direction of an edge between two nodes, that edge appears as a directed edge in EGτ
and when at least two EGcηs disagree on the direction of an edge between two nodes,
that edge appears as an undirected edge in EGτ .

Also, Th. 4 leads us to the following characterization of trace TSO-serializability
based on orientations of trace event-graphs.

Theorem 5. A trace τ is TSO-serializable iff every acyclic orientation of EGτ induces
an acyclic conflict-graph.

Alternatively, one can directly define the notion of a conflict graph for traces. The
event graph of a trace EGτ induces a graph over the transactions in the same sense as
the conflict graph of an execution.

Definition 5 (Trace Conflict-Graph). The conflict-graph of a trace τ is the graph
CGτ = ⟨V ′,E′, U ′⟩ where V ′ includes one node for each transaction in τ , and we
have (v, v′) ∈ E′ iff there exists actions a ∈ tr(v) and a ∈ tr(v′) such that (a, a′) ∈ E
and we have {v, v′} ∈ U ′ iff there exists actions b ∈ tr(v) and b′ ∈ tr(v′) such that{b, b′} ∈ U where EGτ = (V,E,U) is the event-graph of τ .

For instance, the conflict-graph of the trace of the execution in Fig. 2(a) is given
in Fig. 2(d). Serializability of a trace τ can be stated as a combined property of its
conflict-graph CGτ and its event-graph EGτ .

Corollary 1. Trace τ is not TSO serializable iff there exists a cycle c in CGτ =⟨V ′,E′, U ′⟩ such that if {u1, . . . um} ⊆ U ′ participate in c and {e1, . . . , em} are the
same set of edges oriented in the direction of the cycle, then there exists a valid orien-
tation ⟨V,E′′⟩ of the event-graph EGτ = ⟨V,E,U⟩ with {e1, . . . , em} ⊆ E′′.

6 Monitoring TSO-Serializability of Traces

In this section, we discuss the algorithmic aspect of monitoring traces for violations of
TSO-serializability. Remember that (Section 3) monitoring one execution for violation
of TSO-serializability is poly-time checkable.

Given a trace τ , we want to check whether τ is TSO-serializable. We start by demon-
strating that the general problem is NP-complete, and then propose polynomial time
algorithms for approximations of this check. Specifically, we show that (i) under the
assumption that the number of threads is a constant, there exists a sound and complete
polynomial time algorithm that reports violations of TSO-serializability in a trace τ ,
and (ii) if the program is transaction-fenced, then TSO-serializability can be checked
in polynomial time.

6.1 NP-Completeness of Trace TSO-Serializability Checking

Th. 5 provides an equivalent characterization of trace TSO-serializability, namely that
every acyclic orientation of the trace event-graph induces an acyclic conflict-graph. It
turns out that this check is NP-complete. We demonstrate this by reducing the known
NP-complete problem of checking for the existence of a hamiltonian path in a given
graph G to this problem.

Theorem 6. For a trace τ , the problem of checking whether τ is TSO-serializable is
NP-complete.

6.2 Fixed-Parameter Tractability

The good news is that there exists an algorithm for monitoring a trace for TSO-
serializability violations which is polynomial time if one assumes the number of threads
to be a constant. Given a trace of length n with k participating threads, it is easy to de-
vise an exponential algorithm that finds a TSO-serializability violation if one exists and
operates in O(nk) time. However, considering that usually n (the number of events) is
very large, it is desirable to have an algorithm with a running time where the exponent
k does not appear over n, but over some constant instead.

In this section, we propose an algorithm of complexity O(n + ck), where c is a
constant that depends on the number of shared variables in the program, k is the number
of threads, and n is the length of the trace. The main observation that gives rise to such
an algorithm is that there is a concise witness to violation of TSO-serializability, and
it suffices to search for the existence of such a witness algorithmically. We start by
defining this concise witness, which always exists if an arbitrary witness exists.

Given the event graph EGτ of a trace τ , checking serializability of τ reduces to
deciding if there is a valid orientation of EGτ that induces a cycle over the conflict
graph CGτ . We will observe that if a valid orientation of EGτ induces a cycle, then
this orientation induces a simple cycle (to be defined) over CGτ .

Naturally, if the directed edges of the conflict graph CGτ already form a cycle
(which can be checked in polynomial time on the size of the graph), then there is nothing
left to be done; we have found our TSO-serializability violation witness. Therefore,

we assume that CGτ is acyclic if it is restricted to its directed edges; let us call this
graph

ÐÐ→
CGτ . Similarly,

ÐÐ→
EGτ refers to EGτ restricted to its directed edges. We use the

notation a ≺τ b to denote that
ÐÐ→
EGτ contains a path from event a to event b. Similarly,

for transactions tr1 and tr2, we use the notation tr1 ≺τ tr2 iff
ÐÐ→
CGτ contains a path from

tr1 to tr2. The relation ≺τ captures the ordering constraints between events/transactions
that are imposed by the directed conflict edges. For an event a, we use tr(a) to refer to
the transaction that encloses a.

Let us assume that we have a cycle c = tr1tr2 . . . trm over the conflict graph CGτ .
For each pair of consecutive transactions tri and tri+1, let event bi be the source and
event ai+1 be the destination of the conflict edge between tri and tri+1 that participates
in the cycle (rotating back from bm to a1).

We say that cycle c can be simplified if there exist two transactions tr and tr′ on
it where tr ≺τ tr′ and the segment of the cycle between tr and tr′ contains at least
one undirected conflict edge. By taking this segment of the cycle between tr and tr′
and replacing it with the directed path (i.e. a path formed entirely of directed conflict
edges) in the conflict graph from tr to tr′, we simplify the cycle; we know that such a
path exists by the definition of tr ≺τ tr′. Intuitively, during simplification we get rid of
undirected edges and replace them by directed paths; note that undirected edges are soft
constraints in a trace which reflect that the order between two events is undetermined.

Definition 6. A simple cycle is a cycle that cannot be further simplified.

Below, we state two properties of simple cycles that are very useful for reducing the
search space of our algorithm.

Proposition 3. In every simple cycle c = tr1tr2 . . . trmtr1 over the conflict graph CGτ
of a trace τ (equivalently c = a1b1a2b2 . . . ambma1 if the cycle is referenced by its
conflict edges instead of its nodes) satisfies the following properties: (i) There exists at
least one index k such that ak /≺τ bk. (ii) Every two transactions tr and tr′ that appear
on c with an undirected edge somewhere in the middle of them (i.e. on the segment
between tr to tr′) cannot belong to any chain (i.e. directed path) of the graph. In other
words, we have tr /≺τ tr′.

Property (ii) from the proposition above is straightforward yet significant because
it implies that any simple cycle over the conflict graph can be viewed as a cycle where
undirected edges connect segments of chains (i.e. directed paths) in the graph together,
never visiting the same chain twice. We make use of the notion of profiles introduced in
[11] for this algorithm. The idea is to summarize all possible entry/exits into each chain
of
ÐÐ→
CGτ (that may participate in a simple cycle) as a set of pairs (of events), and look

for cycles involving those pairs only.
Consider an event a of the event graph EGτ . Let

pair(a) = {b∣ b ∈ tr(a) ∨ tr(a) ≺τ tr(b))}
The idea is that once a witness cycle enters tr(a) through a conflict edge with desti-
nation a, some b ∈ pair(a) is the event from which the cycle can leave the chain (i.e.
directed path) that contains tr(a) and tr(b). In other words, {a}× pair(a) is the set of
all possible path segments that start with a and can be part of a simple cycle witnessing
a violation of TSO-serializability.

Input: Π = {π1, π2, . . . , πm} smallest partition of
ÐÐ→
CGτ into chains.

Output: a witness to violation of TSO-serializability, if one exists.

