
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

1

Scenario-based Proofs for Concurrent Objects

CONSTANTIN ENEA, École Polytechnique, France
ERIC KOSKINEN, Stevens Institute of Technology, US

Concurrent objects form the foundation of many applications that exploit multicore architectures and their
importance has lead to informal correctness arguments, as well as formal proof systems. Correctness arguments
(as found in the distributed computing literature) give intuitive descriptions of a few canonical executions
or “scenarios” often each with only a few threads, yet it remains unknown as to whether these intuitive
arguments have a formal grounding and extend to arbitrary interleavings over unboundedly many threads.

We present a novel proof technique for concurrent objects, based around identifying a small set of scenarios
(representative, canonical interleavings), formalized as the commutativity quotient of a concurrent object.
We next give an expression language for defining abstractions of the quotient in the form of regular or
context-free languages that enable simple proofs of linearizability. These quotient expressions organize
unbounded interleavings into a form more amenable to reasoning and make explicit the relationship between
implementation-level contention/interference and ADT-level transitions.

We evaluate our work on numerous non-trivial concurrent objects from the literature (including the
Michael-Scott queue, Elimination stack, SLS reservation queue, RDCSS and Herlihy-Wing queue). We show that
quotients capture the diverse features/complexities of these algorithms, can be used even when linearization
points are not straight-forward, correspond to original authors’ correctness arguments, and provide some new
scenario-based arguments. Finally, we show that discovery of some object’s quotients reduces to two-thread
reasoning and give an implementation that can derive candidate quotients expressions from source code.

1 INTRODUCTION
Efficient multithreaded programs typically rely on optimized implementations of common abstract
data types (adts) like stacks, queues, and sets, whose operations execute in parallel to maximize
efficiency. Synchronization between operations must be minimized to increase throughput [Herlihy
and Shavit 2008a]. Yet this minimal amount of synchronization must also be adequate to ensure
that operations behave as if they were executed atomically, so that client programs can rely on their
(sequential) adt specification; this de-facto correctness criterion is known as linearizability [Herlihy
and Wing 1990]. These opposing requirements, along with the general challenge in reasoning about
interleavings, make concurrent data structures a ripe source of insidious programming errors.

Algorithm designers (e.g., researchers defining new concurrent objects) argue about correctness
by considering some number of “scenarios”, i.e., interesting ways of interleaving steps of different
operations, and showing for instance, that each one satisfies some suitable invariant (which is not
necessarily inductive). For example, a scenario of the Michael and Scott [1996a] queue is described
as: many threads concurrently reading, one enqueuer thread taking a specific read path finding a tail
pointer to be outdated, and then succeeding a compare-and-swap (CAS) operation, causing others
to fail their compare-and-swap (paraphrasing from Herlihy and Shavit [2008b]). Such scenario
descriptions are powerful because they describe unboundedly many threads and often generalize
to cover many executions that are equivalent due to commutative re-orderings. Consequentially,
informal correctness arguments need only consider a few representative scenarios. Furthermore,
another critical benefit of scenario-based reasoning is that scenarios are more readily explainable
to software developers, who need not have a background in formal logic.
Despite the intuitive benefit of these operational, scenario-based proofs—which continue to be

widely used in the concurrent algorithms literature—it remains unknown as to whether they have
a formal grounding. This has lead to cases where objects thought to be linearizable [?] where later
determined to contain bugs in unconsidered scenarios [?].

Authors’ addresses: Constantin Enea, École Polytechnique, France; Eric Koskinen, Stevens Institute of Technology, US.

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

1:2 Constantin Enea and Eric Koskinen

1.1 Formalizing Scenarios withQuotients
In this paper, we show that operational, scenario-based correctness arguments can be formally
grounded. To that end, we propose a new proof methodology that is based on formal arguments
while keeping the intuition of scenario-based reasoning. This methodology relies on a reduction to
reasoning about a subset of representative interleavings (i.e. a formal version of informal scenarios),
which cover the whole space of interleavings modulo repeatedly swapping adjacent commutative
steps. The latter corresponds to the standard equivalence up to commutativity between the executions
of an object (e.g., Mazurkiewicz traces [Mazurkiewicz 1986]).

Reductions based on commutativity arguments have been formalized in previous work, e.g., Lip-
ton’s reduction theory [Lipton 1975], QED [Elmas et al. 2009], CIVL [Hawblitzel et al. 2015], and
they generally focus on identifying atomic sections, i.e., sequences of statements in a single thread
that can be assumed to execute without interruption (without sacrificing completeness). Relying on
atomic sections for reducing the space of interleavings has its limitations, especially in the context
of concurrent objects. These objects rely on intricate algorithms where almost every step is an
access to the shared memory that does not commute with respect to other steps.

Our reduction argument reasons about a quotient of the set of object executions, which is a subset
of executions that contains a representative from each equivalence class. In general, an execution
of an object interleaves an unbounded number of invocations to the object’s methods, each from a
different thread1. These executions can be seen as a word over an infinite alphabet, each symbol of
the alphabet representing a statement in the code and the thread executing that statement2. We show
that when abstracting away thread ids from executions, carefully chosen quotients become regular
or context-free languages. This is not true for any quotient since representatives of equivalence
classes can be chosen in an adversarial manner to make the language more complex.

The principal benefit of quotients is that reasoning about correctness can be done by considering
only a few representative execution interleavings, yet those conclusions generalize to all executions.
For some kinds of concurrent object implementations (defined later), deriving representative traces
can be reduced via induction to two-thread reasoning.

Proofs with program logics. Our work is inspired by the success of many prior works on proofs for
concurrent objects based on program logics such as Owicki and Gries [1976], Rely/Guarantee [Jones
1983], Concurrent separation logic [O’Hearn 2007; ?], RGSep [?], Deny-Guarantee [?], Views [?],
Iris [Jung et al. 2018, 2015] and interactive proof tools such as Iris.

The goal of this paper is orthogonal and focuses on finding a formal grounding for the operational,
scenario-based correctness arguments present in the algorithms literature. To this end, our method-
ology is based on taking representative interleaved traces upfront and using commutativity-based
equivalence classes for modularity/generalization rather than exploiting the program structure and
invariants for modularity/generalization. Achieving this alternative reasoning strategy nonetheless
requires careful formalization of what is meant by “representative traces”, as well as how those
classes of traces can be expressed abstractly, which we outline below. Our results show that (i)
scenario-based reasoning can be done formally through quotients, (ii) quotients can be given for
a variety of concurrent objects with subtle differences including non-fixed linearization points,
(iii) quotients improve the correctness arguments from the literature, and (iv) for some cases,
quotients—which represent interleavings of unboundedly many threads—can be automatically
discovered through a reduction to two-thread reasoning.

1Typically, it can be assumed w.l.o.g. that each thread performs a single invocation in an execution.
2Such a sequence will be called a trace in the formalization we give later in the paper.

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Scenario-based Proofs for Concurrent Objects 1:3

1.2 Example: Scenario-based proofs of the Michael-ScottQueue
For the sake of concreteness, we now show how quotients make concurrent reasoning simpler, using
the canonical Michael-Scott Queue (MSQ) as an example. Ultimately the theory and algorithms
in this paper lead to an implementation that is able to automatically derive the representation
discussed below, from the object’s source code. The MSQ is implemented as a linked-list, with head
and tail pointers and a sentinel head node, as depicted to the left below.

x
2

head tail

x
3

x
1

Enqueuer i

xi
CAS

x
2

head tail

x
3

x
1

Advance the tail

xi

CAS

An enqueue (enq) operation, such as 𝐸𝑛𝑞𝑢𝑒𝑢𝑒𝑟 𝑖 in the diagram above, repeatedly attempts
to enqueue a new element by using an atomic compare-and-swap (CAS) operation on the tail
element’s next pointer, replacing null with the address of the new node (𝑥𝑖 in the diagram above).
It is possible that this CAS operation will fail due to a concurrent enqueuer (of which there can
be unboundedly many). Nonetheless, due to the CAS, one enqueuer will succeed. At this point,
although the element is linked, it is not logically in the queue because the tail pointer is lagging.
The enqueuer will thus perform a second CAS operation, as shown on the digram above to the
right, to advance tail to point to 𝑥𝑖 . To ensure progress, concurrent enqueuers will also check
to see if the tail lags and, if so, attempt to advance the tail before they attempt to enqueue
their elements (i.e. helping). A dequeue (deq) operation repeatedly attempts to unlink 𝑥1 with a
CAS operation, but also has to check that the queue is non-empty and that other threads have not
recently dequeued. (To achieve all of these cases, deq must begin by reading the head pointer, the
tail pointer and head’s next pointer and validating to see which case applies.)
To verify the correctness of objects like the MSQ, one has to consider all of the ways in which

concurrent invocations of unboundedly many methods could interleave. One strategy to tackle
this problem has been through the aforementioned program logics such as rely-guarantee where,
roughly, one defines state-based invariants and then shows they are preserved and threads don’t
interfere with other threads’ actions. Nevertheless, the correctness arguments laid out by algorithm
designers (e.g., in the distributed computing community) typically are organized in a more opera-
tional manner and instead focus on discussing various “scenarios”. Consider the following excerpt
from The Art of Multiprocessor Programming [Herlihy and Shavit 2008b] regarding the MSQ:

An enqueuer creates a new node, reads tail, and finds the node that appears to be last. To verify that node is indeed last,
it checks whether that node has a successor. If so, the thread attempts to append the new node with CAS. (A CAS is
required because other threads may be trying the same thing.) [Assume that] the CAS succeeds.

Such sentences describe scenarios that involve unboundedly many threads executing some portion
of their programs. They are chosen to highlight tricky situations and describe why those situations
are still acceptable. The above example can be thought of as the sequence:

(1) Unboundedly many threads are reading the data structure.
(2) There is a distinguished thread, let’s call 𝜏𝑒𝑛𝑞 .
(3) 𝜏𝑒𝑛𝑞 reads the tail and the tail’s next pointer.
(4) 𝜏𝑒𝑛𝑞 finds that tail’s next is null.
(5) 𝜏𝑒𝑛𝑞 atomically updates tail’s next to point to its new node.
(6) The other (unboundedly many) threads fail their CASes on tail’s next and restart.

This scenario has a particular shape about it: unboundedly many threads read, then a single thread
performs a write, then the remaining threads react to that write. This is a common setup in many
non-blocking concurrent algorithms and a useful pattern (although, in general, we will describe
scenarios beyond those of this shape). One might think of it as a regular expression denoted 𝑟next:

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

1:4 Constantin Enea and Eric Koskinen

𝑟next ≡ (𝜏 ∈ 𝑇 : 𝑟𝑒𝑎𝑑 + 𝜏𝑒𝑛𝑞 : 𝑟𝑒𝑎𝑑)∗ · (𝜏𝑒𝑛𝑞 : cas/succeed) · (𝜏 ∈ 𝑇 : 𝑟𝑒𝑠𝑡𝑎𝑟𝑡)∗

where 𝑇 is the (unbounded) set of all threads excluding 𝜏𝑒𝑛𝑞 . Above 𝑟next expresses that some
unboundedly many threads from set 𝑇 (including 𝜏𝑒𝑛𝑞) perform only 𝑟𝑒𝑎𝑑-path actions, then 𝜏𝑒𝑛𝑞
succeeds its cas, then those unboundedly many threads restart. This expression is more powerful
than it may first appear. There are a few important considerations:
• Conciseness. The entirety of MSQ’s concurrent execution behaviors can be represented
with this and only two other similarly concise representative interleavings, along with four
even simpler read-only interleavings. Expressions 𝑟tail and 𝑟head are similarly defined and
represent advancing the tail pointer and the head pointer (due to a dequeuer), respectively.
• Unbounded. With these concise descriptions, the interleavings between an unbounded
number of enqueuers and dequeuers can be seen as an unbounded alternation (𝑟next +
𝑟tail + 𝑟head)∗. (Below we will further refine this approximation with stateful automata.)

This description does not include all possible ways of interleaving steps of enqueuers, e.g., it
does not include interleavings where a thread restarts after two successful CASs since it last read
the shared memory. It includes just a subset of representatives that we call a quotient, which is
succinct enough to correspond to the designer’s intuition and large enough to cover the whole
space of interleavings modulo repeatedly swapping adjacent commutative steps (i.e., the standard
equivalence up to commutativity between executions known as Mazurkiewicz traces [Mazurkiewicz
1986]). For instance, an interleaving where a thread restarts after two successful CASs (since it last
read the shared memory) is equivalent to one where the restart step is reordered to the left to occur
immediately after the first CAS. This is because the restarting condition is fulfilled after this first
CAS as well and the restart step does not perform any writes.

The MSQ falls into a special class of objects for which quotients can be expressed in this inductive
way, as a sequence of what we call “layers” (above 𝑟next, 𝑟tail and 𝑟head are layers) wherein only
a single shared memory write action occurs per layer, and all other actions are thread-local/read-
only (perhaps restarting due to a failed CAS). Consequently, it is possible via induction to reduce
reasoning to a collection of two-threaded arguments (one writer, one reader). While quotients and
their abstractions are a much broader class, layers are nonetheless an important subclass since they
apply to many lock-free implementations and can be automated, as discussed below.

1.3 Challenges and Contributions
1. Concurrent Object Quotients. How can scenario-based reasoning be done formally? (Sec. 3) We
show that scenario-based reasoning can be made formal through a methodology wherein reasoning
about all executions of a concurrent object is reduced to reasoning only about a smaller set of
representative interleavings. At the technical core is the definition of an object’s execution quotient
which collapses executions that are equivalent up to swapping commutative adjacent actions. A
quotient is parameterized by this equivalence relation and has both a minimality constraint (no
two executions are equivalent) and a completeness constraint (all executions are equivalent to
some execution in the quotient). We prove that linearizability of the quotient is sufficient to show
linearizability of the object. The upshot is that concurrent object correctness is now accomplished
via reasoning about a collection of scenarios (as in typical informal proofs).

2. Expressing Quotients. How can a quotient set be described? (Sec. 4) A next question is how to
finitely express a quotient, which can have unboundedly many interleavings. In Sec. 3, we introduce a
quotient expression language that permits amixture of regular expressions (e.g.,Kleene-star iterations
of subexpressions) and context-free grammars (e.g., unbounded but balanced subexpressions).
We then give an interpretation/semantics for these expressions that maintains the minimality
condition: there will only be one interleaving (with threads organized in a canonical order) for

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

Scenario-based Proofs for Concurrent Objects 1:5

Fig. 1. Layer automaton for the Michael/ScottQueue.

every unboundedly many unrolling. The MSQ expression (𝑟next + 𝑟tail + 𝑟head)∗ above provides an
intuition for the quotient expression for the MSQ. (Technically, the 𝑟𝑒𝑎𝑑 actions are paths and the
∗-iterations within the 𝑟x subexpressions are replaced with a context-free form of iteration.)

