
Replication-Aware Linearizability∗

Chao Wang

IRIF, CNRS and University Paris Diderot, France

wangch@irif.fr

Constantin Enea

IRIF, CNRS and University Paris Diderot, France

cenea@irif.fr

Suha Orhun Mutluergil

IRIF, CNRS and University Paris Diderot, France

mutluergil@irif.fr

Gustavo Petri

ARM Research, United Kingdom

gustavo.petri@arm.com

Abstract
Distributed systems often replicate data at multiple locations

to achieve availability despite network partitions. These sys-

tems accept updates at any replica and propagate them asyn-

chronously to every other replica. Conflict-Free Replicated

Data Types (CRDTs) provide a principled approach to the

problem of ensuring that replicas are eventually consistent

despite the asynchronous delivery of updates.

We address the problem of specifying and verifying CRDTs,

introducing a new correctness criterion called Replication-

Aware Linearizability. This criterion is inspired by lineariz-

ability, the de-facto correctness criterion for (shared-memory)

concurrent data structures. We argue that this criterion is

both simple to understand, and it fits most known implemen-

tations of CRDTs. We provide a proof methodology to show

that a CRDT satisfies replication-aware linearizability that

we apply on a wide range of implementations. Finally, we

show that our criterion can be leveraged to reason modularly

about the composition of CRDTs.

CCS Concepts • Theory of computation → Logic and
verification; • Software and its engineering→ Formal
software verification.

Keywords replicated data types, verification, consistency

ACM Reference Format:
ChaoWang, Constantin Enea, Suha Orhun Mutluergil, and Gustavo

Petri. 2019. Replication-Aware Linearizability. In Proceedings of the
40th ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI ’19), June 22–26, 2019, Phoenix, AZ, USA.
ACM,NewYork, NY, USA, 14 pages. https://doi.org/10.1145/3314221.
3314617

∗
All authors but first listed in alphabetical order.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6712-7/19/06. . . $15.00

https://doi.org/10.1145/3314221.3314617

1 Introduction
Conflict-Free Replicated Data Types (CRDTs) [20] have re-

cently been proposed to address the problem of availability

of a distributed application under network partitions. CRDTs

represent a methodological attempt to alleviate the problem

of retaining some data-Consistency and Availability under

network Partitions (CAP), famously known to be an im-

possible combination of requirements by the CAP theorem

of Gilbert and Lynch [11]. CRDTs are data types designed

to favor availability over consistency by replicating the type

instances across multiple nodes of a network, and allowing

them to temporarily have different views. However, CRDTs

guarantee that the states of the nodes will eventually con-

verge to a state common to all nodes [6, 20]. This convergence
property is intrinsic to the data type design and in general

no synchronization is needed, hence achieving availability.

Availability vs. Consistency. To illustrate the problem we

consider the implementation of a list-like CRDT object, the

Replicated Growable Array (RGA) – due to Roh et al. [19]–,

used for text-editing applications. RGA supports three oper-

ations: 1. addAfter(a,b) which adds the character b – the

concrete type is inconsequential here – immediately after the

occurrence of the character a assumed to be present in the

list,
1
2. remove(a) which removes a assumed to be present

in the list, and 3. read() which returns the list contents.

Tomake the system available under partitions, RGA allows

each of the nodes to have a copy of the list instance. We

will call each of the nodes holding a copy a replica. RGA
allows any of the replicas to modify the local copy of the

list immediately – and hence return control to the client –

and lazily propagate the updates to the other replicas. For

instance, assuming that we have an initial list containing

the sequence a · b · e · f 2
and two replicas, r1 and r2, if r1

inserts the letter c after b (calling addAfter(b,c)), while r2
concurrently inserts the letter d after b (addAfter(b,d)) the
replicas will have the states a · b · c · e · f and a · b · d · e · f
respectively. We have solved the availability problem, but

we have introduced inconsistent states. This problem is only

exacerbated by adding more replicas.

Convergence. To restore the replicas to a consistent state,

CRDTs guarantee that under conflicting operations – that

1
We assume elements are unique, implemented with timestamps.

2
We use s0 · s1 to denote the composition of sequences s0 and s1.

https://doi.org/10.1145/3314221.3314617
https://doi.org/10.1145/3314221.3314617
https://doi.org/10.1145/3314221.3314617

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA C. Wang, C. Enea, S. Mutluergil, and G. Petri

is, operations that could lead to different states – there is

a systematic way to detect conflicts, and there is a strategy

followed by all replicas to deterministically resolve conflicts.
In the case of RGA, the implementation adds metadata to

each item of the list identifying the originating replica as

well as timestamp of the operation in that replica (we ignore

here conflicts due to remove). This metadata is enough to

detect when conflicts have occurred. Generally there are a

number of assumptions that are necessary for the metadata

to detect conflicts (e.g., timestamps increase monotonically

with time) which we shall discuss in the following sections.

Then, for RGA it is enough to know whether two addAfter
operations have conflicted by simply comparing the replica

identifiers and their timestamps. In fact, this is a sound over-

approximation of conflict since two concurrent addAfter
operations have a real conflict only if their first arguments

are the same (e.g. the element b in the example aforemen-

tioned). In such case, the strategy to resolve the conflict will

always choose to order first the character added with the

highest timestamp in the resulting list, and in the particular

case where the timestamps should be the same, an arbitrary

order among replicas will be used. In the example above,

and assuming that the character c was added with times-

tamp t1 and the character d was added with timestamp t2, if
t2 < t1 (for some order ≤ between timestamps), the list will

converge to a · b · c · d · e · f. We obtain the same result if

t1 = t2 and assume that we have a replica order <r , we have
r2 <r r1. Using an arbitrary order among replica identifiers

is common in CRDTs to break ties among elements with

equal timestamps. We will generally assume that metadata

provides a strict ordering and ignore the details.

If the effects of all operations are delivered to all replicas

eventually, the replicas will converge to the same state –

assuming a quiescent period of time where no new opera-

tions are performed. This allows to eventually recover the

consistency of the data type without giving away availability.

Specifications. The simplicity of the list data type allows

for a somewhat simple conflict resolution strategy. However,

this is not true for many other CRDTs. It is therefore critical

to provide the programmer with a clear, and precise, specifi-

cation of the allowed behaviors of the data type under con-

flicts. Unfortunately this is not an easy task. Many times the

programmer has no option but to read the implementation to

understand how the metadata is used to resolve conflicts, for

instance by reading the algorithms by Shapiro et al. [20] (a

case where the algorithms are particularly well documented).

Recently Burckhardt [6], Burckhardt et al. [7] have devel-

oped a formal framework where CRDTs and other weakly

consistent systems can be specified. However, we consider

that reading these specifications is far from trivial for the

average programmer, let alone writing new specifications.

Evidently, having a formal specification is a necessary step

towards the verification of the implementations of CRDTs.

Simpler specifications, not simplistic specifications. It
is important to remark at this point that while it is our goal

to make the specification of CRDTs simpler, we believe that

it is impossible to make them coincide with their sequen-

tial data type counterparts. Most CRDTs will exhibit, due to

concurrency and consistency relaxations, behaviors that are

not possible in the sequential version of the type they repre-

sent. A notable instance is the Multi-Valued-Register (MVR),

which resolves conflicts arising from concurrent updates to

the register by storing multiple values. Hence, a subsequent

read operation to the register might return a set of values

rather than a single value. This is certainly a behavior that

is not possible for a “traditional” register, and in fact, one

that the programmer must be aware of. Our goal is to accu-

rately specify the behaviors of the CRDT, meaning that often

times, different implementations of the same underlying data

type (say a register) will have different specifications if their

conflict resolution allows for different behaviours, e.g., the

Last-Writer-Wins (LWW) and the MVR registers.

Paper Contributions. Inspired by linearizability [13] we

propose a new consistency criterion for CRDTs, which we

call Replication-Aware Linearizability (RA-linearizability).

RA-linearizability both simplifies CRDT specifications, and

allows us to give correctness proof strategies for these speci-

fications. To satisfy RA-linearizability a data type must be so

that any execution of a client interacting with an instance

of the data type 1. should result in a state that can be ob-

tained as a sequence (or linearization) of its updates – where

we assume that all updates are executed sequentially– and

2. any operation reading the state of the data type instance

should be justified by executing a sub-sequence of the above
mentioned sequence of updates. For instance, for the RGA

example, the state of the final list (when all updates are deliv-

ered) should be reachable by considering a sequence where

all addAfter operations are executed sequentially.

Equipped with this criterion we show that many existing

CRDTs are RA-linearizable. We provide both, their specifica-

tion, and proofs showing that implementations respect the

specification. We provide two different proof methodologies

based on the structure of the conflict-resolution mechanism

implemented by the CRDT. We categorize CRDT implemen-

tations into classes according to their conflict-resolution

strategy. Encouragingly, most of the CRDTs by Shapiro et al.

[20] can be proved RA-linearizable.

Given that our criterion is inspired by linearizability, we

consider if it also preserves the same compositionality prop-

erties, i.e. whether the composition of a set of RA-linearizable

objects is also RA-linearizable. While we show that this is

not true in general, we show that compositionality can be

achieved when we concentrate to specific classes of conflict

resolution as described above.

Finally, we have mechanized our methodologies to prove

RA-linearizability. We use the verification tool Boogie [4] to

Replication-Aware Linearizability PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

payload Ti-Tree N, Set Tomb
initial N = ∅, Tomb = ∅
addAfter(a,b) :
generator :
precondition : a = ◦ or (a != ◦ and (_,_,a) ∈ N and a < Tomb)
let tb = getTimestamp()

effector(a, tb, b) :
N = N ∪ {(a, tb, b)}

remove(a) :
generator :
precondition : (_,_,a) ∈ N and a < Tomb and a , ◦

effector(a) :
Tomb = Tomb ∪ {a}

read() :
let ret-list = traverse(N, Tomb)
return ret-list

Listing 1. Replicated Growable Array (RGA) pseudo-code.

encode our specifications, CRDTs, and prove the correctness

of the implementations (proof scripts are available at [1]).