For all πi ∈Π and each tr ∈ πi
For all events a, b ∈ tr where a /≺τ b, and each choice of events

For all events a′, b′ where tr(a′), tr(b′) ∈ πi and b′ ∈ pair(b) and a ∈ pair(a′)
For all p1 ∈ profile(π1), . . . , pm ∈ profile(πm)

If (a′, b′) together with p1, . . . , pi−1, pi+1, . . . , pm includes
a TSO-serializability violation, then report a violation.

Fig. 3. Algorithm for searching for all simple cycle witnesses. The choices of events for a, b, a′, b′

is over read and write events only. The chains π1, . . . πm are by definition disjoint.

Pπ = ∅
For variables x, if ∃ events a ∈ π where a = rd (x)/wr (x) then Pπ = Pπ ∪ {(a)}.
For each pair of variables x and y (can be equal)

If ∃ events a, b ∈ π where a = rd (x)/wr (x) and b = rd (y)/wr (y) and b ∈ pair(a)
then Pπ = Pπ ∪ {(a, b)}.

Fig. 4. Algorithm for computing the set of all profiles of a transaction chain π.

Moreover, Prop. 3(i) states that at least for one transaction in the cycle we have a
pair of events (a, b) of the same transaction where a ≺τ b but where a and b participate
in the witness cycle, which is directed from b back to a. The algorithm presented in
Fig. 3 starts by enumerating all such pairs of events that belong to a single transaction
(outermost loop). It then proceeds to find the matching entry/exit events (i.e. a′ and b′)
for the witness cycle in the chain containing a and b (the next nested loop). Finally,
the innermost loop enumerates all possible choices of profiles for the remaining chains
(other than the one containing a, b, a′ and b′), and then the innermost statement checks
if these choices form a valid witness cycle together.

The algorithm in Fig. 3 uses a function profile that returns the set of all profiles for
a given chain. A profile of a chain is a set of elements of the following three forms: (i)
a single event (a), when the witness conflict cycle enters and exits a chain at the same
single event a, (ii) a pair of events (a, b) of some transaction tr , where the witness
cycle enters/exits a chain at two events of the same transaction tr , and (iii) a pair of
events (a, b), where a witness cycle enters a transaction in event a, then follows a chain
of transactions on a directed path in the conflict graph and exits the chain through an
event b (i.e. tr(a) ≺τ tr(b)). The set of profiles of a chain can be computed using the
algorithm in Fig. 4.

Soundness and Completeness Here, we formally argue that it suffices for the algo-
rithm to search for simple cycle witness to violation of TSO-serializability. The impor-
tant observation is that:

Proposition 4. If a trace τ is not TSO-serializable, then there exists a simple cycle
witnessing the violation of TSO-serializability.

It remains to argue that the algorithm, through the use of profiles, will definitely find a
simple cycle violation of TSO-serializability if one exists.

Proposition 5. For every partitioning Π of
ÐÐ→
CGτ into a set of chains, and every simple

cycle violation of TSO-serializability c, we have that c visits every chain in Π at most
once.
It is important to note that the above statement is independent of the choice of partition-
ing of

ÐÐ→
CGτ into chains. It is straightforward to see that a cycle’s footprint in every chain

can be captured through one of the three possibilities that we introduced for profiles.
Finally, we conclude the soundness and completeness of the algorithm in Fig. 3:
Theorem 7. Algorithm in Fig. fig:alg1 discovers a violation of TSO serializability in
trace τ iff one exists.

Complexity Analysis A key observation about
ÐÐ→
EGτ is that for any trace τ , if

ÐÐ→
CGτ

is restricted to a single thread and global read and write events, then the size of the
largest anti-chain of it is at most 2. In other words, in every thread, there are at most
two events a and b such that a /≺τ b and b /≺τ a. This is a direct implication of the
definition of ⊚TSO ; the only events that are not ordered in each thread are wr (y) and
rd (x) when x /= y , and the events appear in that order in the trace. Any other event that
can be independent of wr (y) will have to be a read event of some other variable, say
rd (z) which is in conflict with rd (x) and therefore ordered with respect to it (similar
argument for events independent of rd (x)). We will make use of the following well-
known theorem about the width of a partial order:

Theorem 8 (Dilworth’s Theorem). For every partial order, there exists an anti-chain
A, and a partition of the order into a family P of chains, such that ∣P ∣ = ∣A∣ (which
is referred to as the width of the partial order). Moreover, such an A is the largest
anti-chain in the order.

Since
ÐÐ→
EGτ is acyclic, by Dilworth’s Theorem, we know that it can be partitioned into

at most p (maximal) chains (i.e. directed paths) where p is the size of the largest anti-
chain of

ÐÐ→
EGτ . The size of the largest anti-chain of

ÐÐ→
EGτ restricted to each thread (and

ignoring the buffered reads) is at most 2. If we assume that there are k threads in the
program, this implies that

ÐÐ→
EGτ (ignoring the buffered reads) can be partitioned into

2k chains. If we have m shared variables in the program, then each such chain can be
summarized as at most (2m)2 possible profiles (i.e. all possible combinations of 2m
reads and 2m writes).

Now, let us add consideration for the buffered reads. In each thread, all buffered
reads of the same variable are conflicting and form a chain. Therefore, in the worst case,
we can account for all buffered reads of a single thread, by addingm extra chains, where
each consists of all buffered reads of some variable x (there are at most m different
variables). There are in total km of such chains for all k threads. However, every such
chain (of buffered reads of x) can be represented by a single trivial profile (rd (x)).

Our algorithm ends up enumerating all possible profiles for such partitioning ofÐÐ→
EGτ into a family of chains. There are at most ((2m)2)2k different selection of profiles
to consider. It is easy to see that it takes O(n) time (n is the length of the trace) to
compute the set of all profiles.

We need to argue that given the combination of the fixed km (trivial) profiles and
a choice of 2k profiles (from ((2m)2)2k many choices), a violation can be found in

polynomial time, if one exists. This is equivalent to having a system of (at most) (m +
2)k components, where each component is a single event, a pair of events connected
by an undirected edge, or a pair of components linked by a directed edge. The goal is
to find a cycle in this system that obeys the direction of the directed edges. A slightly
modified depth-first search algorithm can find the cycle in time polynomial in mk.

To summarize, the complexity of the algorithm is O(n + ck) where n is the length
of the trace, c depends only on the number of shared variables in the program, and k is
the number of program threads.

Theorem 9. For a program P with a fixed number of threads, the algorithm in Fig. 3
discovers a witness to violation of TSO-serializability of any trace of P in time polyno-
mial on the length of the trace.

6.3 Poly-time Monitor for Transaction-Fenced Programs

An alternative way of avoiding the high complexity of monitoring traces for TSO-
serializability violations, for instance when there is a large number of threads in the
program, is to simplify this check by ensuring that every transaction ends with a fence
event (and hence making all its updates visible to other threads when it ends). As stated
in Theorem 3, TSO-serializability is equivalent to the conjunction of robustness and
SC-serializability for such programs.

A witness to non-robustness of a program can be discovered through a targeted
search (for a specific pattern of violations) in the space of SC-executions of the program
[6] using an algorithm that works in polynomial time for a given execution. The combi-
nation of these two monitors, a poly-time monitor for SC-serializability and a poly-time
monitor for robustness, gives rise to an efficient monitor for TSO-serializability that ob-
serves only SC-executions of a program and looks for robustness or SC-serializability
violations. Every violation to TSO-serializability will manifest as an SC-serializability
violation or as a robustness violation for a transaction-fenced program.