As we will show later, quotients and their abstractions are expressive and can capture canonical
concurrent objects as well as more complicated ones such as the Herlihy andWing [1990] queue and
the elimination stack of ?, each having different kinds of non-fixed linearization points. These are
notoriously hard cases for today’s proof methodologies. We note that, while the idea of reasoning
about execution quotients is generic, identifying precise limits for the applicability of the particular
class of quotients expressions is hard in general. This is similar to using abstract domains in the
context of static analysis: it is hard to determine precisely the class of programs for which interval
or polyhedra abstractions are effective.
3. Layer Quotient Expressions and Automata. (Sec. 5) In addition to broad expressivity,

are there classes of objects whose quotients have a simpler structure? To increase accessibility and
automation, we next describe certain kinds of quotient expressions for which reasoning can actually
be reduced, via induction, to two-thread reasoning. Specifically, for objects whose implementation
can be written as a collection of (possibly restarting) read-only/local paths and paths that have only
a single atomic read-write, we define layer quotients to more conveniently and inductively capture
the quotient. Although this does not apply to all objects, it does apply to canonical examples such as
the MSQ, Treiber’s Stack, and even the Scherer III et al. [2006] synchronous reservation queue. For
these objects, executions can be decompiled into a sequence of layers, each described by context-free
quotient expressions of the form (𝑎1 + 𝑏1 + . . .)𝑛 ·𝑤 · (𝑎2 + 𝑏2 + . . .)𝑛 where 𝑎1 · 𝑎2 is a read-only
path through the method implementation (possibly restarting), and𝑤 is a path with a successful
atomic read-write. The exponents in both expressions indicate the unbounded replication of local
paths (𝑛 is not fixed; it ensures prefix/suffix balancing). Then an overall quotient expression can be
made from regular compositions of these context-free layers, leading to an inductive argument.
Furthermore, each layer can be discovered with two-thread reasoning: considering how each write,
treated atomically, impacts each other read-only/local path.
We describe how layer expressions can be conveniently represented as finite-state automata

(and further below also used for automation). The layer automaton for the Michael-Scott Queue is
shown in Fig. 1. We will discuss it in detail in Sec. 6.1 but, roughly, the states track whether the
queue is empty and whether the tail is lagging. The layer-labeled edges define the local/read-only
(unbold) control-flow paths and how they are impacted by the write path (bold). There are also
read-only layers, which we will describe later.

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

1:6 Constantin Enea and Eric Koskinen

4. Evaluation: Verifying Concurrent Objects. (Sec. 6) We consider a broad range of concurrent
objects including Treiber’s stack [Treiber 1986], the Michael and Scott [1996b] queue, the Scherer III
et al. [2006] synchronous reservation queue, the Herlihy and Wing [1990] queue, the ? elimination
stack, and the Restricted Double-Compare Single-Swap (RDCSS) [?]. Each object has its own
subtleties, including complications like multiple CAS steps and non-fixed linearization points. For
each object we (i) show that its behavior and linearizability can be captured through a quotient
and (ii) revisit the object’s authors’ correctness arguments. We find that quotients capture those
intuitive scenarios and make scenarios explicit and comprehensive.

5. Generating Candidate Quotient Expressions. (Sec. 7) Automating quotient-based proofs of
concurrent objects is a rather large question (perhaps warranting new forms of induction) which we
mostly leave to future work. Nonetheless, we present an algorithm and prototype implementation
Cion for generating candidate quotient expressions, directly from a concurrent object’s source code.
We manually confirmed that these expressions are sound abstractions of those objects’ quotients.
We applied Cion to layer-compatible objects such as Treiber’s Stack and the Michael/Scott Queue,
finding that candidate layer expressions can be discovered in a few minutes. We plan to release
Cion on GitHub. Benchmark sources and the tool output are in the supplementary materials.

2 PRELIMINARIES
Running example: A simple concurrent counter. Fig. 2 lists a concurrent counter with methods
for incrementing and decrementing. Both methods of the counter return the value of the counter
before modifying it, and the counter is decremented only if it is strictly positive.

1 int increment () {

2 while (true) {

3 int c = ctr;

4 if (CAS(ctr ,c,c+1))

5 return c;

6 }

7 }

8 int decrement () {

9 while (true) {

10 int c = ctr;

11 if (c == 0)

12 return 0;

13 if (CAS(ctr ,c,c-1))

14 return c;

15 }

16 }

Fig. 2. A concurrent counter.

Each method consists of a retry-loop that reads the shared vari-
able ctr representing the counter and tries to update it using a
Compare-And-Swap (CAS). A CAS atomically tests whether ctr
equals the second argument and if this is the case, then it assigns
the value specified by the third argument. If the test fails, then the
CAS has no effect. The return value of CAS represents the truth
value of the equality test. If the CAS is unsuccessful, i.e., it returns
false, then the method retries the same steps in another iteration.

The executions of the concurrent counter are interleavings of an
arbitrary number of increment or decrement invocations from an
arbitrary number of threads. Each invocation executes a number
of retry-loop iterations until reaching the return. An iteration
corresponds to a control-flow path that starts at the beginning of
the loop and ends with a return or goes back to the beginning.
For instance, the increment method consists of two possible iterations: #1. c = ctr; CAS(ctr, c,
c+1); return c, and #2. c = ctr; assume(ctr != c). Iteration #1 is called successful because it
contains a successful CAS, and the unsuccessful CAS in the iteration #2 is written as an assume
that blocks if the condition is not satisfied.

An invocation can executemore iterations if ctr is modified by another thread in between reading
it at line 3 or 10 and executing the CAS at line 4 or 13, respectively. Fig. 3 pictures an execution
with 3 increments that execute between 1 and 3 retry-loop iterations. The first iteration of threads
2 and 3 contains unsuccessful CASs because thread 1 executed a successful CAS and modified ctr,
and these invocations must retry, execute more iterations. Note that there are unboundedly many
such executions and, even with bounded threads, exponentially many interleavings.
Concurrent Object SyntaxWe model concurrent objects using Kleene Algebra with Tests [Kozen
1997] (KAT). Intuitively, a KAT represents the code of an object method using regular expressions
over symbols that represent conditionals (tests) or statements (actions).

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Scenario-based Proofs for Concurrent Objects 1:7

Fig. 3. The steps of an execution with three increment-only threads whose actions are aligned horizontally.
For readability, we rename the local variable c in thread 𝑖 to c𝑖 . The curved blue arrows depict data-flow
dependencies between reads/writes of ctr.

Definition 2.1. [Kleene Algebrawith Tests] AKATK is a two-sorted structure (Σ,B, +, · , ∗, , 0, 1),
where (Σ, +, · , ∗, 0, 1) is a Kleene algebra, (B, +, · , , 0, 1) is a Boolean algebra, and the latter is a
subalgebra of the former. There are two sets of symbols: A for primitive actions, and B for primitive
tests. The grammar of boolean test expressions is 𝐵𝐸𝑥𝑝 ::= 𝑏 ∈ B | 𝑏 · 𝑏 | 𝑏 + 𝑏 | 𝑏 | 0 | 1, and the
grammar of KAT expressions is 𝐾𝐸𝑥𝑝 ::= 𝑎 ∈ A | 𝑏 ∈ 𝐵𝐸𝑥𝑝 | 𝑘 · 𝑘 | 𝑘 + 𝑘 | 𝑘∗ | 0 | 1. For 𝑘1, 𝑘2 ∈ K ,
we write 𝑘1 ≤ 𝑘2 if 𝑘1 + 𝑘2 = 𝑘2, and we assume K is *-continuous [Kozen 1990].

The primitive actions and tests used in examples in this paper will be along the lines of A = {x :=
y, x.f := y, . . .} and B = {x = y, x.f = y, x = null, x.f = null . . .}.

Atomic read-write (ARW).We conservatively extend KATwith a syntactic notation ⟨⟨b·a⟩⟩, used to
indicate a condition 𝑏 and action 𝑎, between which no other actions can be interleaved. Apart from
restricting interleaving (defined below), this does not impact the semantics so it can be represented
with two special symbols “⟨⟨” and “⟩⟩” whose semantics are the identity relation. For example a
compare-and-swap cas(x,v,v’) can be represented as (⟨⟨[x=v] · x:=v’⟩⟩ · 𝑘) + ([x=v] · 𝑘 ′), where
[𝑥 = 𝑣] is a primitive test and the assignment is a primitive action. Overline indicates negation, as
in KAT notation. 𝑘 is the code to be executed when cas succeeds and 𝑘 ′ when it fails.
Methods of a concurrent object.We define amethod signature𝑚(®𝑥)/®𝑣 with a vector of arguments
®𝑥 and return values ®𝑣 (often a singleton 𝑣). For a vector ®𝑥 , 𝑥𝑖 denotes its 𝑖-th component. An
implementation of a method𝑚 is a KAT expression 𝑘𝑚 , whose actions may refer to argument values,
e.g., x := args𝑖 . A concurrent object 𝑂 is a set of methods 𝑂 = {𝑚1 (®𝑥1)/®𝑣1 : 𝑘𝑚1 , . . .}, associating
signatures with implementations. The set of method names in an object 𝑂 is denoted by Meth(𝑂).

Example 2.2. The counter from Sec. 2 is formalized as 𝑂𝑐𝑡𝑟 = {inc()/𝑣 : 𝑘𝑖𝑛𝑐 , dec()/𝑢 : 𝑘𝑑𝑒𝑐 }
𝑘𝑖𝑛𝑐 = (c:=ctr ·

(
(⟨⟨[c=ctr] · ctr:=c+1⟩⟩ · ret(c)) + ([c=ctr])

)
)∗

𝑘𝑑𝑒𝑐 = (c:=ctr ·
(
([c=0] ·ret(0)) + ([c=0] · ⟨⟨[c=ctr] · ctr:=c-1⟩⟩ ·ret(c)) + ([c=ctr])

)
)∗

The outer ∗ in 𝑘𝑖𝑛𝑐 corresponds to the while (true) loop in the method incrementwhile the inner
+ corresponds to the two branches of the conditional. The KAT expression 𝑘𝑖𝑛𝑐 represents every
control-flow path of increment which goes a number of times through the assignment c:=ctr
and the “false” branch of the conditional before succeeding the atomic read-write and returning
(other sequences represented by this regular expression, e.g., , iterating multiple times through the
atomic read-write and return will be excluded when defining the semantics).

Concurrent Object Semantics. A full semantics for these concurrent objects is given in Apx. A.
In brief, the semantics involves local states 𝜎𝑙 ∈ Σ𝑙𝑜 , shared states 𝜎𝑔 ∈ Σ𝑔𝑙 , and nondeterministic
thread-local transition relation 𝜎𝑙 , 𝜎𝑔, 𝑘 ↓ℓ 𝜎 ′𝑙 , 𝜎

′
𝑔, 𝑘
′, which optionally involve label ℓ (𝑘 and 𝑘 ′ are

KAT expressions representing code to be executed). These labels are taken from the set of possible
labels L ⊆ A ∪ B ∪ call𝑚(®𝑣) ∪ ret(®𝑣) ∪ ⟨⟨𝑏 · 𝑎⟩⟩ which includes primitive actions, primitive tests,
call actions, return actions or ARWs. (We here write call𝑚(®𝑣) with free variables to refer to the
set of all call actions and similar for returns and ARWs.) Next, a configuration 𝐶 = (𝜎𝑔,𝑇) where
𝑇 : T ⇀ (Σ𝑙𝑜 × (K ∪ {⊥})) comprises a shared state 𝜎𝑔 ∈ Σ𝑔𝑙 and a mapping for each active thread
to its local state and current code. We use T to denote the set of thread ids, which is equipped with

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

1:8 Constantin Enea and Eric Koskinen

a total order <. Configurations of an object transition according to the relation _ : C × (T ×L) ×C,
labeled with a thread id and a label.
An object 𝑂 is acted on by a finite environment E : T → 𝑂 × ®Val, specifying which threads

invoke which methods, with which argument values. Val denotes a set of values and ®Val denotes
the set of tuples of values. We assume that object methods can not access thread identifiers (which
is true for concurrent objects defined in the literature) and therefore, each invocation is assumed
to be executed by a different thread. An execution of 𝑂 in the environment E is a sequence of
labeled transitions between configurations 𝐶0

_
. . .

_
𝐶𝑛 that starts in the initial configuration 𝐶0

w.r.t. E and ends in configuration 𝐶𝑛 . A configuration 𝐶𝑓 = (𝜎𝑔 𝑓 ,𝑇 𝑓) is final iff 𝑇 𝑓 (𝑡) = (𝜎𝑙 ,⊥),
for some 𝜎𝑙 , for all 𝑡 ∈ dom(𝑇 𝑓). An execution is completed if it ends in a final configuration.
J𝑂 ⊗ EK denotes the set of completed executions of 𝑂 in the environment E. A trace 𝜏 ∈ Traces
is a sequence of T × L pairs, i.e., thread-indexed labels 𝑡0 : ℓ0, . . . , 𝑡𝑛 : ℓ𝑛 . A trace of an execution 𝜌
denoted 𝜏𝜌 is a projection of the thread-indexed labels out of the transitions in the execution.
The semantics J𝑂K of a concurrent object 𝑂 is defined as the set of traces under all possible

environments (i.e., for any number of threads invoking any methods with any inputs). Formally,
J𝑂K = {𝜏𝜌 | 𝜌 ∈ J𝑂 ⊗ EK, for some environment E}.
Linearizability For an object 𝑂 , an operation symbol (or operation for short) 𝑜 = 𝑚(®𝑢)/ ®𝑤
represents an invocation of a method𝑚 ∈ Meth(𝑂) with signature𝑚(®𝑥)/®𝑣 , where ®𝑢 is a vector of
values for the corresponding arguments ®𝑥 , and ®𝑤 is a vector of values for the corresponding returns
®𝑣 . A sequential specification 𝑆 for an object 𝑂 is a set of sequences over operation symbols.
For instance, the sequential specification for the counter object includes sequences of increments
and decrements corresponding to executions where each invocation executes in isolation, e.g.,
inc()/0 · inc()/1 · inc()/2 or inc()/0 · dec()/1 · dec()/0.

A trace 𝜏 of an object𝑂 is linearizable w.r.t. a specification 𝑆 if there exists a (linearization-point)
mapping 𝑙𝑝 (𝜏) : T → N where the label at position (index) 𝑙𝑝 (𝜏) in 𝜏 is considered to be the
so-called linearization point of 𝑡 ’s invocation, and must satisfy the following:

(1) the position 𝑙𝑝 (𝜏) is after 𝑡 ’s invocation label and before 𝑡 ’s return,
(2) the (linearization) sequence lin(𝜏, 𝑙𝑝) of operation symbols𝑚(®𝑢)/ ®𝑤 , where the 𝑖-th symbol

represents the invocation of the 𝑖-th thread 𝑡 w.r.t. the positions 𝑙𝑝 (𝜏, 𝑡), belongs to 𝑆 .
For example, Fig. 3 pictures a trace which is linearizable w.r.t. the counter specification described
above because there exists a linearization-point mapping 𝑙𝑝 which associates each thread 𝑖 with
the position of the 𝑖-th successful CAS. The linearization inc()/0 · inc()/1 · inc()/2 induced by
this mapping is admitted by the specification.
For simplicity, we omit invocation labels from traces and consider the first instruction in an

invocation to play the same role. Object 𝑂 is linearizable wrt a spec. 𝑆 if all traces in J𝑂K are
linearizable wrt 𝑆 .

3 OBJECT QUOTIENTS
To formalize scenarios, we introduce the concept of a quotient of an object which is a subset of its
traces that represents every other trace modulo reordering of commutative steps or renaming thread
ids. For an expert reader, the quotient is a partial order reduction [?] composed with a symmetry
reduction [?] of its set of traces. In general, an object may admit multiple quotients, but as we show
later, there exist quotients which can be finitely-represented using regular expressions or extensions
thereof. We interpret scenarios as components (sub-expressions) of these finite representations.

Two executions 𝜌1 and 𝜌2 are equivalent up to commutativity, denoted as 𝜌1 ≡ 𝜌2, if 𝜌2 can be
obtained from 𝜌1 (or vice-versa) by repeatedly swapping adjacent commutative steps. An execution
𝜌2 is obtained from 𝜌1 through one swap of adjacent commutative steps, denoted as 𝜌1 ≡1 𝜌2, if

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

Scenario-based Proofs for Concurrent Objects 1:9

𝜌1 = 𝐶
E
0 · · ·𝐶𝑖

(𝑡 :ℓ)
𝐶𝑖+1

(𝑡 ′:ℓ′)
𝐶𝑖+2 · · ·𝐶𝑛, and 𝜌2 = 𝐶E0 · · ·𝐶𝑖

(𝑡 ′:ℓ′)
𝐶 ′𝑖+1

(𝑡 :ℓ)
𝐶𝑖+2 · · ·𝐶𝑛

(𝜌2 is obtained from 𝜌1 by re-ordering the steps labeled by 𝑡 : ℓ and 𝑡 ′ : ℓ ′). When there exist
executions 𝜌1 and 𝜌2 as above, we say that the re-ordered labels ℓ and ℓ ′ are possibly commutative.

