
Blunting an Adversary Against Randomized Concurrent
Programs with Linearizable Implementations

Hagit Attiya

hagit@cs.technion.ac.il

Technion

Haifa, Israel

Constantin Enea

cenea@irif.fr

LIX, Ecole Polytechnique, CNRS and

Institut Polytechnique de Paris

Palaiseau, France

Jennifer L. Welch

welch@cse.tamu.edu

Texas A&M University

College Station, TX, USA

ABSTRACT
Atomic shared objects, whose operations take place instantaneously,

are a powerful abstraction for designing complex concurrent pro-

grams. Since they are not always available, they are typically substi-

tuted with software implementations. A prominent condition relat-

ing these implementations to their atomic specifications is lineariz-
ability, which preserves safety properties of the programs using

them. However linearizability does not preserve hyper-properties,
which include probabilistic guarantees of randomized programs:

an adversary can greatly amplify the probability of a bad outcome,

such as nontermination, by manipulating the order of events inside

the implementations of the operations. This unwelcome behavior

prevents modular reasoning, which is the key benefit provided by

the use of linearizable object implementations. A more restrictive

property, strong linearizability, does preserve hyper-properties but
it is impossible to achieve in many situations.

This paper suggests a novel approach to blunting the adversary’s

additional power that works even in cases where strong lineariz-

ability is not achievable.We show that a wide class of linearizable
implementations, including well-known ones for registers and snap-
shots, can be modified to approach the probabilistic guarantees of
randomized programs when using atomic objects. The technical ap-
proach is to transform the algorithm of each operation of an existing

linearizable implementation by repeating a carefully chosen prefix

of the operation several times and then randomly choosing which

repetition to use subsequently. We prove that the probability of a

bad outcome decreases with the number of repetitions, approaching

the probability attained when using atomic objects. The class of

implementations to which our transformation applies includes the

ABD implementation of a shared register using message-passing,

the Afek et al. implementation of an atomic snapshot using single-

writer registers, the Vitányi and Awerbuch implementation of a

multi-writer register using single-writer registers, and the Israeli

and Li implementation of a multi-reader register using single-reader

registers, all of which are widely used in asynchronous crash-prone

systems.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

PODC ’22, July 25–29, 2022, Salerno, Italy
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-9262-4/22/07. . . $15.00

https://doi.org/10.1145/3519270.3538446

CCS CONCEPTS
• Theory of computation→ Distributed computing models;
Concurrent algorithms; Distributed algorithms; • Comput-
ing methodologies → Distributed algorithms; Concurrent
algorithms.

KEYWORDS
Concurrent Objects; Strong Linearizability; Randomized Programs;

ABD Simulation; Atomic Snapshots; Shared registers

ACM Reference Format:
Hagit Attiya, Constantin Enea, and Jennifer L. Welch. 2022. Blunting an

Adversary Against Randomized Concurrent Programs with Linearizable

Implementations. In Proceedings of the 2022 ACM Symposium on Principles
of Distributed Computing (PODC ’22), July 25–29, 2022, Salerno, Italy. ACM,

New York, NY, USA, 11 pages. https://doi.org/10.1145/3519270.3538446

1 INTRODUCTION
Atomic shared objects, whose operations take place instantaneously,

are a powerful abstraction for designing complex concurrent pro-

grams, as they allow developers to reason about their programs in

terms of familiar data structures. Since they are not always available,

they are typically substituted with software implementations. A

prominent condition relating these implementations to their atomic

specifications is linearizability [20]. It provides the illusion that pro-

cesses communicate through shared objects on which operations

occur instantaneously in a sequential order, called the linearization
order, regardless of the actual communication mechanism. A key

benefit of linearizability is that it preserves any safety property

enjoyed by the program when it is executed with atomic objects.

Unfortunately, linearizability does not preserve hyper-
properties [11], which include probabilistic guarantees of

randomized programs. As demonstrated by examples in [5, 14, 17],

an adversary can greatly amplify the probability of a bad outcome,

such as nontermination, by manipulating the order of events

inside the implementations of the operations. Such behavior

invalidates the key benefit of using linearizable objects, which is

the modularity that they provide by hiding implementation details

behind an interface that mimics atomic behavior. To overcome

this drawback, Golab, Higham and Woelfel [14] proposed a

more restrictive property, strong linearizability, that preserves
hyper-properties, including probability distributions. However, not

many strongly-linearizable implementations are known and in fact

they are impossible in several important cases (cf. Section 6).

This paper suggests a novel approach to blunting the adversary’s

additional power that works even in cases where strong lineariz-

ability is not achievable. To motivate our approach, consider the

https://doi.org/10.1145/3519270.3538446
https://doi.org/10.1145/3519270.3538446

well-known ABD [3] linearizable implementation of a read-write

register in crash-prone message-passing systems and how it be-

haves in the context of the simple program given in Algorithm 1,

which we distill from the weakener program [17]. In the multi-

writer version of ABD [22], which we consider throughout and is

presented in Algorithm 2, both read and write operations start with

a “query” message-exchange phase in which the invoking process

obtains the timestamp associated with the most recent value. Then,

both operations execute an “update” message-exchange phase; the

reader announces the latest value and timestamp before returning

the value, while the writer announces the new value and assigns it

a larger timestamp. The linearization order of the operations is com-

pletely determined by the maximal timestamps that are obtained

during the query phases, and thus, their order is determined at the

end of the query phase.

Algorithm 1 Processes 𝑝0, 𝑝1, and 𝑝2 share two registers 𝑅, written by

𝑝0 and 𝑝1 and read by 𝑝2, and𝐶 , written by 𝑝1 and read by 𝑝2.

1: Initially: 𝑅 = ⊥, 𝐶 = −1
2: Code for 𝑝𝑖 , 𝑖 ∈ {0, 1}:
3: 𝑅 := 𝑖

4: if (𝑖 = 1) then 𝐶 := flip fair coin (0 or 1)

5: Code for 𝑝2:
6: 𝑢1 := 𝑅; 𝑢2 := 𝑅; 𝑐 := 𝐶

7: if ((𝑢1 = 𝑐) ∧ (𝑢2 = 1 − 𝑐)) then loop forever

8: else terminate

Algorithm 1 has two processes, 𝑝0 and 𝑝1, that write their ids to

register 𝑅, then 𝑝1 flips a coin and writes the result to another reg-

ister 𝐶 . A third process, 𝑝2, reads 𝑅 twice and 𝐶 once; if it succeeds

in reading both ids from 𝑅 and the first id that it reads equals the

result of the coin flip, then it loops forever, otherwise it terminates.

When the registers are atomic, 𝑝2 terminates with probability at

least one-half, for any adversary. (See [8] for details.) Yet when

the registers are replaced with ABD implementations, a strong ad-

versary [2], which can observe processes’ random choices,
1
can

interleave the internal steps of the query phase and the steps of

the program so as to ensure that 𝑝2 never terminates. (See [8] for

details.)

Instead of attempting to find a strongly-linearizable replacement

for ABD, which is impossible [6, 10], we make the key observation

that the adversary can disrupt the workings of the program only

when the coin flip on Line 4 occurs during the query phase of a

read or write operation. The reason is that, after the query phase

has completed, the linearization order of the operation is fixed. We

also observe that the query phase is “effect-free” in the sense that it

can be repeated multiple times without the repetitions interfering

with each other or with the behavior of the other processes.

Our modification to ABD is for each operation to execute the
query phase several times, and then randomly choose which one of the
values obtained to use in the rest of the operation. In Algorithm 1,

the adversary can make only one of these values depend on the

result of the coin flip (by scheduling the coin flip during that it-

eration of the query phase), but that value is used in the rest of

the operation with some probability strictly smaller than 1, since

values from query phases are chosen uniformly at random. As a

1
Throughout this paper we consider only strong adversaries and sometimes drop the

term “strong”.

result, the program exhibits probabilistic behavior closer to that

seen with atomic objects. For example, repeating the query phase

twice when ABD is used in Algorithm 1 ensures that 𝑝2 terminates

with probability at least 1/8, in contrast with the 0 termination

probability when using the original ABD implementation. (See [8]

for details.) Thus by carefully introducing additional randomization

inside the linearizable implementation itself, we blunt the power of

the adversary to disrupt the behavior of the randomized program

using the object, while keeping the implementation linearizable.