The advantages of this result are twofold: (i) when transactions are naturally fenced
(e.g. a lot of Java library methods are like this), it provides a poly-time algorithm for
monitoring TSO-serializability, and (ii) when transactions are not naturally fenced, and
the program has a large number of threads (which limits the applicability of the algo-
rithm in Sec.6.2), it provides the programmer with a solution: namely, to insert a fence
at the end of each transaction that is not already fenced, and gain an efficient sound and
complete monitor for TSO-serializability. Having a transaction-fenced program has the
additional advantage that it allows to reason about the more familiar notions of SC-
serializability and robustness instead of directly reasoning about TSO-serializability.

7 Related Work

To the best of our knowledge, this paper provides the first definition of conflict se-
rializability under TSO. Conflict serializability was introduced in Papadimitriou [21]
for database transactions. Decision procedures for conflict serializability of finite-state
concurrent models executed under an SC semantics were proposed in [10, 11] and [5].
Both static [13, 17, 24, 26] and dynamic tools [12, 25, 14, 23] have been developed to

check SC serializability, as well as transactional memory techniques that enforce se-
rializability at run time [18, 9, 22, 16]. The non-atomicity of writes under TSO poses
new algorithmic challenges for monitoring serializability. Since observing the detailed
sequence of write issues and commits is not efficiently possible (without access to the
cache coherence mechanism), any dynamic analysis needs to monitor executions with
missing information, that effectively stand for sets of executions. We propose a new
monitoring algorithm for traces (i.e. sets of executions) that searches for certain type
of cycles in graphs with both directed and undirected edges, which is more challenging
than the classic serializability monitor that searches for a cycle in a directed graph [21].

Linearizability has been studied for concurrent objects running under TSO [7, 15,
19]. This provides a means of establishing a relation between a concrete and an abstract
object, which must hold in the context of every possible client of the object. The ab-
stract object methods need not be atomic. In contrast, serializability is a property that
is applicable to programs and the atomicity of a transaction is considered in the context
of one specific program (in contrast to all possible clients).

Notions of robustness for TSO programs have been investigated in [2, 4, 3, 6, 8].
However, we are not aware of any work that establishes a relationship between robust-
ness and atomicity under different memory models as done in this paper.

Bibliography

[1] On atomicity in presence of non-atomic writes (extended version). www.cs.
toronto.edu/˜azadeh/extended/tacas16-extended.pdf.

[2] J. Alglave and L. Maranget. Stability in weak memory models. In CAV 2011,
pages 50–66, 2011.

[3] A. Bouajjani, R. Meyer, and E. Möhlmann. Deciding robustness against total store
ordering. In ICALP 2011, pages 428–440, 2011.

[4] A. Bouajjani, E. Derevenetc, and R. Meyer. Checking and enforcing robustness
against TSO. In ESOP 2013, pages 533–553, 2013.

[5] A. Bouajjani, M. Emmi, C. Enea, and J. Hamza. Verifying concurrent programs
against sequential specifications. In ESOP 2013, pages 290–309, 2013.

[6] S. Burckhardt and M. Musuvathi. Effective program verification for relaxed mem-
ory models. In CAV 2008, pages 107–120, 2008.

[7] S. Burckhardt, A. Gotsman, M. Musuvathi, and H. Yang. Concurrent library cor-
rectness on the TSO memory model. In ESOP 2012, pages 87–107, 2012.

[8] J. Burnim, K. Sen, and C. Stergiou. Sound and complete monitoring of sequential
consistency for relaxed memory models. In TACAS 2011, pages 11–25, 2011.

[9] D. Dice, Y. Lev, M. Moir, and D. Nussbaum. Early experience with a commercial
hardware transactional memory implementation. In ASPLOS 2009, pages 157–
168, 2009.

[10] A. Farzan and P. Madhusudan. Monitoring atomicity in concurrent programs. In
CAV 2008, pages 52–65, 2008.

www.cs.toronto.edu/~azadeh/extended/tacas16-extended.pdf
www.cs.toronto.edu/~azadeh/extended/tacas16-extended.pdf

[11] A. Farzan and P. Madhusudan. The complexity of predicting atomicity violations.
In TACAS 2009, pages 155–169, 2009.

[12] C. Flanagan and S. N. Freund. Atomizer: A dynamic atomicity checker for multi-
threaded programs. Sci. Comput. Program., 71(2):89–109, 2008.

[13] C. Flanagan, S. N. Freund, M. Lifshin, and S. Qadeer. Types for atomicity: Static
checking and inference for java. ACM Trans. Program. Lang. Syst., 30(4), 2008.

[14] C. Flanagan, S. N. Freund, and J. Yi. Velodrome: a sound and complete dynamic
atomicity checker for multithreaded programs. In PLDI 2008, pages 293–303,
2008.

[15] A. Gotsman, M. Musuvathi, and H. Yang. Show no weakness: Sequentially con-
sistent specifications of TSO libraries. In DISC 2012, pages 31–45, 2012.

[16] T. L. Harris and K. Fraser. Language support for lightweight transactions. In
OOPSLA 2003, pages 388–402, 2003.

[17] J. Hatcliff, Robby, and M. B. Dwyer. Verifying atomicity specifications for con-
current object-oriented software using model-checking. In VMCAI 2004, pages
175–190, 2004.

[18] M. Herlihy and J. E. B. Moss. Transactional memory: Architectural support for
lock-free data structures. In ISCA 1993, pages 289–300, 1993.

[19] R. Jagadeesan, G. Petri, C. Pitcher, and J. Riely. Quarantining weakness - com-
positional reasoning under relaxed memory models (extended abstract). In ESOP
2013, pages 492–511, 2013.

[20] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from mistakes: a comprehensive
study on real world concurrency bug characteristics. In ASPLOS, pages 329–339,
2008.

[21] C. H. Papadimitriou. The serializability of concurrent database updates. J. ACM,
26(4):631–653, 1979.

[22] N. Shavit and D. Touitou. Software transactional memory. Distributed Computing,
10(2):99–116, 1997.

[23] A. Sinha, S. Malik, C. Wang, and A. Gupta. Predicting serializability violations:
SMT-based search vs. DPOR-based search. In HVC 2011, pages 95–114, 2011.

[24] C. von Praun and T. R. Gross. Static detection of atomicity violations in object-
oriented programs. Journal of Object Technology, 3(6):103–122, 2004.

[25] L. Wang and S. D. Stoller. Runtime analysis of atomicity for multithreaded pro-
grams. IEEE Trans. Software Eng., 32(2):93–110, 2006.

[26] J. Yi, T. Disney, S. N. Freund, and C. Flanagan. Cooperative types for controlling
thread interference in java. In ISSTA 2012, pages 232–242, 2012.

A Program Semantics

A.1 Sequential Consistency Semantics

In a sequentially consistent (SC) environment, the threads write and read directly from
the shared memory. The state of the shared memory is modeled as a map θ ∶ V → D
from variables to values. The relation→eSC models the effect of an event e on the shared
memory (θ[x↦ v] is identical to θ except that the variable x is mapped to the value v):

READ
θ(x) = v

θ
rdt(x,v)ÐÐÐÐ→
SC

θ

WRITE

θ
wrt(x,v)ÐÐÐÐÐ→
SC

θ[x↦ v]
OTHER
a ∈ {fnt}
θ

aÐÐ→
SC

θ

An SC-execution is a well-formed sequence of events η = e0 . . . en ∈ E∗ such that
there exist θ0,. . ., θn+1 with θi →eiSC θi+1, for each 0 ≤ i ≤ n. For a program P , an
SC-execution η = e0 . . . en ∈ P is called an SC-execution of P .