Definition 3.1. The equivalence relation ≡⊆ E × E between executions is the least reflexive-
transitive relation that includes ≡1.
The relation ≡ is extended to traces as expected: 𝜏1 ≡ 𝜏2 if 𝜏1 and 𝜏2 are traces of executions 𝜌1 and
𝜌2, respectively, and 𝜌1 ≡ 𝜌2.
For example, the Counter executions below are equivalent up to commutativity (related by ≡1):

𝜌 = 𝐶0 · · ·𝐶1
(𝑡 :[c𝑡 =ctr])

𝐶2
(𝑡 ′:c𝑡′:=ctr)

𝐶3 · · · and 𝜌 ′ = 𝐶0 · · ·𝐶1
(𝑡 ′:c𝑡′:=ctr)

𝐶 ′2
(𝑡 :[c𝑡 =ctr])

𝐶3 · · ·

assuming that ctr > 0 at configuration 𝐶1 (recall that [c𝑡=ctr] represents an unsuccessful CAS).

Definition 3.2. Two traces 𝜏1 and 𝜏2 are equivalent up to thread renaming, denoted as 𝜏1 ≃ 𝜏2, if
there is a bijection 𝛼 between thread ids in 𝜏1 and 𝜏2, resp., s.t. 𝜏2 is the trace obtained from 𝜏1 by
replacing every thread id label 𝑡 with 𝛼 (𝑡).

For example, 𝐶0
(𝑡 :𝑎)

𝐶1
(𝑡 ′:𝑏)

𝐶2 and 𝐶0
(𝑡 ′:𝑎)

𝐶1
(𝑡 :𝑏)

𝐶2 are equivalent up to thread renaming.
We define a quotient of an object as a subset of its traces that is complete in the sense that

it represents every other trace up to commutative reorderings or thread renaming, and that is
optimal in that sense that it does not contain two traces that are equivalent up to commutativity.
Optimality does not include equivalence up to thread renaming (symmetry reduction) because the
finite representations we define later abstract away thread ids.

Definition 3.3 (Quotient). A quotient of object 𝑂 is a set of traces ⟨⌊𝑂⌋⟩ ⊆ J𝑂K such that:
• ∀𝜏 ∈ J𝑂K. ∃𝜏 ′, 𝜏 ′′.𝜏 ≃ 𝜏 ′ ∧ 𝜏 ′ ≡ 𝜏 ′′ ∧ 𝜏 ′′ ∈ ⟨⌊𝑂⌋⟩ (completeness), and
• ∀𝜏, 𝜏 ′ ∈ ⟨⌊𝑂⌋⟩. 𝜏 . 𝜏 ′ (optimality)

Note that an object admits multiple quotients since representatives of equivalence classes w.r.t.
≡ can be chosen arbitrarily.

Example 3.4 (Quotient and representative/canonical traces for the Counter). The trace of three
increment-only threads from Fig. 3 represents many other traces of the Counter modulo commuta-
tive reorderings or thread renaming. It can be thought of as a sequence of three canonical phases,
depicted with stacked parallelograms as follows:

Each phase above groups together the retry-loop iterations that interact with each other: a single
successful CAS instruction causes the other attempts to fail. For instance, it represents another
trace where the first “cas fails” step occurs after the second successful CAS:

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

1:10 Constantin Enea and Eric Koskinen

This “late” CAS failure would also fail if moved to the left as shown above. Similarly, it also
represents traces where the action 𝑐2 = 0 is swapped with 𝑐3 = 0 and even 𝑐1 = 0, or traces where
thread ids change from 1, 2, 3 to 4, 5, 6 for instance.

One can define a quotient ⟨⌊𝑂𝑐𝑡𝑟 ⌋⟩ of Counter which includes representative traces of this form.
The representative traces only differ in the number of incrementers/decrementers and the order in
which they succeed their CASs. ⟨⌊𝑂𝑐𝑡𝑟 ⌋⟩will contain similar canonical traces for, say, an environment
with 4 incrementers, 2 decrementers acting in the sequence 𝑖𝑛𝑐𝑟 ; 𝑑𝑒𝑐𝑟 ; 𝑑𝑒𝑐𝑟 ; 𝑖𝑛𝑐𝑟 ; 𝑖𝑛𝑐𝑟 ; 𝑖𝑛𝑐𝑟
(wherein the second 𝑑𝑒𝑐𝑟 does nothing). See Example 4.3 for a more precise description.

Preserving Linearizability Through Commutative Reorderings. Our goal is to reduce the
problem of proving linearizability for all traces of an object to proving linearizability only for
traces in a quotient. Therefore, given two traces 𝜏 and 𝜏 ′ that are equivalent up to commutativity
(𝜏 ≡ 𝜏 ′), where for instance, 𝜏 would be part of a quotient, an important question is whether
the linearizability of 𝜏 implies the linearizability of 𝜏 ′. We show that this holds provided that the
reordering allowed by the equivalence ≡ is consistent with a commutativity relation between
operations in the specification.

Given a specification 𝑆 , two operations 𝑜1 and 𝑜2 are 𝑆-commutative when [1 · 𝑜1 · 𝑜2 · [2 ∈ 𝑆 iff
[1 · 𝑜2 · 𝑜1 · [2 ∈ 𝑆 , for every [1, [2 sequences of operations. A linearization point mapping 𝑙𝑝 (𝜏) of
a trace 𝜏 is robust against reorderings if for every two threads 𝑡1 and 𝑡2, if the linearization points
of 𝑡1 and 𝑡2 are possibly commutative labels, then the operations of 𝑡1 and 𝑡2 are 𝑆-commutative.

Theorem 3.5. Let 𝜏 ≡ 𝜏 ′ be two equivalent traces. If 𝜏 is linearizable w.r.t. some specification 𝑆 via
a linearization point mapping 𝑙𝑝 (𝜏) that is robust against reorderings, then 𝜏 ′ is linearizable w.r.t. 𝑆 .

The above holds by defining 𝑙𝑝 (𝜏 ′) by 𝑙𝑝 (𝜏 ′) (𝑡) = the index in 𝜏 ′ of the label 𝑙𝑝 (𝜏) (𝑡), for every 𝑡 .
Theorem 3.5 implies that proving linearizability for an object𝑂 reduces to proving linearizability

only for the traces in a quotient of 𝑂 , provided that the used linearization point mappings are
robust against reorderings (thread renaming does not affect this reduction because specifications
are agnostic to thread ids).

4 FINITE ABSTRACT REPRESENTATIONS OF QUOTIENTS
We define finite representations of sets of traces, quotients in particular, which resemble regular
expressions and which denote context-free languages over a finite alphabet. The finite alphabet
is obtained by projecting out thread ids from labels in a trace. As we show in the evaluation
section, scenarios in previous informal proofs correspond to components of these expressions, and
linearization points can be identified directly within such expressions.

Let Abs be the set of expressions expr defined by the following grammar

expr = 𝜔 | 𝜔𝑛
1 · expr · 𝜔𝑛

2 | expr∗ | expr + expr | expr · expr

such that𝜔,𝜔1, 𝜔2 ∈ (A∪B∪ ⟨⟨𝑏 ·𝑎⟩⟩)∗ are finite sequences of labels, and for every application of the
production rule 𝜔𝑛

1 · expr · 𝜔𝑛
2 , 𝑛 is a fresh variable not occurring in expr (this ensures context-free

abstractions). Therefore, for every expression in Abs, a variable 𝑛 is used exactly twice.
Such expressions have a natural interpretation as context-free languages by interpreting ∗, +,

and · as the Kleene star, union, and concatenation in regular expressions, and interpreting every
𝜔𝑛
1 · expr · 𝜔𝑛

2 as sequences 𝜔1, . . . , 𝜔1 · JexprK · 𝜔2, . . . , 𝜔2 where the number of 𝜔1 repetitions on
the left of expr’s interpretation, denoted as JexprK, equals the number of 𝜔2 repetitions on the right.
We define an interpretation JexprK of expressions expr as sets of traces, which differs from the

above only in the interpretation of 𝜔 , 𝜔∗, and 𝜔𝑛
1 · expr · 𝜔𝑛

2 , for finite sequences of labels 𝜔,𝜔1, 𝜔2.

Definition 4.1 (Interpretation of an expression). For an expression expr,

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

Scenario-based Proofs for Concurrent Objects 1:11

ctr=0 ctr>0

Read-Only Layer 1

(See definition of Layer 4 to the right)

Layer 2 Layer 3

Layer 4

Layer 4

<latexit sha1_base64="SH7fwXa2DwfdxAhTgzpYnLVwtko=">AAACZHicbVFba9RAGJ3ES2usmlp8EmRoV9gVXBLBKxSKvgi+VHDbws66TL582R06mYSZL+IS8nP8Q775JL7o33D2ImjrgYHDOd9l5kxWa+UoSb4F4ZWr165vbd+Ibu7cun0n3r174qrGAo6g0pU9y6RDrQyOSJHGs9qiLDONp9n5m6V/+gmtU5X5QIsaJ6WcGVUokOSladz2epHIcKZMK62Vi66FLnq8BhciEhoL6gvCz0TU9uHVIZAddFxAXhEf/zHgMOkmG3GluaK1SF0/GQirZnMafHzEZSTQ5Js9Ua83jQ+SYbICv0zSDTk4epd8+b7/8tfxNP4q8gqaEg2Bls6N06SmiR9ICjR2kWgc1hLO5QzHnhpZopu0q5A6/tArOS8q648hvlL/7mhl6dyizHxlKWnuLnpL8X/euKHixaRVpm4IDawXFY3mVPFl4jxXFoH0whMJVvm7cphLK4H8v0Q+hPTiky+TkyfD9Nnw6Xufxmu2xja7z/ZZn6XsOTtib9kxGzFgP4KtIA52g5/hTrgX3luXhsGmZ4/9g/DBb6t8uHw=</latexit>

�������
((c:=ctr) · [c=0] · ret(0))

⇤
a

<latexit sha1_base64="gZJ/eHRzu/FLiEQTMvffgjc8XRk=">AAADdHicfVLLjtMwFHVTHkN4dWDBAhYe2pFaDVQNEg8hIY1gw4LFINGZkepQOY7TWmM7kX2DqKL8AJ/HCn6APRvWuElb+gCuZOno3nN8fY4cZVJYGAy+N7zmpctXru5d86/fuHnrdmv/zqlNc8P4kKUyNecRtVwKzYcgQPLzzHCqIsnPoos38/nZJ26sSPUHmGU8VHSiRSIYBdca7ze+dDo+ifhE6IIaQ2dlwUr/cV2YEJ9InkC3S4B/BoCCvXzFwJS9cSE0K4kRkyn0Pha6xITFKeB/0mO+RlcrOhkFSoX+jmB5G9UTycnBAoxWtIoVVqxVD4wTHwVuzVJVg+WuOc8mheFQ/tlX9vBiTlevqU2Q1AU3z7XYXltu2lEb3v8rWw9NY59wHS9i9zudcas96A+qwrsgWID2cfjjHf0WPToZt76SOGW54hqYpNaOgkEGobsQBJO89ElueUbZBZ3wkYOaKm7Dovo0JT50nRgnqXFHA66664qCKmtnKnJMRWFqt2fz5t9moxySF6FzmuXAnd1qUZJLDCme/0AcC8MZyJkDlBnh3orZlBrKwP1T34UQbFveBadP+sGz/tP3Lo3XqK49dB89RF0UoOfoGL1FJ2iIWOOnd8/D3oH3q/mg2W4e1lSvsdDcRRvV7P8GzWwicw==</latexit>

�������
((c:=ctr)inc)

n · ((c:=ctr)dec)
m ·

(c:=ctr) · hh[c=ctr] · ctr:=c+1ii · ret(c) · a⇣
[c=ctr]dec

⌘m

·
⇣
[c=ctr]inc

⌘n

<latexit sha1_base64="2yaf4K/+BO3naCCu/ywHTGOa27Q=">AAADdHicfVLLjtMwFHVTHkN4dWDBAhYe2pFaaaZqkHgICWkEGxYsBonOjFSHynGc1BrbiewbRBXlB/g8VvAD7Nmwxk0f9AFcydLRvef4+hw5yqWwMBh8b3jNK1evXd+74d+8dfvO3db+vTObFYbxIctkZi4iarkUmg9BgOQXueFURZKfR5dvZvPzT9xYkekPMM15qGiqRSIYBdca7ze+dDo+iXgqdEmNodOqZJV/PC9MiE8kT6DbJcA/A0DJXr5iYKreuBSaVcSIdAK9j6WuMGFxBvif9Jiv0dWKTkaBUqG/I1jeRnUqOTlYgNGKVrPCmrXqgXHi48CtWarmYLlrxrNJaThUf/ZVPbyY09Vr5iZI5oKb5Vpur6027agN7/+VrYemsU+4jhex+53OuNUe9Ad14V0QLED7JPzxjn6Ljk7Hra8kzlihuAYmqbWjYJBD6C4EwSSvfFJYnlN2SVM+clBTxW1Y1p+mwoeuE+MkM+5owHV3XVFSZe1URY6pKEzs9mzW/NtsVEDyInRO8wK4s1svSgqJIcOzH4hjYTgDOXWAMiPcWzGbUEMZuH/quxCCbcu74OxJP3jWf/repfEazWsPPUSPURcF6Dk6QW/RKRoi1vjpPfCwd+D9aj5qtpuHc6rXWGjuo41q9n8D0egidQ==</latexit>

�������
((c:=ctr)inc)

n · ((c:=ctr)dec)
m ·

(c:=ctr) · hh[c=ctr] · ctr:=c-1ii · ret(c) · a⇣
[c=ctr]dec

⌘m

·
⇣
[c=ctr]inc

⌘n

<latexit sha1_base64="YfBA19mqwlvAopL2DPkMjrtskBI=">AAADDnicbVLLjtMwFHXCawivDizZGKZIrWCqBomHkJBGsGHBYpDozEh1qBz3prXGcSL7BlFF+QI2/AobFiDEljUr+AG+AzfJFKblSpGO7jnH1+fGca6kxeHwl+efOXvu/IWti8Gly1euXutsXz+wWWEEjESmMnMUcwtKahihRAVHuQGexgoO4+PnS/7wLRgrM/0aFzlEKZ9pmUjB0bUm21632w1YDDOpS24MX1SlqILdpihjAVOQYK/HEN4hYimePBVoqv6klFpUzMjZHPtvSl1RJqYZOsc4TNMo2DC0tOJ6poDdasF4JatVUa1a9dA4893QjTlxNeBk1lJnk9IAVn/nVX3a8nx1myYEy9wmlosq18dWp+NoGjDQ03YhQbc76ewMB8O66CYIW7CzF/1+yX/G9/YnnR9smokiBY1CcWvH4TDHyB2IUiioAlZYyLk45jMYO6h5CjYq699Z0TuuM6VJZtynkdbdfx0lT61dpLFTphzndp1bNv/HjQtMHkcuaV4guLj1oKRQFDO6fBt0Kg0IVAsHuDDS3ZWKOTdcoHtBgVtCuB55ExzcH4QPBw9euW08I01tkZvkNumRkDwie+QF2ScjIrz33kfvs/fF/+B/8r/63xqp77WeG+RU+d//AEU0/c4=</latexit>

�������
((c:=ctr)inc)

n ·
(c:=ctr) · hh[c=ctr] · ctr:=c+1ii · ret(c) · a⇣

[c=ctr]inc

⌘n

Fig. 4. An expression representing a quotient of the Counter. For readability we present it as four sub-
expressions called “layers” whose composition with regular expression operators (concatenation, union, star)
is represented using an automaton (all states are accepting). We subscript the primitives to indicate whether
they were from increment-vs-decrement. Layer 1 represents decrements acting alone and finding the counter
to be 0, Layer 2 corresponds to the first successful increment, Layer 3 and Layer 4 represent successful
increments and decrements. For Layers 2 – 4, some number 𝑥 of threads begin to read then a single different
thread performs its complete write path, and then all 𝑥 threads fail their CAS instructions.