Complete proofs and more details can be found in [9].

2 Overview
op(v)

r1 :

r2 :

r3 :

(origin)

Figure 1. System Model.

We give an informal descrip-

tion of our systemmodel, and

illustrate our contribution

with two compelling CRDT

implementations from [3, 20].

We consider the implementation of CRDTs, and we focus

on the behaviors of a data type instance, generically called an
object. We assume that objects are replicated among several

replicas. Fig. 1 shows the execution of an operation op(v)
evolving as follows: (i) a client submits an operation to some

replica called origin, (ii) If the operation reads and updates the
object state, the reading action is only performed at the origin.

This part of the operation is called the generator (cf. [20]).
Then, if the operation modifies the state – e.g. addAfter
for RGA – an update is generated to be executed in every

replica. This part of the operation shall be called the effector.
We assume that effectors are executed immediately at the

origin. This is represented by the dot at the origin replica in

Fig. 1. (iii) Finally, the effector is delivered to each replica,

and their states are updated consequently, represented by the

target of the arrows. This model corresponds to operation-
based CRDTs. Our results also apply to state-based CRDTs,

where replicas exchange states instead of operations (Sec. 6).

2.1 RGA CRDT Implementation
Listing 1 presents the code of RGA in a style following that

of Shapiro et al. [20] (a version of the RGA introduced in [3]).

The keyword payload declares the state used to represent
the object: a variable N of type Ti-Tree, and a variable Tomb
of type Set. The effectful operations addAfter and remove
have two labels marked in red: generator and effector,
corresponding to the reading and updating part of the op-

erations as described above. Notice that the effector can

use as arguments values produced by the generator. The

precondition annotation indicates facts that are assumed

about the state prior to the execution.

Reconsidering Fig. 1 the source of the arrows represents

the execution of a generator jointly with the effector at
replica r1, and the target of the arrows represents the delivery
and execution of the effector at replicas r2 and r3.
Each replica maintains a Timestamp Tree (Ti-Tree) con-

taining in every tree node a pair with: the element added

to the list (for instance the character b), and a timestamp

associated to it (tb) used to resolve conflicts. We will encode

the tree as a set of triples (corresponding to nodes) of the

form (a, tb, b) representing an element b in the tree with

timestamp tb and whose parent is item a also present in the

tree. The tree-ness property is ensured by construction.

The generator portion of addAfter(a,b) has a precon-
dition requiring a to exist in the tree before the insertion of

b (the data structure is initialized with a preexisting element

◦). The generator then samples a timestamp tb for b which
is assumed to be larger than any timestamp presently in the

Ti-Tree N of the origin replica. Also, it is assumed that tb
cannot be sampled by another replica (as discussed before,

this can be ensured by tagging timestamps with replica iden-

tifiers). The effector portion of addAfter(a,b) adds the

triple (a,tb,b) in the replica’s own copy of N. This ensures
that the tree structure is consistent with the causality of in-

sertions in the data structure. A client of the object will only

ever attempt to add an element after another element which

it has already seen as mandated by the addAfterAPI. Hence,
the parent node of any node was inserted before it, and is

causally related to it. Similarly, nodes that are not related

to each other on any path of the tree (e.g. siblings) are not

causally related. An example of such a tree is shown in the

left most box of Fig. 2: c and bwere concurrently added after
a, and a was added first after the initial element ◦.

From a Ti-tree, we can obtain a list by traversing the

tree in pre-order, with the proviso that siblings are ordered

according to their timestamps with the highest timestamp vis-
ited first. The leftmost box in Fig. 2 shows a tree that results in

the list a · b · c assuming the timestamp order ta < tc < tb.
Fig. 2 shows two concurrent operations addAfter(c,d)

and addAfter(c,e) executing in two different replicas start-

ing both with the state depicted on the left. Then, the two

trees result in different lists in each replica before the opera-

tions are mutually propagated.

We have so far ignored remove. Consider the case where
a replica executes addAfter(a,b) on a replica while an-

other one executes remove(a). If the addAfter(a,b) ef-

fector reaches some replica after the effector of remove(a)
there is a problem since the precondition of the effector of

addAfter(a,b) requires that the element a be present in

the Ti-tree of the replica. To avoid this kind of conflict,

rendering the operations commutative, RGA does not really

remove elements from the Ti-tree. Instead, an additional

data structure called a tombstone is used to keep track of

elements that have been conceptually erased and should not

be considered when reading the list. Here, the marking of

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA C. Wang, C. Enea, S. Mutluergil, and G. Petri

b : tb

a : ta

◦ : 0

c : tc

ta < tc < tb)
a · b · c

T = ;

addAfter(c; d)

b : tb

a : ta

◦ : 0

ta < tc < tb <

a · b · c · e
te < td)

T = fdg
addAfter(c; e)

c : tcb : tb

a : ta

◦ : 0

c : tc

ta < tc < tb <

a · b · c · d · e

e : ted : td

te < td)
T = ;

b : tb

a : ta

◦ : 0

c : tc

ta < tc < tb <
d : td

T = ;
a · b · c · dtd)

remove(d)

e : ted : td

b : tb

a : ta

◦ : 0

c : tc

e : te

ta < tc < tb < a · b · c · e
T = ;

te)

Figure 2. Example of RGA conflict resolution.

addAfter(◦; a)

addAfter(a; b)

addAfter(a; c)

remove(d)

addAfter(c; d)

addAfter(c; e)

Figure 3. A history for the RGA object.

tombstones is a set Tomb of elements. The last column of

Fig. 2 shows the result of a remove operation.
The method read performs the pre-order traversal ex-

plained before, where all elements in the tombstone Tomb
are omitted. In each of the boxes of Fig. 2 the list shown rep-

resents the result of a read operation in the state depicted.

Operations, histories and linearizability. We consider

an abstract view of executions of a CRDT object called a his-
tory. Informally a history is a set of operations with a partial

order representing the ordering constraints imposed on the

execution of each operation. We represent the execution of

an operation with a label of the formm(a) ⇒ b representing

a call to methodmwith arguments a and returning the value
b. When the values are unimportant we shall use the meta-

variable ℓ to denote a label. The partial order mentioned

above represents the visibility relation among operations.

We say that an operation with label ℓ1 is visible to an opera-

tion with label ℓ2 if at the time when ℓ2 was executed at the

origin replica, the effects of ℓ1 had been applied in the state of
the replica executing ℓ2. A history is a pair (L,≺) containing
a set of labels L and a visibility relation ≺ between labels.

Fig. 3 pictures a history where the last three operations are

exactly those of the execution in Fig. 2. Each node represents

a label and arrows represent that the operation at the source

is visible to the operation at the target. Since we assume that

visibility is transitive we ignore redundant arrows.

A similar notion of history is used in the context of lineariz-
ability [13]. The only difference is that the order ≺ relates

two operations the first of which returns before the other

one started. A history (L,≺) is called linearizable if there ex-

ists a sequential history (L,≺seq) (≺seq is a total order), called
linearization, s.t. (L,≺seq) is a valid execution, and ≺ ⊆ ≺seq.

CRDTs are not linearizable since operations are propa-

gated lazily, so two replicas can see non-coinciding sets of

operations. We relax linearizability to adapt it to CRDTs as

follows: 1. we require that the sequential history be consis-

tent with the visibility relation among operations instead of

the returns-before order, and 2. operations that only read

the object state are allowed to see a sub-sequence of the lin-
earization, instead of the whole prefix as in linearizability.

(We will discuss an additional relaxation in Sec. 2.2).

Intuition of RGA RA-linearizability. Consider the lin-

earization of two concurrent operations adding after a com-

mon element: addAfter(a,b) and addAfter(a,c). This ex-
ample corresponds to the history shown in the first three

nodes of Fig. 3 from left to right. Because these operations are

concurrent they are not related by visibility so our criterion

allows for any ordering among them. Let us show that these

operations can always be ordered in a way that the result

of future reads will match this ordering. From the previous

explanation we know that the order between b and c in the

resulting list will be determined by their timestamps (tb and
tc). Assuming that the ordering is that given in the tree of the

first column of Fig. 2, we know that we can order the opera-

tions as addAfter(a,c) followed by addAfter(a,b) which
when executed sequentially obviously results in a · b · c. The
timestamp metadata of RGA gives us a strategy to build the

operation sequence that corresponds to a sequential specifi-

cation. A concrete linearization of these operations is:

addAfter(◦,a) · addAfter(a, c) · addAfter(a,b)

Unfortunately this simple linearization strategy is not al-

ways applicable. Consider now a similar case where after

issuing the addAfter operations the replicas attempt to im-

mediately read the state. As explained in Fig. 2, a possible

behavior is that the first replica returns ◦ · a · b while the

second returns ◦ · a · c. If we consider the linearization given
above, the result ◦ · a · b is not possible, since c was added
before b was added. This is because the reading replica has
not yet seen addAfter(a, c). To overcome this problem we

allow methods that read the state to see a sub-sequence of
the global linearization. Thus, we can consider the sequence

addAfter(◦,a) · addAfter(a, c) · read() ⇒ (◦ · a · c) ·
addAfter(a,b) · read() ⇒ (◦ · a · b)

where the last read ignores the red label addAfter(a, c).
These are only two cases of conflicting concurrent opera-

tions, in Sec. 4 we show that all operations can be ordered

such that they correspond to a sequential execution thereof.

Replication-Aware Linearizability PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

2.2 OR-Set CRDT Implementation
The Observed-Remove Set (OR-Set) [20] implements a set

with operations: add(a), remove(a), read(). The code of
OR-Set is shown in Listing 2 (we assume return values for

add(a) and remove(a) for technical reasons).

add(a)
r1 :

r2 :
add(a) remove(a)

Figure 4. Interleaving-based Set.