We generalize this idea to develop a transformation for the class

of linearizable implementations in which operations can be parti-

tioned, informally speaking, into an effect-free preamble followed by
a tail. Strong linearizability is only required for executions in which

no operation is in the middle of its preamble. The latter property

is made precise under the notion of tail strong linearizability (Sec-

tion 3). Our preamble-iterating transformation (Section 4.1) repeats

the preamble in the implementation of each operation some number

of times and then randomly chooses the results of one repetition to

use, producing a linearizable implementation of the same object.

Our main result is that the probability of the program reaching a
bad outcome with the transformed objects approaches the probability
of reaching the same bad outcome with atomic versions of the objects,
as the number of repetitions of the preamble increases relative to the
number of random choices made in the program. Specifically, we show

that the probability of the bad outcome using the transformed object

is at most the probability of the bad outcome using atomic objects,

which is the best case, plus a fraction of the difference between the

probabilities of the bad outcome when using the linearizable objects

and using the atomic objects. The fraction is the probability that

the adversary is able to manipulate the behavior to its advantage,

and it decreases as the number of repetitions increases.

Our transformation applies to a broad class of both shared-

memory and message-passing implementations that are widely

used, and includes ABD (both its original single-writer version [3]

and its multi-writer version [22]), the atomic snapshot algorithm [1],

the algorithm to construct a multi-writer register using single-

writer registers [24], and the algorithm to construct a multi-reader

register using single-reader registers [21]. To summarize:

• We introduce a new strengthening of linearizability called

tail strong linearizability which, roughly speaking, imposes

the requirements of strong linearizability only on execu-

tions in which each operation has passed its preamble. (See
Section 3 for the precise definition.) We show that this prop-

erty is satisfied by a wide range of objects that also have

effect-free preambles (Section 5).

• We define a transformation of tail-strongly-linearizable ob-

jects with effect-free preambles, which iterates the preamble

of each operation multiple times and then randomly chooses

an iteration whose results will be used in the rest of the

operation (Section 4.1).

• We characterize the blunting power of the “preamble iterated”

objects with a quantitative upper bound on the amount by

which the probability of reaching a bad outcome increases

when using the transformed objects instead of the atomic

objects, and relative to using the original linearizable objects

(Theorem 4.2 in Section 4.2).

Algorithm 2 ABD simulation of a multi-writer register in a message-passing system.

1: local variables:
2: sn, initially 0 {for readers and writers, sequence number used to identify messages}

3: val, initially 𝑣0 {for servers, latest register value}
4: ts, initially (0, 0) {for servers, timestamp of current register value, (integer, process id) pair}

5: function queryPhase():
6: sn++
7: broadcast ⟨"query",sn⟩
8: wait for ≥ 𝑛+1

2
reply msgs to this query msg

9: (v,u) := pair in reply msg with largest timestamp

10: return (v,u)

11: when ⟨"query",s⟩ is received from 𝑞:
12: send ⟨"reply",val,ts,s⟩ to 𝑞

13: function updatePhase(v,u):
14: sn++
15: broadcast ⟨"update",v, u, sn⟩
16: wait for ≥ 𝑛+1

2
ack msgs for this update msg

17: return

18: when ⟨"update",v,u,s⟩ is received from 𝑞:
19: if 𝑢 > 𝑡𝑠 then (val,ts) := (v,u)
20: send ⟨"ack",s⟩ to 𝑞

21: Read():
22: (v,u) := queryPhase()

23: updatePhase(v,u) {write-back}
24: return v

25: Write(v) for process with id 𝑖:
26: (−, (𝑡,−)) := queryPhase() {just need integer in timestamp}

27: updatePhase(v,(𝑡 + 1, 𝑖))
28: return

2 PRELIMINARIES
Randomized programs consist of a number of processes that invoke

methods of some set of shared objects, perform local computation,

or sample values uniformly at random from a given set of values.

We are interested in reasoning about the probability that a strong

adversary [2] can cause a program to reach a certain set of program

outcomes, defined as sets of values returned by method invocations

i.e., operations.

2.1 Objects
An object is defined by a set of method names and an implemen-

tation that defines the behavior of each method. Methods can be

invoked in parallel at different processes. In message-passing im-

plementations, processes communicate by sending and receiving

messages, while in shared-memory implementations, they commu-

nicate by invoking methods of a set of shared objects (e.g., some

class of registers) that execute instantaneously (in a single indivisi-

ble step), called base objects. The pseudo-code we will use to define
such implementations can be translated in a straightforward man-

ner to executions seen as sequences of labeled transitions between

global states that track the local states of all the participating pro-

cesses, the states of the shared base objects or the set of messages

in transit, depending on the communication model, and the control

point of each method invocation in a process. Certain transitions

of an execution correspond to initiating a new method invocation,

called call transitions, or returning from an invocation, called return
transitions. Such transitions are labeled by call and return actions,

respectively. A call action call 𝑀 (𝑥)𝑖 labels a transition correspond-

ing to invoking a method𝑀 with argument 𝑥 ; 𝑖 is an identifier of

this invocation. A return action ret 𝑦𝑖 labels a transition correspond-

ing to invocation 𝑖 returning value𝑦. For simplicity, we assume that

each method has at most one parameter and at most one return

value. We assume that each label of a transition corresponding to a

step of an invocation 𝑖 includes the invocation identifier 𝑖 and the

control point (line number) ℓ of that step. In particular, each call

transition includes an initial control point ℓ0. Such a transition is

called a step of 𝑖 at ℓ .

The set of executions of an object 𝑂 is denoted by 𝐸 (𝑂). An
execution of an object 𝑂 satisfies standard well-formedness con-

ditions, e.g., each transition corresponding to returning from an

invocation 𝑖 (labeled by ret 𝑦𝑖 for some𝑦) is preceded by a transition

corresponding to invoking 𝑖 (labeled by call 𝑀 (𝑥)𝑖 , for some𝑀 and

𝑥), and for every 𝑖 there is at most one transition labeled by a call

action containing 𝑖 , and at most one transition labeled by a return

action containing 𝑖 .

An object where every invocation returns immediately is called

atomic. Formally, we say that an object 𝑂 is atomic when every

transition labeled by call 𝑀 (𝑥)𝑖 , for some𝑀 and 𝑥 , in an execution

(from 𝐸 (𝑂)) is immediately followed by a transition labeled by ret 𝑦𝑖
for some 𝑦.

Correctness criteria like linearizability characterize sequences of

call and return actions in an execution, called histories. The history
of an execution 𝑒 , denoted by hist (𝑒), is defined as the projection of

𝑒 on the call and return actions labeling its transitions. The set of

histories of all the executions of an object𝑂 is denoted by𝐻 (𝑂). Call
and return actions call 𝑀 (𝑥)𝑖 and ret 𝑦𝑖 are called matching when

they contain the same invocation identifier 𝑖 . A call action is called

unmatched in a history ℎ when ℎ does not contain the matching

return. A history ℎ is called sequential if every call call 𝑀 (𝑥)𝑖 is
immediately followed by the matching return ret 𝑦𝑖 . Otherwise, it
is called concurrent. Note that every history of an atomic object is

sequential.

2.2 (Strong) Linearizability
Linearizability [20] defines a relationship between histories of an

object and a given set of sequential histories, called a sequential

specification. The sequential specification can also be interpreted as

an atomic object. Therefore, given two histories ℎ1 and ℎ2, we use

ℎ1 ⊑ ℎ2 to denote the fact that there exists a history ℎ′
1
obtained

from ℎ1 by appending return actions that correspond to some of the

unmatched call actions inℎ1 (completing some pending invocations)

and deleting the remaining unmatched call actions in ℎ1 (removing

some pending invocations), such that ℎ2 is a permutation of ℎ′
1
that

preserves the order between return and call actions, i.e., if a given

return action occurs before a given call action in ℎ′
1
then the same

holds in ℎ2. We say that ℎ2 is a linearization of ℎ1. A history ℎ1 is

called linearizable w.r.t. a sequential specification Seq iff there exists

a sequential history ℎ2 ∈ Seq such that ℎ1 ⊑ ℎ2. An execution 𝑒 is

linearizable w.r.t. Seq if hist (𝑒) is linearizable w.r.t. Seq. An object

𝑂 is linearizable w.r.t. Seq iff each history ℎ1 ∈ 𝐻 (𝑂) is linearizable
w.r.t. Seq.

Two objects 𝑂1 and 𝑂2 are called equivalent when they are

linearizable w.r.t. the same sequential specification Seq and for

every history ℎ ∈ Seq, 𝐻 (𝑂1) contains a history linearizable w.r.t.

ℎ iff 𝐻 (𝑂2) contains a history linearizable w.r.t. ℎ.