• J𝜔K = {𝑡 : 𝜔 | 𝑡 ∈ T }, where 𝑡 : 𝜔 means that all the labels in 𝜔 are associated with the
same thread id 𝑡 ,
• J𝜔∗K = {𝑡0 : 𝜔, . . . , 𝑡𝑘 : 𝜔 | 𝑘 ∈ N, 𝑡0 < . . . < 𝑡𝑘 }, sequences of labels associated with
increasing thread ids,
• J𝜔𝑛

1 · expr · 𝜔𝑛
2 K = {𝑡0 : 𝜔1, . . . , 𝑡𝑘 : 𝜔1, JexprK, 𝑡𝑘 : 𝜔2, . . . , 𝑡0 : 𝜔2 | 𝑘 ∈ N, 𝑡0 < . . . < 𝑡𝑘 },

sequences of labels where the same sequence of increasing thread ids is associated to 𝜔1
and 𝜔2 repetitions (in reverse order), respectively.
• Jexpr∗K = JexprK, . . . , JexprK, sequences of repetitions of JexprK
• Jexpr1 + expr2K = Jexpr1K ∪ Jexpr2K, union of interpretations
• Jexpr1 · expr2K = Jexpr1K, Jexpr2K, concatenation of interpretations

For example, in the first case of Def. 4.1, {(𝑡 : x:=v), (𝑡 : x++)} ∈ Jx:=v · x++K. For an expression
(x:=r𝑛 · y:=s𝑚 · skip · s:=y+1𝑚 · r:=x+1𝑛), its interpretation includes traces such as

(𝑡1 : x:=r), (𝑡2 : x:=r), (𝑡3 : y:=s), (𝑡4 : skip), (𝑡3 : s:=y+1), (𝑡2 : r:=x+1), (𝑡1 : r:=x+1)

Definition 4.2 (Abstractions of quotients). An expression expr ∈ Abs is called an abstraction of
an object quotient ⟨⌊𝑂⌋⟩ if ⟨⌊𝑂⌋⟩ ⊆ JexprK.

Example 4.3 (Abstraction of a quotient of the Counter). An expression representing a quotient of
the counter is given in Figure 4. The following trace is in the interpretation of this expression (for
readability, we split the trace across lines, with segments labeled by layer names):

Layer 2 : 𝑡2 : (𝑐 := 𝑐𝑡𝑟) ·𝑡3 : (𝑐 := 𝑐𝑡𝑟) · (𝑡1 : (𝑐 := 𝑐𝑡𝑟) ·𝑡1 : ⟨⟨[𝑐 = 𝑐𝑡𝑟] · 𝑐𝑡𝑟 := 𝑐 + 1⟩⟩ ·𝑡1 : ret(0)) ·
𝑡3 : [𝑐 = 𝑐𝑡𝑟] ·𝑡2 : [𝑐 = 𝑐𝑡𝑟] ·

Layer 3 : 𝑡3 : (𝑐 := 𝑐𝑡𝑟) · 𝑡2 : (𝑐 := 𝑐𝑡𝑟) · 𝑡2 : ⟨⟨[𝑐 = 𝑐𝑡𝑟] · 𝑐𝑡𝑟 := 𝑐 + 1⟩⟩ · 𝑡2 : ret(1) · 𝑡3 : [𝑐 = 𝑐𝑡𝑟] ·
Layer 3 : 𝑡3 : (𝑐 := 𝑐𝑡𝑟) · 𝑡3 : ⟨⟨[𝑐 = 𝑐𝑡𝑟] · 𝑐𝑡𝑟 := 𝑐 + 1⟩⟩ · 𝑡3 : ret(2)

Linearizability. Each layer corresponds to linearizing a single effectful invocation, i.e., an increment
invocation or a decrement invocation when the counter is non-zero, or an arbitrary number of
read-only invocations, i.e., decrement invocations when the counter is zero.

5 LAYERS: AN INDUCTIVE QUOTIENT LANGUAGE
We show that, for a broad class of objects, we can provide a subclass of quotient abstraction
expressions—that we will call layer expressions—which, via an inductive argument, reduce reasoning

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

1:12 Constantin Enea and Eric Koskinen

to two-threads. This applies to numerous canonical examples such as Treiber Stack, the Michael-
Scott Queue, a linked-list Set, and even the SLS Reservation Queue. For illustrative purposes, we
will continue to use the concurrent Counter, whose quotient can also be expressed with layers.

Many lock-free3 objects rely on a form of optimistic concurrency control where an operation
repeatedly reads the shared-memory state in order to prepare an update that reflects the specification
and tries to apply a possible update using an atomic read-write. The condition of the atomic read-
write checks for possible interference from other threads since reading the shared-memory state.
The executions of such objects can be seen as sequences of what we call “layers,” each one being
a triple consisting of (i) many threads all performing commutative local (e.g., read) actions, (ii) a
single non-commutative atomic read-write ARW on the shared state, and (iii) those same initial
threads reacting to the ARW with more local commutative actions. For example, incrementing the
counter involves a successful cas operation on the shared variable, which leads to other threads’
old reads to go down a failure/restart path. In fact, with this layer language one can consider an
arbitrary number of control-flow paths executed by an arbitrary number of threads where at most
one can contain an atomic read-write. In the remainder of this section we discuss this in detail and
then discuss automated discover of layers in Sec. 7.

5.1 Local-vs-Write Paths
For an implementation call 𝑚(®𝑥) · 𝑘𝑚 ∈ K of a method𝑚(®𝑥)/®𝑣 , a full (control-flow) path of 𝑘𝑚
is a KAT expression 𝑘 such that 𝑘 ≤ 𝑘𝑚 and 𝑘 contains only primitive actions, tests or ARWs,
composed together with · (𝑘 contains no + or ∗ constructor). In a representation with control-flow
graphs of 𝑚’s code, 𝑘 corresponds to a path from the entry point to the exit point. A path is
any contiguous subsequence 𝑘 ′ of a full path 𝑘 , i.e., there exists (possibly empty) 𝑘1 and 𝑘2 such
that 𝑘 = 𝑘1 · 𝑘 ′ · 𝑘2. The set of paths of method𝑚 is denoted by Π(𝑚), and as a straightforward
extension, the set of paths of an object 𝑂 defined by a set of methods𝑚𝑖 with 1 ≤ 𝑖 ≤ 𝑛 is defined
as Π(𝑂) = ⋃

1≤𝑖≤𝑛 Π(𝑚𝑖). Π𝑓 (𝑂) denotes the subset of full paths in Π(𝑂).
A primitive action is called local when it cannot affect actions or tests executed by another thread

(atomic read-writes included), e.g., it represents a read of a shared variable or it reads/writes a
memory region that has been allocated but not yet connected to a shared data structure (this region
is still owned by the thread). Formally, let J𝑎K : (Σ𝑙𝑜 × Σ𝑔𝑙) → (Σ𝑙𝑜 × Σ𝑔𝑙) and J𝑏K : (Σ𝑙𝑜 × Σ𝑔𝑙) →
{true, false} denote the functions defining the semantics of actions 𝑎 ∈ A and tests 𝑏 ∈ B. Then,
an action 𝑎 ∈ A is local iff for every (𝜎 ′

𝑙
, 𝜎 ′𝑔) = J𝑎K(𝜎𝑙 , 𝜎𝑔) and every 𝑠 ∈ A ∪ B that occurs in some

method implementation, J𝑠K(𝜎 ′′
𝑙
, 𝜎𝑔) = J𝑠K(𝜎 ′′

𝑙
, 𝜎 ′𝑔), for every local state 𝜎 ′′

𝑙
.

A path is called local if it contains only local actions, and a write path, otherwise. Given a KAT
expression 𝑘 ′ that represents a path, we use first (𝑘 ′) and last (𝑘 ′) to denote the first and the last
action or test in 𝑘 ′, respectively.

Example 5.1. Returning to the counter object 𝑂𝑐𝑡𝑟 , the full paths are as follows:
(c:=ctr) · [c=ctr] (c:=ctr) · [c=0] · ret(0)
(c:=ctr) · ⟨⟨[c=ctr] · ctr:=c+1⟩⟩ · ret(c) (c:=ctr) · [c=ctr]

(c:=ctr) · ⟨⟨[c=ctr] · ctr:=c-1⟩⟩ · ret(c)
The first two paths are from 𝑘𝑖𝑛𝑐 and the last three are from 𝑘𝑑𝑒𝑐 . Paths without ARWs consist of
only local actions, that may read global ctr, but they do not mutate any global variables.

5.2 The Language of Layers
We now define layer expressions and discuss how they represent an object’s quotient.
3Lock-freedom requires that at least one thread makes progress, if threads are run sufficiently long. A slow/halted thread
may not block others, unlike when using locks.

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

Scenario-based Proofs for Concurrent Objects 1:13

Definition 5.2 (Basic Layer Expressions). A basic layer expression _ has one of two forms:
• local layer : (𝑘𝑙)∗ where 𝑘𝑙 is a local path in Π(𝑂).
• write layer :

(
(←−𝑘 1)𝑛1 · (←−𝑘 2)𝑛2 · · · (←−𝑘 𝑁)𝑛𝑁

)
· 𝑘𝑤 ·

(
(−→𝑘 𝑁)𝑛𝑁 · (−→𝑘 𝑁−1)𝑛𝑁−1 · · · (−→𝑘 1)𝑛1

)
, where

(1) 𝑘𝑤 is a write path in Π(𝑂),
(2) for each 𝑗 ∈ [1, 𝑁],←−𝑘 𝑗 ·

−→
𝑘 𝑗 is a local path in Π(𝑂) and the prefix and suffix are each

repeated 𝑛 𝑗 times,
(3) last (←−𝑘 𝑗) and first (−→𝑘 𝑗) do not commute with respect to the ARW in 𝑘𝑤 .

The first type, local layers, represent unboundedly many threads executing a local path 𝑘𝑙 . Since
each instance of the path is local, they all commute with each other, so the interpretation puts them
into a single, canonical order which follows the increasing order between their thread ids (by the
interpretation of ∗ in quotient expressions; see Def. 4.1).
The second type, write layers, represents an interleaving where threads execute 𝑛 𝑗 read-only

prefix
←−
𝑘 𝑗 of paths (in a canonical, serial order), then a different thread executes a non-local path

𝑘𝑤 , and then 𝑛 𝑗 corresponding suffixes
−→
𝑘 𝑗 occur, finishing their iteration reacting to the write of

𝑘𝑤 . Again, the interpretation J_K of a write layer associates these KAT action labels with increasing
thread ids. Prefixes and suffixes of local paths can be assumed to execute serially as in the first
type of layer. The non-commutativity constraint ensures that such an interleaving is “meaningful”,
i.e., it is not equivalent to one in which complete paths are executed serially.

A layer expression is a collection of basic layer expressions, combined in a regular way via ·, +,
or ∗ (defined in Sec. 4). That is, a layer expression represents complete traces as sequences of layers.

Example 5.3. The expression given in Fig. 4 representing a quotient of the Counter is a layer
expression. It combines a single read-only layer with other three write layers.

Support of a layer. The support of a basic layer expression _, denoted by supp(_), is defined as a
set of KAT expressions where a single prefix/suffix local path is concretized to a single occurrence,
and interleaved with the write path. Intuitively, the support of a write layer characterizes all of the
pair-wise interference by representing interleavings of two paths executed by different threads.

Definition 5.4. For basic layer expression _, supp(_) is defined as:
• If _ is a local layer _ = (𝑘𝑙)∗, then supp(_) = {𝑘𝑙 }.
• If _ is awrite layer _ =

(
(←−𝑘 1)𝑛1 · (←−𝑘 2)𝑛2 · · · (←−𝑘 𝑁)𝑛𝑁

)
·𝑘𝑤 ·

(
(−→𝑘 𝑁)𝑛𝑁 · (−→𝑘 𝑁−1)𝑛𝑁−1 · · · (−→𝑘 1)𝑛1

)
,

then supp(_) = {←−𝑘 𝑗 · 𝑘𝑤 ·
−→
𝑘 𝑗 | 𝑗 ∈ [1, 𝑛]}.

Example 5.5. For Layer 3 in Fig. 4 involving the increment write path 𝑘𝑤 = (c:=ctr) · ⟨⟨[c=ctr] ·
ctr:=c+1⟩⟩ · ret(c), supp(Layer 3) = {(c:=ctr)𝑖𝑛𝑐 · 𝑘𝑤 · [c=ctr]𝑖𝑛𝑐 , (c:=ctr)𝑑𝑒𝑐 · 𝑘𝑤 · [c=ctr]𝑑𝑒𝑐 }.
Here there are only two elements of the support, the first being a local path through increment and
the second being a local path through decrement.

The paths Π(_) of a basic layer expression _ are defined from its support: (1) if _ is a local layer,
then Π(_) = supp(_), and (2) if _ is a write layer, then {𝑘𝑤,

←−
𝑘 𝑗 ·
−→
𝑘 𝑗 } ⊆ Π(_) iff←−𝑘 𝑗 · 𝑘𝑤 ·

−→
𝑘 𝑗 is

included in supp(_). The paths Π(expr) of a layer expression expr is obtained as the union of Π(_)
for every basic layer expression _ in expr.

5.3 Proof Methodology with Two-Thread Reasoning
Recall that layer expressions represent languages of traces sowe now askwhether a given expression
is an abstraction of an object’s quotient (Def. 4.2). That is: whether each execution 𝜌 of an object is
equivalent to some execution 𝜌 ′ ≡ 𝜌 , where the trace of 𝜌 ′ is in the interpretation of the expression.

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

1:14 Constantin Enea and Eric Koskinen

Interestingly, this can be done by considering only two threads at a time, since local paths do
not affect the feasibility of a trace. Therefore, it is sufficient to focus on interleavings between
a single local or write path 𝑘 (on a first thread) and a sequence ®𝑘𝑤 of (possibly different) write
paths (on a second thread), and show that they can be reordered as a sequence of layers, i.e., 𝑘
executes in isolation if it is a write path, and interleaved with at most one other write path in ®𝑘𝑤 ,
otherwise (it is a local path). Applying such a reordering for each path 𝑘 while ignoring other
local paths makes it possible to group paths into layers. The reordering must preserve a stronger
notion of equivalence defined as follows: two executions 𝜌 and 𝜌 ′ are strongly equivalent if they
are ≡-equivalent, they start and resp., end in the same configuration, and they go through the same
sequence of shared states modulo stuttering. This notion of equivalence guarantees that any local
path enabled in the context of an arbitrary interleaving between 𝑘 and ®𝑘𝑤 remains enabled in the
context of an interleaving where for instance, 𝑘 executes in isolation. A more detailed proof for the
following theorem is given in Apx. B.