Although themean-

ing of these methods

is self-evident from

their names, the re-

sults of conflicting

concurrent operations

is not evident. Consider for example the case where two repli-

cas add a certain element a and then one of them removes

that element. If we consider an interleaving based execution

of these operations there are two options depending on the

interleaving: i) If remove(a) is the last operation then the

expected set is empty, since the two consecutive add(a) are

idempotent, and the remove would remove the only occur-

rence of a. This interleaving is the one depicted with solid

arrows in Fig. 4. ii) On the other hand, if the operation add(a)
of the non-removing process comes last, as depicted with

the dashed arrows in Fig. 4, the final set could contain the

element a. As we have explained before, the operations can

arrive in different orders to different replicas. To guarantee

convergence, OR-Set must ensure that regardless of the or-

dering, the resulting set will be the same. To that end, OR-Set

add operations will tag each added element with a unique

identifier. Then, a remove operation will only remove the

element-identifier pairs which has already seen. For instance,

in the case (ii) above, the remove of a will only remove the

element that has been previously added by the same replica,

since this item has been observed by the remove operation –

and thus its identifier is known to it. The concurrent add(a)
operation will have an identifier that has not been observed

by the remove Therefore the item will not be removed, even

if the effectors of the two adds are performed in a replica

before the effector of the remove.

Intuition of OR-Set RA-Linearizability. It is easy to find

examples where the implementation of OR-Set can produce

executions that cannot be justified by the standard defini-

tion of linearizability (even with the relaxations discussed in

Sec. 2.1) assuming a standard Set specification. Fig. 5a shows

one such example. Clearly any linearization of the visibility

relation in this execution should order the add and remove
updates before the read queries, and the linearization of the

updates should end with a remove. Therefore, the final set
returned by each of the two read queries should have at

most one element (the read queries see all the updates in the

execution), contrary to their return value in this execution.

This execution shows that the remove behaves as both a

query (observing a certain number of adds of the element

to be removed) and an update (by removing said observed

elements). To cope with such cases, we will consider in our

payload Set S
initial S = ∅
add(a) :
generator :
let k = getUniqueIdentifier()
return k

effector(a, k) :
S = S ∪ {(a, k)}

remove(a) :
generator :
let R = {(a,k) | (a,k) ∈ S}
return R

effector(R) :
S = S \ R

read() :
let A = {a : ∃ k. (a,k) ∈ S}
return A

Listing 2. Pseudo-code of the OR-Set CRDT.

definition that query-update operations can be split into a

query part corresponding to the generator, which only reads

the state – and hence is allowed to see a sub-sequence of the

linearization of updates – and an update part corresponding

to the effector which will use the results of the prior query.

For instance, remove will be split into a query part readIds
where only the elements visible at the time of the remove

are selected, and an update part remove where only those

elements selected are erased. Any identifier not in the set

returned by readIds will remain in the set after the update

part of remove. Evidently, this requires some mechanism for

“marking” the adds that are concerned. We will consider that

each add has a unique identifier. Fig. 5b shows this rewriting.

The result of the rewriting admits a linearization consistent

with the specification of Set, as explained above.

3 Replication-Aware Linearizability
In this section we formalize the intuitions developed in Sec. 2.

We define the semantics of CRDT objects (§ 3.1), specifica-

tions (§ 3.2), and our notion of RA-linearizability (§ 3.3). For

lack of space, our formalization focuses only on operation-

based CRDTs. However, the notion of RA-linearizability ap-

plies to state-based CRDTs as well (see Section 6).

3.1 The Semantics of CRDT Objects
To formalize the semantics of CRDT objects and our correct-

ness criterion we use several semantic domains defined in

Fig. 6. We will use operation labels of the form o.m(a)
i,ts
⇒ b

to represent the call of a method m ∈ M of object o ∈ O,
with argument a ∈ D, resulting in the value b ∈ D, and gen-

erating the timestamp ts . Since there might be multiple calls

to the same method with the same arguments and result,

labels are tagged with a unique identifier i . We may omit the

object o, the identifier i , the timestamp ts , or the return value

b when they are not important. The order relation on T is
denoted by <. Abusing notations, we assume that the set T
contains a distinguished minimal element ⊥ which we shall

use for operations that do not generate a timestamp such

as the method remove of RGA. The timestamp ts of a label

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA C. Wang, C. Enea, S. Mutluergil, and G. Petri

add(b)) 1
r1 :

r2 :
add(a)) 3 add(b)) 4

add(a)) 2

remove(a)) f(a; 3)g

remove(b)) f(b; 1)g

fbg

fbgfag

fagfa; bg

fa; bg

fa; bg fa; bg

fa; bg fa; bg

read())fa; bg

read())fa; bg

(a) OR-Set non-linearizable execution. Each line represents operations issued to the same replica.

add(b1)
r1 :

r2 :
add(a3) add(b4)

add(a2)

remove({a3})

remove({b1})

{b1}

{b1, b4}{a3}

{a2, a3}{a2, a3, b1}

{a3, b1, b4}

{a2, a3, b4} {a2, b4}

{a2, b1, b4} {a2, b4}

readIds(b)⇒{b1}

readIds(a)⇒{a3}

read()⇒{a, b}

read()⇒{a, b}

(b) Label rewriting of an OR-Set execution. Pairs (a,k) of an element a and identifier k are written as ak .

Figure 5. OR-Set Linearizability vs. RA-linearizability.

ℓ = o.m(a)
i,ts
⇒ b is denoted ts(ℓ). The set of all operation

labels is denoted by L.
Given a CRDT object o, its semantics is defined as a labeled

transition system (LTS) ⟦o⟧ = (GC,A, gc
0
,→), where GC

is a set of global configurations, A is the set of transition

labels called actions, gc
0
is the initial configuration, and→⊆

GC × A × GC is the transition relation.

Our semantics assumes the following two properties of

the propagation of effectors: (i) the effector of each opera-

tion is applied exactly once at each replica, and (ii) if the

effector of operation ℓ1 is applied at the origin replica of ℓ2
before ℓ2 happens, then for every replica r, the effector of
ℓ2 will be applied only after the effector of ℓ1 has already
been applied. These are commonly referred to as causal de-
livery. We assume causal delivery because our formalization

focuses on operation-based CRDTs. However, the notion of

RA-linearizability and the compositionality results in Sec-

tion 5 apply to state-based CRDTs as well, even if the network

infrastructure doesn’t satisfy causal delivery (see [9]).

A global configuration (G, vis,DS) is a “snapshot” of the
system that records all the operations that have been exe-

cuted. G ∈ [R→ LC] (we use [A→ B] to denote the set of

total functions from A to B) stores the local configuration
of each replica (LC denotes the set of local configurations).

A local configuration (L,σ) contains the state σ of a replica

and the set L of labels of operations that originate at this

replica, or whose effectors have been executed (or applied)

at this replica. When ℓ ∈ L, we say that ℓ is visible to the

replica or that the replica sees ℓ. The set of replica states σ
is denoted by Σ. The relation vis ⊆ P(L × L) is the visibility
relation between operations, i.e., (ℓ1, ℓ2) ∈ vis, where ℓ2 is an
operation originated at a replica r, if the effector of ℓ1 was
executed at r before ℓ2 was executed. When (ℓ1, ℓ2) ∈ vis,
we say that ℓ1 is visible to ℓ2, or that ℓ2 sees ℓ1. As it will be
clear from the definition of the transition relation, vis is a
strict partial order. Finally, DS ∈ [L→ ∆] associates to each

operation label ℓ ∈ L an effector δ ∈ [Σ→ Σ], which is the

replica state transformer generated when the operation was

o ∈ O CRDT Objects

r ∈ R Replicas

m ∈ M Methods

a,b ∈ D Data

ts ∈ T Timestamps

L ⊆ L Label Set

ℓ ≡ o.m(a)
i,ts
⇒ b ∈ L Operation Label

Figure 6. Semantic Domains.

Operation G(r) = (L, σ) θ (σ , m, a) = (b, δ, ts)

δ (σ) = σ ′ ℓ = o.m(a)
(i,ts)
⇒ b unique(i)

ts , ⊥ ⇒ (∀ℓ′ ∈ L. ts(ℓ′) < ts) ∀ℓ′ ∈ labels(vis). ts(ℓ′) , ts
(G, vis, DS)

genr(ℓ)
−−−−−−→ (G[r← (L ∪ {ℓ }, σ ′)], vis ∪ (L × {ℓ }), DS[ℓ ← δ])

Effector G(r) = (L, σ)
ℓ ∈ minvis(labels(vis) \ L) DS(ℓ) = δ δ (σ) = σ ′

(G, vis, DS)
effr(ℓ)
−−−−−→ (G[r← (L ∪ {ℓ }, σ ′)], vis, DS)

Figure 7. Operational Semantics of CRDTs. C[a ← b] de-
notes the in-place update of element a of the domain of C
with value b; unique(i) to ensure that i is a unique identifier;
and labels(vis) = {ℓ : ∃ℓ′. (ℓ, ℓ′) ∈ vis ∨ (ℓ′, ℓ) ∈ vis}.
executed at the origin replica (∆ denotes the set of effectors).

For some fixed initial replica state σ0, the initial global con-
figuration is defined by gc

0
= (G0, ∅, ∅) ∈ GC, where G0

maps each replica r into (∅,σ0).
The transition relation between global configurations is

defined in Fig. 7. The first rule describes a replica r in state σ
executing an invocation of method m with argument a. We

use a function θ to represent the behavior of the generators

of all methods collectively (the code under the generator
labels), i.e., θ (σ ,m,a) stands for applying the generator of

m with argument a on the replica state σ . We assume that

timestamps are consistent with the visibility relation vis,
i.e., the timestamp ts generated by θ is strictly larger than

all the timestamps of operations visible to r, and that each

timestamp can be generated only once. This transition is

labeled by genr(ℓ) where ℓ is the label of this invocation. We

may ignore the index r when it is not important.

The second rule describes a replica r in state σ executing

the effector δ that corresponds to an operation ℓ originated
in a different replica. This transition is labeled by effr(ℓ).