A.2 Total Store Ordering Semantics

Under TSO, a write event wr t(x, v)i is first stored in a thread-local FIFO buffer,
called store buffer, before being non-deterministically flushed into the shared mem-
ory. Therefore, the written value may be visible to other threads only at a later time.
To help intuition, we sometimes use the term write-issue event instead of simply write
event. Flushing store buffers introduces additional events wr -comt(x, v)i, called write-
commit events, for removing a write wr t(x, v)i from the store buffer of t and executing
it on the shared memory. We say that the write-commit wr -comt(x, v)i corresponds
to that write, and write wr t(x, v)i ∼ wr -comt(x, v)i. Note that write-commits in-
herit the transaction identifier of the corresponding write-issue. A read event rd t(x, v)
prefetches the value v written by the last write to x in the buffer of t or if no such write is
found, it receives the value v stored in the shared memory. A fence event fnt is enabled
only when the buffer of t is empty. Let Wct = {wr -comt(x, v)i ∶ i ∈ Tr, x ∈ V, v ∈ D},
Etsot = Et ∪Wct, and Etso = ⋃tEtsot.

The state of a program P with threads {1, . . . , n} is modeled as a tuple Θ =⟨θ, buf 1, . . . , buf n⟩, where θ is the state of the shared memory and buf i is the local
buffer of thread i. The relation→eTSO, defined in Figure 5, models the effect of an event
e on the program state.

A TSO-execution is a sequence of events η = e0 . . . en ∈ (Etso)∗ such that there exist
Θ0,. . ., Θn+1 with Θi →eiTSO Θi+1, for each 0 ≤ i ≤ n, and the projection over events in
E is well-formed (i.e., write-commits are allowed to escape transaction boundaries).

For a program P , a TSO-execution η = e0 . . . en such that the projection of η on E
belongs to P is called a TSO-execution of P .

Note that due to the non-determinism in flushing the store buffers, different TSO-
executions may have the same projection on to the set E. For instance, the projection of

PREFETCH
buf t = α ⋅wr t(x, v) ⋅ β, x /∈ β

Θ
rdt(x,v)
ÐÐÐÐ→
TSO

Θ

READ-SHARED
x /∈ buf t, θ(x) = v

Θ
rdt(x,v)
ÐÐÐÐ→
TSO

Θ

WRITE-ISSUE

Θ
wrt(x,v)
ÐÐÐÐÐ→
TSO

Θ[buft ↦ wr t(x, v) ⋅ buft]

WRITE-COMMIT
buf t = α ⋅wr t(x, v)

Θ
wr -comt(x,v)
ÐÐÐÐÐÐÐ→

TSO
Θ[θ(x)↦ v]

FENCE
buf t = ε

Θ
fnt
ÐÐÐ→
TSO

Θ

Fig. 5. TSO Semantics

both TSO-executions

wr t(x, v) wr t′(y, v′) wr -comt(x, v) wr -comt′(y, v′)
wr t(x, v) wr t′(y, v′) wr -comt′(y, v′) wr -comt(x, v)

on to the set E is wr t(x, v) wr t′(y, v′).

B Proofs of Section 4

B.1 Reordering reads under TSO

We show that TSO can reorder reads on different variables using the following slightly
modified version of the Dekker mutual exclusion algorithm:

Thread 1

x := 1;
rx := x;
r1 := y;

Thread 2

y := 1;
ry := y;
r2 := x;

The following is a possible TSO-execution of this program (as usually, we ignore
events writing or reading thread-local variables, e.g., rx and ry):

wr1(x,1)
wr2(y,1)

rd1(x,1)
rd2(y,1)

rd1(y,0)
rd2(x,0)

wr -com1(x,1)
wr -com2(y,1)

The only way to interpret this execution as a classical SC-interleaving is to permute
the last reads in each thread to the beginning of the thread, past both the write and the
read on x and respectively, y. More precisely, the SC-interleaving that corresponds to
this execution is:

rd1(y,0)
rd2(x,0)

wr1(x,1)
wr2(y,1)

rd1(x,1)
rd2(y,1)

B.2 Proof of Proposition 1

Let η = η1 ⋅ e ⋅ e′ ⋅ η2 be a TSO-execution where values are explicit within events such
that e /⊚TSO e

′. Let Θi with i ∈ [0,3] be program states such that

Θ0
η1ÐÐÐ→
TSO

Θ1
e⋅e′ÐÐÐ→
TSO

Θ2
η2ÐÐÐ→
TSO

Θ3

(we use the standard extension of a transition relation to sequences of events).
We show that permuting the events e and e′ results in the same state Θ2, i.e.,

Θ1
e′⋅eÐÐÐ→
TSO

Θ2

which is enough to conclude that any ⊚TSO -preserving permutation of η is also a TSO-
execution. When both e and e′ are read events, or when e and e′ access different vari-
ables and they belong to different threads the claim holds trivially. In the following, we
consider the remaining cases:

1. e = rd t(x, v) and e′ = wr t′(y, v′) where t ≠ t′: Follows from the fact that e reads
from the shared memory or the store buffer of t while e′ adds an element to the store
buffer of t′.
2. e = rd t(x, v) and e′ = wr -comt′(x, v′) where t ≠ t′: By the definition of ⊚TSO ,
η1 must contain a write issue wr t(x, v) and η2 the corresponding write-commit for that
write-issue wr -comt(x, v). Since e reads from the store buffer of t and doesn’t access
the shared memory, it remains enabled even if executed after e′. The fact that permuting
these two events leads to the same program state is straightforward.

3. e ∈ Et and e′ = fnt′ where t ≠ t′: Since e doesn’t access the store buffer of t′, e′
remains enabled even if executed before e. For the reverse, e′ doesn’t modify the value
of any variable, therefore e remains enabled even if executed after e′. Since e′ does not
modify the program state, permuting e and e′ leads to the same state.

4. e = wr t(x, v) and e′ = rd t′(x, v′) where t ≠ t′: similar to the case (1).

5. e = wr t(x, v) and e′ = wr -comt(x, v′) and ¬e ∼ e′: Since these two events do not
correspond to each other, the store buffer contains at least one element inΘ2. Therefore,
adding and removing one element from it are commutative.
6. e = wr t(x, v) and e′ = wr -comt′(x, v′) where t ≠ t′: Since e and e′ add and
respectively, remove an element from two different store buffers, they are commutative.
7. e = wr t(x, v) and e′ = wr t′(x, v′) where t ≠ t′: Since e and e′ add an element to
two different store buffers, they are commutative.
8. e = wr -comt(x, v) and e′ = rd t(x, v′): If e′ accesses the store buffer of t (i.e.,
η1 contains a write issue wr t(x, v′′) and η2 the corresponding write-commit for that
write-issue wr -comt(x, v′′)) then the two events commute because one accesses the
store buffer and one the shared memory. Otherwise, e removes the last element from
the store buffer and if e′ executes before e it will access exactly that element and be
equally enabled.
9. e = wr -comt(x, v) and e′ = rd t′(x, v′) where t ≠ t′: similar to the case (2).
10. e = wr -comt(x, v) and e′ = wr t(x, v′) and ¬e ∼ e′: similar to the case (5).
11. e = wr -comt(x, v) and e′ = wr t′(x, v′) where t ≠ t′: similar to the case (6).
12. e = fnt′ and e′ ∈ Et where t ≠ t′: similar to the case (3).

B.3 Deciding SC-equivalence Using Event Graphs

We introduce a characterization of SC-equivalence based on event graphs. The write-
contraction of an event-graph EGη of a TSO-execution η is the graph EGcη where
every node representing a write event wr t(x, v) is merged with the node representing
the corresponding write-commit event wr -comt(x, v) (note that a contracted edge dis-
appears and does not turn into a self-loop). Figure 2(b) pictures the write-contraction of
the event-graph in Figure 2(a) (the dashed edges should be ignored).

Lemma 1. The write-contraction of the event-graph EGη of a TSO-execution η, built
using ⊚TSO , is acyclic.

