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Abstract
Formal specification is a vital ingredient to scalable verification of
software systems. In the case of efficient implementations of con-
current objects like atomic registers, queues, and locks, symbolic
formal representations of their abstract data types (ADTs) enable ef-
ficient modular reasoning, decoupling clients from implementations.
Writing adequate formal specifications, however, is a complex task
requiring rare expertise. In practice, programmers write reference
implementations as informal specifications.

In this work we demonstrate that effective symbolic ADT rep-
resentations can be automatically generated from the executions of
reference implementations. Our approach exploits two key features
of naturally-occurring ADTs: violations can be decomposed into
a small set of representative patterns, and these patterns manifest
in executions with few operations. By identifying certain algebraic
properties of naturally-occurring ADTs, and exhaustively sampling
executions up to a small number of operations, we generate concise
symbolic ADT representations which are complete in practice, en-
abling the application of efficient symbolic verification algorithms
without the burden of manual specification. Furthermore, the con-
cise ADT violation patterns we generate are human-readable, and
can serve as useful, formal documentation.

Categories and Subject Descriptors F.3.1 [Specifying and Verify-
ing and Reasoning about Programs]: Mechanical verification

General Terms Reliability, Verification

Keywords Concurrency; Refinement; Linearizability

1. Introduction
Effective scalable reasoning about nontrivial software implemen-
tations generally requires considering each software module sepa-
rately, in isolation, using abstract specifications for other modules.
When modules are objects whose methods may be called concur-
rently, their behavior is typically understood in terms of invocation
sequences of abstract data types (ADTs): an execution with overlap-
ping method invocations is considered valid when those invocations
can be linearized into a sequence admitted by the ADT (Herlihy and
Wing 1990). For example, consider the execution history depicted in
Figure 1 in which the add operations numbered 2 and 3 overlap with
each other, and, respectively, with operations 1 and 4. This execution

1: add(a) #
2: add(b) ###
3: add(c) ###
4: add(d) #
5: remove => a #
6: remove => c #

assume w < x
( (q.add(<1,w>); q.add(<1,x>))
|| (q.add(<2,w>); q.add(<2,x>)) )
i, y := q.remove()
j, z := q.remove()
assert i == j ==> y < z

Figure 1. An execution history with six numbered operations (left),
and a parallel program invoking six operations (right). The “#”
symbols depict the time intervals spanned by operations horizontally.

is valid with respect to the atomic queue ADT because among the
five possible ways to linearize its six operations, the sequence 1, 3,
2, 4, 5, 6 is admitted. ADT specifications thus decouple reasoning
about object implementations from their clients’ invocations:

• Is there a valid linearization for each implementation execution?
• Does every valid linearization preserve client invariants?

The former question depends only on a given object’s implementa-
tion, and the latter only on a given object’s clients.

Example 1. Consider the parallel program in Figure 1 invoking the
add and remove methods of an atomic queue implementation, adding
increasing integer values w and x tagged with the integers {1, 2}
indicating on which parallel branch each add occurs. Intuitively
this program is correct since values with the same tag are added in
increasing order, and, crucially, the values of the queue ADT are
removed in the same order in which they are added. Among the six
possible ways to linearize these operations, the comparison i ==
j of tags only holds for those two beginning with

q.add(<1,w>); q.add(<1,x>) and q.add(<2,w>); q.add(<2,x>)

Since the queue ADT dictates that elements are removed in the order
added, we conclude that w and x are removed in order when i ==
j, and thus y < z holds when i == j holds.

Although formal ADT specifications are indispensable for scal-
able program reasoning, formal-specification writing is a burden
for which few programmers possess the required combination of
expertise and willingness to overcome. Typically programmers write
simple ADT reference implementations, e.g., whose methods are
synchronized via a global lock, and refine them with more efficient
fine-grained implementations, e.g., reducing synchronization bot-
tlenecks using specialized hardware instructions such as atomic
compare and swap (CAS).

Our goal in this work is thus the automated generation of for-
mal ADT specifications, derived from reference implementations,
which are suitable for automated reasoning. In particular, we aim to
generate symbolic representations of valid invocation sequences for
ADTs which are given implicitly by reference implementations. We
target declarative symbolic representations rather than imperative
state-based representations in order to harness efficient symbolic rea-
soning algorithms: rather than enumerating linearizations explicitly,



and checking their validity one by one, a symbolic reasoning engine
may simultaneously rule out many possible linearizations. Previ-
ous work demonstrates that such symbolic reasoning can increase
efficiency by orders of magnitude (Emmi et al. 2015).

In this work we demonstrate that effective symbolic ADT rep-
resentations can be generated automatically from the executions
of reference implementations, enabling the application of efficient
symbolic reasoning algorithms without the burden of writing formal
specifications manually. Our approach exploits two key features of
concurrent-object ADTs: that violations of each ADT can be de-
composed into a small set of representative patterns, and that these
patterns manifest in executions with few operations. The first fea-
ture allows us to represent symbolic ADTs finitely, as exclusions of
violation patterns. The second allows us to extract violation patterns
from finite enumerations of executions.

The fundamental challenge is in identifying the algebraic proper-
ties of ADTs which characterize an infinite set of violating execu-
tions with a finite set of patterns. This characterization is non-trivial
since an execution with more operations than a given violating exe-
cution is not necessarily a violation itself. For instance, an execution
which contains only a single pop operation returning the value 1 is a
violation to the atomic stack ADT, whereas an execution containing
an additional push(1) operation, overlapping in time with the pop,
is not. Further complication arises from the infinite set of possible
data values, i.e., method argument and return values. Our patterns
must be sensitive to the relation among data values without being
sensitive to the data values themselves. For instance, a sequential ex-
ecution in which 1 and 2 are pushed and subsequently popped in the
same order violates the atomic stack ADT. Yet, while replacing both
values 1 and 2 with the value 1 results in a valid stack execution,
replacing them with 3 and 4 results in a violation.

Our algebraic insight is based on grouping the operations of an
execution into matchings. Intuitively, operations which refer to the
same instances of values belong to the same matching. For example,
a pop operation returning the value 1 matches a preceding push(1)
operation. By comparing executions by the characteristics of their
matchings, rather than the actual data values they use, we capture
the relation among data values independently of the data values
themselves. Furthermore, the notion of matchings provides a key
algebraic property of ADTs: the executions of naturally-occurring
concurrent object ADTs are closed under the removal of matchings.
For example, any execution of the atomic stack ADT using values 1,
2, and 3 would remain a valid execution were all operations using
the value 2 deleted. Conversely, any execution which extends a
violating execution with additional matchings is itself a violation.
This property, along with analogous algebraic properties concerning
operation order and completion, allow us to compare executions
via a violation-preserving embedding relation. This relation is a
well-founded partial order on executions, and thus allows us to
characterize the infinite set of violations to an ADT with a finite
basis set, ultimately leading to a finite symbolic representation.

Computing the basis sets of ADT violation patterns is a chal-
lenging problem, requiring the computation of global properties of
an infinite number of executions — analogously to the inference
of inductive invariants. Exploiting a hypothesis that violation pat-
terns manifest in executions with few operations, we propose an
under-approximating algorithm which extracts the patterns observed
in all violating executions up to a given number of operations. In
theory, for an arbitrary ADT, this is clearly incomplete: any viola-
tion which only surfaces with a greater number of operations would
not be captured, thus resulting in a symbolic ADT representation
which can fail to identify violations — though still guarantees never
to classify a valid execution as a violation, and is thus sound for
program reasoning. Empirically, however, we demonstrate that our
hypothesis holds: the patterns emerging from executions with few

operations are complete in characterizing all violations of naturally-
occurring concurrent object ADTs, thus allowing us to compute
complete symbolic ADT representations in practice.

Although our approach does require annotating the operations
of concurrent object executions with a matching relation, and we
demonstrate that these relations are easy to provide for naturally-
occurring ADTs, we also outline an automatic means for computing
such matching schemes. Again by sampling executions, we lever-
age automated symbolic reasoning engines to synthesize matching
schemes for which given implementations are closed under the re-
moval of matches. This further lowers the burden of automated
verification. Rather than providing formal ADT specifications, or
even matching schemes, users need only provide the predicates
relevant in the logic of matching schemes, and we could automati-
cally compute effective matching schemes, and ultimately, effective
symbolic ADT representations.

In summary, the contributions and outline of this work are:

• An abstract notion of execution histories based on groups of
matching operations (§3).
• The statement of the symbolic ADT inference problem (§4).
• Identification of the algebraic properties allowing a finite char-

acterization of infinite ADT violation sets (§5).
• The symbolic representation of ADT violations (§6).
• The computability of symbolic ADT representations (§7).
• An algorithm to infer the matching schemes required for our

algebraic characterization of ADTs (§8).
• An empirical study validating that naturally-occurring ADTs

satisfy the properties required for completeness of our inference
algorithm, and that our algorithm computes precise symbolic
representations thereof (§9).