Replication-Aware Linearizability PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

We say that a method m ∈ M is a query if it always

results (by applying the generator) in an identity effector

δ (i.e. δ (σ) = σ for all replica states σ). We shall call an

update any method m which is not a query – that is, whose

effectors are not the identity function – and whose resulting

effector and return value do not depend on the initial state σ
of the origin replica. More formally, assuming a functional

equivalence relation ≡ between effectors that relates any

two effectors that have the same effect (modulo the values

of timestamps or unique identifiers) m is called an update

when θ (σ ,m,a)|2 ≡ θ (σ ′,m,a)|2, for every a ∈ D and two

states σ ,σ ′ ∈ Σ (for a tuple x , x |k denotes the projection

of x on the k-th component). A method m which is not a

query nor an update is called a query-update. For instance,
the methods addAfter and remove of RGA, and add of OR-
Set, are updates, the method remove of OR-Set is a query-

update, and the read methods of both the RGA and the

OR-Set are queries. We denote by Queries, Updates, and

Query-Updates, the sets of operation labels o.m(a)
i,ts
⇒ b

where m is a query, an update, or query-update respectively.

An execution of the object o is a sequence of transitions

gc
0

a0
−→ gc

1

a1
−→ A trace tr is the sequence of actions

a0 · a1 . . . labeling the transitions of an execution. The set

of traces of an object o is denoted by Tr(o). A history is a

pair (L, vis) where vis ⊆ L × L is an acyclic relation over

the set of labels L. Given an execution e ending in a global

configuration (G, vis,DS), the history of e , denoted by h(e),
is the pair (labels(vis), vis). Note that the relation vis is a
strict partial order in this case. Also, the history of a trace

tr , denoted by h(tr), is the history of the execution that

corresponds to tr . The set of histories Hist(o) of an object

o is the set of histories h of an execution e of o. A pictorial

representation of an execution (trace) can be found in Fig. 5a

while an example of a history can be found in Fig. 3.

3.2 Sequential Specifications
RA-linearizability provides an explanation for concurrent ex-

ecutions of CRDT objects in the form of linearizations, which

can be constrained using standard sequential specifications.

Definition 3.1 (Sequential Specification). A sequential spec-
ification (specification, for short) Spec is a set of tuples (L, seq),
where L is a set of labels and seq is a sequence including all

the labels in L.

To describe sequential specifications in a succinct way we

will provide an operational description. To that end, we will

associate to specifications a notion of abstract state, which

we shall generally denote by ϕ and its domain shall be de-

noted by Φ. Then, to each valid label ℓ we will associate a

transition relation ϕ
ℓ
↪−→ ϕ ′ which, given an abstract state

ϕ and provided that the label ℓ can be applied in ϕ, pro-
duces a new abstract state ϕ ′. In the specific case where the

label ℓ assumes a certain precondition pre over the initial

abstract state ϕ we will use Hoare-style preconditions and

write

(
ϕ | pre(ϕ)

) ℓ
↪−→ ϕ ′. In this way, a sequential specifica-

tion is the set of label sequences that are obtained by the

successive application of the transition relation starting from

a given initial state ϕ0.

Example 3.2 (Sequential Specification of RGA). Each ab-

stract state ϕ = (l ,T) contains a sequence l of elements of a

given type and a set T of elements appearing in the list. The

element l is the list of all input values, whether already re-

moved or not; whileT stores the removed values and is used

as tombstone set. The sequential specification Spec(RGA) of
list with add-after interface is defined by:(

(l1 · b · l2,T
)
| a fresh

) addAfter(b,a)
↪−−−−−−−−−−−−→ (l1 · b · a · l2,T)(

(l ,T) | b ∈ l and b , ◦
) remove(b)

↪−−−−−−−−→ (l ,T ∪ {b})

(l ,T)
read()⇒(l/T)
↪−−−−−−−−−−−→ (l ,T)

where we denote by l/T the list resulting from removing

all elements of T from l . The method addAfter(b,a) puts a
immediately after b in l , assuming that each value is put into

list at most once. Method remove(b) adds b into T . Finally
read() ⇒ s returns the list content excluding any element

appearing in T . Assume that the initial value of list is (◦, ∅),
and ◦ is never removed. We will sometimes ignore the value

◦ from the return of read.

Example 3.3 (Sequential Specification of OR-Set). As ex-
plained in Fig. 5b, the fact that the OR-Set remove method is

a query-update induces a rewriting of the operation labels

in a history. This rewriting introduces update operations

add(a, id), for some identifier id, instead of simply add(a),
and remove(S), for some set S of pairs element-identifier, in-

stead of remove(a), and a new query operation readIds(a)
that returns a set of pairs element-identifier. These opera-

tions are specified as follows. The abstract state ϕ is a set

of tuples (a, id), where a is a data and id is a identifier. The

sequential specification Spec(OR-Set) of OR-Set is given by

the transitions:

ϕ
readIds(a)⇒S
↪−−−−−−−−−−−−→ ϕ [S = {(a, id) | (a, id) ∈ ϕ}]

ϕ
remove(S)
↪−−−−−−−−→ ϕ \ S

(ϕ | (a, id) < ϕ)
add(a, id)
↪−−−−−−−→ ϕ ∪ {(a, id)}

ϕ
read(a)⇒A
↪−−−−−−−−−→ ϕ [A = {a | ∃ id, (a, id) ∈ ϕ}]

Here readIds(a) ⇒ S returns the set of pairs with data a,
remove(S) removes S from the abstract state, add(a, id) puts
{(a, id)} into the abstract state, and read() ⇒ A returns the

value of the OR-Set.

3.3 Definition of Replication-Aware Linearizability
We now provide the definition of RA-linearizability which

characterizes histories of CRDT objects. To simplify the pre-

sentation, we consider first the case where all the labels in

the history are either queries or updates (query-updates are

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA C. Wang, C. Enea, S. Mutluergil, and G. Petri

considered later). The intuition of RA-linearizability is that

there is a global sequence (or linearization) of the update
operations in an execution which can produce the state of

each replica when all the updates are visible to them. Each

query should be justified by considering the sub-sequence of

the global sequence restricted to the updates that are visible

to that query. To be precise:

Definition 3.4. A history h = (L, vis) with L ⊆Queries ⊎
Updates is RA-linearizable w.r.t. a sequential specification
Spec, if there exists a sequence (L, seq) such that:

(i) seq is consistent with vis, that is: vis ∪ seq is acyclic,

(ii) the projection of seq to updates is admitted by Spec,
i.e. seq↓Updates∈ Spec, where we denote by seq ↓S the

restriction of the order seq to the set S , and
(iii) for each query ℓqr ∈ L, the sub-sequence of updates

visible to ℓqr together with ℓqr is itself admitted by Spec,
i.e., seq↓vis−1(ℓqr)∩Updates · ℓqr ∈ Spec.

We say that (L, seq) is an RA-linearization of h w.r.t. Spec.

The sequences of operations provided in Sec. 2.1 and 2.2

are RA-linearizations.

We now consider the case where histories include query-

updates. In such case, we apply Definition 3.4 on a rewriting

of the original history where each query-update is decom-

posed into a label representing the generator and another

label representing the effector. A mapping γ : L → L≤2,
where L≤2 is the set of labels and pairs of labels in L, is
called a query-update rewriting. We assume that every query

or update label is mapped by γ to a singleton and that the γ
image of such a label preserves its status, i.e., γ (ℓ) is a query,
resp., update, whenever ℓ is a query, resp., update. Also,

query-updates labels ℓ are mapped to pairs γ (ℓ) = (ℓ1, ℓ2)
where ℓ1 is a query and ℓ2 is an update. These assumptions

are important when applying Definition 3.4 on the rewriting

of a history, since this definition relies on a partitioning of

the labels into queries and updates. For a history h = (L, vis),
its γ -rewriting is a history γ (h) = (L′, vis′) where
• L′ is obtained by replacing each label ℓ in L with γ (ℓ)
(a label may be replaced by two labels),

• whenever a (query-update) label ℓ is mapped by γ to a

pair (ℓ1, ℓ2), we have that the query is ordered before

the update, formally (ℓ1, ℓ2) ∈ vis′,
• vis′ preserves the order between labels which aremapped

to singletons, and for any query-update label ℓmapped

to a pair (ℓ1, ℓ2), the query ℓ1 sees exactly the same

set of operations as ℓ and any operation which saw ℓ
must see ℓ2. Formally, whenever (ℓ, ℓ′) ∈ vis we have
that (upd(γ (ℓ)), qry(γ (ℓ′))) ∈ vis′, where for a label

ℓ, qry(γ (ℓ)) (resp., upd(γ (ℓ))), is γ (ℓ) when γ (ℓ) is a
singleton, or its first (resp., second) component when

γ (ℓ) is a pair.

Example 3.5 (Query-Update Rewriting of OR-Set). As shown

in Fig. 5b, the query-update rewriting for OR-Set is defined

by: γ (add(a) ⇒ k) = add(a,k), γ (read() ⇒ A) = read() ⇒
A, and γ (remove(a) ⇒ R) = (readIds(a) ⇒ R, remove(R)).

The following extends Definition 3.4 to arbitrary histories

using the rewriting defined above.

Definition 3.6 (Replication-Aware Linearizability). A his-

tory h = (L, vis) is RA-linearizable w.r.t. Spec, if there exists
a query-update rewriting γ s.t. γ (h) is RA-linearizable w.r.t.
Spec. An RA-linearization w.r.t. Spec of γ (h) is called an

RA-linearization w.r.t. Spec and γ of h.

A set H of histories is called RA-linearizable w.r.t. Spec
when each h ∈ H is RA-linearizable w.r.t. Spec. A data type

implementation is RA-linearizable w.r.t. Spec if for any object
o of the data type, Hist(o) is linearizable w.r.t. Spec.