Strong linearizability [14] is a strengthening of linearizability

that enables preservation of probability distributions in random-

ized programs using a certain object 𝑂 instead of an atomic object
equivalent to𝑂 . It also enables preservation of more generic hyper-

safety properties [5]. A set of executions 𝐸 ⊆ 𝐸 (𝑂) of an object 𝑂

is called strongly linearizable when it admits linearizations that are

consistent with linearizations of prefixes that belong to 𝐸 as well.

Formally, 𝐸 is strongly linearizable w.r.t. a sequential specification

Seq iff there exists a function 𝑓 : 𝐸 → Seq such that:

• for any execution 𝑒 ∈ 𝐸, hist (𝑒) ⊑ 𝑓 (𝑒), and
• 𝑓 is prefix-preserving, i.e., for any two executions 𝑒1, 𝑒2 ∈ 𝐸

such that 𝑒1 is a prefix of 𝑒2, 𝑓 (𝑒1) is a prefix of 𝑓 (𝑒2).
An object is called strongly linearizable when its entire set of exe-

cutions 𝐸 (𝑂) is strongly linearizable.

2.3 Randomized Programs
A program 𝑃 (O) is composed of a number of processes that invoke

methods on a set of shared objects O. Besides shared object invoca-

tions, a process can also perform some local computation (on some

set of local variables), and use an instruction random(𝑉), where
𝑉 is a subset of a domain of values V, to sample a value from 𝑉

uniformly at random. This value can be used, for instance, as an in-

put to a method invocation. The syntax used for local computation

instructions is not important, and we omit a precise formalization.

An execution of a program 𝑃 (O) is an interleaving of steps taken

by the processes it contains. A step can correspond to either

• an interactionwith a shared object inO, i.e., a method invoca-

tion, internal step of an object implementation, or returning

from a method, or

• a local computation in the program, e.g., an execution of

random(𝑉), for some 𝑉 .

As expected, the sequence of steps in an execution follows the

control-flow in each process and the internal behavior of the shared

objects in O (whether they be implemented on top of a message-

passing or shared-memory system).

The outcome of a program execution is a mapping from shared

object method invocations to the values they return in that execu-

tion. In order to relate outcomes in different executions of the same

program 𝑃 (O), we assume that shared object method invocations

in executions of 𝑃 (O) have unique identifiers that relate to the

syntax of 𝑃 (O). These identifiers can be defined, for instance, as

a triple of a process id, the control point (line number) at which

that invocation occurs, and the number of times this control point

occurred in the past (in order to deal with looping constructs). Then,

an outcome maps these identifiers to return values. An outcome of

a program 𝑃 (O) is the outcome of an execution of 𝑃 (O).
Consider two sets of objects O1 and O2 for which there exists a

bijection _ that maps each object 𝑂 ∈ O1 to an equivalent object
𝑂 ′ ∈ O2. Given a program 𝑃 (O1), the program 𝑃 (O2) is obtained
by substituting every object 𝑂 ∈ O1 with the corresponding object

_(𝑂) ∈ O2.

Proposition 2.1. 𝑃 (O1) and 𝑃 (O2) have the same set of out-
comes.

2.4 Adversaries
We say that a program execution observes a sequence of random
values ®𝑣 if the 𝑖-th occurrence of a step that samples a random

value (by executing a random(𝑉) instruction) returns ®𝑣 [𝑖], where
®𝑎[𝑖] is the 𝑖-th position in a vector ®𝑎. A schedule is a sequence of
process ids. An execution follows a schedule ®𝑠 when the 𝑖-th step of

the execution is executed by the process ®𝑠 [𝑖]. In the following, we

assume complete schedules that make the program terminate. We

denote by 𝑒 [𝑃 (O), ®𝑣, ®𝑠] the unique execution of a program 𝑃 (O)
that observes ®𝑣 and follows ®𝑠 .

For a program 𝑃 (O), a (strong) adversary 𝐴 against 𝑃 (O) is a
mapping from sequences of values in V to complete schedules.

We assume that for every two sequences ®𝑣1, ®𝑣2 ∈ V∗ that have a
common prefix of length𝑚, the executions 𝑒 [𝑃 (O), ®𝑣1, 𝐴(®𝑣1)] and
𝑒 [𝑃 (O), ®𝑣2, 𝐴(®𝑣2)] are the same until the (𝑚 + 1)-th occurrence of

a step that samples a random value, or the end of the execution

if no such steps remain. This assumption captures the constraint

that the scheduling decisions of a strong adversary do not depend

on future randomized choices. A strong adversary 𝐴 defines a set

of executions 𝐸 (𝐴), each of which observes a sequence of values ®𝑣
and follows the schedule 𝐴(®𝑣).

An adversary 𝐴 against 𝑃 (O) defines a probability distribu-

tion over program outcomes (of executions in 𝐸 (𝐴)), denoted by

OutDist (𝑃 (O), 𝐴). Given a set of outcomes B, Prob[𝑃 (O)| |𝐴 → B]
is the probability defined by OutDist (𝑃 (O), 𝐴) of an outcome

being contained in B. The probability of 𝑃 (O) reaching B, de-

noted by Prob[𝑃 (O) → B], is defined as the maximal probability

Prob[𝑃 (O)| |𝐴 → B] over all possible adversaries 𝐴. In the context

of our results, the set of outcomes B is interpreted as some set of

“bad” states, and the goal is to minimize the probability of a program

reaching them.

The following result shows that a program using atomic objects

minimizes the probability of reaching a set of outcomes, among

programs where the atomic objects can be replaced with equivalent

ones. This follows from the fact that an adversary can restrict itself

to schedules where each method invocation is executed in isolation

(a method can be called only when there is no other pending call),

and the outcomes obtained in executions following such schedules

can also be obtained with executions of atomic objects. For a set of

objects O, O𝑎 is the set of atomic objects 𝑂 ′
that are equivalent to

objects 𝑂 ∈ O.

Proposition 2.2. For any program 𝑃 (O) and set of outcomes B,
Prob[𝑃 (O) → B] ≥ Prob[𝑃 (O𝑎) → B].

Algorithm 1 is an example of a program 𝑃 where

Prob[𝑃 (O) → B] is strictly greater than Prob[𝑃 (O𝑎) → B],
as discussed in the introduction. In this case, O consists of two

instances of the ABD register, one for 𝑅 and one for𝐶 , and B is the

set of outcomes where the return values of 𝑝2’s invocations satisfy

𝑢1 = 𝑐 and 𝑢2 = 1 − 𝑐 . These values make 𝑝2 not terminate.

The two probabilities in Proposition 2.2 are equal when O is a

set of strongly linearizable objects:

Theorem 2.3 ([14]). For any program 𝑃 (O) using a set of strongly
linearizable objects O, and set of outcomes B, Prob[𝑃 (O) → B] =
Prob[𝑃 (O𝑎) → B].

3 TAIL STRONG LINEARIZABILITY
We define a generalization of strong linearizability, called tail strong
linearizability, which requires that executions be mapped to prefix-

preserving linearizations only when each method invocation has

executed a minimal number of steps called a preamble. The rela-
tionship between linearizations of different executions where some

invocation has not executed its preamble fully is unconstrained.

When the preamble of every invocation is “empty” (i.e., it includes

only the call transition), this becomes the standard notion of strong

linearizability. When the preamble of every invocation is “full”

(i.e., it includes all the steps of the invocation), this is equivalent

to standard linearizability (since linearizability requires anyway

that any invocation 𝑖 is linearized before any other invocation 𝑖 ′

that starts after 𝑖 returns). Section 4 defines a preamble-iterating

transformation of tail strongly linearizable objects that limits the

increase in the probability of a bad outcome when a program uses

the transformed objects instead of equivalent atomic objects.

Let𝑂 be an object with a set of methodsM. A preamble mapping
Π of 𝑂 is a mapping that associates each method 𝑀 ∈ M with

a control point ℓ representing the last step of its preamble. We

assume that every control-flow path of 𝑀 should pass through ℓ

and that ℓ can be reached only once (it is not inside the body of a

loop). The trivial preamble mapping that associates each method

to the initial control point ℓ0 is denoted by Π0. For instance, for the

multi-writer version of ABD (listed in Algorithm 2 and described

in the introduction), we are interested in a preamble mapping that

associates the Read and Write methods with the control points

where the value with the largest timestamp received from responses

to query messages is assigned (Lines 22 and 26, respectively, in

Algorithm 2).