We conclude by discussing limitations (§10) and related work (§11).
To the best of our knowledge, this work is the first to suggest

the automatic generation of ADT specifications. By removing the
burden of writing formal ADT specifications manually, this work
broadens the scope of modular program reasoning using efficient
symbolic algorithms to newly-designed ADTs, apart from those few
traditionally studied in the literature.

2. Overview of an ADT Inference Algorithm
Our basic approach to inferring ADT specifications, as outlined by
the abstract algorithm in Algorithm 1, is to identify a finite set of
sequential execution histories which capture all of the reasons for
which a sequence could be considered invalid, according to the ADT
of a given reference implementation. These sequences thus serve
as patterns indicating violations in the sequences which contain
them. Thus the linearizations which exclude all violation patterns
are considered valid.

As an example of this algorithm at work, consider the sequential
histories listed in Figure 2. These sequences arise from an enumer-
ation of all 202 possible method invocation sequences1 of length
at most 4 of an object with add and remove methods for which
remove can return empty. The 31 sequences which are executable by
a correct reference implementation of an atomic queue — i.e., with
consistent return values for each invocation — are discarded. The
remaining 171 sequences are invalid, 164 of which are redundant
with the seven PATTERNS listed on the left-hand side of Figure 2.
Seven of these redundant sequences are shown on the right-hand

1 Here we consider equivalence among sequences which are isomorphic up
to renaming of data values, e.g., to avoid considering add(1); add(2);
remove => 1 and add(3); add(2); remove => 3 as distinct. The no-
tion of matching introduced in Section 3 provides a clean formal treatment.



Algorithm 1: Abstract algorithm for symbolic ADT inference.
input :A reference implementation I
Result: A formula representing the ADT of I
patterns← ∅ ;
for each sequential history h do

if ∗ then
break

else if h is executable with I then
continue

else if h is redundant with patterns then
continue

else
add h to patterns

end
end
return exclusion of patterns

side of Figure 2. For example, the first five sequences on the right,
as well as the last, are redundant with the first on the left since
they each describe a violation in which a removed element was
never added. The sixth sequence on the right is redundant with the
second on the left since they both describe a violation in which re-
move returns empty before previously-added elements are removed.
Other represented violations include removing an element before
it is added, and removing elements in the opposite order in which
they were added. Finally, the exclusion of the computed pattern set
can be expressed as a conjunction of formulas in first order logic
describing the exclusion of each individual pattern. For example,
the first pattern could be described by the formula

∃o. method(o) = remove ∧ unmatched(o)

describing an unmatched remove operation. The formula which
excludes all violation patterns is satisfied by an invocation sequence
if and only if that sequence is admitted by the given reference
implementation’s implicit ADT.

The key technical obstacle in realizing Algorithm 1, which we
overcome in Section 5, is classifying violations into a finite set of
patterns, rendering the remaining invalid sequences redundant. The
symbolic representation which excludes a given set of patterns is
relatively straightforward to construct, and is given in Section 6.
Note however that the termination of this abstract algorithm is non-
deterministic, and thus the inferred ADT specification is generally
not the strongest possible in the sense that it may not exclude certain
invalid linearizations. Nevertheless, specifications inferred by this
algorithm are sound, in the sense that when modular program reason-
ing with inferred specifications succeeds, correctness follows. In any
case, in Section 7 we give conditions under which our refinement of
this abstract algorithm is both sound and complete, and show that
these conditions hold for naturally-occurring ADTs, thus resulting
in sound and complete symbolic ADT specifications. The remainder
of this article develops the technical machinery required to realize
this abstract inference algorithm.

3. Implementations & Histories
Abstract data types (ADT) implementations provide methods which
can be invoked concurrently by threads of client programs. We
capture the possible histories of call and return actions in the exe-
cutions of client programs as partially-ordered method invocations.
While many ADTs are “atomic” (e.g., queues, locks) in the sense
that their ADTs are specified as sets of sequential histories, many
(e.g., rendezvous synchronizers, barriers) are non-atomic (Hemed
and Rinetzky 2014). While much of the following development
could be simplified for atomic ADTs by considering invocation

[1:X] remove => 1 #
---
[1:1] add(1) #
[2:2] remove => empty #
---
[1:2] remove => 1 #
[2:2] add(1) #
---
[1:1] add(1) #
[2:2] add(2) #
[3:2] remove => 2 #
---
[1:1] add(1) #
[2:1] remove => 1 #
[3:1] remove => 1 #
---
[1:1] add(1) #
[2:2] remove => empty #
[3:1] remove => 1 #
---
[1:1] add(1) #
[2:2] add(2) #
[3:2] remove => 2 #
[4:1] remove => 1 #

[1:1] add(1) #
[2:X] remove => 2 #
---
[1:X] remove => 1 #
[2:X] remove => 1 #
---
[1:X] remove => 1 #
[2:2] remove => empty #
---
[1:1] remove => empty #
[2:X] remove => 1 #
---
[1:1] add(1) #
[2:2] add(2) #
[3:X] remove => 3 #
---
[1:1] add(1) #
[2:2] add(2) #
[3:3] remove => empty #
---
[1:1] add(1) #
[2:1] remove => 1 #
[3:X] remove => 2 #

Figure 2. Invalid sequences according to the atomic queue ADT.
Histories on the right are each redundant with some on the left; those
on the left constitute a complete set. The “#” symbols depict the
time intervals spanned by operations horizontally, and the “[i:j]”
notation refers to the current line’s operation identifier i, and the
identifier j of its matching operation. Adds and empty removes
match themselves, and the “X” symbol denotes an absent match.

sequences rather than concurrent invocation histories, we maintain
generality so that our results apply to non-atomic ADTs as well.

To this end, we fix an arbitrary infinite set O of operation
identifiers, and given sets M and V of method names and values. A
call action binds an operation o ∈ O with a method name p ∈ M
and argument value v ∈ V, while a return action binds an operation
o ∈ O with a return value v ∈ V. An execution e is a sequence of
call and return actions where

• each operation identifier is used in at most one call action, and
in at most one return action, and
• each return action is preceded by a call action with the same

operation identifier.

An implementation I is a prefix-closed set of executions which is
additionally closed under

• appending call actions (of fresh operations),
• permuting call actions backward, and
• permuting return actions forward.

These conditions capture the environment in which implementations
execute: calls are always enabled in their client programs, and thread
schedulers may induce arbitrary delay between implementation code
and the associated call and return actions (Bouajjani et al. 2015b).

Example 2. Consider the following three executions of a single-
value register object with read and write methods:
e1

1: call write(a)
1: return
2: call write(b)
2: return
3: call read
3: return => a

e2

1: call write(a)
2: call write(b)
1: return
2: return
3: call read
3: return => a

e3

1: call write(a)
1: return
2: call write(b)
3: call read
2: return
3: return => a

Operation identifiers precede actions. Executions e2 and e3 are
obtained from e1, respectively, by permuting the return actions of



Operations 1 and 2 and the call actions of operations 2 and 3. Thus
while the operations of Execution e1 are sequential, each following
the previous in time, those of e2 and e3 overlap. While e1 should not
be admitted by an atomic register, since the read of Operation 3 does
not return the most-recently-written value, both e2 and e3 should be
admitted, since Operation 3 returns the most-recently-written value
in some linearization of the overlapping operations.

Histories abstract executions, retaining method names yet losing
exact argument and return values, and retaining the relative order of
operations, yet losing the exact sequence of call and return actions.
Formally, a history is a tuple h = 〈O,<, c, f,m, r〉 where

• O ⊆ O is a set of operations,
• < is a happens-before interval order2 on O,
• c : O → B labels operations as completed, or not,
• f : O → M labels operations with method names,
• m : O ⇀ O is a partial matching function, and
• r : O → B labels operations as read-only, or not.

The relation < is an interval order since call and return actions are
totally ordered (Bouajjani et al. 2015b). Non-completed operations
are pending, and are maximal in the happens-before order.

Two operations o1, o2 ∈ O are identical when

• they have the same labels: c(o1) = c(o2), f(o1) = f(o2), and
r(o1) = r(o2), and
• they have the same matching: either m(o1) = m(o2), or both
m(o1) and m(o2) are undefined.

The frequency of an operation o is the number of operations
identical to o, denoted freq(o). We say that o has duplicates when
freq(o) > 1. An operation o ∈ img(m) in the image of m is a
match target, and the inverse set m−1(o) of a target is a match. We
assume o ∈ m−1(o) for every o ∈ img(m). An operation o is
unmatched when o is completed and m(o) is undefined.

The width of a history is its maximum number of mutually-
unordered operations; the width of a history set is the maximum
width of its elements. Width-1 histories are sequential. Since
operation identifiers have no intrinsic meaning, we consider equality
between histories up to their renaming.