Reasoning with specifications. To illustrate the benefit

of using RA-linearizability let us consider a simple system

where two replicas execute a sequence of operations on a

shared OR-Set object:

add(a); rem(a); X = read() ∥ add(a); Y = read()

Weare interested in checking that the following post-condition

holds after the execution of these operations:

a ∈ X⇒ a ∈ Y

Rewriting the program according to the specification of OR-

Set discussed before, we obtain the following, where the

variable R represents the set of value timestamp pairs ob-

served by the readIds operation as defined by the rewriting:
add(a, i1);
readIds(a) ⇒ R;
rem(R);
X = read();
{a ∈ X⇒ (a, i2) < R}



 

add(a, i2);
Y = read();
{(a, i2) < R⇒ a ∈ Y}


Post-condition : {a ∈ X⇒ a ∈ Y}

Since OR-Set is RA-linearizable w.r.t. the specification in Ex-

ample 3.3 (proved in Section 4.1), the possible values of X and
Y can be computed by enumerating their RA-linearizations.

The post-condition follows from the conjunction of the asser-

tions in each replica. Let us consider the validation of the as-

sertion of right hand sidewith the following RA-linearization:

add(a, i2) add(a, i1) readIds(a) ⇒ R rem(R) Y = read()

We have in red color and with solid arrows the operations

of the right hand side replica, and in blue with dashed ar-

rows the left ones. Let us consider the sub-sequence of the

linearization that is visible to the last operation (Y = read()).
Since the first operation (add(a, i2)) is issued on the same

replica, it must be visible to it. Let us now consider different

cases for the operations of the other replica that are visible

to the read: (a) if the remove operation rem(R) is not visible
to it, then the assertion is trivially true, because (a, i2) is in
the resulting set according to the specification, and therefore

the consequent of the assertion is valid. Assume from now

on that rem(R) is visible to it, there are two cases (b) if (a, i2)
does not belong to R the consequent of the assertion is valid,

Replication-Aware Linearizability PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

since the addition of (a, i2) is necessarily visible to the read

operation, and we conclude as before, (c) on the other hand,

if (a, i2) ∈ R we have that the antecedent of the implication

is falsified, and therefore the assertion is also valid.

Here we have considered only one RA-linearization, but it

is not hard to see that commuting the operations of the differ-

ent replicas renders the same argument. Importantly, this rea-

soning was done entirely at the level of the RA-linearizations

(i.e. the specification) of the data type.

For the assertion on the left hand side replica, since visibil-

ity includes the order between operations issued on the same

replica, we get that add(a, i1) is ordered before readIds(a) ⇒ R
in every RA-linearization. Since add(a, i1) is also visible to

readIds(a) ⇒ R, we get that (a, i1) ∈ R. Similarly, every RA-

linearization will order rem(R) before the read() on the left

replica, which implies that if a ∈ X, then (a, i2) < R. Assuming

the contrary, i.e., (a, i2) ∈ R, implies that R = {(a, i1), (a, i2)}
and since rem(R) is visible and linearized before X = read(),
we get that a < X.

4 Proving Replication-Aware
Linearizability

We describe a methodology for proving that CRDT objects

are RA-linearizable which relies on two properties: (1) the

effectors of any two concurrent operations (i.e., not visible

to each other) commute, which is inherent to CRDT ob-

jects, and (2) the existence of a refinement mapping [2, 17]

showing that each effector produced by an operation ℓ, re-
spectively each query ℓ, is simulated by the execution of

ℓ (or its counterpart through a query-update rewriting γ)
in the specification Spec. This methodology is used in two

forms depending on how the linearization is defined along

an execution, which may affect the precise definition of the

refinement mapping.

4.1 Execution-Order Linearizations
We first consider the case of CRDT objects, e.g., OR-Set,

for which the order in which operations are executed at

the origin replica defines a valid RA-linearization. We say

that such objects admit execution-order linearizations. We

start by formalizing the two properties we use to prove RA-

linearizability.

Given a history h = (L, vis), we say that two operations ℓ1
and ℓ2 are concurrent, denoted ℓ1 ▷◁vis ℓ2, when (ℓ1, ℓ2) < vis
and (ℓ2, ℓ1) < vis. In general, CRDTs implicitly require that

the effectors of concurrent operations commute:

Commutativity: for every trace tr with h(tr) = (L, vis), and
every two operations ℓ1, ℓ2 ∈ L, if ℓ1 ▷◁vis ℓ2, then

∀σ ∈ Σ. δℓ1 (δℓ2 (σ)) = δℓ2 (δℓ1 (σ))

where δℓ1 and δℓ2 are the effectors of ℓ1 and resp., ℓ2.

Example 4.1. For OR-Set, two add, resp., remove, effectors
commute because they both add, resp., remove, element-id

pairs, while an add and a remove effector commute when

they are concurrent because the element-id pairs removed

by the remove effector are different from the pair added by

the add effector (since the add is not visible to remove).

Commutativity implies that for every linearization lin of

the operations in an execution, which is consistent with the

visibility relation, every replica state σ in that execution

can be obtained by applying the delivered effectors in the

order defined by lin (between the operations corresponding

to those effectors). Indeed, by the causal delivery assumption,

the order in which effectors are applied at a given replica is

also consistent with visibility. Therefore, the only differences

between the order in which effectors were applied to obtain

σ in that execution and the linearization order lin involve

effectors of concurrent operations, which commute.

Lemma 4.2. Let ρ be an execution of an object o satisfying
Commutativity, h = (L, vis) the history of ρ, and (L, seq) a
linearization of the operations in L (possibly, rewritten using a
query-update rewriting γ), consistent with vis. For each local
configuration (Lr,σr) in ρ,

σr = δℓn (. . . (δℓ1 (σ0)) . . .)

where δℓ denotes the effector of operation ℓ, σ0 is the initial
replica state, and seq ↓Lr= ℓ1 . . . ℓn .

In order to relate the CRDT object with its specification we

use refinement mappings, which are “local” in the sense that

they characterize the evolution of a single replica in isolation.

A refinementmapping abs associates replica states with states
of the specification, such that any update or query applied

on a replica state σ can be mimicked by the corresponding

operation in the specification starting from abs(σ). Moreover,

the resulting states in the two steps must be again related by

abs. Formally, given a query-update rewriting γ , we define
Refinement as the existence of a mapping abs such that:

Simulating effectors: For every effector δ corresponding to

a (query-)update operation ℓ, and every state σ ∈ Σ,

σ ′ = δ (σ) ⇒ abs(σ)
upd(γ (ℓ))
↪−−−−−−−→ abs(σ ′)

where ↪−→ is the transition function of Spec.
Simulating generators: For every querym, and every σ ∈ Σ,

θ (σ ,m,a) = (b, _, _) ⇒ abs(σ)
ℓ
↪−→ abs(σ)

where ℓ = m(a) ⇒ b. Recall that θ (σ ,m,a) stands for
applying the generator of m with argument a on the

state σ . Also, for every query-update m, and σ ∈ Σ,

θ (σ ,m,a) = (b, _, _) ⇒ abs(σ)
qry(γ (ℓ))
↪−−−−−−→ abs(σ).

Example 4.3. Consider the OR-Set object, its specification
in Example 3.3, and the query-update rewriting in Exam-

ple 3.5. Also, let abs be a refinement mapping defined as the

identity function. The effector of an add(a) ⇒ k operation,
rewritten by γ to add(a, k), and the add(a, k) operation of

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA C. Wang, C. Enea, S. Mutluergil, and G. Petri

`2=addAfter(◦,b) tsb=⇒

r1 :

r2 :

`1=addAfter(◦,a) tsa=⇒ `3=addAfter(b,c)
tsc=⇒

`4=read()⇒ b · a

execution-order
linearizations:

timestamp-order
linearizations :

`2 · `1`2 `2 · `1 · `3 `2 · `1 · `3 · `4

`1 · `2`2 `1 · `2 · `3 `1 · `2 · `4 · `3

Figure 8. Execution-order and timestamp-order lineariza-

tions for RGA. Here tsa < tsb < tsc .

the specification have the same effect. Similarly, the effector

of a query-update remove(a) ⇒ R operation, rewritten by

γ to (readIds(a) ⇒ R, remove(a, R)), and the remove(a, R)
operation of the specification have the same effect. Applying

the query operation read() on a state σ results in the same

return value A as applying the same query in the context

of the specification on the state abs(σ) = σ . Finally, for the
query-update remove(a) ⇒ R, executing its generator in

a state σ results in the same return value R as executing

the query readIds(a) ⇒ R introduced by the query-update

rewriting in the specification state abs(σ) = σ .

Next, we show that any object o satisfyingCommutativity
and Refinement is RA-linearizable. For a history h = (L, vis)
of a trace tr , the execution-order linearization of h is the

sequence (γ (L), seq) such thatγ (ℓ1) occurs beforeγ (ℓ2) in seq
iff gen(ℓ1) occurs before gen(ℓ2) in tr , for every two labels

ℓ1, ℓ2 ∈ L. Object o admits execution-order linearizations if
for any history h = (L, vis) of a trace tr , the execution-order
linearization is an RA-linearization of h w.r.t. Spec and γ .

Theorem 4.4. Any object that satisfies Commutativity and
Refinement admits execution-order linearizations.