Proof. Let e1 = wr t1(x) and e2 = wr t2(y) be two write-issue events of η such that
e1 occurs before e2 in η. We prove that merging these two write-issues with the corre-
sponding write-commits doesn’t introduce a cycle.

Since write-issue events are not conflicting with events of other threads, EGη con-
tains a path from e1 to e2 only if t1 = t2. Note that it is impossible to have a path from
e2 to e1.

Let e′1 = wr -comt1(x) and e′2 = wr -comt2(y) be the write-commits corresponding
to e1 and e2, respectively. Then, EGη contains an edge from e′1 to e′2 and one from ei
to e′i, for all i ∈ {1,2}. Since the event-graph EGη is itself acyclic, it can not contain a
path from e2 to e1, from e′2 to e′1, or from e′i to ei, where i ∈ {1,2}. Therefore, merging
e1 with e′1 and e2 with e′2 could result in a cycle only if EGη contains a path from e2
to e′1 or from e′2 to e1. The latter is clearly not possible because EGη contains already
a path from e1 to e′2 and EGη is acyclic.

Now, assume by contradiction that EGη contains a path from e2 to e′1. Then, EGη
must contain a path from e2 to a read event e3 = rd t3(z) and a path from e3 to e′1.

By the definition of ⊚TSO , we must have t1 = t3. This is because a write-issue can be
connected to a read occurring before its corresponding write-commit only if the read is
an event of the same thread. We must also have z = y. If e2 and e3 were not accessing the
same variable, then they could be connected only if they were fence-separated which is
not the case since e3 occurs before e′2 or if e2 was connected to another read e = rd t2(y)
and the latter connected to e3. The latter scenario is not possible since by definition, e
is a buffer read and thus, not it conflict with e3.

Now, reads can be connected to write-commits of the same thread only if there exists
another write-commit of a different thread that conflicts with both. Let e4 = wr t1(x)
be the last write-issue on x of thread t1 before e3. Then, e4 = e2 or it is a write-issue
that occurs after e2 in η. Therefore, the write-commit corresponding to e4 is either e′2
or it occurs after e′2 in η. By the definition of the inter-thread conflicts in ⊚TSO , e3 is
not in conflict with any other write-commit of a different thread that occurs before the
write-commit corresponding to e4, and in particular, before e′2. Therefore, EGη can not
contain a path from e3 to e′2, which finishes the proof. ◻

The following result is a straightforward consequence of definitions.

Theorem 10. A TSO-execution η is SC-equivalent iff the write-contraction of the event-
graph EGcη , built using ⊚TSO−po , is acyclic.

Proof. The result follows from Theorem 1, by defining every pair of write and resp.,
write-commit events to be a transaction. ◻

For instance, the graph in Figure 2(b), including the dashed edges, is the write-
contraction of the event-graph EGcη , built using ⊚TSO−po , where η is the execution
in Figure 2(a). This graph contains a cycle which shows that the execution is not SC-
equivalent.

B.4 SC Programs

A program P is called an SC-program when for every σ ∈ P every occurrence of a
write event wr t(x, v) in σ is immediately followed by a fence event fnt. The following
result is a direct consequence of the definitions.

Theorem 11. Let P be an SC-program. Then, P is TSO-serializable iff it is SC-
serializable.

B.5 Proofs of Section 4.2

Proof of Theorem 2 Let η be a TSO-execution of P . Since P is robust, there exists an
execution η′ that is a ⊚TSO−po-preserving permutation of η and every write event of η′
is immediately followed by the corresponding write-commit event. Note that η′ has the
same event-graph as η (when ⊚TSO−po or ⊚TSO is used as a conflict relation).

Let η′′ be an SC-execution of P such that the projection of η′ on E is exactly η′′.
(The existence of η′′ is a direct consequence of the SC and TSO-semantics.)

By the definition of ⊚SC and ⊚TSO , the write-contraction EGcη′ of the event-graph
of η′, built using ⊚TSO , is a spanning sub-graph of EGη′′ (i.e., it has the same set of
nodes but possibly fewer edges). The write-contraction EGcη′ may have fewer edges
between events of the same thread, for instance writes and reads on different variables.
Therefore, if the conflict graph induced by EGη′′ is acyclic then so is the conflict-graph
induced by EGcη′ . Since the latter is the same as the conflict graph of η, we conclude
that η is TSO-serializable. ◻

wr1(x, 1) wr2(y, 1)

rd1(y, 0) rd2(x, 0)

wr1(x, 1)

wr2(y, 1)rd1(y, 0)

rd2(x, 0)

The reverse of Theorem 2 doesn’t hold. For instance, both programs above are TSO-
serializable although the program in the left is not robust and the program in the right
is not SC-serializable. The program in the left is TSO-serializable since every event is
a transaction and events in the same thread are not in conflict, and it is not robust since
intuitively, both reads don’t see the value written by the other thread. The program in
the right is TSO-serializable because the events in thread 1 are not in conflict while it is
not SC-serializable since it admits only one execution where the events of thread 1 take
place in between the two events of thread 2.

Proof of Theorem 3 (⇐) Direct consequence of Theorem 2.
(⇒) Let η be a TSO execution of P . Assume by contradiction that η is not ro-

bust. By Theorem 10, the write-contraction G of the event-graph of η, built using⊚TSO−po , is cyclic, i.e., G contains a sequence of nodes n1, . . . , nk with n1 = nk and(ni, n(i+1) mod k) an edge in G, for each 1 ≤ i ≤ k. We show that for each 1 ≤ i ≤ k,
either ni and n(i+1) mod k represent events of the same transaction or there exists a path
from n′i to n′(i+1) mod k in the event-graph EGη of η, built using ⊚TSO , where ni and
n′i, resp., n(i+1) mod k and n′(i+1) mod k, represent events of the same transaction. This im-
plies that the conflict graph induced by EGη is cyclic, which contradicts the hypothesis
that P is TSO-serializable.

Suppose that ni and n(i+1) mod k represent the events e and e′ of different transac-
tions. If e and e′ are events of the same thread, by the definition of G, e occurs before
e′ in η. Since P is fenced, e and e′ are fence-separated and EGη contains a path from
the node representing e to the node representing e′. If e and e′ are events of different
threads, then EGη contains an edge from the node representing γ(e) to the node rep-
resenting γ(e′), where γ is the identity on read events and it maps write events to the
corresponding write-commit events.

Now, assume by contradiction that P is not SC-serializable. Let η be an SC-
execution of P which is not SC-serializable. By the definition of the TSO-semantics,
there exists a TSO-execution η′ of P where every write is immediately followed by the
corresponding write-commit event such that the write-contraction of EGcη′ , built using⊚TSO , is a spanning sub-graph ofEGη . We show however that the conflict graph CGη′
equals CGη , which implies that CGη′ is also cyclic and that P is not TSO-serializable.

Let (n,n′) be an edge of CGη′ defined by two events e and e′ belonging to two
different transactions. By definition, e occurs before e′ and e ⊚TSO e′. If e and e′ are

events of the same thread, then e ⊚SC e′ and the edge (n,n′) occurs in CGη as well.
If e and e′ are events of different threads, then δ(e) ⊚SC δ(e′) where δ is the identity
on read and write events and it maps write-commit events to the corresponding write
events. Also, by the definition of η′, δ(e) occurs before δ(e′) in η, which implies that(n,n′) is an edge of CGη .

For the reverse, let (m,m′) be an edge of CGη defined by two events f and f ′
belonging to two different transactions. By definition, f occurs before f ′ and f ⊚SC f ′.
If f and f ′ are events of the same thread, then they are separated by a fence event (since
they belong to two different transactions and each transaction ends with a fence), and
the edge (m,m′) occurs inCGη′ as well. If f and f ′ are events of different threads, then
γ(e)⊚TSO γ(e′), and by the definition of η′, γ(e) occurs before γ(e′) in η′. Therefore,
the edge (m,m′) occurs in CGη′ as well. ◻
C Proofs of Section 5

C.1 Proofs of Theorems 4 and 5

Theorems 4 and 5 are a direct consequence of the following two lemmas.