Example 3. We draw histories by writing one operation per line,
starting with its operation identifier and match target, followed by its
method label, possibly a read-only marker, and its happens-before
interval. For instance, in the history

[1:1] write(a) #
[2:1] read => a (RO) #

Operation 1 is a write operation which matches itself, and precedes
a read-only read operation which also targets Operation 1. Note
that we label method argument and return values for illustrative
purposes only; histories do not keep them. In the following history,
Operations 1 and 2 execute concurrently

[1:1] write(a) #
[2:1] read => a (RO) #
[3:X] read => b (RO) #
[4:_] read* (RO) #

Operation 3 is unmatched, indicated by the X, and Operation 4 is
pending, indicated by the * on its label.

Our abstraction of executions relies on correlating the operations
associated with the same values in an execution via the partial

2 An interval order (Fishburn 1985) is a partial order whose elements can be
mapped to integral intervals preserving the order relation, or equivalently, a
partial order for which w < x and y < z implies w < z or y < x.

matching function of a history. We construct partial matching
functions systematically. A matching scheme 〈M,R〉 associates
to each execution e with operations O a partial matching function
M(e) : O ⇀ O and a read-only operation labeling R(e) : O → B.

Example 4. Consider the following matching scheme for the read
and write operations of a single-value register object:

• write(v) operations match themselves, and
• read⇒ v operations are read-only, and match themselves when

they return v = − (empty), or a write(v) operation, if one exists,
and otherwise have no match,

which is well defined when each value v ∈ V appears as the
argument of at most one write operation in any execution. This
matching scheme corresponds to the matching functions in the
histories of Example 3.

The history H(e,M,R) of an execution e under matching
scheme 〈M,R〉 is the tuple 〈O,<, c, f,M(e), R(e)〉 where

• O are the operations of e,
• o1 < o2 iff operation o1 returns before o2 is called in e,
• c(o) iff operation o returns in e, and
• f(o) is the name of the method executed by o in e.

We denote the set {H(e,M,R) : e ∈ E} of histories of an execu-
tion set E by H(E,M,R). When the matching scheme 〈M,R〉 is
clear from the context, we abbreviateH(e,M,R) andH(E,M,R)
by H(e) and H(E).

Example 5. The histories of the executions of Example 2 according
to the matching scheme of Example 4 are H(e1):

[1:1] write(a) #
[2:2] write(b) #
[3:1] read => a (RO) #

in which all three operations are sequential, H(e2):
[1:1] write(a) #
[2:2] write(b) #
[3:1] read => a (RO) #

in which the first two operations overlap, and H(e3):
[1:1] write(a) #
[2:2] write(b) #
[3:1] read => a (RO) #

in which the last two operations overlap.

A matching scheme 〈M,R〉 is faithful to a set E of executions
when e ∈ E iff e′ ∈ E for any two executions e and e′ such
that H(e,M,R) = H(e′,M,R). A set of executions E is data
independent3 when there exists a faithful matching scheme. By
definition, our abstraction of executions into histories incurs no loss
of precision for data-independent execution sets.

Lemma 1. H(e,M,R) ∈ H(E,M,R) if and only if e ∈ E, for
any faithful matching scheme 〈M,R〉.

In Section 9 we demonstrate faithful matching schemes for
the executions of naturally-occurring ADTs, and in Section 8 we
demonstrate how to infer faithful matching schemes. Otherwise, for
the remainder of this work, we assume each set of executions comes
equipped with a faithful matching scheme 〈M,R〉.

Two histories h1 and h2 are related by →x, for x = o, c, p,
when h2 is obtained from h1 by:

• unordering a pair of ordered operations (o),

3 Our definition of data independence formalizes an existing informal notion,
which stipulates that the implementation generating a set of executions does
not predicate its actions on the data values passed as method arguments.



• making a completed operation pending (c), or
• adding a pending operation (p).

A set of histories H is closed under a relation→ when h2 ∈ H
whenever h1 → h2 and h1 ∈ H . A fundamental property of im-
plementations is that their histories are closed under weakening via
less ordering, fewer operations completed, and additional pending
operations (Bouajjani et al. 2015b).

Example 6. By un-ordering the first two operations of the history

[1:1] write(a) #
[2:2] write(b) #
[3:2] read => b (RO) #

we derive the→o-related history

[1:1] write(a) #
[2:2] write(b) #
[3:2] read => b (RO) #

from which we can derive the→c-related history

[1:1] write(a) #
[2:2] write(b) #
[3:_] read* (RO) #

by making Operation 3 pending, and from which we can derive the
→p-related history

[1:1] write(a) #
[2:2] write(b) #
[3:_] read* (RO) #
[4:4] write(c)* #

by adding an additional pending operation.

As these weakening operations align with the environment-
capturing closure properties on executions, the set of histories of an
implementation is also closed.

Lemma 2. H(I) is closed under→o,→p,→c.

4. The Symbolic ADT Inference Problem
In this section we formalize a notion of abstract data type and define
the corresponding refinement and inference problems. These are the
foundational problems addressed in this work.

A set K generates H when the closure K∗ of K under the
relation → = (→o ∪ →p ∪ →c) is equal to H , i.e., H =
{h : ∃h′ ∈ K. h′ →∗ h}. A kernel of a set H is a minimal set
generating H . While the kernels of arbitrary sets need not be
unique, the kernels of sets which have sequential kernels are unique.
Furthermore, Section 9 demonstrates that the histories of naturally-
occurring implementations have unique kernels, which we assume
for the remainder of this work. An abstract data type (ADT) A is
the kernel of the set H(I) of histories of some implementation I;
we say that A is the ADT of I.

ADTs and reference implementations serve as specifications to
more efficient implementations in the sense that they limit the set
of histories that efficient implementation may admit. This notion
of refinement ensures that client program (safety) properties which
hold using the ADT or reference implementation also hold using
refined implementations (Bouajjani et al. 2015b).

Definition 1. An implementation I1 refines another implementation
I2 when H(I1) ⊆ H(I2). An implementation I refines an ADT A
when H(I) ⊆ A∗.

Recent works demonstrate efficient4 refinement-checking algo-
rithms (Bouajjani et al. 2015b; Emmi et al. 2015) yet rely on hand-
written symbolic ADT representations. In order to frame the problem

4 In time polynomial in the number of operations, per execution.

of computing these automatically, we fix a language for symbolic
representation. A history formula is a first-order logic formula with

• variables ranging over operation identifiers,
• constants from M for method names,
• function symbols f and m for labels and matching, and
• predicate symbols c, um, r, and< for completion, non-matching

(operations which are not in the domain of the matching func-
tion), read-only, and order.

A history formula F is interpreted over a history h in the natural way,
by binding variables to the operations of h, and binding function
and predicate symbols to their interpretations in h. We write h |= F
when h is a model of F , and h 6|= F otherwise.

Example 7. The following history formula is satisfied by histories
in which no write operation happens between a pair of matching
write and read operations:

∀x1, x2, x3. c(x1) ∧ f(x1) = write ∧m(x1) = x1

∧ c(x2) ∧ f(x2) = write ∧m(x2) = x2

∧ c(x3) ∧ f(x3) = read ∧m(x3) = x1

∧ x1 < x2 ⇒ x3 < x2

This is one of several requirements of atomic single-value register
ADTs. It is satisfied by certain linearizations of the histories H(e2)
and H(e3) from Example 5, yet not H(e1).

The bounded complement of a history set H of width k ∈
N∪{ω} is the set of histories of width at most k which are excluded
from H . Let A be an ADT and B its bounded complement. We say
that a history formula F represents A when

• h |= F for all h ∈ A, and
• h 6|= F for all h ∈ B.

ADT inference is to compute a formula representing an ADT.

Definition 2. The symbolic ADT inference problem is to compute
a history formula representing the ADT of a given implementation.

Computing a history formula representing the ADT of a reference
implementation I thus enables efficient modular program reasoning
without the burden of writing precise formal specifications for I.

5. Finite ADT Representations
In this section we demonstrate that naturally-occurring ADTs can
be precisely represented by finite sets of histories, despite the fact
that these ADTs admit infinite sets of histories. This result relies
on the identification of certain algebraic properties of the sets of
histories admitted by ADTs. In particular, we find that sets of
histories admitted by ADTs are closed under the removal of certain
operations, and that these sets adhere to a well-founded ordering
under the relation induced by such removals.

In addition to the relations→o,→p, and→c of Section 3 under
which all implementation history sets are closed, the histories of
ADT implementations we consider in this work are also closed under
additional relations which remove read-only operations, unmatched
operations, entire matches, and duplicate operations. The relations
→r,→u,→m and→d relate two histories h1 and h2 when h2 is
obtained from h1 by

• removing a read-only operation (r),
• removing an unmatched operation (u),
• removing a match (m), or
• removing a duplicate operation (d).



We say an ADT whose histories are closed under →r, →u, →m

and →d is normal. In Section 9 we demonstrate that naturally-
occurring ADTs are normal. Defining the relation � as the reflexive
and transitive closure of the above relations,

� = (→o ∪ →p ∪ →c ∪ →r ∪ →u ∪ →m ∪ →d)∗

closure under � follows immediately.