4.2 Timestamp-Order Linearizations
CRDT objects such as RGA in Listing 1, that use timestamps

for conflict resolution, may not admit execution-order lin-

earizations. For instance, Fig. 8 shows an execution of RGA

where two replicas r1 and r2 execute two addAfter invo-

cations, and an addAfter invocation followed by a read
invocation, respectively. An execution-order linearization

which by definition, is consistent with the order in which

the operations are applied at the origin replica, will order

addAfter(◦, b) before addAfter(◦, a). The result of apply-
ing these two operations in this order in the specification

Spec(RGA) (defined in Example 3.2) is the list a ·b. However,
if the timestamp tsa of a is smaller than the timestamp tsb
of b, a read that sees these two operations will return the

list b · a, which is different than the one obtained in the

context of Spec(RGA). Therefore, we consider a variation

of the proof methodology described in Sec. 4.1 where the

linearizations are additionally consistent with the order of
timestamps generated by the operations. For instance, in the

execution of Fig. 8, addAfter(◦, a) will be ordered before

addAfter(◦, b) because tsa is smaller than tsb (irrespective

of the order between the generators). Moreover, to extend

the notion of timestamp ordering to operations ℓ that don’t
generate timestamps, i.e., invocations of remove and read,
we consider a “virtual” timestamp which is defined as the

maximal timestamp of any operation visible to ℓ (or ⊥ if no

operation is visible to ℓ), and require that the linearization

is consistent with the order between both “real” and “vir-

tual” timestamps. For instance, the “virtual” timestamp of

the read in Fig. 8 is tsb because it sees addAfter(◦, a) and
addAfter(◦, b). Then, a valid RA-linearization will order the

read operation before the other addAfter(b, c) operation,
since the timestamp tsc of the latter is bigger than the “vir-

tual” timestamp tsb of the read. The operations that have
the same timestamp (which is possible due to “virtual” times-

tamps) are ordered as they execute at the origin replica. For

instance, the read with “virtual” timestamp tsb is ordered

after addAfter(◦, b) that has the same timestamp tsb since

it executes later at the origin replica.

Formally, for a history h = (L, vis), we define the times-

tamp tsh(ℓ) of a label ℓ in the context of the history h to be

tsh(ℓ) = ts(ℓ) if ts(ℓ) , ⊥ and tsh(ℓ) = max {ts(ℓ′) : (ℓ′, ℓ) ∈
vis}, otherwise. Given a history h = (L, vis) of a trace tr , the
timestamp-order linearization of h is the sequence (L, seq)
such that γ (ℓ1) occurs before ℓ2 in seq iff tsh(ℓ1) < tsh(ℓ2)
or gen(ℓ1) occurs before gen(ℓ2) in tr , for every two labels

ℓ1, ℓ2 ∈ L. An object o admits timestamp-order linearizations

if for any history h = (L, vis) of a trace tr , the timestamp-

order linearization is an RA-linearization of h w.r.t. Spec. 3

Proving admittance of timestamp-order linearizations re-

lies on Commutativity and a variation of Refinement where
intuitively, an effector generating a timestamp ts has to be

simulated by a specification operation only when it is applied

on a state σ that does not “store” a timestamp greater than ts
(other effectors are treated as before). Formally, the set ts(σ)
of timestamps in a state σ contains all the timestamps ts
generated by effectors applied to obtain σ . For RGA, the set
of timestamps in a state σ is the set of all timestamps stored

in its timestamp tree. We define Refinementts by modifying

the “Simulating effectors” part of Refinement as follows:
Simulating effectors: For every effector δ of an operation ℓ,

∀σ ∈ Σ. ts(ℓ) ≮ ts(σ) ∧ σ ′ = δ (σ) ⇒ abs(σ)
ℓ
↪−→ abs(σ ′)

Example 4.5. Let us consider the RGA object, its spec-

ification in Example 3.2, and a refinement mapping abs
which relates a replica state (N, Tomb) with a specification

state (l ,T) where the sequence l is given by the function

traverse in read queries when ignoring tombstones, i.e.,

l = traverse(N, ∅), and T = Tomb. It is obvious that remove
effectors and read queries are simulated by the correspond-

ing specification operations. Effectors of addAfter(a, b)
tsb
⇒

operations are simulated by the specification operation

3
For simplicity, we ignore query-update rewritings. The CRDTs with

timestamp-order linearizations we investigated don’t require such

rewritings.

Replication-Aware Linearizability PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

r1 :
o1.add(d) o2.add(a)

r2 :

o2.add(b) o1.add(c)

Figure 9. A history of two OR-Sets. Each operation is visible

only at origin, so visibility is given by the horizontal lines.

addAfter(a, b) only when tsb is greater than all the times-

tamps stored in the replica state where it applies. Thus, let

(N, Tomb) be a replica state such that ts < tsb for every ts
with (_, ts, _) ∈ N. The result of applying the effector δ of

addAfter(a, b)
tsb
⇒ is to add b as a child of a. Then, applying

traverse on the new state will result in a sequence where

b is placed just after a because it has the highest timestamp

among the children of a. This corresponds exactly to the se-

quence obtained by applying the operation addAfter(a, b)
in the context of the specification.

The proof of an object o admitting timestamp-order lin-

earizations if it satisfies Commutativity and Refinementts is
similar to the one of Theorem 4.4.

Theorem 4.6. Any object that satisfies Commutativity and
Refinementts admits timestamp-order linearizations.

We remark that the API of a CRDT can impact on whether

it is RA-linearizable. For instance, a slight variation of the

RGA in Listing 1 with the same state, but with an interface

with a method addAt(a,k) to insert an element a at an index
k, introduced in [3], would not be RA-linearizable w.r.t. an

appropriate sequential specification (see [9]).

5 Compositionality of RA-Linearizability
We investigate the issue of whether the composition of a set

of objects satisfying RA-linearizability is also RA-linearizable.

While this is not true in general, we show that the compo-

sition of objects that admit execution-order or timestamp-

order linearizations is RA-linearizable under the assumption

that they share the same timestamp generator.

5.1 Object Compositions and RA-Linearizability
Given two objects o1 and o2, the semantics of their composi-

tion o1⊗o2 is the standard product of the LTSs corresponding
to o1 and o2, respectively. The history of a trace tr of o1 ⊗ o2
records a “global” visibility relation between the operations

in the trace, i.e., which operations of o1 or o2 are visible when
issuing an operation of o1, and similarly, for operations of

o2. Formally, h(tr) = (L, vis) where L is the set of labels oc-

curring in tr , and (ℓ1, ℓ2) ∈ vis if there exists a replica r such
that effr(ℓ1) occurs before genr(ℓ2) in the trace tr . In gen-

eral, vis may not be a partial order since the causal delivery

assumption holds only among operations of the same object.

The set of histories Hist(o1 ⊗ o2) of the composition o1 ⊗ o2
is the set of histories h of a trace tr of o1 ⊗ o2.
For two specifications Spec

1
and Spec

2
of two objects

o1 and o2, respectively, the composition Spec
1
⊗ Spec

2
is

r1 :
o2.addAfter(◦,c) ts1=⇒

r2 :
o1.addAfter(◦,b)

ts′2=⇒

r3 :
o2.read()⇒ e · d · c o1.read()⇒ b · a

o2.addAfter(◦,e) ts3=⇒ o1.addAfter(◦,a)
ts′1=⇒

o2.addAfter(◦,d) ts2=⇒

Figure 10. A history in the composition ⊗ of two RGAs.

the set of interleavings of sequences in Spec
1
and Spec

2
,

respectively. We say that the composition o1 ⊗ o2 is RA-
linearizable if every history of o1 ⊗ o2 is RA-linearizable w.r.t.
Spec

1
⊗ Spec

2
. The extension to a set of objects is defined as

usual.

Linearizability [13] ensures that for every history, any per-

object linearizations, concerning the operations of a single

object, can be combined into a global linearization, concern-

ing all the operations in the history. However, this is not

true for our notion of RA-linearizability. A counterexample

is given in Fig. 9. The operations of o1 can be linearized to

o1.add(c) · o1.add(d) while the operations of o2 can be lin-

earized to o2.add(a) · o2.add(b). There is no RA-linearization
of this history whose projections on each of the two objects

correspond to these per-object linearizations.

5.2 Composition: Execution-Order Linearizability
Although not all per-object RA-linearizations can be com-

bined into global RA-linearizations, this may still be true in

some cases. For the history in Fig. 9, the operations of o1 can
also be linearized to o1.add(d) · o1.add(c) which enables a

global linearization o1.add(d)·o2.add(a)·o2.add(b)·o1.add(c)
whose projection on each object is consistent with the per-

object linearization (we take the same linearization for o2).
We show that in the case of RA-linearizable objects that

admit execution-order linearizations, there always exist per-

object RA-linearizations that can be combined into global

RA-linearizations, hence their composition is RA-linearizable

and moreover, it also admits execution-order linearizations.

Theorem 5.1. The composition of a set of RA-linearizable ob-
jects that admit execution-order linearizations is RA-linearizable
and admits execution-order linearizations.

5.3 Composition: Timestamp-Order Linearizability
Theorem 5.1 does not apply to objects that admit timestamp-

order linearizations. The “unrestricted” object composition

⊗ allows different objects to generate timestamps indepen-

dently, and in “conflicting” orders along some execution. For

instance, Fig. 10 shows a history with two RGA objects o1
and o2. We assume that ts1 < ts2 < ts3 and ts ′

1
< ts ′

2
(the

order between other timestamps is not important). The op-

erations of o1, resp., o2, can be linearized to

• o1.addAfter(◦, a) · o1.addAfter(◦, b) · o1.read() ⇒ b · a
• o2.addAfter(◦, c) · o2.addAfter(◦, d) ·

o2.addAfter(◦, e) · o2.read() ⇒ e · d · c

These are the only RA-linearizations possible. There is no

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA C. Wang, C. Enea, S. Mutluergil, and G. Petri

Operation ℓ = ok .m(a)
(i,ts)
⇒ b with k ∈ {1, 2}

(Gk , visk , DSk)
genr(ℓ)
−−−−−−→k (G

′
k , vis

′
k , DS

′
k)

(G′k′, vis
′
k′, DS

′
k′) = (Gk′, visk′, DSk′) for k

′ , k G1(r) = (L1, σ1)
G2(r) = (L2, σ2) ts , ⊥ ⇒ (∀ℓ′ ∈ L1 ∪ L2 . ts(ℓ′) < ts)

∀ℓ′ ∈ labels(vis1 ∪ vis2). ts(ℓ′) , ts
((G1, vis1, DS1), (G2, vis2, DS2))

genr(ℓ)
−−−−−−→ (G′

1
, vis′

1
, DS′

1
), (G′

2
, vis′

2
, DS′

2
)

Figure 11. The transition rule for generators in the object

composition operator ⊗ts.