Given an execution 𝑒 and a method invocation 𝑖 , we say that 𝑖

passed a control point ℓ when 𝑒 contains a step of 𝑖 at ℓ . An execution
𝑒 is complete w.r.t. a preamble mapping Π if each invocation of a

method𝑀 in 𝑒 passed the control point Π(𝑀). The set of executions
of 𝑂 complete w.r.t. Π is denoted by 𝐸 (𝑂,Π).

An object 𝑂 is called tail strongly linearizable w.r.t. a preamble

mapping Π and a sequential specification Seq when it is linearizable

w.r.t. Seq and the set of executions 𝐸 (𝑂,Π) is strongly linearizable

w.r.t. Seq. Note that strong linearizability is equivalent to tail strong
linearizability w.r.t. Π0.

When reasoning about programs that use more than one object,

we rely on the fact that tail strong linearizability is local in the

sense that it holds for the union of a set of objects that are each tail

strongly linearizable. Locality holds for tail strong linearizability

as a straightforward consequence of the fact that standard strong

linearizability is local [14].

Theorem 3.1. A set of histories 𝐻 of executions with multiple
objects 𝑂1,. . .,𝑂𝑚 is tail strongly linearizable w.r.t. some preamble
mapping Π1 ∪ . . . ∪ Π𝑚 , where Π 𝑗 is a preamble mapping of 𝑂 𝑗 , iff
for all 𝑗 , 1 ≤ 𝑗 ≤ 𝑚, the set 𝐻 𝑗 = {ℎ |𝑂 𝑗 : ℎ ∈ 𝐻 }, where ℎ |𝑂 𝑗 is
the projection of ℎ on call and return actions of 𝑂 𝑗 , is tail strongly
linearizable w.r.t. Π 𝑗 .

4 BLUNTING AN ADVERSARY AGAINST TAIL
STRONGLY LINEARIZABLE OBJECTS

We define a methodology for transforming tail strongly linearizable

objects whose preambles have a certain property we call “effect-

free” into equivalent objects. The use of the transformed objects can

reduce the probability that a program using the objects reaches a

set of (bad) outcomes. Intuitively, the transformed objects can blunt

the power of any adversary against a program using them and in

the limit restrict its power to what it has when the program uses

atomic objects (which is a lower bound by Proposition 2.2). As we

show in Section 5, the class of objects to which the transformation

applies includes a broad set of widely-used objects, including the

ABD register (both its original single-writer version [3] as well

as the multi-writer version [22]), the atomic snapshot algorithm

using single-writer registers of Afek et al. [1], the Vitányi and

Awerbuch algorithm to construct amulti-writer register from single-

writer registers [24], and the Israeli and Li algorithm to construct

a multi-reader register from single-reader registers [21]. None of

these implementations is strongly linearizable and in fact strongly-

linearizable implementations are known to be impossible in most

of these cases (see Section 6).

4.1 The Preamble-Iterating Transformation for
Tail Strongly Linearizable Objects

The preamble-iterating transformation is defined in Algorithm 3.

For a given integer 𝑘 ≥ 1, object 𝑂 , and preamble mapping Π, we

define an object 𝑂𝑘
Π (we may omit the preamble mapping Π from

the notation when it is understood from the context) where each

method𝑀 is replaced with a method𝑀𝑘
that iterates the preamble

of𝑀 (see the for loop in Algorithm 3) 𝑘 times and uses the values of

a randomly chosen iteration for the rest of the code (corresponding

to index 𝑗 selected in Line 8). To simplify the notations, we assume

that the code of each preamble of a method𝑀 (the code up to and

including the control point Π(𝑀)) is encapsulated in a function

called preamble that takes the same input as 𝑀 and returns the

values of𝑀’s local variables after executing that preamble. These

values are stored in the array locals. The rest of the code, which uses
the values in locals, is left unchanged. The results of the preamble

iterations are stored in a two dimensional array

−−−−→
locals where each

row has the same size as locals.
This transformation leads to an equivalent object provided that

the preamble contains only effect-free computation, which, infor-

mally speaking, does not affect the behavior of the other processes

running concurrently (effect-free computation can affect the state

of the process that executes it). For instance, the preamble of ABD’s

Read and Write methods consists in sending “query” messages to

the other processes, waiting for replies, and computing the largest

timestamp value from the replies (the queryPhase function in Algo-

rithm 2). Sending a reply to a query message from another concur-

rently running process does not affect the behavior of the sender,

as its local variables remain unchanged (cf. Algorithm 2).

Algorithm 3 Transforming a tail strongly linearizable object 𝑂 to 𝑂𝑘
,

𝑘 ≥ 1. Each method𝑀 of𝑂 is transformed to a method𝑀𝑘
of𝑂𝑘

.

1: methodM(𝑣):
2: locals := preamble(v)
3: // rest of the code . . .

4: methodM𝑘 (𝑣):
5: for 𝑖 := 1 to 𝑘 do
6:

−−−−→
locals[𝑖] := preamble(𝑣)

7: end for
8: 𝑗 := random([1..k])

9: locals :=
−−−−→
locals[𝑗]

10: // rest of the code . . .

In general, a computation step of an object implementation is

either

• an invocation to a method of a base object, e.g., a register,

which is assumed to be atomic, or
• a send/receive step in the context of a message-passing sys-

tem, or

• a local computation step on some set of local variables (which

cannot be accessed by other processes).

A computation step is called effect-free if it is a local computation

step, or, if in the first case, the invoked method itself is effect-free,

e.g., a Read method of an atomic register, or if in the second case,

it is a receive or a send of a message that does not modify the local

state of the receiving process, e.g., sending a “query” message in

the ABD register. For a preamble mapping Π, we say that a method

𝑀 has an effect-free preamble if all the computation steps up to and

including Π(𝑀) are effect-free. An object is said to have effect-free
preambles iff all its methods have effect-free preambles.

It can be easily proved that 𝑂𝑘
is equivalent to 𝑂 , provided that

𝑂 has effect-free preambles. We also assume that the original tail
strongly linearizable objects are deterministic, i.e., they do not rely

on randomization. Indeed, by definition, repeating the effect-free

preamble has no effect on local states of other processes. Each ex-

ecution of 𝑂𝑘
can be transformed to an execution of 𝑂 where all

the preamble repetitions that are not “used” in an invocation (i.e.,

the value they compute is not selected to continue the computa-

tion) can be simply removed. Since the original 𝑂𝑘
execution has

exactly the same history as the one of𝑂 , its linearizability w.r.t. the

specification of 𝑂 follows from the linearizability of the execution

of 𝑂 . Conversely, every execution of 𝑂 can be transformed to an

execution of 𝑂𝑘
by “appending” sufficiently many repetitions of

the preamble and restricting the random choice to select the first

repetition.

Theorem 4.1. For every object 𝑂 with effect-free preambles and
𝑘 ≥ 1, 𝑂𝑘 is equivalent to 𝑂 .

4.2 Quantifying the Blunting Power
We characterize the power of𝑂𝑘

objects in lowering the probability

that a program 𝑃 using them reaches some set B of outcomes, com-

pared to 𝑃 using the original objects 𝑂 instead. Since we interpret

B as “bad” outcomes, lowering this probability is desirable.

For a set of objects O, O𝑘
is the set of objects 𝑂𝑘

with 𝑂 ∈ O.
While stating the result below, the program 𝑃 and the set of out-

comes B are fixed (but arbitrary), and to simplify the notation, we

write Prob[O] instead of Prob[𝑃 (O) → B], for any set of objects

O. Also, we say that a program 𝑃 (O) has at most 𝑟 random steps
if every execution of 𝑃 contains at most 𝑟 steps corresponding

to executing a random instruction. This definition applies to pro-

grams using objects O and not the transformed objects O𝑘
which

introduce additional random steps.

We show that Prob[O𝑘] decreases with respect to Prob[O] as
the number of preamble iterations 𝑘 increases and exceeds the

maximum number 𝑟 of random steps in the program. This provides

a trade-off between time complexity, which grows with 𝑘 , and

the probability of reaching bad outcomes, which decreases with

𝑘 . This result is based on a worst-case analysis which makes no

assumptions about the structure of the program.

Theorem 4.2. For every program 𝑃 (O) with 𝑛 ≥ 1 processes and
at most 𝑟 ≥ 1 random steps, where O is a set of deterministic tail
strongly linearizable objects with effect-free preambles, for every set
of outcomes B, and for every positive integer 𝑘 ,

Prob[O𝑘] ≤Prob[O𝑎]

+
[
1 −

(
max{0, 𝑘 − 𝑟 }

𝑘

)𝑛−1]
· (Prob[O] − Prob[O𝑎]) .