Lemma 3. Normal ADTs are closed under �.

Besides this closure property, the inverse � relation enjoys a
certain notion of well-foundedness when restricted to bounded-
width histories: the set of �-minimal elements of any (potentially
infinite) history set is finite. This property is what enables us to
represent infinite sets of invalid ADT histories with a finite set of
minimal examples. This property is captured formally with wqos:
a well-quasi-ordering (wqo) R on a set X is a reflexive, transitive
binary relation on X for which in every infinite sequence x0x1 . . .
of elements from X , there exists indices i < j such that R(xi, xj).

Example 8. Consider the infinite history sequence h1h2 . . . where
each hi contains 2i operations o1, o′1, . . . , oi, o

′
i where each oj is a

completed push operation matching itself, and each o′j is a pending
pop operation with undefined matching. Because each successive
hi has both more matches and more pending operations, no two
histories of the sequence are related by �. Thus � is not a wqo.

This example demonstrates that � is not a wqo by allowing
each history hi of the infinite sequence to contain more and more
pending operations in order to ensure that hj 6� hi for every j < i.
Curbing this ability by limiting the maximum amount of pending
operations per history makes � a wqo. Although limiting to k
pending operations essentially limits us to width-k histories, of
executions with at most k operations parallel at any moment, e.g., of
programs with at most k threads, this restriction comes at no loss of
completeness when considering only the histories of bounded-width
ADTs, which is the subject of the remainder of this section.

Lemma 4. � is a wqo on bounded-width histories.5

For the remainder of this section, we fix an ADT A, and let B
be its bounded complement. When A has bounded width, so does
B, and thus � is a wqo on B. Furthermore, when A is normal,
it is closed under �, and thus B is closed6 under �. Closure
under a relation satisfying Lemma 4 implies representation by a
finite set. Formally, we say a set X is finitely representable if
there exists a finite set Y and a relation R ⊆ Y × X such that
X = {x : ∃y ∈ Y. R(y, x)}. In our case, we obtain a finite set
from which exactly the elements of B are related by �.

Lemma 5. B is finitely representable if A is normal.

Example 9. The following four histories generate the complement
of the atomic single-value register ADT, witnessing either an un-
matched read operation:

[1:X] read => 1 (RO) #

a read of an uninitialized register occurring after some write:
[1:1] write(1) #
[2:2] read => - (RO) #

a read which happens before its matching write operation:
[1:2] read => 1 (RO) #
[2:2] write(1) #

and a read matching a write which is not the most recent:

5 The proof of Lemma 4 appears in Appendix A.
6 Actually, B is closed under � when restricted to width-bounded histories,
i.e., if h1 � h2, h1 ∈ B, and h2 is width-bounded, then h2 ∈ B.

[1:1] write(1) #
[2:2] write(2) #
[3:1] read => 1 (RO) #

Every sequential history not admitted by the atomic register ADT
embeds (via �) at least one of these four histories.

6. Symbolic ADT Representations
While Section 5 demonstrates that (the complements of) naturally-
occurring ADTs can be represented finitely, in this section we
demonstrate that those representations have logical interpretations,
allowing us to derive formulas representing ADTs. In what follows
we describe how to obtain formulas satisfied by the histories which
embed a given history via �. Then, using the finite set of histories
which represent the complement of a given ADT, we represent the
ADT itself as the conjunction of negations of these embedding
formulas. The resulting formula is satisfied only on the histories
which do not embed the generators of a given ADT’s complement.

Let h = 〈O,<, c, f,m, r〉 be a history with operations O =
{o1, . . . , on}. Without loss of generality, we assume the match
targets {o1, . . . , ok} of h are indexed consecutively from 1 to k for
some k ≤ n. For each o ∈ O, the macro EMBEDo(x, Y, z):(

c(o)⇒ c(x)
)
∧ f(x) = f(o) ∧ r(x)⇔ r(o)

∧
(
o ∈ dom(m)⇒ ¬um(x) ∧m(x) = z

)
∧
(
o 6∈ dom(m)⇒ um(x)

)
∧
∧
y∈Y

x < y

captures the correspondence between the operation o and the logical
variable x representing o. The variables Y and z represent the
operations ordered after x, and the operation which x matches.
The macro IDENTICAL(x, y):(

c(x)⇔ c(y)
)
∧ f(x) = f(y) ∧

(
r(x)⇔ r(y)

)
∧
(
um(x)⇔ um(y)

)
∧m(x) = m(y)

captures whether the operations bound to x and y are identical. To
express the constraints among the matches of embedded operations,
we define the macro MATCH(Y, z):

∀x. (¬um(x) ∧m(x) = z)⇒ r(x) ∨
∨
y∈Y

IDENTICAL(x, y)

which requires any operation which matches z to be either read-only,
or identical to some operation in Y , which represents the operations
of h which match z. Finally, we express the embedding of h with
the macro EMBEDh:

∃x1, . . . , xn.
n∧
i=1

EMBEDoi(xi, Yi, zi) ∧
k∧
i=1

MATCH(Wi, xi)

where Yi = {xj : oi < oj} are the variables corresponding to
operations ordered after oi, and zi is the variable corresponding to
m(oi), if defined, and Wi = {xj : m(oj) = oi} are the variables
corresponding to operations matching oi.

Example 10. Consider again the histories of Example 9 which
generate the complement of the atomic register ADT. The EMBED
formula for the first history,

[1:X] read => 1 (RO) #

after simplifications, like replacing true⇒ p with p, is

∃x1. c(x1) ∧ f(x1) = read ∧ um(x1) ∧ r(x1).

The EMBED formula for the second history,

[1:1] write(1) #
[2:2] read => - (RO) #



is similarly given by

∃x1, x2. x1 < x2

∧ c(x1) ∧ f(x1) = write ∧ ¬um(x1) ∧m(x1) = x1

∧ c(x2) ∧ f(x2) = read ∧ ¬um(x2) ∧m(x2) = x2 ∧ r(x2)

∧
(
∀x. m(x) = x1 ⇒ r(x) ∨ IDENTICAL(x, x1)

)
∧
(
∀x. m(x) = x2 ⇒ r(x) ∨ IDENTICAL(x, x2)

)
.

The formulas for the other histories are similarly obtained.

Lemma 6. h1 |= EMBEDh2 iff h1 � h2.

We obtain a formula representing an ADT by taking the con-
junction of the negative embedding formulas {¬EMBEDh : h ∈ H}
from any setH that generates its bounded complementB, i.e., whose
closure under�, denoted byH∗ henceforth, is equal toB. The exclu-
sion formula of a set of histories H is F (H) =

∧
h∈H ¬EMBEDh.

Lemma 7. Let B be the bounded complement of a bounded-width
ADT A, and H a set of histories. F (H) represents A if H∗ = B.

Proof. Let ¬Σ denote the complement of a set Σ. By Lemma 3, the
complement of A is closed under �. Since H∗ ⊆ B ⊆ ¬A, we
know H∗ ⊆ ¬A. By Lemma 6, the formula F (H) holds exactly
for the histories ¬H∗. By the previous inclusions, we have that
A ⊆ ¬H∗ ⊆ ¬B. Therefore, F (H) holds forA and not forB.

Example 11. The conjunction of negations of the EMBED formula
for the histories of Example 9, which are partially written in
Example 10, represents the atomic register ADT.

7. A Symbolic ADT Inference Algorithm
Algorithm 2 solves symbolic ADT inference by computing a finite
representation of an ADT complement B using the � relation
of Section 5. This is generally achieved by enumerating B while
maintaining the �-minimal elements, and recognizing a condition
under which all the elements of B are related to the current set of
minimals (Abdulla et al. 1996; Finkel and Schnoebelen 2001). In
our case, we stratify our enumeration ofB by the relative sizes of its
histories. Formally, the weight of a history is the maximum among
operation frequencies and the number of matches. We then define

Bi = {h ∈ B : weight(h) ≤ i}
B′i = {h ∈ B : ∃h′ ∈ Bi. h′ � h and weight(h) ≤ i+ 1}

respectively as the histories of B with at most i matches and dupli-
cates, and those derived from Bi with at most i + 1 matches and
duplicates. We say that an ADT with complement B is predictable
if B∗i = B whenever B′i = Bi+1, i.e., if all histories of B are
represented by Bi whenever all histories of Bi+1 are represented
by Bi. Algorithm 2 then performs a weight-increasing enumera-
tion of B, collecting �-minimals from smaller-weight violations
before advancing to greater weights. When no violation is found
at a given weight, the algorithm terminates. This algorithm is guar-
anteed to terminate since � is a wqo (Abdulla et al. 1996; Finkel
and Schnoebelen 2001). Furthermore, this algorithm is sound for
arbitrary ADTs, and complete for predictable ADTs. Many naturally-
occurring ADTs are predictable — in fact all of the examples we
know of are predictable, as demonstrated in Section 9.