“global” linearization consistent with these per-object lin-

earizations: ordering addAfter(◦, a) before addAfter(◦, b)
implies that addAfter(◦, e) occurs before addAfter(◦, d)
which contradicts the second linearization above. We solve

this problem by constraining the composition operator ⊗

such that intuitively, all objects share a common timestamp

generator. This ensures that each new timestamp is bigger

than the timestamps used by operations delivered to a replica,

independently of the object to which they pertain. For in-

stance, the history of Fig. 10 would not be admitted because

ts ′
1
should be bigger than ts3 (since the operation that re-

ceived ts3 from the timestamp generator originates from the

same replica as the operation receiving ts ′
1
at a later time)

and ts2 should be bigger than ts ′
2
. These two constraints to-

gether with ts ′
1
< ts ′

2
contradict ts2 < ts3. While this requires

a modification of the algorithms, where the timestamp gen-

erator is a parameter, this has no algorithmic or run-time

cost, and in fact a similar idea have been suggested in the

systems literature (e.g. [10]).

We define a restriction ⊗ts of the object composition ⊗

such that the set of histories h = (L, vis) in the composi-

tion o1 ⊗ts o2 satisfy the property that the order between

timestamps (of all objects) is consistent with the visibility

relation vis (i.e., vis ∪ ≺h is acyclic). With respect to the

“unrestricted” composition ⊗ defined in Sec. 5.1, we only

modify the transition rule corresponding to generators, as

shown in Fig. 11. This ensures that a new generated times-

tamp is bigger than all the timestamps “visible” to the replica

executing that generator (irrespectively of the object). The

composition operator ⊗ts is called shared timestamp gen-
erator composition. Practically, if we were to consider the

standard timestamp mechanism used in CRDTs, i.e., each

replica maintains a counter which is increased monotoni-

cally with every new operation (originating at the replica or

delivered from another replica) and timestamps are defined

as pairs of replica identifiers and counter values, then ⊗ts can

be implemented using a “shared” counter which increases

monotonically with every new operation, independently of

the object on which it is applied.

The following theorem shows that the composition of RA-

linearizable objects that admit execution-order or timestamp-

order linearizations is RA-linearizable, provided that all the

objects share the same timestamp generator.

Theorem 5.2. The shared timestamp generator composition
of a set of RA-linearizable objects that admit execution-order
or timestamp-order linearizations is RA-linearizable.

6 Mechanizing RA-Linearizability Proofs
To validate our approach, we considered a range of CRDTs

listed in Fig. 12 and mechanized their RA-linearizability

proofs using Boogie [4], a verification tool. More precisely,

we mechanized the proofs of conditions like Commutativity
and Refinement which imply RA-linearizability by the re-

sults in Section 4. Beyond operation-based CRDTs (discussed

in the paper), we have also considered state-based CRDTs,

where an update occurs only at the origin, and replicas ex-

change their states instead of operations, and states from

other replicas are merged at the replica receiving them. The

merge function corresponds to the least upper bound opera-

tor in a certain join semi-lattice defined over replica states.

For operation-based CRDTs, we mechanized the proof

of a strenghtening of Commutativity that avoids reasoning

about traces and the proof of Refinement (or Refinementts).
ConcerningCommutativity, our proofs encode two effectors
as a single procedure which executes on two equal copies of

the replica state. In some cases, the precondition of this pro-

cedure encodes conditions which are satisfied anytime the

two effectors are concurrent, e.g., the effector of an add and

resp., remove of OR-Set are concurrent when the argument

k of add is not in the argument R of remove. For the CRDTs
we considered, such characterizations are obvious and ap-

ply generically to any conflict-resolution policy based on

unique identifiers. In some cases, the effectors commute even

if they are not concurrent, so no additional precondition is

needed. We prove that the resulting states are identical after

performing the effectors in different orders in each of the

states. Refinement (or Refinementts) is reduced to proving

that the refinement mapping is an inductive invariant for a

lock-step execution of the CRDT and its specification.

For state-based CRDTs, we have identified a set of condi-

tions similar to those of operation-based CRDTs that imply

RA-linearizability (see [9]). In this case, we don’t rely on the

causal delivery assumption. Extending their semantics with

an auxiliary variable maintaining a correspondence between

replica states and sets of operations that produced them, we

extract the visibility relation between operations as in the

case of operation-based CRDTs. This enables a similar reason-

ing about RA-linearizability. In particular, Commutativity is

replaced by few conditions that now characterize the rela-

tionship between applying operations at a given replica and

the merge function.

7 Related Work
Correctness Criteria. Burckhardt et al. [7] describes a for-
mal framework where CRDTs and other weakly consistent

Replication-Aware Linearizability PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

CRDT Imp. Lin.
Counter [20] OB EO

PN-Counter [20] SB EO

LWW-Register [15] OB TO

Multi-Value Reg. [8] SB EO

LWW-Element Set [20] SB TO

CRDT Imp. Lin.
2P-Set [20] SB EO

OR-Set [20] OB EO

RGA [19] OB TO

Wooki [22] OB EO

Figure 12. CRDTs proved RA-linearizable and the class of

linearizations used. SB: State-Based, OB: Operation-Based,

EO: Execution-Order, TO: Timestamp-Order.

replicated systems can be specified. Their CRDT specifica-

tions are defined in terms of sets of partial orders as opposed
to our sequential specifications, which we think are easier to

reason about when verifying clients. Beyond simpler specifi-

cations, RA-linearizability is related to their formalization of

causal consistency, called causal convergence in [5]. Overall

RA-linearizability differs from causal convergence in three

points: (1) query-update rewritings, which enable sequential

specifications and avoid partial orders, (2) the linearization

projected on updates must be admitted by the specification

(intuitively, this ensures that the “final” convergence state

is valid w.r.t. the specification), and (3) the linearization is

required to be consistent with the visibility order from the

execution, and not an arbitrary one as in causal convergence.

The latter makes causal convergence not compositional.

Regarding convergence, RA-linearizability implies that

there is a unique total order of updates, and therefore if at

some point all updates are visible to all replicas, all subse-

quent query operations at any replica will return the same

value. This is observably equivalent to strong eventual consis-

tency [12, 20, 23]. RA-linearizability is stronger than the ses-

sion guarantees of Terry et al. [21], but weaker than sequen-

tial consistency [16] and linearizability [13]. RA-linearizable

objects that admit execution-order linearizations are close to

being linearizable since the operations are linearized as they

were issued at the origin replica, relative to wall-clock time.

This is similar to linearizability, where each operation ap-

pears to take effect instantaneously between the wall-clock

time of its invocation its response. Unlike linearizability, RA-

linearizability allows queries to return a response consistent

with only a subsequence of its linearized-before operations.

Sequential Specifications for CRDTs. Perrin et al. [18]

provides Update Consistency (UC), a criterion which to the

best of our knowledge is the first to consider sequential

specifications and characterize linear histories of operations.

However UC is not compositional due to an existential quan-

tification over visibility relations like in causal convergence.

Moreover, Perrin et al. [18] doesn’t investigate UC proof

methodologies.

Jagadeesan and Riely [14] provide a correctness criterion

called SEC, which differs from RA-linearizability in several

points: 1. Firstly, RA-linearizability has a global total order

for updates, unlike SEC whose definition is quite complex.

2. Secondly, CRDT specifications in SEC are parameterized

by a dependency relation at the level of the type’s API. Then,

SEC assumes that all independent operations commute and

disregards their order even when issued by the same client. It

is unclear how such a specification could adequately capture

systems enforcing session guarantees [21]. 3. While SEC is

also compositional, since operations from different objects

are assumed independent, a history of two different SEC

objects is trivially SEC since the order between operations of

different objects is ignored. We find this notion of composi-

tion problematic since the composition of specifications can-

not capture causality between different objects, a common

pattern when writing distributed applications (e.g. for ref-

erential integrity in a key-value store). In RA-linearizability

the composition of a set of objects respects the client’s causal-

ity as illustrated by the failure to combine some per-object

linearizations in Fig. 9.
4

Verification of CRDTs There are several works that ap-

proach the problem of verifying that a CRDT implementation

is correct w.r.t. a specification. In [3, 6, 7] along with the for-

mal specification, proofs of correctness of implementations

are given for several CRDTs. Our Refinement property is

inspired by the Replication Aware Simulations in [7]. Zeller

et al. [23] and Gomes et al. [12] provide frameworks for the

verification of CRDTs in Isabelle/HOL. Their proofs are simi-

lar to the simulations of [7], albeit in a different specification

language also based on partial orders.

8 Conclusion
We presented RA-linearizability, a correctness criterion in-

spired by linearizability, intended to simplify the specifi-

cation of CRDTs by resorting to sequential reasoning for

the specifications. We provide methodologies for proving

RA-linearizability for some well documented CRDTs, and we

prove that under certain conditions these proofs guarantee

the compositionality of RA-linearizability. In the extended

version of this paper [9] we show how our techniques extend

to state-based CRDTs.

There are some limitations of RA-linearizability. Firstly, as

we showed before, some CRDTsmight not be RA-linearizable

under a certain API, but a slight change in the API renders

them RA-linearizable. We would like to investigate what con-

stitutes an API that enables RA-linearizability specifications.

Then, while we argue that RA-linearizability simplifies spec-

ifications, we leave as future work to show whether it can

be effectively used to verify client applications of a CRDT.

Acknowledgments
This work is partly supported by the European Research

Council (ERC) under the European Union’s Horizon 2020

research and innovation programme (grant agreement No

678177).

4
There are however per-object linearizations for this history which can be

merged into a global linearization (see Sec. 5).