Lemma 2. For every η ∈ Execs(τ), EGcη is a valid orientation of EGτ .

Proof. For every η ∈ Execs(τ), EGτ contains exactly the same set of edges as EGcη
but some of them are undirected. Then, by Lemma 1, EGcη is acyclic which finishes the
proof. ◻
Lemma 3. Let τ be a trace. For every acyclic orientation G of EGτ , there exists an
execution η ∈ Execs(τ) such that EGcη = G.

Proof. We prove the result by induction on the size of τ . The base case is trivial.
Let τ = τ ′ ⋅ e be a trace with Execs(τ) ≠ ∅ and assume the result holds for the trace

τ ′. Note that the trace event-graph EGτ contains all the edges of EGτ ′ together with
some undirected or directed edges towards e (by definition, we can not have directed
edges starting in e).

Let G be an acyclic orientation of EGτ . By definition, G contains an acyclic
orientation G′ of EGτ ′ . By the induction hypothesis, there exists an execution η′ ∈
Execs(τ ′) such that EGcη′ = G′. W.l.o.g. we assume that for every write-issue in η′, the
corresponding write-commit occurs also in η′. In the following, we assume that η′ is an
execution where values are present. We show that η′ can be extended to an execution η
such that trace(η) = τ and EGcη = G. Several cases are to be discussed.
Case e = rd t(x): Let e1 = wr -comt′(x, v) with t′ ≠ t be the first write-commit event in
η′ such that G contains an edge from e to the write-issue wr t′(x, v) corresponding to
e1. Note that the edges in G starting in e can end only in a write-commit of a different
thread. Essentially, we want to define η by inserting the event rd t(x, v′), for some v′
to be determined in the following, in η′ right before e1. However, it may happen that η′
contains write-issues and reads after e1, and this would make the trace of η being dif-
ferent than τ . But, since G is acyclic we can assume w.l.o.g. that there is no write-issue

or read after e1. Then, in order to ensure that e is in conflict with e1 it must not happen
that e1 is followed by a write-commit of thread t on x whose corresponding write-issue
is before e. Here, we use again the fact that G is acyclic with implies that there is a path
from the latter write-issue to e1 but not the reverse. Assume by contradiction that there
exists a path from e1 to this write-issue. This would create a cycle with the edge from
this write-issue to e (which exists because of the intra-thread conflicts in ⊚TSO) and
the edge from e to e1. Therefore, e1 is not followed by a write-commit of thread t. Let
η be the execution obtained from η′ by inserting the event rd t(x, v′) right before e1,
where v′ is the value written by the last write-commit before e1 in η′. From the previous
arguments, it follows that η is a valid TSO-execution and that EGcη = G.

Case e = wr t(x): Let e1 ∈ Et′ with t′ ≠ t be the event in η′ such that G contains an
edge from e to e1, if e1 is a read, or to the write-issue corresponding to e1, if e1 is a
write-issue. Note that the edges in G starting in e can end only in an event of a different
thread. Also, let e2 ∈ Rt′′ with t′′ ≠ t be the first read event in η′ such that G contains
an edge from e to e2. Using the same reasoning as in the previous case, we can assume
w.l.o.g. that there is no write-issue or read after e1. Let η be the execution obtained from
η′ by inserting the two events wr t(x, v′) ⋅ wr -comt(x, v′) right before e1, where v′ is
the value read by e2 (if e2 doesn’t exist then we can use any value for v′). We have that
η is a valid TSO-execution and EGcη = G.

Case e = fnt: This case is trivial, and η can be defined by appending e to η′. ◻
D Proofs for Section 6

D.1 Proof of Theorem 6

Proof. First, clearly the problem is in NP since one can guess an orientation, check
whether it is valid in polynomial time (equivalent to checking acyclicity of a directed
graph), and if yes, check if the conflict graph that is induced by that orientation is acyclic
in polynomial time.

Second, we sketch the reduction from the hamiltonian path problem. Given an ar-
bitrary undirected graph G, the goal is to check whether G = (V,E) has a hamiltonian
path between two given nodes. We construct a trace τG such that G has a hamiltonian
cycle iff τG is not TSO-serializable.

Let V = {v1, . . . , vn} be the set of nodes inG. Without loss of generality, we assume
is to the goal is to check whether there exists a hamiltonian path from v1 to vn. Trace
τG consists of n threads, each executing a sequence of transactions. Each thread ti
corresponds to the node vi of G, and executes transactions tri,1 . . . tri,ni in that order.
The number of transactions executed by each thread ti corresponds to the edge degree
of vi, more specifically we have ni = 2(n − 1) ×mi where mi is the edge degree of vi
in G (i.e. nodes that are connected to vi by an edge). Each transaction contains exactly
one event which is a write.

. . .

. . .

. . .

...

...

...

tr1,1

tr1,2

tr2,1

tr2,2

tr2,2|V |�2tr1,2|V |�2 tr|V |,2|V |�2

tr|V |,1

tr|V |,2

t|V |t2t1

. . .

tr1,3 tr2,3 tr|V |,3

. . .

. . .

tr1,4

tr1,5 tr2,5

tr2,4 tr|V |,4

tr|V |,5

We organize the sequence of transactions
of each thread into 2n − 2 groups. Each group
containmi transactions. The figure on the right
demonstrates the transaction groups in a (par-
tial) conflict graph for τG, where tri,j repre-
sents the jth transaction group of thread ti.
Intuitively, each transaction group of thread
ti captures, through conflict edges adjacent to
its transactions, the edges adjacent to node vi.
Each transaction has a conflict with the next
transaction of the same thread (black directed
edges). Each transaction in group g where g =
2,4, . . . ,2k (k < n − 2) of thread ti has a con-
flict with a transaction of thread tj in group
g + 3 (blue undirected edges) iff edge (vi, vj)
belongs to G. As an exception, each transac-
tion in groups 1 and 2n − 2 of ti has a conflict with a transaction of thread tj in groups
3 and 2n − 4 respectively iff edge (vi, vj) belongs to G.

wr ti
(x1,{i,j1})

. . .

wr ti
(x1,{i,jm})

wr ti
(x2,{i,j1})

. . .

wr ti
(x2,{i,jm})

wr ti
(x1,{i,j1})

. . .

wr ti
(x1,{i,jm})

. . .

wr ti
(x2|V |�2,{i,j1})

. . .

wr ti
(x2|V |�2,{i,jm})

In order to achieve the arrangement of the conflict edges
among transactions as described above, we use write events to
a set of variables, with two transactions that are supposed to have
a conflict to include a write to a common variable. Consider the
fact that each edge (vi, vj) ∈ E appears n − 1 times in CGτ be-
tween n − 1 different pairs of transaction. For each such instance
of such an edge, we need a new fresh variable to create that con-
flict and that conflict only. To this end, we make use of a set of
variables {xg,{i,j}} to capture the instance of edge (vi, vj) for the
gth transaction group. Based on this idea, each thread ti executes
a sequence events as seen on the right (with the transaction groups
marked), under the assumption that node vi ∈ V of G is adjacent
to nodes in {vj1 , . . . vjm}. For example, the wrx1,{i,j1}

(ti) event
of the first transaction group of thread ti is in conflict with the
wrx1,{j1,i}(ti) event of the second transaction group of thread tj1 .