Theorem 1. Algorithm 2 terminates. If the input implementation’s
ADT is predictable, then the returned formula represents it.

Proof. Termination is a direct consequence of Lemma 4, and since
the number of histories of any weight i ∈ N is finite7 each Bi is

7 As noted in Section 3, we consider equality between histories up to
renaming of operation identifiers.

Algorithm 2: Symbolic ADT inference.
Input :A reference implementation I of width k
Result: A formula representing the ADT of I
patterns← ∅ ;
w← 0 ;
repeat

none-found← true ;
for each k-width history h with weight w do

if h is executable with I then
continue

else if ∃h′ ∈ patterns. h′ � h then
continue

else
add h to patterns ;
none-found← false

end
end
w← w + 1 ;

until none-found;
return F (patterns)

computable. When A is predictable, then B = patterns∗, and thus
by Lemma 6, the returned formula F (patterns) represents A.

For non-predictable ADTs, the value of patterns∗ upon termina-
tion of Algorithm 2 is an under-approximation of the bounded ADT
complement B. The resulting symbolic ADT representation is still
satisfied by all histories in A, therefore it would still be sound for
modular program reasoning, identifying only actual violations, and
implying the correctness of client programs which do not depend on
the stronger criteria which excludes unidentified violations. How-
ever, the under-approximation may be incomplete in identifying
all violations, and in proving client programs which depend on the
stronger criteria which excludes them all.

8. Matching Scheme Inference
Our solution to the ADT inference problem relies on identifying
faithful matching schemes for ADT implementations. Though Sec-
tion 9 shows such matching schemes exist for naturally-occurring
ADTs, the next natural question with regard to automation is whether
these matching schemes can be generated automatically.

In this section we demonstrate that matching schemes can in
fact be generated systematically with minimal manual specifica-
tion by reduction to logical satisfiability. Essentially, we formulate
matching schemes as uninterpreted functions in satisfiability queries
constrained by the requirement that they normalize an implemen-
tation’s executions, i.e., generate histories which are closed under
the operation removals of Section 5. This requirement is given with
respect to an enumeration of execution pairs in which the first is
admitted by the given implementation, and the second is not, yet it
is a projection of the first’s operations. Consequently, this prohibits
any normalizing matching scheme from considering the projected
operations a match. In what follows, we suppose the read-only com-
ponent R of matching schemes 〈M,R〉 is given, and focus on the
generation of the per-execution matching functions M .

The required manual specification includes identifying a class of
executions to which an implementation should be exposed, and a set
of predicates required in the logic of matching schemes. Formally, a
language L = 〈E,P,Q〉 is a set E of executions, along with finite
sequences P = P1P2 . . . and Q = Q1Q2 . . . of binary and ternary
predicates Pi(e, o1) and Qi(e, o1, o2) ranging over executions and
their operations. When P is a k-length sequence of n-ary predicates,



we write P (x1, . . . , xn) to denote the valuation sequence

P1(x1, . . . , xn) . . . Pk(x1, . . . , xn).

Given a language L = 〈E,P,Q〉, we say a matching scheme
M is simple when there exists an n-ary Boolean function G, for
n = 2 · |P |+ |Q|, such that for each execution e ∈ E
• G(P (e, o1), P (e, o2), Q(e, o1, o2)) is satisfied for at most one

operation o1, for any operation o2,
• M(e)(o2) is undefined unless there exists an operation o1 for

which G(P (e, o1), P (e, o2), Q(e, o1, o2)), and
• M(e)(o2) = o1 iff G(P (e, o1), P (e, o2), P (e, o1, o2)),

where o1 and o2 range over the operations of e.

Example 12. We say an execution of read and write methods writes
unique values if the argument value to each write operation is unique.
Consider the language whose executions write unique values, with
the following predicates:

w(e, o) o is a write operation in e, and,

v(e, o1, o2) o1 and o2 read/write the same values.

We define the function G(xw, yw, zv) over valuations to the predi-
cates above to be satisfied if and only if xw ∧ zv. Intuitively, this
defines a simple matching scheme for which write operations match
themselves, and read operations match the write which wrote the
value read. In the case such a write exists, it is unique in any execu-
tion which writes unique values. The match is otherwise undefined.
This is the scheme specified in Example 4 of Section 3.

An implementation I adheres to a language L = 〈E,P,Q〉 if
I ⊆ E. A match scheme M normalizes an implementation I when
M is faithful to I and H(I,M) is normal.

Definition 3. The matching scheme inference problem is to compute
a simple matching scheme M which normalizes a given implemen-
tation I adhering to a given language L.

We automate the computation of matching schemes by construct-
ing a logical formula that characterizes the boolean functions G
underlying a simple matching scheme. These boolean functions are
defined as the interpretation of a function symbol g. The formula
expresses the fact that the interpretations of g uniquely determine
the match of each operation, and that they normalize the executions
of an implementation. To this end, we fix an implementation I and
a language L = 〈E,P,Q〉 to which I adheres, then consider any
enumeration F of execution pairs 〈e, e′〉 ∈ E2 such that

• e ∈ I and e′ 6∈ I, and
• e′ is obtained by deleting operations of e.

Any such pair of executions can be used to rule out several possibili-
ties, e.g., that the operations removed from e to obtain e′:

• do not constitute a match in e,
• are not all duplicate operations,
• are not all read-only operations,
• do not constitute multiple matches in e,

and so on. Ruling out these possibilities is sound since, for example,
a normalized schemeM could not consider those operations a match:
otherwise the history abstractionH(I,M) which includesH(e,M)
must also include H(e′,M), being normal, and in particular closed
under match removal. Such an M would thus not be faithful. For
simplicity, in what follows we consider ruling out only the first
possibility: that the operations removed from e are not a match. In
principle, the approach extends to rule out all possibilities.

In what follows, we denote the operations of an execution
e by Oe. To consider whether a given pair o1, o2 of operations
of an execution e is a match according to the simple matching
scheme based on g, for the given language L, we define the macro
ISMATCHe,o1,o2 :

g
(
P (e, o1), P (e, o2), Q(e, o1, o2)

)
.

To enforce that each operation of an execution e will have a unique
match, we define the macro UNIQUEMATCHe:∧

o1,o2∈Oe

(
ISMATCHe,o1,o2 ⇒

∧
o′1 6=o1

¬ISMATCHe,o′1,o2

)
.

Then a given set O ⊆ Oe constitutes a match according to g when
all operations o2 ∈ O target some operation o1 ∈ O, and no
other operation o2 ∈ O \Oe does. We express this with the macro
ENTIREMATCHe,O:∨
o1∈O

( ∧
o2∈O

ISMATCHe,o1,o2 ∧
∧

o2∈Oe\O

¬ISMATCHe,o1,o2

)
Finally, given a pair 〈e, e′〉 ∈ F , we prohibit the operationsOe\Oe′
from constituting a match according to g, since if g normalized I,
and e ∈ I, then e′ should also be in I. We express this exclusion
for all pairs of F with the macro NORMALIZESF :∧
〈e,e′〉∈F

(
UNIQUEMATCHe ∧ ¬ENTIREMATCHe,(Oe\Oe′ )

)
.

We thus check satisfiability for the conjunction of non-matches
Oe \Oe′ over all pairs 〈e, e′〉 ∈ F .

Example 13. Consider again the language Lreg of read and write
methods of Example 12 with predicates w(e, o) and v(e, o1, o2)
whose executions write unique values. The following table lists
all possible predicate valuations 〈xw, yw, zv〉, and for each valu-
ation a valid execution which excludes the positive valuation of
g(xw, yw, zv) in the satisfaction of NORMALIZEF , in the case such
an execution exists.

xw yw zv counterexample reason
0 0 0 w(1) r(1) r(1) w(2) r(2) not unique
0 0 1 w(1) r(1) r(1) not unique
0 1 0 w(1) r(1) w(2) r(2) →m

0 1 1 w(1) r(1) r(1) →m

1 0 0 w(1) w(2) w(3) r(3) not unique
1 0 1 — —
1 1 0 w(1) w(2) w(3) not unique
1 1 1 — —

For example, the first valuation 000 must be excluded since it allows
the read r(2) to match both reads r(1), violating UNIQUEMATCH.
The second valuation 001 must also be excluded, since it allows
either read r(1) to match both itself and the other read r(1).
The third valuation 010 must be excluded since it allows the
write w(2) to match the read r(1), in which case removing the
match {r(1),w(2)} results in the invalid execution w(1) r(2).
Reasoning follows similarly for the other rows. In this way, any
enumeration F which includes the above executions will exclude
all valuations except for 101 and 111, ultimately resulting in
a satisfiable NORMALIZEF in which g(xw, yw, zv) is the same
Boolean function xw ∧ zv given in Example 12.

On the one hand, checking satisfiability of NORMALIZESF can
be used to conclude the impossibility of a good matching scheme —
at least for the given language.

Lemma 8. If NORMALIZESF is unsatisfiable, then there exists no
simple matching scheme that normalizes I for the language L.