Theorem 5.6. Let 𝑂 be an object defined by a set of methods𝑚𝑖 with implementations call𝑚𝑖 (®𝑥) ·
𝑘𝑚𝑖
∈ K . A layer expression expr = (_1 + . . . + _𝑛)∗ is an abstraction of a quotient of 𝑂 if
• the layers cover all statements in the implementation: Π(expr) ⊆ Π(𝑂) and for each primitive
action, test or ARW 𝑘𝑝 in 𝑘𝑚𝑖

for some 𝑖 , there exists a path in Π(expr) which contains 𝑘𝑝 ,
• for every path 𝑘 ∈ Π(expr) and every execution 𝜌 of 𝑂 starting in a reachable configuration
that represents4 an interleaving 𝑘 | | ®𝑘𝑤 , where ®𝑘𝑤 is a sequence of write paths in Π(expr),
– Write Path Condition (WPC): if 𝑘 is a write path, there is an exec. 𝜌 ′ of𝑂 s.t. 𝜌 ′ is strongly

equivalent to 𝜌 , and 𝜌 ′ represents a write path sequence ®𝑘1𝑤 · 𝑘 · ®𝑘2𝑤 where ®𝑘𝑤 = ®𝑘1𝑤 · ®𝑘2𝑤 ,
– Local Path Condition (LPC): if 𝑘 is a local path, there exists an execution 𝜌 ′ of𝑂 such that
𝜌 ′ is strongly equivalent to 𝜌 and
∗ 𝜌 ′ represents a path sequence ®𝑘1𝑤 ·𝑘 · ®𝑘2𝑤 where ®𝑘𝑤 = ®𝑘1𝑤 · ®𝑘2𝑤 (𝑘 executes in isolation)
and 𝑘 is the support of a local layer _ 𝑗 , 1 ≤ 𝑗 ≤ 𝑛, or
∗ a sequence ®𝑘1𝑤 · 𝑘1𝑙 · 𝑘𝑤 · 𝑘

2
𝑙
· ®𝑘2𝑤 where ®𝑘𝑤 = ®𝑘1𝑤 · 𝑘𝑤 · ®𝑘2𝑤 and 𝑘𝑤 is a write path (𝑘

interleaves with a single write path 𝑘𝑤), and 𝑘1𝑙 · 𝑘𝑤 · 𝑘
2
𝑙
∈ supp(_ 𝑗) for some write

layer _ 𝑗 , 1 ≤ 𝑗 ≤ 𝑛.
Example 5.7 (Counter layers via two-thread reasoning). We now proceed to show that the starred

union of the basic layer expressions defined in Fig. 4 is an abstraction of a quotient. Concerning
WPC, a write path is of the form (c:=ctr) · ⟨⟨[c=ctr] · ctr:=c+1⟩⟩ · ret(c). Such paths can be
reordered to execute in isolation because the ARW is enabled only if the counter did not change
its value since the read, and therefore, the read c:=ctr can be reordered after any step of another
thread that may occur until the ARW. Also, the return action is local and can be reordered to occur
immediately after the ARW. LPC holds because any “late” CAS failure (that occurs after more than
one successful CAS) would also fail if moved to the left (as explained in Example 3.4).

Layer Automata. The “simple” starred union composition of layers in Theorem 5.6 can be refined
further using standard reachability analyses. For instance, as shown in Figure 4 for the Counter,
the read-only “decrement returning 0” layer cannot occur after one successful increment layer. We
represent such constraints on the order in which layers can occur using automata. Another example
of such an automatonwas seen for theMichael-Scott queue in Fig. 1 in Sec. 1. A formalization of these

4An execution 𝜌 represents an interleaving 𝑘 | | ®𝑘𝑤 if it interleaves two sequences of steps labeled with symbols in 𝑘 and
®𝑘𝑤 , respectively (in the same order). An execution 𝜌 represents a path sequence ®𝑘 when it is a sequence of steps labeled
with symbols in ®𝑘 (in the same order).

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

Scenario-based Proofs for Concurrent Objects 1:15

layer automata can be found in Apx. C. Briefly, the control states correspond to the configurations
of the objects (e.g., , whether the MSQ is empty, tail is lagged, etc.), and the transitions are labeled
by basic layer expressions (e.g., , the “Dequeue Succeed Layer” from Fig. 1, in which one thread
succeeds a CAS on the head pointer and other threads fail their CAS). Sec. 7 presents a prototype
implementation capable of generating candidate layer quotients, represented as layer automata.

6 EVALUATION: VERIFYING CONCURRENT OBJECTS
As discussed in Sec. 1, our goal is to provide a formal foundation for the scenario-based linearizability
correctness arguments found in the distributed computing literature. To evaluate whether quotients
serve that purpose, we examined several diverse and challenging concurrent objects, listed below.

Concurrent Object Quotient Features
Atomic counter Sec. 2 simple cas loop
Michael and Scott [1996a] queue Sec. 6.1 many cas, cleanup helping
Scherer III et al. [2006] queue Sec. 6.2 synchronous, mult. writes, LP helping
[Treiber 1986]’s stack Apx. I simple cas loop
? stack Sec. 6.3 elimination, submodule, LP helping
? RDCSS Sec. 6.4 mult. cas steps, phases
Herlihy and Wing [1990] queue Sec. 6.5 future-dependent LPs
O’Hearn et al. [2010] set Apx. L lock-free traversal

For each object, we (i) determine whether quotients can be used for verification and (ii) revisit the
scenario-based correctness arguments given by the object’s authors and compare those arguments
to the quotient. We discuss the quotients of many in this section (with bold Sec 6._ in the Quotient
column), with further detail in Apx. G–N.
Results summary. As we show, all above algorithms can be captured with quotient expressions.

These expressions (i) capture the diverse features/complexities of these algorithms (per the Features
column), (ii) provide a succinct, formal foundation for the scenario-based arguments used by those
objects’ authors, (iii) organize unbounded interleavings into a form more amenable to reasoning,
(iv) make explicit the relationship between implementation-level contention/interference and
ADT-level transitions, and (v) provide a scenario proof for HWQ which did not have scenario
arguments.

6.1 The Michael/ScottQueue
Recall the implementation of MSQ, stored as a linked list from global pointers Q.head and Q.tail,
and manipulated as follows. (Some local variable definitions omitted for lack of space.)

1 int enq(int v){ loop {

2 node_t *node =...;

3 node ->val=v;

4 tail=Q.tail;

5 next=tail ->next;

6 if (Q.tail==tail) {

7 if (next==null) {

8 if (CAS(&tail ->next ,

9 next ,node))

10 ret 1;

11 } } } }

1 int deq(){ loop {

2 int pval;

3 head=Q.head;tail=Q.tail;

4 next=head ->next;

5 if (Q.head==head) {

6 if (head==tail) {

7 if (next==null) ret 0;

8 } else {

9 pval=next ->val;

10 if (CAS(&Q->head ,

11 head ,next))

12 ret pval;

13 } } } } }

Factored out
tail advancement:
(see notes below)

1 adv(){ loop {

2 tail=Q.tail;

3 next=tail ->next;

4 if (next!=null){

5 if (CAS(&Q->tail ,

6 tail ,next))

7 ret 0;

8 }

9 } }

Values are stored in the nodes between Q.head and Q.tail, with enq adding new elements
to the Q.tail, and deq removing elements from Q.head. During a successful CAS in enq, the
Q.tail->next pointer is changed from null to the new node. However, this new item cannot be

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

1:16 Constantin Enea and Eric Koskinen

dequeued until adv advances Q.tail forward to point to the new node. A deq on an empty list
(when Q.head=Q.tail) returns immediately. Otherwise, deq attempts to advance Q.head and, if
success, returns the value in the now-omitted node. The original MSQ implementation includes the
adv CAS inside enq and deq iterations. We have done this for expository purposes and it is not
necessary. As we will see in Sec. 6.2, the SLS queue performs this tail (and head) advancing directly
in the enqueue/dequeue method implementation.

The layer automaton that abstracts a quotient of MSQ is shown in Fig. 1 (details in Apx. G). The
states track whether Q.tail=Q.head and whether Q.tail->next=null, in rounded dark boxes.
Edges are labeled with layers, defined to the right in Fig. 1. These three layers characterize three
forms of interference: The Dequeue Succeed layer occurs when a dequeue thread successfully
advances the Q.head pointer, causing concurrent dequeue CAS attempts to fail, as well as dequeue
threads checking on Line 5 whether Q.head has changed. (We abbreviate local paths using line
numbers rather than KAT expressions.) The Advancer Succeed layer occurs when an advancer
moves forward the Q.tail pointer, causing concurrent advancer CAS attempts to fail, and causing
concurrent enq threads to find Q.tail changed on Line 6. The Enqueue Succeed layer occurs when
an enq thread successfully advances the Q.tail pointer, causing concurrent enq threads to fail.

Theorem 6.1. The Michael-Scott Queue is linearizable.
Proof: Linearization points (LPs) are the successful CAS operations in the {Dequeue,Advancer,Enqueue}
Succeed Layers (also in bold in the Fig. 1 layer definitions), as well as the the first (or any) action in
the Read-Only layers. Per Thm. G.1, the quotient expression (layer automaton) is an abstraction of
the quotient and thus we have given LPs for all executions of the MSQ.
Comparison with the authors’ proof.We evaluated the quotient by comparing with the cor-
rectness arguments from Herlihy and Shavit [2008b]. For lack of space, the following table gives
example elements of the correctness argument/proof fromHerlihy and Shavit [2008b], and identifies
where they occur in the quotient proof (see Apx. N for more details).
Proof Element Herlihy and Shavit [2008b] Quotient Proof
ADT states “queue is nonempty,” “tail is lagged” ADT states, e.g. (Q.tail=Q.head

∧ Q.tail->next ≠ null)
Concurrent threads “some other thread” Superscripting (...)𝑛
Event order “only then” Arcs in the quo automaton
Thread-local step seq. “reads tail, and finds the node that appears

to be last (Lines 12–13)”
Layer paths, e.g., enq:2-6

Linearization pts. “If this method returns a value, then its lin-
earization point occurs when it completes
a successful [CAS] call at Line 38, and oth-
erwise it is linearized at Line 33.”

The successful CAS in the De-
queue Succeed Layer or Read-Only
Layer 1

The layer quotient and, especially, the layer automaton helps make the Herlihy and Shavit [2008b]
proof more explicit, without sacrificing the organization of the proof, for a few reasons. First, all of
the important ADT states are explicitly identified. Second, it can be determined, from each of them,
which layers are enabled as well as the target ADT states that are reached after each such layer
transition. This ensures that all cases are considered. Finally, linearization points are explicit in the
layer quotient, occurring once with each layer transition.

6.2 The SLS Synchronous ReservationQueue
The Scherer III et al. [2006] (SLS) queue builds onMSQ, but has some complications: queue operations
are synchronous (blocking), a single invocation can involve multiple sequentially composed write
paths that necessitate different layers, and linearization points must account for dequeuers arriving
before their corresponding enqueuer.

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

Scenario-based Proofs for Concurrent Objects 1:17

Dswap

Dswap

When the queue is a list of items
(enq appends items at tail, deq removes items at head)

When the queue is a list of reservations
(deq appends resv at tail, enq removes resv at head)

Layer

Definitions:

Layer

Automaton:

Eswap

Eswap

empty

head=tail

>0 items

head good

tail good

>0 items

head good

tail stale

>0 items

head stale

tail good

>0 items

head stale

tail stale

HR

TA
Eapp

TA
Eapp

HR

Eapp

>0 reservs

head good

tail good

>0 reservs

head good

tail stale

>0 reservs

head stale

tail good

>0 reservs

head stale

tail stale

HR

TA
Dapp

TA
Dapp

HR

Dapp

Tail advance (TA)
DE:cas()/t with (3 fail paths)*

DE’:cas()/t with (3 fail paths)*

Head reap (HR)
DE:cas()/t with (9 fail paths)*

DE’:cas()/t with (9 fail paths)*

DE’:cas()/t with (9 fail paths)*

Enq swap res for item (Eswap)
 with (2 fail paths)*

Enq append item node (Eapp)
(3t) with (1 fail path)*

Deq swap item for null (Dswap)
 with (2 fail paths)*

Deq append reservation (Dapp)
(3t) with (1 fail path)*

DE:cas1/t

DE:cas3’/t

E:cas3/t

DE:cas3’’/t

DE:cas6/t

DE:cas7/t

D:cas3/t

DE:cas5/t

DE:cas5/t

Fig. 5. Layer automaton for the synchronous SLS queue. Layers’ acronyms and their definitions are given in
the lower half of the figure. For conciseness, layer definitions do not split the prefix/suffix of the read paths.

Implementation. Like MSQ, SLS has paths that read the head or tail pointer and subsequent
pointers, perform read validations and then attempt a CAS. Also like MSQ, enqueuers arriving
at an empty list (or list of items), attempt to append item nodes (and then try to advance the tail
pointer). Dequeuers arriving at a list of items, attempt to swap item node contents for null (and
then try to advance the head pointer).

SLS then has some further complexities. Dequeuers arriving at an empty list (or list of reservation
nodes) attempt to append reservation nodes (and attempt to advance tail). Enqueuers arriving at a
list of reservations, attempt to fulfill those reservations by swapping null for an item (and attempt to
advance head). The list never contains both items and reservations; when the list becomes empty it
can then transition from an item list to a reservation list (or vice-versa). Finally, SLS is synchronous:
dequeuers with reservations block until those reservations have been fulfilled and enqueuers
with items block until those items have been consumed. (For the sake of comprehensiveness, the
implementation is in Apx. D, but not necessary for a general understanding.) As noted, unlike
MSQ where paths have at most 1 write operation, a single SLS invocation can perform multiple
write operations (e.g., a dequeue path inserting a reservation, advancing tail, awaiting fulfillment,
advancing head). Despite conceptual simplicity, the implementation is non-trivial with many restart
paths when validations or CAS operations fail.
Quotient. The quotient expression for the SLS queue is depicted as a layer automaton in Fig. 5.

In the upper portion, the automaton states differentiate between whether the queue is empty or
whether the queue consists of reservations (left hand region) or of items (right hand region). In
each of those regions, it is relevant as to whether the head pointer is stale or not, as well as whether
the tail pointer is stale or not. When the queue is a list of reservations, the head or tail could be
stale (hence four states) and similar when the queue is a list of items.

The basic layers of the quotient expression are defined at the bottom of Fig. 5. The black circles
(e.g., DE:CASℓ/t) represent a write path in which a Dequeuer or Enqueuer has successfully per-
formed a CAS at some program location ℓ . Along with the write path, we simply summarize the
number of competing read-only paths, which are star-iterated. Two layers are enq/deq-agnostic:
advancing the tail pointer in TA and advancing the head pointer (and “reaping” the head node) in
HR. These helping operations happen in many places in the code, with corresponding read-only

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

1:18 Constantin Enea and Eric Koskinen

“_f” failure paths. Enqueue can either append an item node (Eapp) when in the RHS states of the
automaton or else swap an item into a reservation node (Eswap) in the LHS. These layers have a
single CAS operation (e.g., E:CAS5/t) along with read-only paths where concurrent competing
threads fail. The dequeue layers Dapp and Dswap are similar.
Finally, these (context-free) basic layer expressions are connected into an overall expression,

represented here as an automaton or (below) as a star-/plus-/or-combination of layer expressions.

Theorem 6.2. The SLS queue is linearizable.

Proof:We associate linearization points with layers: Dswap is an LP for dequeue, Eapp is an LP
for enqueue, and Eswap is an LP for a combination of an enqueue followed by a dequeue. Next, we
project the linearization points out of the quotient to obtain simply (𝐸 ·𝐷)∗ · (𝐸∗+𝐷∗). Combining
this with a lemma that this expression is an abstraction of the quotient, we obtain that all executions
meet the sequential spec. of a queue. (Detail in Apx. D, Thm. H.1.)

Comparison with the authors’ proof.We evaluated the SLS quotient expression by revisiting
the authors’ proof in Scherer III et al. [2006]. Line numbers in the authors’ quotes below refer to a
reproduction of the source code given in Apx. D. For lack of space, some discussion of the authors’
quotes can be found in Apx. N.4.

The authors split the enqueue operation into two linearization points: a “reservation linearization
point” and a later “follow up linearization point,” so that synchronous, blocking enqueue implemen-
tations are a single reservation LP and then repeated follow-up LPs (as if the client is repeatedly
checking whether the operation has completed).