Finally, we introduce three extra transactions. First, a transaction of a separate
thread t0 consisting of the two statements wrx(t0)rdy(t0). Then, we add a new trans-
action consisting of a single event wrx(tn) to the end of the first transaction group in
thread tn. Lastly, we add a new transaction with a single event wry(t1) to the beginning
of the last transaction group of thread t1. The idea is to have a directed conflict edge
from event rdy(t0) to event wry(t1) and an undirected conflict edge between wrx(t0)
and wrx(tn), which connect this extra transaction the existing grid that we illustrated
above.

To complete this proof, we have to make two arguments: (i) there is a trace τG that
gives rise to the conflict graph with these transactions, and (ii) the trace is not TSO-
serializable iff G has a hamiltonian cycle.

Define trace τG as serial execution of all threads from t0 to tn. It is easy to verify
that, by definition of ⊚TSO , all writes to common variables will end up with undirected
conflict edges between them, and we will have a directed edge from event rdy(t0) to
event wry(t1), since t0 is executed before t1.

Let us assume that graph G has n nodes and a hamiltonian path v1vi2 . . . vin−1vn.
Based on the definition of transactions, there exist undirected conflict edges in the
conflict graph of τG connecting transaction groups tr1,2n−2 to tri2,2n−4, tri2,2n−4 to
tri3,2n−6, and so on, with finally a conflict edge connecting trin−1,2 to trn,1. Moreover,
there are two directed conflict edges connecting the singe transaction of t0 to tr1,2n−2,
and trn,1 to t0. Therefore, there exist a cycle in the conflict graph. It is left to argue that
the directing of the undirected conflict edges in the orientation of this cycle does not
create a cycle in the event graph of τG; in other words, these directed edges are a subset
of a valid orientation of the event graph. This is straight forward, once one considers
that the only (preexisting) directed edges are the ones between transaction of the same
thread (in the same column), and the fact that the aforementioned cycle visits every
column exactly once; therefore, the existing directed edges cannot participate in a cycle
in the event graph together with the oriented edges of the cycle. We can conclude that
trace τG is not TSO-serializable.

Now let us assume that τG is not TSO-serializable. This implies that there is an
orientation of the undirected edges in the event graph of τG which induces a cycle in
the conflict graph of τG. Let us focus on shortest such cycle, where by shortest we
specifically mean one that visits as few threads as possible. We argue that this cycle in
the conflict graph corresponds to a hamiltonian path from v1 to vn in G. First, consider
that the only transaction with more than a single event in it (since we have to have at
least one of those as part of non-serializability scenario) is the transaction of thread t0 ,
which will have to be part of any cycle that witnesses a violation of TSO-serializability.

Second, consider that any cycle witness of TSO non-serializability may not visit any
column of the conflict graph of τG more than once; otherwise, such a cycle either (i)
creates a cycle over the event graph combined with the vertical inter-thread transaction
edges of the column/thread that it visits twice (i.e. if the second time it visits a column
is at an earlier transaction that the first time), or (ii) can be shortened (i.e. if the second
time it visits a column is at a later transaction, then that part of the cycle can be replaced
by a path through the thread/column).

Third, consider that any cycle witness of TSO non-serializability that starts from
transaction of thread t0 (and therefore ends in it) has to go from this transaction to
thread t1 (since the only outgoing edge out of t0 goes to this transaction) and and make
its way to the the end of transaction transaction group in tn (which has the only other
conflict edge that is connected to thread t0). A witness cycle that goes from t0 to t1
and then ends in tn (and back to t0) only following (cross-thread) conflict edges that
correspond to edges in graph G represents a path in graph G from v1 to vn.

Lastly, any cycle that visits no column more than once and has to go from the last
transaction group of t1 to the first transaction group of tn has to go through every single
thread. Remember that each conflict edge goes from a transaction in transaction group
k of some thread to a transaction group k − 2 of another thread. In other words, with
each cross-thread conflict edge, a cycle can make proceed up the trisection grid that

we constructed by exactly two rows. Since there are 2n − 2 rows in total, every thread
t2, . . . , tn−1 has to be visited on the way from transaction group 2n − 2 of thread t1
to transaction group 1 of tn. Note that Since the first and last transaction groups are
exceptional, the path goes from the 2n − 2 group of t1 to the 2n − 3 group of the next
thread on the path, and then it skips two groups at a time until it makes its way to
group 1 of tn. To sum up, we have argued that this cycle visits every column of the
event/transaction graph exactly once, which means the corresponding path visits each
node G exactly once and hence is a hamiltonian path by definition.

v1

v2

v3

v4

To clarify the construction, consider an example for graph G as
illustrated on the left. This graph has a hamiltonian path v1v3v2v4.
Below, the conflict graph that is constructed for this graph is il-
lustrated with threads t1 . . . t4 respectively corresponding to nodes
v1 . . . v4.

t4t3t2t1The conflict graph is illustrated on the right where
(for brevity) each box represents a transaction group.
The edges to individual transactions are all illustrated
as edges that go into their transaction group. For ex-
ample, the a transaction in the last transaction group
of thread t1 is connected to a transaction of the 5th
transaction group of threads t3 since we have the edge(v1, v3) in the graph. And, so it goes. The extra trans-
action (of thread t0, not marked) is only conflicted
with the last transaction group of thread t1 and the
first transaction group of thread t4. The witness for
non-serializability in this conflict graph is the cycle
that is highlighted in yellow, which corresponds to
the hamiltonian path v1v3v2v4 in the graph.

D.2 Proofs of statements from Section 6.2

Proof. (of Proposition 3) It is straightforward to argue for (i), because if it is not true,
then the conflict graph cycle becomes a cycle in the event graphEGτ as well, and hence
an invalid witness.

Let us assume that (ii) does not hold, i.e. there exists two transactions tr and tr′ that
both belong to some chain π, and yet there is an undirected edge between them in c.
This means that, by definition, the cycle can be simplified further, and therefore is not
simple.

Before we prove Proposition 4, the simple observation is that:

Proposition 6. If c is a cycle over the the conflict graph induced by a valid orientation
of EGτ for some trace τ , and c′ is the (one step) simplified version of τ , then c′ is also
a cycle in the conflict graph induced by the same valid orientation of EGτ .

Proof. (of proposition 6) Since c is a cycle in the conflict graph induced by a valid ori-
entation ofEGτ , it means that all the (originally) undirected edges that are used in c are
directed in the direction of the cycle in that valid orientation. A one step simplification,
removes at least one of these (originally) undirected edges, and replaces it with a se-
quence of (originally directed edges). These directed edges are a constant in every valid
orientation of EGτ and therefore part of this one as well. c′ is using fewer (originally)
undirected edges, and more directed edges than c, if c is a cycle in this orientation of
EGτ , then so is c′.
which leads us to the proof of Proposition 4:

Proof. (of proposition 4) It is straightforward: keep simplifying the witness cycle until
it cannot be simplified.

Proof. (of proposition 5) A direct implication of Proposition 3.

D.3 Extra material for Section 6.3

Proof. (of Theorem 12) (⇐) Clearly, the TSO-execution η′ is not SC-equivalent. The
PO-completion of EGcη′ contains a path from wr t′(x, v′) to the last event of thread
t in η, an edge from this last event of t to rd t(x, v), and an edge from rd t(x, v) to
wr t′(x, v′) (because the write-commit corresponding to wr t′(x, v′) is executed after
the write is issued and thus later than rd t(x, v)). Therefore, P is not robust.

(⇒) Let η′ be a non SC-equivalent TSO-execution of P of minimal trace, i.e., for
any prefix τ of trace(η′), all the TSO-executions of P of trace τ are SC-equivalent.
W.l.o.g. we assume that η′ contains a write-commit event for each write event. Let G
be the PO-completion of EGcη′ .