The reason for unsatisfiability can be used as a counterexample
to refine the given language, e.g., by adding additional predicates.

Example 14. Consider again the language Lreg of read and
write methods of Example 12, yet this time without the predicate
v(e, o1, o2). The following table lists valid executions excluding
each of the possible predicate valuations 〈xw, yw〉 in the satisfaction
of NORMALIZEF .

xw yw counterexample reason
0 0 w(1) r(1) r(1) not unique
0 1 w(1) r(1) r(1) →m

1 0 w(1) w(2) r(2) not unique
1 1 w(1) w(2) not unique

Thus any enumeration F including the executions above results in
an unsatisfiable NORMALIZEF .

Satisfiability of NORMALIZESF does not necessarily lead to a
unique matching scheme, since NORMALIZEF can have multiple
satisfying assignments. Furthermore, NORMALIZESF does not nec-
essarily normalize I. For one reason, F may not be a complete
set of examples of executions and invalid projections. Second, our
simple characterization of NORMALIZEF does not rule out the other
reasons for a given example 〈e, e′〉 ∈ F to be an invalid projection,
e.g., that the removed operations do not constitute multiple matches.
However, we believe that checking satisfiability of NORMALIZEF
is useful nonetheless: at the very least, satisfying assignments can be
used as assistance in constructing normalizing matching schemes.

9. Naturally-Occurring ADTs
In this section we demonstrate that the premises used in the develop-
ment of our symbolic ADT inference algorithm — i.e., uniqueness
and bounded-width, faithful and normalizing matching schemes,
and predictability — hold for the ADTs which are typically pro-
vided by concurrent object libraries. Furthermore, we demonstrate
that the algorithm developed in this work computes precise sym-
bolic representations for these ADTs which can be used in symbolic
checkers for observational refinement (Emmi et al. 2015). Our pub-
licly available implementation8 enumerates the sequential histories9

not admitted by reference implementations of the undermentioned
ADTs, keeping only the histories which are not generated by any
other. In each case, our algorithm terminates in a matter of seconds
with a list of human-readable ADT violation patterns.

9.1 The Atomic Register
The atomic register implements an atomic single-value store, pro-
viding two methods:

• write(v) stores the value v, and
• read⇒ v returns the last-stored value v, or the nil value − if no

value has yet been stored.

As its name implies, the atomic register ADT is sequential.
We say an execution of read and write methods writes unique

values if the argument value to each write operation is unique. A
faithful matching scheme is given over the set of executions which
write unique values as follows:

• write(v) operations match themselves, and
• read ⇒ v operations are read-only, and match themselves if
v = −, or the unique write(v) operation, if one exists, and
otherwise have no match.

8 https://github.com/imdea-software/violin
9 Our current implementation is limited to atomic ADTs. For non-atomic
ADTs, the enumeration must cover all k-width histories, for some k ∈ N.

This matching scheme is faithful since two executions with the same
history are identical up to homomorphic renaming of data values,
and the register ADT only relates data values via equality.

It is easy to see that the atomic register is normal. It is closed
under removal of read-only and duplicate operations, since each
match can contain an arbitrary number of read operations. Since the
histories of atomic registers do not contain unmatched operations,
they are also closed under their removal. Finally, since the sequences
contain an arbitrary number of matches, atomic register histories are
also closed under match removal.

Our inference algorithm computes the following four histories
to generate the complement of the atomic register ADT:

[1:X] read => 1 (RO) # [1:1] write(1) #
--- [2:2] read => - (RO) #
[1:1] write(1) # ---
[2:2] write(2) # [1:2] read => 1 (RO) #
[3:1] read => 1 (RO) # [2:2] write(1) #

As new generators are discovered for n = 1 and n = 2 matches
only, the atomic register ADT is predictable.

9.2 The Atomic Queue & The Atomic Stack
Atomic queues and stacks implement atomic collections of data
values with first-in-first-out (FIFO) and last-in-first-out (LIFO)
removal order, respectively, providing two methods:

• add(v) adds the value v to the collection, and
• remove ⇒ v returns the nil value v = − if the collection is

empty, and otherwise removes and returns the least- or most-
recently added value v, respectively.

As their names imply, these ADTs are sequential.
An execution adds unique values if the argument value to each

add operation is unique. We give a faithful matching scheme over
executions which add unique values as follows:

• add(v) operations match themselves, and
• remove⇒ v operations are read-only, and match themselves if
v = − is the nil value. If v 6= −, remove⇒ v operations are
not read-only, and match the unique add(v) operation, if one
exists, and otherwise have no match.

This matching scheme is faithful since two executions with the same
history are identical up to homomorphic renaming of data values,
and the queue and stack ADTs only relate data values via equality.

Atomic queues and stacks are normal. They are closed under
removal of read-only operations: only empty removes, i.e., remove
⇒ −, are read-only. They are closed under the removal of duplicate
operations: only non-empty removes can be duplicates, and such
duplicates are not admitted in the first place, since each value is
added only once. Similarly, unmatched operations, i.e., removes that
return values that have not been added, are not admitted in the first
place. Finally, since the removal of entire matches preserves the
FIFO/LIFO behavior of the entire collection, and the correctness of
empty returns, histories are also closed under match removal.

We compute the following seven histories to generate the com-
plement of the atomic queue ADT:

[1:X] remove => 1 # [1:1] add(1) #
--- [2:1] remove => 1 #
[1:1] add(1) # [3:1] remove => 1 #
[2:2] remove => - (RO) # ---
--- [1:1] add(1) #
[1:2] remove => 1 # [2:2] remove => - (RO) #
[2:2] add(1) # [3:1] remove => 1 #
--- ---
[1:1] add(1) # [1:1] add(1) #
[2:2] add(2) # [2:2] add(2) #
[3:2] remove => 2 # [3:2] remove => 2 #

[4:1] remove => 1 #

https://github.com/imdea-software/violin


The histories computed for the atomic stack ADT are nearly identi-
cal, substituting only the bottom two histories for the following:

[1:1] add(1) # [1:1] add(1) #
[2:2] add(2) # [2:2] add(2) #
[3:1] remove => 1 # [3:1] remove => 1 #

[4:2] remove => 2 #

As new generators are discovered for n = 1 and n = 2 matches
only, these ADTs are predictable.

9.3 The Atomic Set
Atomic sets implement collections which store one copy of each
inserted data value no matter how many times the same value is
inserted, until removed, providing three methods:

• insert(u)⇒ v inserts the value u to the collection,
• remove(u)⇒ v removes u from the collection, and
• contains(u)⇒ v checks whether the set contains u.

Each operation returns the nil value v = −when u is not yet present,
and otherwise returns v = u. The atomic set ADT is sequential.

An execution inserts unique values if the argument value to each
insert operation returning − is unique. We give a faithful matching
scheme over executions which insert unique values as follows:

• any operation returning v = − matches itself, and
• any operation returning v 6= − matches the unique insert(v)⇒
− operation, if one exists, and otherwise has no match.

This matching scheme is faithful since two executions with the same
history are identical up to homomorphic renaming of data values,
and sets only relates data values via equality.

We compute the following nine histories to generate the comple-
ment of the atomic set ADT:

[1:X] insert(1) => 1 (RO) # [1:1] insert(1) => - #
--- [2:1] remove(1) => 1 #
[1:X] remove(1) => 1 # [3:1] remove(1) => 1 #
--- ---
[1:X] contains(1) => 1 (RO) # [1:1] insert(1) => - #
--- [2:1] remove(1) => 1 #
[1:1] insert(1) => - # [3:1] contains(1) => 1 (RO) #
[2:2] remove(1) => - (RO) # ---
--- [1:1] insert(1) => - #
[1:1] insert(1) => - # [2:2] remove(1) => - (RO) #
[2:2] contains(1) => - (RO) # [3:1] remove(1) => 1 #

As new generators are discovered for n = 1 and n = 2 matches
only, the atomic set ADT is predictable.

9.4 The Atomic Lock
Atomic locks implement resource-based mutual exclusion by pro-
viding two methods

• lock(u)⇒ v acquires the lock resource,
• unlock⇒ v releases the lock resource.

An operation returns the nil value v = − when the lock is not
currently held, indicating success for lock, and failure for unlock.
Otherwise, the operations return the value u = v passed as an
argument to the last successful lock(u) operation.

An execution uses unique keys if the argument value to each
lock operation is unique. We give a faithful matching scheme over
executions using unique keys as follows:

• any operation returning v = − matches itself, and
• any operation returning v 6= − matches the unique lock(v)⇒
− operation, if one exists, and otherwise has no match.