Theorem 4.2 states that the probability of a bad outcome when

using objects in which the preamble is iterated 𝑘 times is at most

the probability when using atomic objects plus a fraction of the

difference between the probabilities when using atomic objects and

when using the original linearizable objects. The fraction is, roughly

speaking, the probability that the adversary is able to manipulate

the behavior to its advantage, and it goes to 0 as 𝑘 increases. Thus

the probability with the preamble-iterated objects approaches the

probability with atomic objects.

4.3 Proof Outline for Theorem 4.2
We start by introducing some terminology. The program 𝑃 (O𝑘) has
two types of random instructions: the random instructions com-

ing from the original program 𝑃 (O), which are outside of object

implementations, and the random instructions added in the O𝑘

implementations (see Algorithm 3). The former are called program
random instructions, and the latter object random instructions.

Steps in an execution corresponding to program (object) random
instructions are called program (object) random steps. Each method

invocation in an execution of 𝑃 (O𝑘) performs 𝑘 iterations of a pre-

amble (of some method of an object in O). A preamble iteration is

called randomization-free when it does not overlap with a program

random step, i.e., every program random step occurs either before

or after all the steps of that preamble iteration.

Let𝐴 be an adversary against 𝑃 (O𝑘) defining a probability distri-
bution over executions/outcomes. Let𝑋 be the event that all the ob-
ject random steps return indices that correspond to randomization-

free preamble iterations. We decompose the probability of 𝐴 reach-

ing a set of outcomes B by conditioning on 𝑋 :

Prob[𝑃 (O𝑘) | |𝐴 → B] = Prob[(𝑃 (O𝑘) | |𝐴 → B) | 𝑋] · Prob[𝑋]

+ Prob[(𝑃 (O𝑘) | |𝐴 → B) | ¬𝑋] · (1 − Prob[𝑋]) (1)

Lemma 4.3 (proved below) shows that the probability of 𝐴

reaching B conditioned on 𝑋 is upper bounded by the probabil-

ity of any adversary reaching B in the same program but with

atomic objects instead ofO𝑘
. That is, Prob[(𝑃 (O𝑘) | |𝐴 → B) | 𝑋] ≤

Prob[𝑃 (O𝑎) → B]. Lemma 4.4 (proved below) shows that the

probability of reaching B with O𝑘
conditioned on ¬𝑋 can-

not be larger than the probability of reaching B with O, i.e.,
Prob[(𝑃 (O𝑘) | |𝐴 → B) | ¬𝑋] ≤ Prob[𝑃 (O) → B]. Substituting
into (1), we get that

Prob[𝑃 (O𝑘) | |𝐴 → B] ≤Prob[𝑃 (O𝑎) → B] · Prob[𝑋]
+ Prob[𝑃 (O) → B] · (1 − Prob[𝑋]) (2)

=Prob[𝑃 (O𝑎) → B]
+ (1 − Prob[𝑋]) · (Prob[𝑃 (O) → B] − Prob[𝑃 (O𝑎) → B])

Lemma 4.5 (proved below) shows that Prob[𝑋] ≥
(
max{0,𝑘−𝑟 }

𝑘

)𝑛−1
,

which concludes the proof of the theorem.

4.4 Detailed Proofs
Lemma 4.3. Prob[(𝑃 (O𝑘) | |𝐴 → B) | 𝑋] ≤ Prob[𝑃 (O𝑎) → B].

Proof. Based on the adversary 𝐴, we will define an adversary

𝐴O against 𝑃 (O) that mimics the adversary 𝐴 against 𝑃 (O𝑘) con-
ditioned on 𝑋 for program random steps and takes the choices

for object random steps that maximize the probability of reaching

B. 𝐴O will cause all the prefixes of executions in 𝐸 (𝐴O) that end
with a program random step to be complete w.r.t. each preamble

mapping of an object in O. The construction of𝐴O will ensure that

Prob[(𝑃 (O𝑘) | |𝐴 → B) | 𝑋] ≤ Prob[𝑃 (O)| |𝐴O → B] (3)

Then, we will use the completeness w.r.t. preamble mappings of

execution prefixes to show that

Prob[𝑃 (O)| |𝐴O → B] ≤ Prob[𝑃 (O𝑎) → B] . (4)

which will complete the proof. Details follow.

Given a sequence ®𝑣 of values returned by program random steps,

let ®𝑢 be a sequence of values returned by program or object random
steps such that ®𝑣 is a subsequence of ®𝑢 and for every index 𝑖 in ®𝑢
representing the value of an object random step,

Prob[(𝑃 (O𝑘) | |𝐴 → B) | 𝑋 | ®𝑢 [≤ 𝑖]]

=𝑚𝑎𝑥𝑣∈VProb[(𝑃 (O𝑘) | |𝐴 → B) | 𝑋 | ®𝑢 [≤ 𝑖 − 1] · 𝑣] (5)

where Prob[(𝑃 (O𝑘) | |𝐴 → B) | 𝑋 | 𝜎] is the probability that 𝐴

reaches B in 𝑃 (O𝑘) conditioned on 𝑋 , and further conditioned on

the fact that the first |𝜎 | (program or object) random steps return

the values in 𝜎 (in the order defined by 𝜎), and ®𝑢 [≤ 𝑖] is the prefix of
®𝑢 of length 𝑖 (by convention, ®𝑢 [≤ −1] is the empty sequence 𝜖). The

schedule𝐴(®𝑢) contains 𝑘 preamble iterations for each method invo-

cation, but only one of them, determined by the result of the object

random step in that invocation, is used to continue the computa-

tion. Let remRedundant(𝐴(®𝑢)) be the schedule where all the 𝑘 − 1

preamble iterations that are not used in a method invocation are

removed. By the definition of the O𝑘
objects, remRedundant(𝐴(®𝑢))

is a schedule producing a valid execution of 𝑃 (O). We define

𝐴O (®𝑣) = remRedundant(𝐴(®𝑢)) .
By the construction, property (5) in particular, we have that property

(3) holds. Also, since we consider schedules of 𝐴 conditioned on

𝑋 , all the preamble iterations selected by object random steps are

randomization-free, and therefore, at every program random step

in remRedundant(𝐴(®𝑢)), there is no invocation that started but did

not finish its preamble.

To prove property (4), we show that there exists an ad-

versary 𝐴O𝑎
against 𝑃 (O𝑎) such that OutDist (𝑃 (O), 𝐴O) =

OutDist (𝑃 (O𝑎), 𝐴O𝑎
). We rely on the facts that each object in O is

tail strongly linearizable, that tail strong linearizability is local (cf.

Theorem 3.1), and that all the prefixes of executions in 𝐸 (𝐴O) end-
ing with a program random step are complete w.r.t. each preamble

mapping of an object in O. The adversary𝐴O𝑎
is defined iteratively

by enumerating program random steps. Initially, by the definition

of an adversary, all executions produced by 𝐴O are identical until

the first occurrence 𝑟𝑠1 of a program random step. By tail strong

linearizability, it is possible to define a valid linearization (satisfy-

ing each object specification) of the invocations that start before

𝑟𝑠1 which does not depend on execution steps that follow 𝑟𝑠1 (i.e.,

this linearization can be extended by appending more invocations

when considering steps after 𝑟𝑠1). Let 𝜎0 be such a linearization.

We impose the constraint that all the executions produced by 𝐴O𝑎

start with 𝜎0.

Next, we focus on execution prefixes that end just before the

second occurrence 𝑟𝑠2 of a program random step. Assume that 𝑟𝑠1 is

a random choice between a set of values𝑉 and let 𝑣 ∈ 𝑉 . Using again

the definition of an adversary, all the executions produced by the

restriction of 𝐴O to the domain 𝑣 ·V∗ (sequences of values starting
with 𝑣) are identical until 𝑟𝑠2. By tail strong linearizability, there

exists a linearization 𝜎𝑣 of the invocations that started before 𝑟𝑠2
in these executions such that 𝜎0 is a prefix of 𝜎𝑣 . Moreover, 𝜎𝑣 can

be chosen in such a way that it does not depend on execution steps

that follow 𝑟𝑠2. We define𝐴O𝑎
such that𝐴O𝑎

(𝑣 ·V∗) ∈ 𝜎𝑣 ·𝐴𝑐𝑡∗ for
each 𝑣 ∈ 𝑉 (𝐴𝑐𝑡 denotes the set of call/return actions in a history).