We show that there must exist a thread in η′ which ends by executing a read event.
Assume by contradiction that all threads end by executing a write event; let wr t1(y, v1)
be the write event among the last writes of each thread that commits the last. Note that
G contains no edge starting in wr t1(y, v1). Therefore, the execution η′′ that doesn’t
execute wr t1(y, v1) is also a valid non SC-equivalent TSO-execution, which contradicts
the minimality assumption.

Let rd t(x, v) be a read among the last reads of each thread. Then, rd t(x, v) must
belong to a cycle of G. Otherwise, removing rd t(x, v) we get a valid TSO-execution
of a smaller trace that is non SC-equivalent, which again contradicts the minimality
assumption. Since η′ doesn’t contain other events of thread t that follow rd t(x, v) in the
program order, the successor of rd t(x, v) in the cycle must be a write event wr t′(x, v′)
of a different thread. Also, the predecessor of rd t(x, v) in the cycle must be an event of
thread t. Otherwise, if the predecessor of rd t(x, v) is a write event wr t′′(x, v′′), then
by the definition of G, there is an edge from wr t′′(x, v′′) to wr t′(x, v′), which shows
that G has a cycle that doesn’t include rd t(x, v).

Let η be the execution obtained from η′ by deleting rd t(x, v). By the minimality
assumption, η is SC-equivalent, therefore η can also be seen as an SC-execution. Since
the edge from rd t(x, v) to wr t′(x, v′) is included inEGcη′ as well, andEGcη′ is acyclic,
rd t(x, v) can be inserted in η somewhere before wr t′(x, v′) in order to obtain a TSO-
execution that has the same write-contraction as η′.

D.4 Monitoring Robustness

Although robustness is a property of TSO-executions, we show that it can be checked
efficiently (in polynomial time) on SC-executions. Essentially, we prove that minimal
robustness violations 4 are formed of an SC-execution η and a read event which may
not be necessarily enabled under the SC semantics but it is consistent with the program
order in η.

For a sequence of events η ∈ P , a read event rd t(x, v) is enabled in η if η contains
a write event wr t′′(x, v) writing the value read by rd t(x, v), and η ⋅ rd t(x, v) ∈ P .

Theorem 12. A program P is not robust iff there exists an SC-execution η of P , and a
read event rd t(x, v) enabled in η such that

1. EGη contains a path from a write event wr t′(x, v′) with t ≠ t′ to the last event of
thread t in η, and

2. there exists a TSO-execution η′ obtained from η 5 by inserting rd t(x, v) before
wr t′(x, v′).

Proof. (⇐) Clearly, the TSO-execution η′ is not SC-equivalent. The PO-completion of
EGcη′ contains a path from wr t′(x, v′) to the last event of thread t in η, an edge from
this last event of t to rd t(x, v), and an edge from rd t(x, v) to wr t′(x, v′) (because the
write-commit corresponding to wr t′(x, v′) is executed after the write is issued and thus
later than rd t(x, v)). Therefore, P is not robust.

(⇒) Let η′ be a non SC-equivalent TSO-execution of P of minimal trace, i.e., for
any prefix τ of trace(η′), all the TSO-executions of P of trace τ are SC-equivalent.
W.l.o.g. we assume that η′ contains a write-commit event for each write event. Let G
be the PO-completion of EGcη′ .

We show that there must exist a thread in η′ which ends by executing a read event.
Assume by contradiction that all threads end by executing a write event; let wr t1(y, v1)
be the write event among the last writes of each thread that commits the last. Note that
G contains no edge starting in wr t1(y, v1). Therefore, the execution η′′ that doesn’t
execute wr t1(y, v1) is also a valid non SC-equivalent TSO-execution, which contradicts
the minimality assumption.

Let rd t(x, v) be a read among the last reads of each thread. Then, rd t(x, v) must
belong to a cycle of G. Otherwise, removing rd t(x, v) we get a valid TSO-execution
of a smaller trace that is non SC-equivalent, which again contradicts the minimality
assumption. Since η′ doesn’t contain other events of thread t that follow rd t(x, v) in the
program order, the successor of rd t(x, v) in the cycle must be a write event wr t′(x, v′)
of a different thread. Also, the predecessor of rd t(x, v) in the cycle must be an event of
thread t. Otherwise, if the predecessor of rd t(x, v) is a write event wr t′′(x, v′′), then
by the definition of G, there is an edge from wr t′′(x, v′′) to wr t′(x, v′), which shows
that G has a cycle that doesn’t include rd t(x, v).

Let η be the execution obtained from η′ by deleting rd t(x, v). By the minimality
assumption, η is SC-equivalent, therefore η can also be seen as an SC-execution. Since

4 Non SC-equivalent executions such that all of their prefixes are SC-equivalent
5 An SC-execution is viewed as a TSO-execution where every write event is immediately fol-

lowed by the corresponding write-commit event.

the edge from rd t(x, v) to wr t′(x, v′) is included inEGcη′ as well, andEGcη′ is acyclic,
rd t(x, v) can be inserted in η somewhere before wr t′(x, v′) in order to obtain a TSO-
execution that has the same write-contraction as η′. ◻

Given an SC-execution η and a read event rd t(x, v) enabled in η, checking the
existence of a write event wr t′(x, v′) satisfying the conditions of Theorem 12 can be
done in polynomial time: one can enumerate all write events of η and all sequences η′
obtained by adding rd t(x, v) to η. Whether a sequence η′ is a valid TSO-execution is
equivalent to the acyclicity of its event graph.

E Fenced Transactions

Proof. (of Theorem 12) (⇐) Clearly, the TSO-execution η′ is not SC-equivalent. The
PO-completion of EGcη′ contains a path from wr t′(x, v′) to the last event of thread
t in η, an edge from this last event of t to rd t(x, v), and an edge from rd t(x, v) to
wr t′(x, v′) (because the write-commit corresponding to wr t′(x, v′) is executed after
the write is issued and thus later than rd t(x, v)). Therefore, P is not robust.

(⇒) Let η′ be a non SC-equivalent TSO-execution of P of minimal trace, i.e., for
any prefix τ of trace(η′), all the TSO-executions of P of trace τ are SC-equivalent.
W.l.o.g. we assume that η′ contains a write-commit event for each write event. Let G
be the PO-completion of EGcη′ .

We show that there must exist a thread in η′ which ends by executing a read event.
Assume by contradiction that all threads end by executing a write event; let wr t1(y, v1)
be the write event among the last writes of each thread that commits the last. Note that
G contains no edge starting in wr t1(y, v1). Therefore, the execution η′′ that doesn’t
execute wr t1(y, v1) is also a valid non SC-equivalent TSO-execution, which contradicts
the minimality assumption.

Let rd t(x, v) be a read among the last reads of each thread. Then, rd t(x, v) must
belong to a cycle of G. Otherwise, removing rd t(x, v) we get a valid TSO-execution
of a smaller trace that is non SC-equivalent, which again contradicts the minimality
assumption. Since η′ doesn’t contain other events of thread t that follow rd t(x, v) in the
program order, the successor of rd t(x, v) in the cycle must be a write event wr t′(x, v′)
of a different thread. Also, the predecessor of rd t(x, v) in the cycle must be an event of
thread t. Otherwise, if the predecessor of rd t(x, v) is a write event wr t′′(x, v′′), then
by the definition of G, there is an edge from wr t′′(x, v′′) to wr t′(x, v′), which shows
that G has a cycle that doesn’t include rd t(x, v).

Let η be the execution obtained from η′ by deleting rd t(x, v). By the minimality
assumption, η is SC-equivalent, therefore η can also be seen as an SC-execution. Since
the edge from rd t(x, v) to wr t′(x, v′) is included inEGcη′ as well, andEGcη′ is acyclic,
rd t(x, v) can be inserted in η somewhere before wr t′(x, v′) in order to obtain a TSO-
execution that has the same write-contraction as η′.

	On Atomicity in Presence of Non-atomic Writes