This matching scheme is faithful, and normalizing.
We compute the following eleven histories to generate the

complement of the atomic lock ADT:

[1:X] unlock => 1 # [1:X] lock(1) => 1 (RO) #
--- ---
[1:1] lock(1) => - # [1:1] lock(1) => - #
[2:2] lock(2) => - # [2:1] unlock => 1 #
--- [3:1] unlock => 1 #
[1:1] lock(1) => - # ---
[2:2] unlock => - (RO) # [1:1] lock(1) => - #
--- [2:2] unlock => - (RO) #
[1:1] lock(1) => - # [3:1] unlock => 1 #
[2:2] lock(2) => - # ---
[3:1] unlock => 1 # [1:1] lock(1) => - #
--- [2:2] lock(2) => - #
[1:1] lock(1) => - # [3:1] unlock => 1 #
[2:2] lock(2) => - # [4:2] unlock => 2 #
[3:2] unlock => 2 # ---
--- [1:1] lock(1) => - #
[1:1] lock(1) => - # [2:2] lock(2) => - #
[2:1] unlock => 1 # [3:2] unlock => 2 #
[3:1] lock(2) => 1 (RO) # [4:1] unlock => 1 #

As new generators are discovered for n = 1 and n = 2 matches
only, the atomic lock ADT is predictable.

9.5 Work-Stealing Queue
The work-stealing queue (Hendler et al. 2006) implements a col-
lection of data values with first-in-first-out10 (FIFO) removal order,
proving three methods:

• give(v) adds the value v to the queue,
• take⇒ v removes the value v, and
• steal⇒ v removes the value v.

Unlike atomic queues, the work-stealing queue permits values to
be removed twice: once normally, via the take operation, and once
exceptionally, via the steal operation. A faithful matching scheme
over executions which add unique values is analogous to the scheme
for stacks and queues: give operations match themselves, while
take and steal operations match the give operation which added
their returned value, or themselves, in case the nil value is returned.
Note that the work-stealing queue ADT has width 2, since pairs of
concurrent take and steal operations returning the same value are
permitted, while sequentially they are not. As our implementation
is currently limited to width-1 histories (see the discussion in
Section 10), below we generate only the width-1 complement.

We compute the following twenty-four histories to generate the
complement of the work-stealing queue ADT:

[1:X] take => 1 # [1:X] steal => 1 #
--- ---
[1:1] give(1) # [1:1] give(1) #
[2:2] take => - (RO) # [2:2] steal => - (RO) #
--- ---
[1:2] take => 1 # [1:2] steal => 1 #
[2:2] give(1) # [2:2] give(1) #
--- ---
[1:1] give(1) # [1:1] give(1) #
[2:2] give(2) # [2:2] give(2) #
[3:2] take => 2 # [3:2] steal => 2 #
--- ---
[1:1] give(1) # [1:1] give(1) #
[2:1] take => 1 # [2:1] take => 1 #
[3:1] take => 1 # [3:1] steal => 1 #
--- ---
[1:1] give(1) # [1:1] give(1) #
[2:2] take => - (RO) # [2:2] take => - (RO) #
[3:1] take => 1 # [3:1] steal => 1 #
--- ---
[1:1] give(1) # [1:1] give(1) #
[2:1] steal => 1 # [2:1] steal => 1 #
[3:1] take => 1 # [3:1] steal => 1 #

10 There are actually four variations to the work-stealing queue, depending
on the ends from which the take and steal operations remove values. While
our approach works indifferently, below we focus on the variation where
both remove the least recent.



--- ---
[1:1] give(1) # [1:1] give(1) #
[2:2] steal => - (RO) # [2:2] steal => - (RO) #
[3:1] take => 1 # [3:1] steal => 1 #
--- ---
[1:2] take => 1 # [1:3] take => 1 #
[2:2] give(1) # [2:3] steal => 1 #
[3:2] steal => 1 # [3:3] give(1) #
--- ---
[1:2] steal => 1 # [1:3] steal => 1 #
[2:2] give(1) # [2:3] take => 1 #
[3:2] take => 1 # [3:3] give(1) #
--- ---
[1:1] give(1) # [1:1] give(1) #
[2:2] give(2) # [2:2] give(2) #
[3:2] take => 2 # [3:2] take => 2 #
[4:1] take => 1 # [4:1] steal => 1 #
--- ---
[1:1] give(1) # [1:1] give(1) #
[2:2] give(2) # [2:2] give(2) #
[3:2] steal => 2 # [3:2] steal => 2 #
[4:1] take => 1 # [4:1] steal => 1 #

As new generators are discovered for n = 1 and n = 2 matches
only, the work-stealing queue ADT is predictable.

10. Discussion
While the theoretical foundation proposed in this work covers the
majority of naturally-occurring ADTs, it is worth mentioning a few
conceptual limitations and possible solutions to overcome them.

First, while our theoretical foundation does cover “concurrency-
aware” ADT specifications (Hemed and Rinetzky 2014), i.e., non-
atomic ADTs like the rendezvous synchronizer, barrier, and ex-
changer, which have bounded width greater than 1, our current
implementation only handles atomic ADTs. In principle, this limita-
tion is not fundamental. The key difference is in the enumeration of
ADT histories. For a given ADT, determining whether a given his-
tory is admitted or not reduces to checking whether there exists an
execution of which the history is an abstraction. For atomic ADTs,
only a single sequential execution need be examined, in which no
two operations overlap. For non-atomic ADTs, every possible in-
terleaving of the internal actions of operations need be examined.
While we expect this calculation to remain feasible given that ADT
complements are normally represented with histories with few oper-
ations, we do expect it to incur a noticeable cost.

Second, ADTs whose specifications rely on relations (besides
equality) on method argument and return values cannot be expressed
with our matching-scheme based notion of histories. A notable
example is the priority queue, whose dequeue operations return the
smallest/largest enqueued value which has not yet been dequeued.
Overcoming this limitation would require a refinement to matching
schemes which can track additional relations among data values.

Finally, in some cases it is unclear how to express matching
schemes deterministically. For example, each wait operation of
semaphore ADT should naturally match the notify operation which
enabled it. However, it is not possible to determine this based on op-
eration labels alone, and it is not clear whether all implementations
effectively keep track of this correspondence. Choosing matches
arbitrarily would be unsound, and result in inferring ADTs with
artificial constraints, e.g., that the notify and wait operations behave
according to a FIFO discipline, each wait matching the oldest un-
matched notify. Overcoming this limitation may require introducing
nondeterminism into matching schemes.

11. Related Work
Inference of symbolic abstract data types is a recently-pertinent prob-
lem arising from the emergence of efficient symbolic refinement-
checking algorithms (Bouajjani et al. 2015b; Emmi et al. 2015)
which require symbolic, logical representations of ADT specifi-

cations. Though approaches based on the explicit enumeration of
execution linearizations (Wing and Gong 1993; Burckhardt et al.
2010; Burnim et al. 2011; Zhang et al. 2013) do not require sym-
bolic ADT representations, and work directly with given reference
implementations, these approaches are intractable as they elaborate
an exponential11 number of linearizations.

Other approaches to tractable refinement-checking are based
on annotating method bodies with linearization points (Herlihy
and Wing 1990; Amit et al. 2007; Liu et al. 2009; Vafeiadis 2010;
O’Hearn et al. 2010; Zhang 2011; Shacham et al. 2011; Dragoi et al.
2013; Liang and Feng 2013) to reduce the otherwise exponential
number of possible linearizations to one single linearization. This
approach, however, does not apply to all implementations (Herlihy
and Wing 1990), and applications of this approach often rely on
manual annotation of the implementation source code. Furthermore,
this approach does not admit conclusive evidence of a refinement
violation in case of failure.

The idea of inferring minimal finite representations of otherwise-
infinite sets of implementation behaviors has also been proposed
as an optimization to reduce the impact of state-space explosion in
compositional verification (Giannakopoulou et al. 2005). This ap-
proach is based on learning minimal automata for regular languages,
and requires the implementation of both language membership and
equivalence queries (Angluin 1987). In our setting, it is unclear
whether ADT implementations may admit regular characterizations
in general, and furthermore how to automatically discharge language
equivalence queries between candidate automata and the source code
of reference implementations.

The idea of decomposing ADT violations into a finite set of
patterns has been proposed for atomic collections (Abdulla et al.
2013; Henzinger et al. 2013; Dodds et al. 2015; Bouajjani et al.
2015b), and generalized to ADTs which can be expressed with a par-
ticular form of recursive definition (Bouajjani et al. 2015a). These
works suggest patterns which directly recognize violations in concur-
rent executions, effectively reducing observational refinement to the
verification of classical temporal-logic properties. Some of these pat-
terns are expressible only as infinite, though regular, languages. On
the contrary, in this work we suggest patterns expressed as finite lan-
guages, which recognize violations in ADTs — i.e., the sequential
executions of atomic objects, or the “concurrency-aware” executions
of “concurrency-aware” specifications (Hemed and Rinetzky 2014).
Though by themselves these patterns are incomplete in recognizing
violations in concurrent executions, they are complete when con-
sidered as negative conditions on the linearizations of concurrent
executions, effectively reducing verification of a single execution to
satisfiability checking (Emmi et al. 2015).