That is, each execution that the adversary produces when the first

program random step returns 𝑣 starts with the linearization 𝜎𝑣 .

Iterating the same construction for all the remaining program

random steps, we get an adversary 𝐴O𝑎
against 𝑃 (O𝑎) such that

𝐴O𝑎
(®𝑣) is a linearization of the invocations in 𝐴O (®𝑣), for all ®𝑣 .

Therefore, OutDist (𝑃 (O), 𝐴O) = OutDist (𝑃 (O𝑎), 𝐴O𝑎
), and prop-

erty (4) holds. □

Lemma 4.4. Prob[(𝑃 (O𝑘) | |𝐴 → B) | ¬𝑋] ≤ Prob[𝑃 (O) → B].

Proof. As in the proof of Lemma 4.3, property (3), one can

define an adversary 𝐴′
O against 𝑃 (O) that mimics the adversary

𝐴 against 𝑃 (O𝑘) for program random steps and takes the choices

for object random steps that maximize the probability of reaching

B. This argument is actually agnostic to the conditioning on ¬𝑋 ,
because it does not depend on the specific results returned by object

random steps from which to make the desired choice. We include

the conditioning only to match the proof goal coming from (1). We

have that

Prob[(𝑃 (O𝑘) | |𝐴 → B) | ¬𝑋] ≤ Prob[𝑃 (O)| |𝐴′
O → B] (6)

The result follows from the fact that Prob[𝑃 (O)| |𝐴′
O → B] ≤

Prob[𝑃 (O) → B]. □

Lemma 4.5. Prob[𝑋] ≥
(
max{0,𝑘−𝑟 }

𝑘

)𝑛−1
.

Proof. Since the random choices in O𝑘
method invocations are

independent, we have that Prob[𝑋] = ∏
𝑖 Prob[𝑋𝑖] where 𝑋𝑖 is the

event that the 𝑖-th object random step in an invocation to a method

of O𝑘
chooses a randomization-free preamble iteration (we assume

an arbitrary but fixed total order on invocations in 𝑃). The mini-

mal value for Prob[𝑋] can be attained by making many Prob[𝑋𝑖]
as small as possible. To minimize the product of Prob[𝑋𝑖] terms,

we need that each program random step overlaps with a maxi-

mum number of preamble iterations, i.e., one preamble iteration

from each other process. Then, to maximize the number of small

Prob[𝑋𝑖] terms, we need to maximize the number of invocations

that contain a maximal number of preamble iterations overlapping

with a program random step. These two constraints can be attained

assuming that all program random steps are in the same process

and each one of them overlaps with a different preamble iteration

from the same invocation of each other process. If 𝑘 ≤ 𝑟 , in the

worst case the adversary might be able to ensure that no object

random step returns an index that corresponds to a randomization-

free preamble iteration, which is the reason for the use of the max

function. Therefore, for 𝑛 − 1 invocations 𝑖 ,

Prob[𝑋𝑖] =
max{0, 𝑘 − 𝑟 }

𝑘

and Prob[𝑋 𝑗] = 1 for the rest of the invocations 𝑗 . Therefore,

Prob[𝑋] ≥
(
max{0, 𝑘 − 𝑟 }

𝑘

)𝑛−1
□

5 EXAMPLES OF TAIL STRONGLY
LINEARIZABLE OBJECTS

We discuss several objects introduced in the literature that are not
strongly linearizable, but are tail strongly linearizable with respect

to some non-trivial, effect-free preamble mapping.

5.1 ABD Register
Variations of the ABD implementation of a register in a crash-prone

message-passing system are used in many applications. Unfortu-

nately, it is impossible to have a strongly linearizable version of

ABD [6, 10]. However, as we show next, our transformation is

applicable to ABD.

Specifically, we show that the multi-writer variant [22] of the

ABD register [3] (which is listed in Algorithm 2 and explained in

the introduction) is tail strongly linearizable w.r.t. the preamble

mapping Π𝐴𝐵𝐷 that associates Read andWrite with the control

points Lines 22 and 26, respectively. These are the control points of

the steps that assign the return value of queryPhase to (𝑣,𝑢) and
(−, (𝑡,−)), respectively.

Theorem 5.1. The ABD object in Algorithm 2 is tail strongly
linearizable w.r.t. Π𝐴𝐵𝐷 .

Proof. The timestamp of a Read invocation is the timestamp

returned by its query phase (the value 𝑢 at line 22), and the times-

tamp of a Write is the timestamp given as parameter to its update

phase (the pair (𝑡 + 1, 𝑖) at line 27). The timestamp of an invocation

𝑜 is denoted by ts(𝑜).
Given an execution 𝑒 that is complete w.r.t. Π𝐴𝐵𝐷 , we say that

an invocation 𝑜 is logically-completed in 𝑒 when there exists an

invocation 𝑜 ′ that returns in 𝑒 such that ts(𝑜) ≤ ts(𝑜 ′). Since 𝑜
and 𝑜 ′ may coincide, if an invocation returns in 𝑒 , then it is also

logically-completed in 𝑒 . By definition, every invocation in 𝑒 has a

well-defined timestamp (since every invocation passed the query

phase).

We define a function 𝑓 that associates to each such execution 𝑒

a linearization that contains all the invocations that are logically-

completed in 𝑒 ordered according to their timestamp. A set of in-

vocations in 𝑒 that have the same timestamp consists of exactly

one Write invocation and some number of Read invocations. The

linearization 𝑓 (𝑒) orders the write before all the reads with the

same timestamp, if any.

To show that 𝑓 is prefix-preserving, let 𝑒, 𝑒 ′ ∈ 𝐸 (ABD,Π) such
that 𝑒 is a prefix of 𝑒 ′. We show that a linearization of 𝑒 where

invocations that are logically-completed in 𝑒 are ordered before

invocations that are not logically-completed is consistent with an

analogous linearization of 𝑒 ′.
For an invocation 𝑜1 that is logically-completed in 𝑒 , we show

that ts(𝑜1) ≤ ts(𝑜2) for every invocation 𝑜2 that is not logically-

completed in 𝑒 . There are two cases to consider. First, if 𝑜2 queries

after 𝑒 , then we use the fact that ABD guarantees that the timestamp

of an invocation is smaller than or equal to the timestamp returned

by any query phase starting after that invocation returned. By the

definition of logically-completed, there exists an invocation 𝑜 ′
1
that

returns in 𝑒 such that ts(𝑜1) ≤ ts(𝑜 ′
1
). Using the property of ABD

mentioned above, we get that ts(𝑜 ′
1
) ≤ ts(𝑜2), which implies that

ts(𝑜1) ≤ ts(𝑜2). Second, if𝑜2 queries during 𝑒 , then by the definition
of logically-completed, ts(𝑜2) > ts(𝑜 ′

2
) for every invocation 𝑜 ′

2
that

returns in 𝑒 . Since 𝑜1 is logically-completed in 𝑒 , we get that there

exists an invocation 𝑜 ′
1
that returns in 𝑒 such that ts(𝑜1) ≤ ts(𝑜 ′

1
).

Therefore, ts(𝑜1) ≤ ts(𝑜2). Next, we show that there cannot exist

aWrite invocation 𝑜1 that is not logically-completed in 𝑒 while a

Read invocation 𝑜2 with the same timestamp is logically-completed

in 𝑒 . Clearly, 𝑜1 cannot query after 𝑒 since 𝑜2 queries during 𝑒 by

definition. Assuming that both invocations query during 𝑒 , we

get a contradiction because the definition of logically-completed

implies that ts(𝑜1) > ts(𝑜 ′
1
) for every invocation 𝑜 ′

1
that returns

in 𝑒 and there exists an invocation 𝑜 ′
2
that returns in 𝑒 such that

ts(𝑜2) ≤ ts(𝑜 ′
2
). These two statements imply that ts(𝑜1) > ts(𝑜2)

which is a contradiction to the fact that 𝑜1 and 𝑜2 have the same

timestamp.

Finally, an invocation 𝑜1 that is not logically-completed in 𝑒

cannot return before an invocation 𝑜2 that is logically-completed

in 𝑒 . Since 𝑜2 queries during 𝑒 , this would imply that 𝑜1 returns in

𝑒 which would imply that 𝑜1 is logically-completed in 𝑒 . □

The above result holds also for the original single-writer ver-

sion [3], which is also not strongly linearizable [10, 16].