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA C. Wang, C. Enea, S. Mutluergil, and G. Petri

References
[1] [n.d.]. https://github.com/menesro/RA-linearizability-proofs
[2] Martín Abadi and Leslie Lamport. 1991. The Existence of Refinement

Mappings. Theor. Comput. Sci. 82, 2 (1991), 253–284. https://doi.org/
10.1016/0304-3975(91)90224-P

[3] Hagit Attiya, Sebastian Burckhardt, Alexey Gotsman, Adam Morri-

son, Hongseok Yang, and Marek Zawirski. 2016. Specification and

Complexity of Collaborative Text Editing. In Proceedings of the 2016
ACM Symposium on Principles of Distributed Computing, PODC 2016,
Chicago, IL, USA, July 25-28, 2016. 259–268. https://doi.org/10.1145/
2933057.2933090

[4] Michael Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs,

and K. Rustan M. Leino. 2005. Boogie: A Modular Reusable Verifier

for Object-Oriented Programs. In Formal Methods for Components and
Objects, 4th International Symposium, FMCO 2005, Amsterdam, The
Netherlands, November 1-4, 2005, Revised Lectures. 364–387. https:
//doi.org/10.1007/11804192_17

[5] Ahmed Bouajjani, Constantin Enea, Rachid Guerraoui, and Jad Hamza.

2017. On verifying causal consistency. In Proceedings of the 44th ACM
SIGPLAN Symposium on Principles of Programming Languages, POPL
2017, Paris, France, January 18-20, 2017, Giuseppe Castagna and An-

drew D. Gordon (Eds.). ACM, 626–638. http://dl.acm.org/citation.cfm?
id=3009888

[6] Sebastian Burckhardt. 2014. Principles of Eventual Consistency. Foun-
dations and Trends in Programming Languages 1, 1-2 (2014), 1–150.

https://doi.org/10.1561/2500000011
[7] Sebastian Burckhardt, Alexey Gotsman, Hongseok Yang, and Marek

Zawirski. 2014. Replicated data types: specification, verification, op-

timality. In The 41st Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’14, San Diego, CA, USA,
January 20-21, 2014. 271–284. https://doi.org/10.1145/2535838.2535848

[8] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan

Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasub-

ramanian, Peter Vosshall, and Werner Vogels. 2007. Dynamo: ama-

zon’s highly available key-value store. In Proceedings of the 21st ACM
Symposium on Operating Systems Principles 2007, SOSP 2007, Steven-
son, Washington, USA, October 14-17, 2007, Thomas C. Bressoud and

M. Frans Kaashoek (Eds.). ACM, 205–220. https://doi.org/10.1145/
1294261.1294281

[9] Constantin Enea, Suha Orhun Mutluergil, Gustavo Petri, and Chao

Wang. 2019. Replication-Aware Linearizability. CoRR abs/1903.06560

(2019). arXiv:1903.06560 https://arxiv.org/abs/1903.06560
[10] Vitor Enes, Paulo Sérgio Almeida, and Carlos Baquero. 2017. The

Single-Writer Principle in CRDTComposition. In Proceedings of the Pro-
gramming Models and Languages for Distributed Computing (PMLDC
’17). ACM, New York, NY, USA, Article 4, 3 pages. https://doi.org/10.
1145/3166089.3168733

[11] Seth Gilbert and Nancy A. Lynch. 2002. Brewer’s conjecture and

the feasibility of consistent, available, partition-tolerant web services.

SIGACT News 33, 2 (2002), 51–59. https://doi.org/10.1145/564585.
564601

[12] Victor B. F. Gomes, Martin Kleppmann, Dominic P. Mulligan, and

Alastair R. Beresford. 2017. Verifying strong eventual consistency

in distributed systems. PACMPL 1, OOPSLA (2017), 109:1–109:28.

https://doi.org/10.1145/3133933
[13] Maurice Herlihy and Jeannette M. Wing. 1990. Linearizability: A

Correctness Condition for Concurrent Objects. ACM Trans. Program.
Lang. Syst. 12, 3 (1990), 463–492. https://doi.org/10.1145/78969.78972

[14] Radha Jagadeesan and James Riely. 2018. Eventual Consistency for

CRDTs. In Programming Languages and Systems - 27th European
Symposium on Programming, ESOP 2018, Held as Part of the Euro-
pean Joint Conferences on Theory and Practice of Software, ETAPS
2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings. 968–995.
https://doi.org/10.1007/978-3-319-89884-1_34

[15] Paul R. Johnson and Robert Thomas. 1975. Maintenance of duplicate

databases. RFC 677 (1975), 1–10. https://doi.org/10.17487/RFC0677
[16] Leslie Lamport. 1979. How to Make a Multiprocessor Computer That

Correctly Executes Multiprocess Programs. IEEE Trans. Computers 28,
9 (1979), 690–691. https://doi.org/10.1109/TC.1979.1675439

[17] Nancy A. Lynch and Frits W. Vaandrager. 1995. Forward and Backward

Simulations: I. Untimed Systems. Inf. Comput. 121, 2 (1995), 214–233.
https://doi.org/10.1006/inco.1995.1134

[18] Matthieu Perrin, Achour Mostéfaoui, and Claude Jard. 2014. Up-

date Consistency in Partitionable Systems. In Distributed Computing
- 28th International Symposium, DISC 2014, Austin, TX, USA, October
12-15, 2014. Proceedings. 546–549. http://link.springer.com/content/
pdf/bbm%3A978-3-662-45174-8%2F1.pdf

[19] Hyun-Gul Roh, Myeongjae Jeon, Jinsoo Kim, and Joonwon Lee. 2011.

Replicated abstract data types: Building blocks for collaborative ap-

plications. J. Parallel Distrib. Comput. 71, 3 (2011), 354–368. https:
//doi.org/10.1016/j.jpdc.2010.12.006

[20] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski.

2011. A comprehensive study of Convergent and Commutative Repli-
cated Data Types. Research Report RR-7506. Inria – Centre Paris-

Rocquencourt ; INRIA. 50 pages. https://hal.inria.fr/inria-00555588
[21] Douglas B. Terry, Alan J. Demers, Karin Petersen, Mike Spreitzer, Mar-

vin Theimer, and Brent B. Welch. 1994. Session Guarantees for Weakly

Consistent Replicated Data. In Proceedings of the Third International
Conference on Parallel and Distributed Information Systems (PDIS 94),
Austin, Texas, USA, September 28-30, 1994. IEEE Computer Society,

140–149. https://doi.org/10.1109/PDIS.1994.331722
[22] Stéphane Weiss, Pascal Urso, and Pascal Molli. 2007. Wooki: A P2P

Wiki-Based Collaborative Writing Tool. InWeb Information Systems
Engineering - WISE 2007, 8th International Conference on Web Infor-
mation Systems Engineering, Nancy, France, December 3-7, 2007, Pro-
ceedings (Lecture Notes in Computer Science), Boualem Benatallah,

Fabio Casati, Dimitrios Georgakopoulos, Claudio Bartolini, Wasim

Sadiq, and Claude Godart (Eds.), Vol. 4831. Springer, 503–512. https:
//doi.org/10.1007/978-3-540-76993-4_42

[23] Peter Zeller, Annette Bieniusa, and Arnd Poetzsch-Heffter. 2014. For-

mal Specification and Verification of CRDTs. In Formal Techniques
for Distributed Objects, Components, and Systems - 34th IFIP WG 6.1
International Conference, FORTE 2014, Held as Part of the 9th Inter-
national Federated Conference on Distributed Computing Techniques,
DisCoTec 2014, Berlin, Germany, June 3-5, 2014. Proceedings. 33–48.
https://doi.org/10.1007/978-3-662-43613-4_3

https://github.com/menesro/RA-linearizability-proofs
https://doi.org/10.1016/0304-3975(91)90224-P
https://doi.org/10.1016/0304-3975(91)90224-P
https://doi.org/10.1145/2933057.2933090
https://doi.org/10.1145/2933057.2933090
https://doi.org/10.1007/11804192_17
https://doi.org/10.1007/11804192_17
http://dl.acm.org/citation.cfm?id=3009888
http://dl.acm.org/citation.cfm?id=3009888
https://doi.org/10.1561/2500000011
https://doi.org/10.1145/2535838.2535848
https://doi.org/10.1145/1294261.1294281
https://doi.org/10.1145/1294261.1294281
http://arxiv.org/abs/1903.06560
https://arxiv.org/abs/1903.06560
https://doi.org/10.1145/3166089.3168733
https://doi.org/10.1145/3166089.3168733
https://doi.org/10.1145/564585.564601
https://doi.org/10.1145/564585.564601
https://doi.org/10.1145/3133933
https://doi.org/10.1145/78969.78972
https://doi.org/10.1007/978-3-319-89884-1_34
https://doi.org/10.17487/RFC0677
https://doi.org/10.1109/TC.1979.1675439
https://doi.org/10.1006/inco.1995.1134
http://link.springer.com/content/pdf/bbm%3A978-3-662-45174-8%2F1.pdf
http://link.springer.com/content/pdf/bbm%3A978-3-662-45174-8%2F1.pdf
https://doi.org/10.1016/j.jpdc.2010.12.006
https://doi.org/10.1016/j.jpdc.2010.12.006
https://hal.inria.fr/inria-00555588
https://doi.org/10.1109/PDIS.1994.331722
https://doi.org/10.1007/978-3-540-76993-4_42
https://doi.org/10.1007/978-3-540-76993-4_42
https://doi.org/10.1007/978-3-662-43613-4_3

	Abstract
	1 Introduction
	2 Overview
	2.1 RGA CRDT Implementation
	2.2 OR-Set CRDT Implementation

	3 Replication-Aware Linearizability
	3.1 The Semantics of CRDT Objects
	3.2 Sequential Specifications
	3.3 Definition of Replication-Aware Linearizability

	4 Proving Replication-Aware Linearizability
	4.1 Execution-Order Linearizations
	4.2 Timestamp-Order Linearizations

	5 Compositionality of RA-Linearizability
	5.1 Object Compositions and RA-Linearizability
	5.2 Composition: Execution-Order Linearizability
	5.3 Composition: Timestamp-Order Linearizability

	6 Mechanizing RA-Linearizability Proofs
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