A. Proof that � is a Well-Quasi-Order (Lemma 4)
We first prove that the embedding order, defined hereafter, is a wqo
on width-bounded labeled interval orders. Let Σ be a finite alphabet.
A labeled interval order is a triple (A,≤, `), where (A,≤) is an
interval order, and ` : A→ Σ is a labeling function. The embedding
order ⊆ between labeled interval orders is defined as usual by:

• (A1,≤1, `1) ⊆ (A2,≤2, `2) iff there exists an injective func-
tion h : A1 → A2 that preserves the labeling, i.e., `1(x) =
`2(h(x)), for every x ∈ A1, and the order constraints, i.e., for
every x, y ∈ A1, if x ≤1 y, then h(x) ≤2 h(y).

The width of an interval order (A,≤, `) is the maximum number
of elements which are mutually unordered.

Lemma 9. ⊆ is a wqo on width-bounded interval orders.

11 The number of possible linarizations is exponential in execution length.



Proof. By definition, for every interval order (A,≤, `), there exists
a mapping I from elements of A to intervals on N such that for
every x, y ∈ A, if x ≤ y, then the interval I(x) ends before the
interval I(y) (i.e., the upper bound of I(x) is strictly smaller than
the lower bound of I(y)). Therefore, in the following, we assume
that an interval order is a multiset Γ of triples of the form [i, j, a]
where [i, j] is an interval on N and a is a symbol in Σ.

We prove that another order j, stronger than the embedding
order ⊆, is a wqo. The order j is defined by: Γ1 j Γ2 iff there
exists an injective function h : Γ1 → Γ2 such that

1. h preserves the labeling, i.e., for any triple [i, j, a], h([i, j, a]) =
[i′, j′, a], for some i′ and j′,

2. h preserves the ordering constraints, i.e., for every two triples
[i, j, a] and [k, l, b] such that j < k, h([i, j, a]) = [i′, j′, a],
h([k, l, b]) = [k′, l′, b], and j′ < k′.

3. for every two incomparable elements x and y of Γ1, if the
interval of x starts before the interval of y, then the interval
of h(x) also starts before the interval of h(y). Formally, for
every two triples [i, j, a] and [k, l, b] such that i ≤ k (i.e., the
first interval starts before the second interval), h([i, j, a]) =
[i′, j′, a], h([k, l, b]) = [k′, l′, b], and i′ ≤ k′.

We say that h witnesses Γ1 j Γ2.
Assume Γ1, Γ2,. . . is a bad sequence, i.e., an infinite sequence

of interval orders s.t. there exists no i < j with Γi j Γj . Also,
assume that Γ1 is the minimal size interval order that can start a bad
sequence, Γ2 is the minimal order that can continue a bad sequence
starting with Γ1, and so on.

For each Γk, let Min(Γk) be a triple [i, j, a] such that (1) i
is the minimal lower bound of an interval in Γk, and (2) j is the
minimal upper bound of an interval in Γk with lower bound i. Also,
let Init(Γk) = (ak, Pk), where Min(Γk) = [i, j, ak], for some i
and j, and Pk is the multiset of symbols labeling elements of Γk
that are incomparable to Min(Γk). Note that Pk is bounded since
we assume width-bounded interval orders.

The infinite sequence Γ1, Γ2,. . . contains an infinite sequence
Γk1 , Γk2 ,. . . which have the same value for Init. For each Γk, let
Λk be the interval order obtained from Γk by removing the triple
Min(Γk). By the minimality assumptions, the infinite sequence
Γ1, Γ2,. . .,Γk1−1, Λk1 , Λk2 ,. . . is not bad. Therefore, there exists
m < n such that Λkm j Λkn .

It remains to prove that Γkm j Γkn when Init(Γkm) =
Init(Γkn) and Λkm j Λkn . Let h be the injective function
witnessing Λkm j Λkn . We prove that the extension h′ of h
between Γkm and Γkn , defined by h′(Min(Γkm)) = Min(Γkn)
and h′(t) = h(t), for all t ∈ Λkm , witnesses Γkm j Γkn .

Clearly, h′ preserves the labeling. To prove that h′ preserves
the ordering constraints, let Min(Γkm) = [i, j, a] and [k, l, b] ∈
Γkm such that j < k. Also, let Min(Γkn) = [i′, j′, a] and
h′([k, l, b]) = h([k, l, b]) = [k′, l′, b]. Assume by contradiction
that k′ ≤ j′. Since h is injective, there exists an element [e, f, c] ∈
Γkm incomparable to Min(Γkm) which is mapped to an element
[e′, f ′, c] greater than Min(Γkn) (because, by definition, Γkm and
Γkn have the same number of elements incomparable toMin(Γkm)
and respectively, Min(Γkn)). Since [e, f, c] is incomparable to
[i, j, a], we obtain that e ≤ j < k. Also, by the current assumptions,
k′ ≤ j′ < e′. Therefore, there exist two elements [e, f, c] and
[k, l, b] such that the interval [e, f ] starts before [k, l] which are
mapped by h to the elements [e′, f ′, c] and [k′, l′, b] such that the
interval [e′, f ′] starts after [k′, l′]. This contradicts the fact that h
witnesses Λkm j Λkn .

The properties of Min(Γkm) and Min(Γkn) imply that h′

satisfies also the third property in the definition of j.
Finally, since j is stronger than ⊆, we get that ⊆ is a wqo on

width-bounded labeled interval orders.

Lemma 10. � is a wqo on width-bounded histories.

Proof. Let h1h2 . . . be an infinite sequence of histories. We prove
that there exists i < j such that hi � hj .

The signature of an operation o in a history h is the pair
σ(o) = (c(o), f(o)). Then, the signature of a match µ =
{o′ ∈ O : m(o′) = o} is the pair

σ(µ) = (σ(o), {σ(o′) : m(o′) = o, o′ 6= o})
containing the signatures of the match target and other operations.
The signature of a history h is the tuple

σ(h) = ({σ(µ) : µ a match}, {σ(o) : o read-only},
{σ(o) : o unmatched},

{{σ(o) : o pending and non-matched}}).
The history signature contains sets of signatures (for matches, read-
only, completed, and unmatched operations) and the multiset of
signatures of the pending and non-matched operations. Since the set
of history signatures is bounded (because the set of methods and
the set of pending operations are bounded), the sequence h1h2 . . .
contains an infinite sequence of histories h′1h′2 . . . that have the
same signature.

The vector of a history h is the tuple

ν(h) = ({{σ(µ) : µ a match of h}}, {{σ(o) : o read-only}},
{{σ(o) : o unmatched}}).

Let ≤ be an order relation on multisets α : Σ → N of (match
or operation) signatures from a finite set Σ defined by α ≤ α′ iff
α(σ) ≤ α′(σ), for every σ ∈ Σ. The relation ≤ is a wqo and so is
the component-wise extension of ≤ to history vectors. Therefore,
by known results, the sequence of histories h′1h′2 . . . contains an
infinite sequence h′′1 , h′′2 , . . . such that ν(h′′1 ) ≤ ν(h′′2 ) ≤ . . ..

The vector of a match µ is the pair

ν(µ) = (σ(o), {{σ(o′) : m(o′) = o, o′ 6= o}})
containing the signature of the match target and the multiset of the
signatures of the other operations.

For every history h and match signature σ, the σ-vector of a
history h is the multiset νσ(h) = {{ν(µ) : σ(µ) = σ}} of match
vectors of signature σ.

Let ≤v be an order relation on σ-vectors defined by νσ(h) ≤v
νσ(h′) iff for every match vector ν in νσ(h) there is a match vector
ν′ in νσ(h′) s.t. ν ≤ ν′ (here, ≤ is the order on multisets defined
above). By known results, ≤v is a wqo.

Let σ1, σ2,. . ., σn be the match signatures defined over a set of
methods M. Since≤v is a wqo, the sequence of histories h′′1 , h′′2 , . . .
contains an infinite sequence h1

1, h
1
2, . . . such that νσ1(h1

1) ≤v
νσ1(h1

2) ≤v . . .. Then, the sequence h1
1, h

1
2, . . . contains an infinite

sequence h2
1, h

2
2, . . . such that νσ2(h2

1) ≤v νσ2(h2
2) ≤v . . ..

Applying a similar reasoning for the rest of the match signatures,
we obtain that h′′1 , h′′2 , . . . contains an infinite sequence hn1 , hn2 , . . .
such that νσ(hn1 ) ≤v νσ(hn2 ) ≤v . . ., for every signature σ. Recall
that we also have that ν(hn1 ) ≤ ν(hn2 ) ≤ . . . since hn1 , hn2 , . . . is a
sub-sequence of h′′1 , h′′2 , . . ..

Viewing histories as labeled interval orders, where the label of an
element o is the triple (c(o), f(o), r(o)), we get that the embedding
order ⊆ is a wqo on histories. Therefore, the infinite sequence
hn1 , h

n
2 , . . . contains two elements hni and hnj with i < j such that

hni ⊆ hnj . This implies that hni � hnj , which ends our proof.
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