5.2 Snapshot
Another popular shared object is the atomic snapshot. It is impossi-

ble to implement a strongly-linearizable lock-free snapshot object

using single-writer registers [19] and it is impossible to implement

a strongly-linearizable wait-free snapshot object using multi-writer

registers [12]. However, we show next that we can apply our trans-

formation to the linearizable wait-free snapshot implementation

in [1], which uses single-writer registers.

The snapshot object implementation of [1] uses an array M of

registers whose length is the number of processes (accesses to these

registers are atomic, i.e., they execute instantaneously). It provides a

Scanmethod that returns a snapshot of the array and anUpdate(𝑣)
method by which a process 𝑖 writes value 𝑣 in M[𝑖]. Scan performs

a series of collects, i.e., successive reads of the array’s cells in some

fixed order; a collect in a process can interleave with steps of other

processes. This series of collects stops when either two successive

collects return identical values, or the process observes that another

process has executed at least two Update invocations during the
timespan of the Scan. In the latter case, the return value is the

last snapshot written by the other process during an Update. An
Update invocation at a process 𝑖 starts with a Scan followed by an

atomic write to M[𝑖] of the result of Scan together with the value

received as argument (and a local sequence number seq𝑖 that is

read in other Scan invocations).

This snapshot object is known to not be strongly linearizable [14],
but it is tail strongly linearizable w.r.t. a preamble mapping that

maps each Scan to the control point just before it returns and each

Update to the initial control point. The linearization associated to

an execution that is complete w.r.t. this preamble mapping contains

all the (possibly pending) Scan invocations and all the Update
invocations that performed their writes to the array cells, in some

order consistent with the specification (each Scan is linearized

after an Update if it observes its value). Actually, the preamble

of Update can be defined in an arbitrary manner, e.g., extended

until the end of its scan, and tail strong linearizability would still

hold. The reason is that an Update is linearized only if it executed

its write— the scan it performs before the write is only to ensure

progress (wait-freedom). As can be seen in Section 4, extending a

preamble may help in reducing the probability of reaching “bad”

outcomes, but this comes at a cost in terms of time complexity.

5.3 Multi-Writer Multi-Reader Register
Another central shared object is a multi-writer multi-reader regis-

ter. There is no strongly-linearizable wait-free implementation of

such a register using single-writer registers [19]. We show, how-

ever, that our transformation can be applied to the linearizable

implementation in [24].

In this implementation, each value written has a timestamp,

which is a pair consisting of an integer and a process identifier. A

single-writer register Val[𝑖] is associated with each writer 𝑖 of the

implemented register. When aRead is invoked on the implemented

register, the reader reads (value, timestamp) pairs from all the Val
registers, chooses the value with the largest timestamp using lexi-

cographic ordering, and returns that value. When a Write of value
𝑣 on the implemented register is invoked at writer 𝑖 , the writer

calculates a new timestamp and writes the value together with the

timestamp into Val[𝑖]. To calculate the new timestamp, 𝑖 reads all

the Val variables and extracts from it the timestamp entry. Its new

timestamp is one plus the maximal timestamp of all other processes,

together with 𝑖’s identifier. This implementation is tail strongly lin-

earizable by choosing the preamble of the Read method to end

just before it returns and the preamble of theWrite method to end

immediately before writing to Val[𝑖]. The tail strong linearizability

proof is similar to the one for the ABD register.

5.4 Single-Writer Multi-Reader Register
Yet another standard shared object is a (single-writer) multi-reader

register. A well-known implementation of such a register using

(single-writer) single-reader registers is given in [21]. This imple-

mentation is not strongly linearizable, which can be shown by mim-

icking the counter-example for the ABD register appearing in [16].

However, our transformation is applicable to this implementation,

as we show next. (It seems likely that the argument in [10] can be

adapted to show that it impossible to have a strongly-linearizable

implementation of a multi-reader register using single-reader reg-

isters, as it is easy to simulate a message-passing channel with a

single-reader register.)

In the implementation, a single-reader registerVal[i] is associated
with each reader 𝑖 of the implemented register. To Write a value 𝑣
to the implemented register, the (unique) writer writes 𝑣 , together

with a sequence number, into all of the Val registers. The readers
communicate with each other via a (two-dimensional) array Report
of single-reader registers, where reader 𝑖 writes to all the registers

in row 𝑖 and reads from all the registers in column 𝑖 . When a Read
of the implemented register is invoked at process 𝑖 , it reads (value,

sequence number) pairs from Val[i] and from all the registers in

column 𝑖 of Report; it then chooses the value to return with the

largest sequence number, writes this pair to all the registers in

row 𝑖 of Report, and returns. This implementation is tail strongly

linearizable: the preamble of the Read method ends just before the

first write to an element of Report, while the preamble of theWrite
method is empty. As before, the proof of tail strong linearizability

is similar to the one for the ABD register.

6 RELATEDWORK
Golab, Higham and Woelfel [14] were the first to recognize the

problem when linearizable objects are used with randomized pro-

grams, via an example using the snapshot object implementation

of [1]. They proposed strong linearizability as a way to overcome the

increased vulnerability of programs using linearizable implemen-

tations to strong adversaries, by requiring that the linearization

order of operations at any point in time be consistent with the

linearization order of each prefix of the execution. Thus, strongly-

linearizable implementations limit the adversary’s ability to gain

additional power by manipulating the order of internal steps of

different processes. Consequently, properties holding when a con-

current program is executed with an atomic object continue to

hold when the program is executed with a strongly-linearizable

implementation of the object. Strong linearizability is a special case

of our class of implementations, where the preamble of each opera-

tion is empty and thus, vacuously, effect-free; in this case, applying

the preamble-iterating transformation results in no change to the

implementation.

Other than [6, 10] which studied message-passing implementa-

tions, prior work on strong linearizability focused on implementa-

tions using shared objects, and considered various progress prop-

erties. If one only needs obstruction-freedom, which requires an

operation to complete only if it executes alone, any object can be im-

plemented using single-writer registers [19]. When considering the

stronger property of lock-freedom (or nonblocking), which requires

that as long as some operation is pending, some operation com-

pletes, single-writer registers are not sufficient for implementing

multi-writer registers, max registers, snapshots, or counters [19]. If

the implementations can usemulti-writer registers, though, it is pos-

sible to get lock-free implementations of max registers, snapshots,

and monotonic counters [12], as well as of objects whose operations

commute or overwrite [23]. It was also shown [4] that there is no

lock-free implementation of a queue or a stack from objects whose

readable versions have consensus number less than the number of

processes, e.g., readable test&set. For the even stronger property of

wait-freedom, which requires every operation to complete, it is pos-

sible to implement bounded max registers using multi-writer regis-

ters [19], but it is impossible to implement max registers, snapshots,

or monotonic counters [12] even with multi-writer registers. The

bottom line is that the only known strongly-linearizable wait-free

implementation is of a bounded max register (using multi-writer

registers), while many impossibility results are known.

Write strong linearizability (WSL) [18] is a weakening of strong
linearizability designed specifically for register objects. It requires

that executions be mapped to linearizations where only the pro-

jections onto write operations are prefix-preserving. While single-

writer registers are trivially WSL, neither the original multi-writer

ABD nor the preamble-iterating version we introduce in this paper

is WSL [18]. The WSL implementation given in [18] has effect-

free preambles, and so our transformation is applicable to it. It is

not known whether it is possible to implement WSL multi-writer

registers in crash-prone message-passing systems.

Our approach draws (loose) inspiration from the vast research

on oblivious RAM (ORAM) (initiated in [15]), although the goals and

technical details significantly differ. ORAMs provide an interface

through which a program can hide its memory access pattern, while

at the same time accessing the relevant information. More generally,

program obfuscation [9] tries to hide (obfuscate) from an observer

knowledge about the program’s functionality, beyond what can

be obtained from its input-output behavior. The goal of ORAMs

and program obfuscation is to hide information from an adversary,

while our goal is to blunt the adversary’s ability to disrupt the pro-

gram’s behavior by exploiting linearizable implementations used

by the program. We borrow, however, the key idea of introducing

additional randomization into the implementation, in order to make

it less vulnerable to the adversary.

7 DISCUSSION
We have presented the preamble-iterating transformation for a vari-

ety of linearizable object implementations, e.g., [1, 3, 21, 24], which

approaches the probability of reaching particular outcomes, when

these implementations replace the corresponding atomic objects. In

this manner, it salvages randomized programs that use these highly-

useful objects—which lack strongly-linearizable implementations—

so they still terminate, without modifying the programs or their

correctness proofs. Furthermore, the transformation is mechanical,

once the preamble is identified.

Our results are just the first among many new opportunities for

modular use of object libraries in randomized concurrent programs,

including the following exciting avenues for future research.