[Regarding enqueue,] the reservation linearization point for this code path occurs at line 10 when we successfully insert
our offering into the queue – Scherer III et al. [2006]

This prose describes a scenario, (i) identifying an alleged linearization point at E:cas3/t , involving
a specific change to shared memory (a CAS on the tail’s next pointer), and (ii) identifying the
important ADT state transition (inserting an offer node into the queue). This scenario is formalized
by the Eapp layer in the quotient expression. The successful CAS E:cas3/t in Eapp is the
linearization point, with competing concurrent threads abstracted away by the starred fail path
expression, and the state transition is given in the automaton as the downward Eapp-labeled arcs
in the righthand region of the automaton. The scenario and LP for dequeue on a list of reservation
nodes is symmetric, and represented in the quotient expression as layer Dapp involving D:cas3/t
and competing fail path.
The quotient expression makes the interaction between LPs and ADT states more explicit

(e.g., through 𝐿𝑃-marked layers) and comprehensive (e.g., the authors do not discuss the 9 different
automaton ADT states and which transitions are possible from each). The quotient expression can
be seen as an abstract view of an implementation of the sequential specification.

The other case occurs when the queue consists of reservations
(requests for data), and is depicted [to the right]. In this case,
after originally reading the head node (step A), we read its
successor (line 21/step B) and verify consistency (line 22). Then,
we attempt to supply our data to the head-most reservation
(line 25/C). If this succeeds, we dequeue the former dummy node
(26/D) and return

This prose again indicates important mutations (e.g., swapping the node’s contents pointer), ADT
state changes (e.g., supplying data) and that the head dummy node needs to be advanced. These
memory mutations and state changes are explicit in the quotient expression. For example, Eswap
performs a memory CAS and makes a ADT state transition. The staleness of the head is also

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

Scenario-based Proofs for Concurrent Objects 1:19

1 void push/pop(descriptor p){ while (1) {

2 one iteration of Treiber stack

3 location[mytid] = p;

4 pos = nondet ();

5 do { him = collision[pos]

6 } while (!CAS(& collision[pos], him , mytid))

7 if him != NULL {

8 q = location[him]

9 if (q != NULL & q.id = him & p.op != q.op) {

10 if (CAS(& location[mytid],p,NULL)) {

11 if (CAS (& location[him], q, p/NULL))

12 return NULL/q.input

13 else continue

14 } else {

15 val = NULL/location[mytid].input;

16 location[mytid] = NULL;

17 return val

18 } } }

19 if (!CAS(& location[mytid],p,NULL)) {

20 val = NULL/location[mytid].data;

21 location[mytid] = NULL;

22 return val

23 }} }

(a) Elimination Stack source code (b) Stack Quotients

Fig. 6. Elimination Stack

captured directly in the ADT states and the HR layers’ transitions. The authors’ prose also discusses
failure paths (see Apx. N.4) and retry, which are also captured in the layer definitions.
Summary. The layer quotient expression/automaton provides a succinct formal foundation for

the correctness arguments of Scherer III et al. [2006], capturing the authors’ discussions of LPs,
ADTs, impacts of writes, CAS contention, etc.

6.3 The Hendler et al. Elimination Stack
The Elimination Stack of ? is difficult because the linearization point of some invocation can

happen in another (threads can awake to find they were linearized earlier) and it uses a submodule:
Treiber’s stack [Treiber 1986].

We first show the Treiber’s stack quotient, and then build elimination on top. Since Treiber’s
stack is simple, we explain only the basics here, with more detail in Apx. I. The implementation of
push prepares a new node and then attempts a CAS to swing the top pointer, while pop attempts
to advance the top pointer and return the removed node’s value. The quotient for Treiber’s stack
is shown in the upper right of Fig. 6 and is similar to the counter, but with ADT states tracking
emptiness (rather than non-zeroness) and CAS contention on the top pointer (rather than the
counter cell). There is one read-only layer for a pop and an empty stack, and other layers involve
one successful CAS with failed competing CAS attempts. See Apx. I for more detail, as well as
Lemma I.1 proving that this layer automaton is an abstraction of the quotient.

The Elimination Stack, listed in Fig. 6(a), augments Treiber’s stack with a protocol for “colliding”
push and pop invocations so that the push passes its input directly to the pop without affecting
the underlying data structure. An invocation starts this protocol after performing a loop iteration
in Treiber’s stack and failing (due to contention on top). The protocol uses two arrays: (1) a
location array indexed by thread ids where a push or pop invocation publishes a descriptor tuple
(op,id,input) with fields op for the type of invocation (push or pop), id for the id of the invoking

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

1:20 Constantin Enea and Eric Koskinen

thread, and input for the input of a push operation, and (2) a collision array indexed by arbitrary
integers which stores ids of threads announcing their availability to collide.
Each invocation starts by publishing their descriptor in the location array (line 3). Then, it

reads a random cell of the collision array while also trying to publish their id at the same index
using a CAS (lines 4–6). If it reads a non-NULL thread id, then it tries to collide with that thread. A
successful collision requires 2 successful CASs on the location cells of the two threads (we require
CASs because other threads may compete to collide with one of these two threads): the initiator of
the collision needs to clear its cell (line 10) and modify the cell of the other thread (line 11) to pass
its input if the other thread is a pop. The first CAS failing means that a third thread successfully
collided with the initiator and the initiator can simply return (lines 15–17). Failing the second CAS
leads to a restart (line 13). Succeeding the second CAS means there has been a successful collision
and the thread returns, returning null for a push and otherwise using the descriptor to obtain the
popped value (line 11). If the invocation reads a NULL thread id from collision, then it tries to
clear its cell before restarting (line 19). If it fails, then as in the previous case, a collision happened
with a third thread and the current thread can simply return (line 20–22).

We use the automaton in the lower right of Fig. 6 to describe a sound abstraction of the quotient.
Layers of Treiber’s stack interleave with layers of the collision protocol (some components are not
exactly layers as in Definition 5.2, but quite similar). Executions in the quotient serialize collisions
and proceed as follows: (1) some number of threads publish their descriptor and choose a cell in
the collision array, (2) some number of threads publish their id in the collision array (there
may be more than one such thread – note the self-loop on the “Publish collision intent” state), (3)
some number of threads succeed the CAS to clear their location cell but only one succeeds to
also CAS the location cell of some arbitrary but fixed thread him and return, and (4) the thread
him returns after possibly passing the tests at line 7 or 9. (Note that, for succinctness, we have
combined push/pop into the same method, which also makes the automaton succinct. The code
and corresponding automaton could also have been written in a more verbose way where the
bottommost layer is replaced with two layers: (1) a layer where a push’s successful CAS takes with it
a corresponding pop, and (2) a layer where a pop’s successful CAS takes with it a corresponding push.
For succinctness, we have combined those layers using the “push/pop” notation.) We emphasize
that collisions happen in a serial order, i.e., at any point there is exactly one thread that succeeds
on both CASs required for a collision and immediately after the collided thread returns (publishing
descriptors or collision intent interleaves arbitrarily with collisions).

Theorem 6.3. The Elimination Stack is linearizable.

Proof: Follows from the fact that the above expression is an abstraction of the quotient (Thm. J.1),
with the bold actions in the layers being the LPs.

Comparison with the authors’ proof. A proof is given by ? in that paper’s Section 5. It is a
lengthy proof so, for lack of space, the full review is in Apx. N.2 and summarized here. Overall, the
correctness argument requires numerous lemmas in the ? proof, mostly focused on establishing a
bijection between the active thread and its correspondingly collided passive thread. The authors
lay out a few definitions, which are also captured by the quotient. For example, the authors’ prose
includes:

[A] colliding operation op is active if it executes a successful CAS in lines C2 or C7. We say that a colliding operation is
passive if op fails in the CAS of line S10 or S19. [underlines added] – ?

Above the authors’ intuitive concept of “active” is captured by the paths in a layer that succeed their
CAS, denoted in bold in the quotient automaton above. Likewise for “passive” and CAS failure.
As mentioned above, the active thread is captured as the bold thread that succeeds its CAS in the

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

Scenario-based Proofs for Concurrent Objects 1:21

bottommost layer; the passive thread is the thread that finds itself collided with in the layers on
arcs exiting the bottommost layer.

we show that push and pop operations are paired correctly during collisions. Lemma 5.7. Every passive collider collides
with exactly one active collider.

The bottommost layer in the bold action, a single push or pop succeeds, colliding with another
operation of the oppose type, and passing the element from the push to the pop.
Authors’ LPs are given for “active” threads as the time when the second CAS succeeds, and

linearization points for “passive” threads “the time of linearization of the matching active-collider
operation, and the push colliding-operation is linearized before the pop colliding-operation.” The
linearization points in the quotient correspond to the bold successful CAS in the bottommost layer
in the quotient automaton (this linearizes both a push and a pop). Importantly, every run of the
quotient automaton gives a serial linearization order that is a repetition of pairs of active/passive
threads. All other executions are equivalent to one such serialized run, upto commutativity.
In summary, as detailed in Apx. N.2, the quotient naturally and succinctly captures the key

concept of the Elimination stack: that a single successful CAS of one type of operation is the LP
for that operation as well as the corresponding matched operation. The quotient captures “active”
versus “passive” threads (in the automaton layers/states/transitions), as well as this bijection through
the runs of the automaton: every run in the automaton contains some number of active/passive
pairs and provides a representative serialization order (in each pair the push is serialized before
the pop). Linearization points and other logistics of threads preparing/completing are similarly
captured by the quotient automaton.

6.4 The Harris et al. Restricted Double-Compare Single-Swap (RDCSS)
RDCSS [?] is a restricted version of a double-word CAS which modifies a so-called data address
provided that this address and another so-called control address have some given expected values
(the tests and the write happen atomically). RDCSS attempts a standard CAS on the data address to
change the old value into a pointer to a descriptor structure that stores the inputs of the operation.
This fails if the data address does not have the expected value. A second standard CAS on the data
address is used to write the new value if the control address has the expected value or the old value,
otherwise. Faster threads can help complete the operations of slower threads using the information
stored in the descriptor.

The traces in the quotient of RDCSS interleave successful attempts at modifying the data address
with unsuccessful ones. A successful attempt consists of a thread succeeding the first CAS combined
with competing threads that fail, followed by another thread succeeding the second CAS (this
can be different from the first one in the case of helping) combined with other threads that fail.
An unsuccessful attempt may contain just a thread failing the first CAS, or it can contain two
successful CASs like a successful attempt (when the data address has the expected value but the
control address does not). Proving linearizability of quotient traces is obvious because they make
explicit the “evolution” of a data address, oscillating between storing values and descriptors, and
which CAS is enabled depending on the value of the control address. See App. K for more details.

6.5 The Herlihy-WingQueue
The quotients of some data structures cannot be represented using layer automata. The Herlihy-
Wing Queue [Herlihy andWing 1990] is one such example and it is notorious for linearization points
that depend on the future and that can not be associated to fixed statements, see e.g. [Schellhorn
et al. 2012]! The queue is implemented as an array of slots for items, with a shared variable back
that indicates the last possibly non-empty slot. An enq atomically reads and increments back and

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1:22 Constantin Enea and Eric Koskinen

Table 1. Evaluation of Cion discovering candidate layers from source code.

States # Paths # Trans. # Layers Time # Solver
Example | Q | # 𝑘𝑙 # 𝑘𝑤 |𝛿 | |Λ(𝑂) | (s) Queries
evenodd.c 2 2 2 6 3 50.8 32
counter.c 2 3 2 6 4 63.3 36
descriptor.c 4 6 2 6 5 155.2 74
treiber.c 2 3 2 6 4 70.3 37
msq.c 4 9 3 17 7 437.6 314
listset.c 7 6 2 77 8 466.9 532

then later stores a value at that location. A deq repeatedly scans the array looking for the first
non-empty slot in a doubly-nested loop. We show that the Herlihy-Wing queue quotient can be
abstracted by an expression (deqF∗ · (enqI)+ · enqW∗ · deqT∗)∗, where deqF captures dequeue scans
that need to restart, deqT scans succeed, enqI reads/increments back and enqW writes to the slot.
For lack of space, a detailed discussion about how this expression abstracts the quotient is given in
Apx. M. Importantly, linearization points in executions represented by this expression are fixed,
drastically simplifying reasoning from the general case where they are non-fixed.

Theorem 6.4. The Herlihy-Wing Queue is linearizable. (see Thm. M.2)

Comparison with the authors’ proof. Herlihy and Wing [1990] give intuitions of scenarios:
Enq execution occurs in two steps, which may be interleaved with steps of other concurrent operations: an array slot is
reserved by atomically incrementing back, and the new item is stored in items. – Sec 4.1 of Herlihy and Wing [1990]

This describes a scenario with unboundedly many threads, though is not yet an argument for
why that scenarios is correct. This scenario appears in the quotient as the fact that enqI and enqW
are distinct. To cope with non-fixed LPs (in this and other objects), the authors introduce a proof
methodology based on tracking all possible linearizations that could happen in the future. This
general methododology complicates the proof. The quotient, by contrast, allows one to consider
scenarios along the lines of “one or more enqueuers increment back, possibly some of them
write to the array, and then some dequeuers succeed,” following the quotient’s regular expression.
In summary, the quotient here provides the first scenario-based proof of correctness, through
representative executions that allow the linearization order to be fixed and all other executions are
equivalent to one such representative execution up to commutativity.

7 GENERATING CANDIDATE QUOTIENT EXPRESSIONS
In Sec. 6 we showed quotients can be defined for a wide range of concurrent objects, including
notoriously difficult ones. We leave the (rather large) question of automated quotient proofs for the
general case as future work. Here we take a first step asking, Can candidate quotient expressions can
be generated algorithmically?

This section answers this question with an algorithm, implementation and experiments showing
that, from the source code of concurrent data-structures such as Treiber’s stack and the MSQ,
candidate quotients expressions (equivalent to those in Sec. 6) can be automatically discovered. We
manually confirmed that these generated candidates are indeed sound abstractions of the quotient,
a process that can also be automated (perhaps through new forms of induction) in future work.

The algorithm exploits our reduction to two-thread reasoning and automaton representation of
layer quotients (Apx. C). The algorithm is in Apx. C.2 but, briefly, involves (i) computing automaton
states using weakest preconditions, (ii) computing the possible post-states of write paths 𝑘𝑤 , and
which local paths are feasible interleavings with those write paths (exploiting pair-wise reasoning
about paths), and (iii) computing which automaton self-loops are possible via local-only layers.
We built a proof-of-concept implementation of our algorithm, called Cion in ∼1,000 lines of

OCaml code, using CIL and Ultimate [Heizmann et al. 2018]. Cion will soon be released publicly on

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

Scenario-based Proofs for Concurrent Objects 1:23

GitHub, with an artifact of the experiments also available. We applied Cion5 to some of the Sec. 6
objects that were amenable to layers. Benchmarks are available in the supplemental materials. The
results are summarized in Table 1 and the Cion output is in tooloutput.pdf in the supplement.
For each benchmark, we report the number of automaton States | Q |, the number of local Paths
#𝑘𝑙 and number of write paths #𝑘𝑤 . We then report the number of Transitions |𝛿 | in the automata
constructed by Cion and the number of Layers, as well as the wall-clock Time in seconds, and the
number of Queries made to the solver (Ultimate). The results show that Cion is able to efficiently
generate candidate layer automata for some important and challenging concurrent objects.

8 RELATEDWORK
Linearizability proofs. Program logics for compositional reasoning about concurrent programs
and data structures have been studied extensively, as mentioned in Sec. 1.1. Improving on the
classical Owicki and Gries [1976] and Rely-Guarantee [Jones 1983] logics, numerous extensions of
Concurrent Separation Logic [Bornat et al. 2005; Brookes 2004; O’Hearn 2004; Parkinson et al. 2007]
have been proposed in order to reason compositionally about different instances of fine-grained
concurrency, e.g. [da Rocha Pinto et al. 2014; Dragoi et al. 2013; Jung et al. 2018, 2020; Krishna et al.
2018; Ley-Wild and Nanevski 2013; Nanevski et al. 2019; Raad et al. 2015; Sergey et al. 2015; Turon
et al. 2013; Vafeiadis 2008, 2009]. We build on the success of such program logics toward improving
the confidence in the correctness of concurrent objects. In the current paper we alternatively focus
on the scenario-based reasoning found in the distributed computing literature, and have aimed to
capture those scenarios as formally-defined representative executions. In future work it could be
interesting to combine the benefits of program logics with those of quotients. Other more distantly
related works include: ?, ?, ?, ?, ?, and ?.
Reduction. The reduction theory of Lipton [1975] introduced the concept of movers to define

a program transformation that creates atomic blocks of code. QED [Elmas et al. 2009] expanded
Lipton’s theory by introducing iterated application of reduction and abstraction over gated atomic
actions. CIVL [Hawblitzel et al. 2015] builds upon the foundation of QED, adding invariant reasoning
and refinement layers [Kragl and Qadeer 2018; Kragl et al. 2018]. Reasoning via simplifying program
transformations has also been adopted in the context of mechanized proofs, e.g., [Chajed et al. 2018].
Inductive sequentialization [Kragl et al. 2020] builds upon this prior work, and introduces a new
scheme for reasoning inductively over unbounded concurrent executions. The main focus of these
works is to define generic proof rules to prove soundness of such program transformations, whose
application does however require carefully-crafted artifacts such as abstractions of program code
or invariants. Our work takes a different approach and tries to distill common syntactic patterns
of concurrent objects into a simpler reduction argument. Our reduction is not a form of program
transformation since quotient executions are interleavings of actions in the implementation.
9 CONCLUSION
We have shown that scenario-based reasoning about concurrent objects has a formal grounding,
answering an open question. The key insight is the concept of a quotient, defined so that it admits
only representative traces and all other traces are merely equivalent to one of those representatives,
up to commutativity. Our results show that quotients provide a succinct formal foundation for
scenario-based reasoning, are capable of capturing a wide range of tricky objects, enhance original
authors’ correctness arguments, and that discovery of candidate quotient expressions can be
automated. In the future will explore further mechanization and other application domains.

5Run on Ubuntu 18, Parallels, Macbook Pro M1, 16GB RAM.

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1:24 Constantin Enea and Eric Koskinen

REFERENCES
Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-Baptiste Jeannin, Dexter Kozen, Cole Schlesinger, and David Walker.

2014. NetkAT: semantic foundations for networks. In The 41st Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL ’14, San Diego, CA, USA, January 20-21, 2014, Suresh Jagannathan and Peter Sewell
(Eds.). ACM, 113–126. https://doi.org/10.1145/2535838.2535862

Timos Antonopoulos, Eric Koskinen, and Ton Chanh Le. 2019. Specification and inference of trace refinement relations.
Proc. ACM Program. Lang. 3, OOPSLA (2019), 178:1–178:30. https://doi.org/10.1145/3360604

Richard Bornat, Cristiano Calcagno, Peter W. O’Hearn, and Matthew J. Parkinson. 2005. Permission accounting in separation
logic. In Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2005,
Long Beach, California, USA, January 12-14, 2005. 259–270. https://doi.org/10.1145/1040305.1040327

Stephen D. Brookes. 2004. A Semantics for Concurrent Separation Logic. In CONCUR 2004 - Concurrency Theory, 15th
International Conference, London, UK, August 31 - September 3, 2004, Proceedings. 16–34. https://doi.org/10.1007/978-3-
540-28644-8_2

Tej Chajed, M. Frans Kaashoek, Butler W. Lampson, and Nickolai Zeldovich. 2018. Verifying concurrent software using
movers in CSPEC. In OSDI. https://www.usenix.org/conference/osdi18/presentation/chajed

Pedro da Rocha Pinto, Thomas Dinsdale-Young, and Philippa Gardner. 2014. TaDA: A Logic for Time and Data Abstraction.
In ECOOP 2014 - Object-Oriented Programming - 28th European Conference, Uppsala, Sweden, July 28 - August 1, 2014.
Proceedings. 207–231. https://doi.org/10.1007/978-3-662-44202-9_9

Cezara Dragoi, Ashutosh Gupta, and Thomas A. Henzinger. 2013. Automatic Linearizability Proofs of Concurrent Objects
with Cooperating Updates. In CAV ’13 (LNCS, Vol. 8044). Springer, 174–190.

Loris D’Antoni and Margus Veanes. 2017. The power of symbolic automata and transducers. In International Conference on
Computer Aided Verification. Springer, 47–67.

Tayfun Elmas, Shaz Qadeer, and Serdar Tasiran. 2009. A calculus of atomic actions. In POPL. https://doi.org/10.1145/
1480881.1480885

Yotam M. Y. Feldman, Constantin Enea, Adam Morrison, Noam Rinetzky, and Sharon Shoham. 2018. Order out of Chaos:
Proving Linearizability Using Local Views. In DISC 2018.

Yotam M. Y. Feldman, Artem Khyzha, Constantin Enea, Adam Morrison, Aleksandar Nanevski, Noam Rinetzky, and Sharon
Shoham. 2020. Proving highly-concurrent traversals correct. Proc. ACM Program. Lang. 4, OOPSLA (2020), 128:1–128:29.
https://doi.org/10.1145/3428196

Michael Greenberg, Ryan Beckett, and Eric HaydenCampbell. 2022. Kleene algebramodulo theories: a framework for concrete
KATs. In PLDI ’22: 43rd ACM SIGPLAN International Conference on Programming Language Design and Implementation, San
Diego, CA, USA, June 13 - 17, 2022, Ranjit Jhala and Isil Dillig (Eds.). ACM, 594–608. https://doi.org/10.1145/3519939.3523722

Chris Hawblitzel, Erez Petrank, Shaz Qadeer, and Serdar Tasiran. 2015. Automated and Modular Refinement Reasoning for
Concurrent Programs. In CAV. https://doi.org/10.1007/978-3-319-21668-3_26

Matthias Heizmann, Yu-Fang Chen, Daniel Dietsch, Marius Greitschus, Jochen Hoenicke, Yong Li, Alexander Nutz, Betim
Musa, Christian Schilling, Tanja Schindler, and Andreas Podelski. 2018. Ultimate Automizer and the Search for Perfect
Interpolants - (Competition Contribution). In Tools and Algorithms for the Construction and Analysis of Systems - 24th
International Conference, TACAS 2018, Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings, Part II (Lecture Notes in Computer Science, Vol. 10806),
Dirk Beyer and Marieke Huisman (Eds.). Springer, 447–451. https://doi.org/10.1007/978-3-319-89963-3_30

Thomas A. Henzinger, Ranjit Jhala, RupakMajumdar, George C. Necula, Grégoire Sutre, andWestleyWeimer. 2002. Temporal-
Safety Proofs for Systems Code. In Computer Aided Verification, 14th International Conference, CAV 2002,Copenhagen,
Denmark, July 27-31, 2002, Proceedings. 526–538.

Maurice Herlihy and Nir Shavit. 2008a. The art of multiprocessor programming. Morgan Kaufmann.
Maurice Herlihy and Nir Shavit. 2008b. The Art of Multiprocessor Programming. Morgan Kaufmann Publishers Inc., San

Francisco, CA, USA.
Maurice Herlihy and Jeannette M. Wing. 1990. Linearizability: A Correctness Condition for Concurrent Objects. ACM Trans.

Program. Lang. Syst. 12, 3 (1990), 463–492. https://doi.org/10.1145/78969.78972
Cliff B. Jones. 1983. Specification and Design of (Parallel) Programs. In IFIP Congress. 321–332.
Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars Birkedal, and Derek Dreyer. 2018. Iris from the

ground up: A modular foundation for higher-order concurrent separation logic. J. Funct. Program. 28 (2018), e20.
https://doi.org/10.1017/S0956796818000151

Ralf Jung, Rodolphe Lepigre, Gaurav Parthasarathy, Marianna Rapoport, Amin Timany, Derek Dreyer, and Bart Jacobs.
2020. The future is ours: prophecy variables in separation logic. Proc. ACM Program. Lang. 4, POPL (2020), 45:1–45:32.
https://doi.org/10.1145/3371113

Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal, and Derek Dreyer. 2015. Iris:
Monoids and Invariants as an Orthogonal Basis for Concurrent Reasoning. In Proceedings of the 42nd Annual ACM

https://doi.org/10.1145/2535838.2535862
https://doi.org/10.1145/3360604
https://doi.org/10.1145/1040305.1040327
https://doi.org/10.1007/978-3-540-28644-8_2
https://doi.org/10.1007/978-3-540-28644-8_2
https://www.usenix.org/conference/osdi18/presentation/chajed
https://doi.org/10.1007/978-3-662-44202-9_9
https://doi.org/10.1145/1480881.1480885
https://doi.org/10.1145/1480881.1480885
https://doi.org/10.1145/3428196
https://doi.org/10.1145/3519939.3523722
https://doi.org/10.1007/978-3-319-21668-3_26
https://doi.org/10.1007/978-3-319-89963-3_30
https://doi.org/10.1145/78969.78972
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1145/3371113

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

Scenario-based Proofs for Concurrent Objects 1:25

SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2015, Mumbai, India, January 15-17, 2015.
637–650. https://doi.org/10.1145/2676726.2676980

Dexter Kozen. 1990. On Kleene Algebras and Closed Semirings. In Mathematical Foundations of Computer Science 1990,
MFCS’90, Banská Bystrica, Czechoslovakia, August 27-31, 1990, Proceedings (Lecture Notes in Computer Science, Vol. 452),
Branislav Rovan (Ed.). Springer, 26–47. https://doi.org/10.1007/BFb0029594

Dexter Kozen. 1997. Kleene Algebra with Tests. ACM Trans. Program. Lang. Syst. 19, 3 (1997), 427–443. https://doi.org/10.
1145/256167.256195

Bernhard Kragl, Constantin Enea, Thomas A. Henzinger, Suha Orhun Mutluergil, and Shaz Qadeer. 2020. Inductive
sequentialization of asynchronous programs. In Proceedings of the 41st ACM SIGPLAN International Conference on
Programming Language Design and Implementation, PLDI 2020, London, UK, June 15-20, 2020, Alastair F. Donaldson and
Emina Torlak (Eds.). ACM, 227–242. https://doi.org/10.1145/3385412.3385980

Bernhard Kragl and Shaz Qadeer. 2018. Layered Concurrent Programs. In CAV. https://doi.org/10.1007/978-3-319-96145-3_5
Bernhard Kragl, Shaz Qadeer, and Thomas A. Henzinger. 2018. Synchronizing the Asynchronous. In CONCUR. https:

//doi.org/10.4230/LIPIcs.CONCUR.2018.21
Siddharth Krishna, Dennis E. Shasha, and Thomas Wies. 2018. Go with the flow: compositional abstractions for concurrent

data structures. PACMPL 2, POPL (2018), 37:1–37:31. https://doi.org/10.1145/3158125
Ruy Ley-Wild and Aleksandar Nanevski. 2013. Subjective auxiliary state for coarse-grained concurrency. In The 40th Annual

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’13, Rome, Italy - January 23 - 25, 2013.
561–574. https://doi.org/10.1145/2429069.2429134

Richard J. Lipton. 1975. Reduction: A Method of Proving Properties of Parallel Programs. Commun. ACM 18, 12 (1975).
https://doi.org/10.1145/361227.361234

Antoni W. Mazurkiewicz. 1986. Trace Theory. In Petri Nets: Central Models and Their Properties, Advances in Petri Nets 1986,
Part II, Proceedings of an Advanced Course, Bad Honnef, Germany, 8-19 September 1986 (Lecture Notes in Computer Science,
Vol. 255), Wilfried Brauer, Wolfgang Reisig, and Grzegorz Rozenberg (Eds.). Springer, 279–324. https://doi.org/10.1007/3-
540-17906-2_30

M.M. Michael and M.L. Scott. 1996a. Simple, Fast, and Practical Non-Blocking and Blocking Concurrent Queue Algorithms.
In PODC.

Maged M. Michael. 2004. ABA Prevention Using Single-Word Instructions. Technical Report RC 23089. IBM Thomas J. Watson
Research Center.

Maged M. Michael and Michael L. Scott. 1996b. Simple, Fast, and Practical Non-Blocking and Blocking Concurrent Queue
Algorithms. In PODC ’96. ACM, 267–275.

Mark Moir and Nir Shavit. 2004. Concurrent Data Structures. In Handbook of Data Structures and Applications., Dinesh P.
Mehta and Sartaj Sahni (Eds.). Chapman and Hall/CRC. https://doi.org/10.1201/9781420035179.ch47

Aleksandar Nanevski, Anindya Banerjee, Germán Andrés Delbianco, and Ignacio Fábregas. 2019. Specifying concurrent
programs in separation logic: morphisms and simulations. Proc. ACM Program. Lang. 3, OOPSLA (2019), 161:1–161:30.
https://doi.org/10.1145/3360587

Peter W. O’Hearn. 2004. Resources, Concurrency and Local Reasoning. In CONCUR 2004 - Concurrency Theory, 15th
International Conference, London, UK, August 31 - September 3, 2004, Proceedings. 49–67. https://doi.org/10.1007/978-3-
540-28644-8_4

Peter W. O’Hearn. 2007. Resources, concurrency, and local reasoning. Theor. Comput. Sci. 375, 1-3 (2007). https://doi.org/10.
1016/j.tcs.2006.12.035

Peter W. O’Hearn, Noam Rinetzky, Martin T. Vechev, Eran Yahav, and Greta Yorsh. 2010. Verifying linearizability with
hindsight. In Proceedings of the 29th Annual ACM Symposium on Principles of Distributed Computing, PODC 2010, Zurich,
Switzerland, July 25-28, 2010, Andréa W. Richa and Rachid Guerraoui (Eds.). ACM, 85–94. https://doi.org/10.1145/
1835698.1835722

Susan S. Owicki and David Gries. 1976. Verifying Properties of Parallel Programs: An Axiomatic Approach. Commun. ACM
19, 5 (1976), 279–285. https://doi.org/10.1145/360051.360224

Matthew J. Parkinson, Richard Bornat, and Peter W. O’Hearn. 2007. Modular verification of a non-blocking stack. In
Proceedings of the 34th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2007, Nice,
France, January 17-19, 2007. 297–302. https://doi.org/10.1145/1190216.1190261

Damien Pous. 2015. Symbolic algorithms for language equivalence and Kleene algebra with tests. In Proceedings of the 42nd
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. 357–368.

Azalea Raad, Jules Villard, and Philippa Gardner. 2015. CoLoSL: Concurrent Local Subjective Logic. In Programming
Languages and Systems - 24th European Symposium on Programming, ESOP 2015, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015. Proceedings. 710–735. https:
//doi.org/10.1007/978-3-662-46669-8_29

https://doi.org/10.1145/2676726.2676980
https://doi.org/10.1007/BFb0029594
https://doi.org/10.1145/256167.256195
https://doi.org/10.1145/256167.256195
https://doi.org/10.1145/3385412.3385980
https://doi.org/10.1007/978-3-319-96145-3_5
https://doi.org/10.4230/LIPIcs.CONCUR.2018.21
https://doi.org/10.4230/LIPIcs.CONCUR.2018.21
https://doi.org/10.1145/3158125
https://doi.org/10.1145/2429069.2429134
https://doi.org/10.1145/361227.361234
https://doi.org/10.1007/3-540-17906-2_30
https://doi.org/10.1007/3-540-17906-2_30
https://doi.org/10.1201/9781420035179.ch47
https://doi.org/10.1145/3360587
https://doi.org/10.1007/978-3-540-28644-8_4
https://doi.org/10.1007/978-3-540-28644-8_4
https://doi.org/10.1016/j.tcs.2006.12.035
https://doi.org/10.1016/j.tcs.2006.12.035
https://doi.org/10.1145/1835698.1835722
https://doi.org/10.1145/1835698.1835722
https://doi.org/10.1145/360051.360224
https://doi.org/10.1145/1190216.1190261
https://doi.org/10.1007/978-3-662-46669-8_29
https://doi.org/10.1007/978-3-662-46669-8_29

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1:26 Constantin Enea and Eric Koskinen

Gerhard Schellhorn, Heike Wehrheim, and John Derrick. 2012. How to Prove Algorithms Linearisable. In Computer Aided
Verification - 24th International Conference, CAV 2012, Berkeley, CA, USA, July 7-13, 2012 Proceedings. 243–259.