One direction is to improve our analysis and obtain better bounds,

specifically, by exploring the tradeoff between the increased com-

plexity of many repetitions of the preamble, and decreased proba-

bility of bad outcomes.

Our transformation introduces computational overhead that de-

pends on the number of program random steps that must be con-

sidered. Thus it is crucial to reduce, or at least bound, this number.

This can be done by making assumptions about the structure of the

randomized concurrent program. For example, many randomized

programs are round-based, where each process takes a fixed (often,

constant) number 𝑠 of random steps in each round, and termina-

tion occurs with high probability within some number of rounds,

say 𝑇 . In this case, we can let the program run for 𝑇 rounds and

apply the preamble-iterating transformation with 𝑘 > 𝑇 · 𝑠; if the
program does not terminate within 𝑇 rounds, which happens with

small probability, the program just continues with the original,

linearizable object. An alternative approach for dealing with an

unbounded number of random steps is to assume that the rounds

are communication-closed [13], resulting in a smaller number of

random choices that could affect the linearizable implementation.

For example, a common style of algorithm partitions the code into

phases (or rounds) and has each of 𝑛 processes flip a single coin in

each phase, i.e., 𝑟 = 𝑛. If our transformation is applied to each phase

by repeating the preamble of each operation 𝑘 = 2𝑟 = 2𝑛 times,

good probabilistic behavior is achieved with linear (in 𝑛) overhead.

See [7, Section 2.4] for an example along these lines.

Another direction is to consider other objects without wait-free

strongly-linearizable implementations, e.g., queues or stacks [4],

which lack effect-free preambles that can be easily repeated. For

such objects, it might be possible to roll back the effects of repeating
certain parts of their implementation.

ACKNOWLEDGMENTS
Hagit Attiya is partially supported by the Israel Science Foundation

(grant number 380/18). Jennifer L. Welch is supported in part by

the U.S. National Science Foundation under grant number 1816922.

REFERENCES
[1] Yehuda Afek, Hagit Attiya, Danny Dolev, Eli Gafni, Michael Merritt, and Nir

Shavit. 1993. Atomic Snapshots of Shared Memory. J. ACM 40, 4 (1993), 873–890.

[2] James Aspnes. 2003. Randomized protocols for asynchronous consensus. Dis-
tributed Computing 16, 2-3 (2003), 165–175.

[3] Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. 1995. Sharing Memory Robustly

in Message-passing Systems. J. ACM 42, 1 (1995), 124–142.

[4] Hagit Attiya, Armando Castañeda, and Danny Hendler. 2018. Nontrivial and

universal helping for wait-free queues and stacks. J. Parallel and Distrib. Comput.
121 (2018), 1–14.

[5] Hagit Attiya and Constantin Enea. 2019. Putting Strong Linearizability in Context:

Preserving Hyperproperties in Programs that Use Concurrent Objects. In 33rd
International Symposium on Distributed Computing (DISC). Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2:1–2:17.

[6] Hagit Attiya, Constantin Enea, and Jennifer L. Welch. 2021. Impossibility of

Strongly-Linearizable Message-Passing Objects via Simulation by Single-Writer

Registers. In 35th International Symposium on Distributed Computing (DISC).
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 7:1–7:18.

[7] Hagit Attiya, Constantin Enea, and Jennifer L. Welch. 2021. Linearizable Imple-

mentations Suffice for Termination of Randomized Concurrent Programs (version

1). CoRR abs/2106.15554 (2021). https://arxiv.org/abs/2106.15554v1

[8] Hagit Attiya, Constantin Enea, and Jennifer L.Welch. 2022. Blunting anAdversary

Against Randomized Concurrent Programs with Linearizable Implementations.

CoRR abs/2106.15554 (2022). https://arxiv.org/abs/2106.15554

[9] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai,

Salil Vadhan, and Ke Yang. 2012. On the (im)possibility of obfuscating programs.

J. ACM 59, 2 (2012), 1–48.

[10] David Yu Cheng Chan, Vassos Hadzilacos, Xing Hu, and Sam Toueg. 2021. An

Impossibility Result on Strong Linearizability in Message-Passing Systems. CoRR
abs/2108.01651 (2021). https://arxiv.org/abs/2108.01651

[11] Michael R. Clarkson and Fred B. Schneider. 2010. Hyperproperties. Journal of
Computer Security 18, 6 (2010), 1157–1210.

[12] Oksana Denysyuk and Philipp Woelfel. 2015. Wait-Freedom is Harder Than

Lock-Freedom Under Strong Linearizability. In Distributed Computing - 29th
International Symposium (DISC). Springer, 60–74.

[13] Tzilla Elrad and Nissim Francez. 1982. Decomposition of Distributed Programs

into Communication-Closed Layers. Sci. Comput. Program. 2, 3 (1982), 155–173.

https://doi.org/10.1016/0167-6423(83)90013-8

[14] Wojciech Golab, Lisa Higham, and Philipp Woelfel. 2011. Linearizable Implemen-

tations Do Not Suffice for Randomized Distributed Computation. In Proceedings
of the 43rd ACM Symposium on Theory of Computing (STOC). ACM, New York,

NY, USA, 373–382.

[15] Oded Goldreich and Rafail Ostrovsky. 1996. Software protection and simulation

on oblivious RAMs. J. ACM 43, 3 (1996), 431–473.

[16] Vassos Hadzilacos, Xing Hu, and Sam Toueg. 2020. On Atomic Registers and

Randomized Consensus in M&M Systems (version 4). CoRR abs/1906.00298 (2020).

http://arxiv.org/abs/1906.00298

[17] Vassos Hadzilacos, Xing Hu, and Sam Toueg. 2020. On Linearizability and the

Termination of Randomized Algorithms. CoRR abs/2010.15210 (2020). http:

//arxiv.org/abs/2010.15210

[18] Vassos Hadzilacos, Xing Hu, and Sam Toueg. 2021. On Register Linearizability

and Termination. In ACM Symposium on Principles of Distributed Computing
(PODC). ACM, New York, NY, USA, 521–531.

[19] Maryam Helmi, Lisa Higham, and Philipp Woelfel. 2012. Strongly linearizable im-

plementations: possibilities and impossibilities. In ACM Symposium on Principles
of Distributed Computing (PODC). ACM, New York, NY, USA, 385–394.

[20] Maurice P. Herlihy and Jeannette M. Wing. 1990. Linearizability: A Correctness

Condition for Concurrent Objects. ACM Trans. Program. Lang. Syst. 12, 3 (July
1990), 463–492.

[21] Amos Israeli and Ming Li. 1993. Bounded Time-Stamps. Distributed Computing
6, 4 (1993), 205–209.

[22] Nancy A Lynch and Alexander A Shvartsman. 1997. Robust emulation of shared

memory using dynamic quorum-acknowledged broadcasts. In Proceedings of IEEE
27th International Symposium on Fault Tolerant Computing. IEEE, 272–281.

[23] Sean Ovens and Philipp Woelfel. 2019. Strongly Linearizable Implementations

of Snapshots and Other Types. In Proceedings of the 2019 ACM Symposium on
Principles of Distributed Computing, (PODC). ACM, New York, NY, USA, 197–206.

[24] Paul M. B. Vitányi and Baruch Awerbuch. 1986. Atomic Shared Register Access by

Asynchronous Hardware. In 27th Annual Symposium on Foundations of Computer
Science (FOCS). IEEE, 233–243.

https://arxiv.org/abs/2106.15554v1
https://arxiv.org/abs/2106.15554
https://arxiv.org/abs/2108.01651
https://doi.org/10.1016/0167-6423(83)90013-8
http://arxiv.org/abs/1906.00298
http://arxiv.org/abs/2010.15210
http://arxiv.org/abs/2010.15210

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Objects
	2.2 (Strong) Linearizability
	2.3 Randomized Programs
	2.4 Adversaries

	3 Tail Strong Linearizability
	4 Blunting an Adversary Against Tail Strongly Linearizable Objects
	4.1 The Preamble-Iterating Transformation for Tail Strongly Linearizable Objects
	4.2 Quantifying the Blunting Power
	4.3 Proof Outline for Theorem 4.2
	4.4 Detailed Proofs

	5 Examples of Tail Strongly Linearizable Objects
	5.1 ABD Register
	5.2 Snapshot
	5.3 Multi-Writer Multi-Reader Register
	5.4 Single-Writer Multi-Reader Register

	6 Related Work
	7 Discussion
	Acknowledgments
	References