William N Scherer III, Doug Lea, and Michael L Scott. 2006. Scalable synchronous queues. In Proceedings of the eleventh
ACM SIGPLAN symposium on Principles and practice of parallel programming. 147–156.

Ilya Sergey, Aleksandar Nanevski, and Anindya Banerjee. 2015. Specifying and Verifying Concurrent Algorithms with
Histories and Subjectivity. In Programming Languages and Systems - 24th European Symposium on Programming, ESOP
2015, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2015, London, UK, April
11-18, 2015. Proceedings. 333–358. https://doi.org/10.1007/978-3-662-46669-8_14

R. K. Treiber. 1986. Systems Programming: Coping with Parallelism. Technical Report RJ 5118. IBM Almaden Research
Center.

Aaron Turon, Derek Dreyer, and Lars Birkedal. 2013. Unifying refinement and hoare-style reasoning in a logic for higher-
order concurrency. In ACM SIGPLAN International Conference on Functional Programming, ICFP’13, Boston, MA, USA -
September 25 - 27, 2013. 377–390. https://doi.org/10.1145/2500365.2500600

V. Vafeiadis. 2008. Modular fine-grained concurrency verification. Ph. D. Dissertation. University of Cambridge.
Viktor Vafeiadis. 2009. Shape-Value Abstraction for Verifying Linearizability. In VMCAI ’09: Proc. 10th Intl. Conf. on

Verification, Model Checking, and Abstract Interpretation (LNCS, Vol. 5403). Springer, 335–348.

https://doi.org/10.1007/978-3-662-46669-8_14
https://doi.org/10.1145/2500365.2500600

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

Scenario-based Proofs for Concurrent Objects 1:27

Scenario-based Proofs for Concurrent Objects
Appendix

A UNABRIDGED CONCURRENT OBJECT SEMANTICS
We define an operational semantics for concurrent objects as sets of executions that interleave
steps of a number of method invocations executed by different threads. For simplicity, we assume
that every thread invokes a single method, which is without loss of generality provided that thread
ids are modeled as additional inputs. Method implementations are assumed to be given as KAT
expressions, as described in Section 2.

Client environments. An object 𝑂 is acted on by a finite environment E : T → 𝑂 × Val,
specifying which threads invoke which methods, with which argument values. We use T to denote
the set of thread ids, and Val an unspecified set of values (Val denotes the set of tuples of values).
We assume that T is equipped with a total order < that will be used to define representatives of
equivalence classes up to symmetry (renaming of thread ids).

States. We assume that each test or action in a method implementation acts on a local state,
whose content can be accessed only by the thread executing that test/action, and possibly a shared
state which can be read or modified by any thread in the environment. As expected, we assume
that each local state contains a valuation for the arguments of an invocation ®𝑥 and, once a thread
has finished its execution, its local state contains the return values ®𝑣 . A precise formalization of
local/shared states is irrelevant to our development and we omit it for readability. Let Σ𝑙𝑜 and Σ𝑔𝑙
denote the set of local and shared states, respectively.

A thread executes an implementation given by a KAT expression 𝑘 , according to the rules below.
We assume that semantics of tests J𝑏K : (Σ𝑙𝑜 × Σ𝑔𝑙) → B and actions J𝑎K : (Σ𝑙𝑜 × Σ𝑔𝑙) → (Σ𝑙𝑜 × Σ𝑔𝑙)
is provided (or generated from the language/program).

Non-deterministic single-thread execution. Given an environment E, a step of a single thread
𝑡 is a relation on Σ𝑙𝑜 × Σ𝑔𝑙 × (K ∪ {⊥}) where ⊥ indicates that a thread has completed. We denote
this relation as 𝜎𝑙 , 𝜎𝑔, 𝑘 ↓ℓ 𝜎 ′𝑙 , 𝜎

′
𝑔, 𝑘
′, which optionally involve label ℓ . Labels are taken from the

set of possible labels L ⊆ A ∪ B ∪ call 𝑚(®𝑣) ∪ ret(®𝑣) ∪ ⟨⟨𝑏 · 𝑎⟩⟩ which includes primitive actions,
primitive tests, invocations, returns or ARWs. (We here write call𝑚(®𝑣) with free variables to refer
to the set of all invocations and similar for returns and ARWs.) The labeled single-step semantics
are now defined inductively on 𝑘 as follows:

E(𝑡) = (𝑚(®𝑥)/®𝑣 : 𝑘𝑚, ®𝑣)
𝜎0
𝑙
, 𝜎𝑔, 𝜖 ↓call𝑚 (®𝑣) 𝜎0𝑙 [args𝑖 ↦→ 𝑣𝑖], 𝜎𝑔, 𝑘𝑚

®𝑣 = 𝜎𝑙 (®𝑣)
𝜎𝑙 , 𝜎𝑔, ret(®𝑣) ↓ret(®𝑣) 𝜎𝑙 , 𝜎𝑔,⊥

𝜎𝑙 , 𝜎𝑔, 𝑘 + 𝑘 ′ ↓ 𝜎𝑙 , 𝜎𝑔, 𝑘 𝜎𝑙 , 𝜎𝑔, 𝑘 + 𝑘 ′ ↓ 𝜎𝑙 , 𝜎𝑔, 𝑘 ′
𝜎𝑙 , 𝜎𝑔, 𝑘 ↓ 𝜎 ′𝑙 , 𝜎

′
𝑔, 1

𝜎𝑙 , 𝜎𝑔, 𝑘 · 𝑘 ′ ↓ 𝜎 ′𝑙 , 𝜎
′
𝑔, 𝑘
′

𝜎𝑙 , 𝜎𝑔, 𝑘
∗ ↓ 𝜎𝑙 , 𝜎𝑔, 𝑘 · 𝑘∗ 𝜎𝑙 , 𝜎𝑔, 𝑘

∗ ↓ 𝜎𝑙 , 𝜎𝑔, 1
𝑎 ≠ ⟨⟨ (𝜎 ′

𝑙
, 𝜎 ′𝑔) = J𝑎K(𝜎𝑙 , 𝜎𝑔)

𝜎𝑙 , 𝜎𝑔, 𝑎 ↓𝑎 𝜎 ′𝑙 , 𝜎
′
𝑔, 1

J𝑏K(𝜎𝑙 , 𝜎𝑔) = true

𝜎𝑙 , 𝜎𝑔, 𝑏 ↓𝑏 𝜎𝑙 , 𝜎𝑔, 1
J𝑏K(𝜎𝑙 , 𝜎𝑔) (𝜎 ′𝑙 , 𝜎

′
𝑔) = J𝑎K(𝜎𝑙 , 𝜎𝑔)

𝜎𝑙 , 𝜎𝑔, ⟨⟨𝑏 · 𝑎⟩⟩ ↓⟨⟨𝑏 ·𝑎⟩⟩ 𝜎 ′𝑙 , 𝜎
′
𝑔, 1

The first rule is for invocation, assuming that the environment for this thread specifies that𝑚 should
be invoked with arguments ®𝑣 . These arguments are recorded in the local state, and an invocation

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1:28 Constantin Enea and Eric Koskinen

label is generated; 𝜎0
𝑙
is a fixed initial local state. The second rule applies when execution reaches a

return statement and a label is generated with the values provided in the local state variables ®𝑣 . Note
that invocation/return labels are not invocation/return actions because they contain values rather
than arguments. The subsequent 5 rules are built atop the standard non-deterministic semantics
of KAT expressions, without any labels being generated. The last 3 rules are for atomic actions 𝑎,
atomic tests 𝑏, and ARWs ⟨⟨𝑏 · 𝑎⟩⟩, with the respective labels generated. When a test 𝑏 does not hold,
the successor is undefined (and similar when atomic test𝑏 in ⟨⟨𝑏 ·𝑎⟩⟩ does not hold). We further define
𝜎𝑙 , 𝜎𝑔, 𝑘 ⇓ℓ 𝜎𝑛𝑙 , 𝜎

𝑛
𝑔 , 𝑘

𝑛 , relating triples from a sequence (𝜎𝑙 , 𝜎𝑔, 𝑘) ↓ (𝜎1𝑙 , 𝜎
1
𝑔 , 𝑘

1) ↓ · · · ↓ℓ (𝜎𝑛𝑙 , 𝜎
𝑛
𝑔 , 𝑘

𝑛)
where only the final ↓ transition produces a label. (i.e., the intermediate label-free nondeterminism
has been resolved.)
The rules above give a semantics to steps of a thread assuming a certain shared state 𝜎𝑔, and

can be extended to sequences of steps assuming that the shared state can be changed arbitrarily in
between every two steps. Formally, given a KAT expression 𝑘 , an execution of 𝑘 starting from a
local state 𝜎𝑙 and global state 𝜎𝑔 is defined as a sequence of triples 𝜎𝑖𝑙 , 𝜎

𝑖
𝑔, 𝑘

𝑖 with 0 ≤ 𝑖 ≤ 𝑛 such that:
(1) 𝜎0

𝑙
= 𝜎𝑙 , 𝜎0𝑔 = 𝜎𝑔, 𝑘0 = 𝑘 , (2) 𝜎𝑖𝑙 , 𝜎

𝑖
𝑔, 𝑘

𝑖 ⇓ℓ 𝜎𝑖+1𝑙
, 𝜎𝑖+1𝑔 , 𝑘𝑖+1 for all 𝑖 even, (3) 𝜎𝑖

𝑙
= 𝜎𝑖+1

𝑙
and 𝑘𝑖 = 𝑘𝑖+1

for all 𝑖 odd, and (4) 𝑘𝑛 = 1. Note that 𝜎𝑔 is unconstrained in (3).

Example A.1. Consider 𝑘𝑖𝑛𝑐 as defined in Example 2.2 and 𝜎0
𝑙
= [c ↦→ undef] and 𝜎0𝑔 = [ctr ↦→ 0].

Here is one execution of 𝑘𝑖𝑛𝑐 :
Step 0 : (𝜎0

𝑙
, 𝜎0𝑔 , (c:=ctr · · ·)∗),

Step 1 : (𝜎0
𝑙
, 𝜎0𝑔 , (c:=ctr · · ·) · (c:=ctr · · ·)∗), Unfold * via ↓

Step 2 : (𝜎0
𝑙
, 𝜎 ′𝑔, (c:=ctr · · ·) · (c:=ctr · · ·)∗), Global state changed arbitrarily

Step 3 : (𝜎0
𝑙
[c ↦→ 𝜎 ′𝑔 (ctr)], 𝜎 ′𝑔, 1 · (c:=ctr · · ·)∗), . . . Reduce an action via ↓c:=ctr

A.1 Executions, Traces, Linearizability
The set of executions of a concurrent object 𝑂 in the context of an environment E are defined as
interleavings of single-thread executions, acting on the shared state and their local states, with
nondeterministic scheduling.

A configuration𝐶 ∈ (𝜎𝑔,𝑇) where𝑇 : T ⇀ (Σ𝑙𝑜 × (K ∪ {⊥})) comprises a shared state 𝜎𝑔 ∈ Σ𝑔𝑙
and a mapping for each active thread to its local state and current code. The initial configuration is
defined by𝐶0 = (𝜎0𝑔 , ∅) where 𝜎0𝑔 is a fixed initial shared state. Let C denote the set of configurations.
An execution of 𝑂 is a sequence of configurations and labeled transitions over the threads

specified by an environment E. The transition relation⇒: C × (T × L) × C is defined as:
E(𝑡) = (𝑚(®𝑥)/®𝑣 : 𝑘𝑚, ®𝑣) 𝑇 (𝑡) undefined

(𝜎𝑔,𝑇)
(𝑡 :call𝑚 (®𝑣)) (𝜎 ′𝑔,𝑇 [𝑡 ↦→ (𝜎0𝑙 [args𝑖 ↦→ 𝑣𝑖], 𝑘𝑚)])

𝑇 (𝑡) = (𝜎𝑙 , 𝑘) 𝜎𝑙 , 𝜎𝑔, 𝑘 ⇓ℓ 𝜎 ′𝑙 , 𝜎
′
𝑔, 𝑘
′

(𝜎𝑔,𝑇)
(𝑡 :ℓ) (𝜎 ′𝑔,𝑇 [𝑡 ↦→ (𝜎 ′𝑙 , 𝑘

′)])
A transition is possible for any thread whose 𝑘 is not ⊥. The first rule models a new thread
invoking a method according to the environment. In the second, the thread 𝑡 takes a ⇓ℓ step,
producing label ℓ , and the configuration is updated with the new global state and the new (𝜎 ′

𝑙
, 𝑘 ′)

for thread 𝑡 .

B PROOF OF THEOREM 5.6
We reason by induction on the number of paths in Π(expr) in a completed execution 𝜌 of 𝑂 that
are either (1) write paths but they are interleaved with actions of other threads, or (2) local paths

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

Scenario-based Proofs for Concurrent Objects 1:29

but they are interleaved with more than two write paths in Π(expr), or with a single write path in
Π(expr) but together with this path, it does not form a support of a layer in expr.
The base case of the induction is trivial: since every label of a transition in 𝜌 belongs to some

path in Π(expr), and all paths are interleaved as prescribed by the layers, then clearly, the trace of
𝜌 is in the interpretation of expr.

For the induction step, consider first a write path that is interleaved with actions of other threads.
Let 𝜌 ′ be the minimal subsequence of 𝜌 that contains only steps of that path and all the other
write paths that interleave with it. By the induction hypothesis, the latter write paths execute
without interruption. This execution is feasible starting from the first configuration of 𝜌 ′, because
we removed only local actions that do not affect enabled-ness of other concurrently executing
steps. Applying the WPC condition, there exists an execution 𝜌 ′′ strongly equivalent to 𝜌 ′ where
all paths execute without interruption. Since 𝜌 ′′ passes through the same sequence of shared states
(modulo stuttering) it can “replace” 𝜌 ′ in 𝜌 . The trace of the obtained execution is a sequence of
layers which ends the proof.

Second, consider a local path that is interleaved with more than two write paths. Similarly to the
previous case, one can extract only the steps of that path and all the other write paths with which
it interleaves, apply the LPC condition to produce an equivalent sub-execution where that path
interleaves with at most one other write path, and then, re-insert the obtained sub-execution into
the original execution.

C LAYER AUTOMATA
C.1 Automaton Representation of LayerQuotients
We now show that layer quotients can be represented as automata, as mentioned at the end of
Sec. 5. These layer automata are a convenient representation of the quotient and, as shown in Sec. 7,
can be automatically derived from source code. In general, objects can reach unboundedly many
configurations and different layers are enabled/disabled from different configurations, e.g., the layer
_𝑑𝑒𝑐0 of 𝑂𝑐𝑡𝑟 in Example 5.3 is enabled only when ctr is 0. A layer expression comprised simply
of a starred union of basic layer expressions is not always appealing since some layers are not
enabled from some configurations. We therefore describe a more convenient representation as a
layer automaton, in which the states represent abstractions (sets) of concrete configurations in
executions (as defined in Section 2) and the transitions are labeled by basic layer expressions.

Definition C.1 (Layer automaton). Given an object𝑂 , a layer automaton is a tupleA = (Q,Q0,Λ, 𝛿)
where Q is a finite set of states representing abstractions (sets) of configurations of 𝑂 , Q0 ⊆ Q is
the set of initial states, and 𝛿 ⊆ Q×2Λ×Q is a set of transitions labeled with basic layer expressions
(elements of Λ) with the constraint that an edge 𝑞

𝛼−→ 𝑞′ can only be one of two types:
(1) Unique self-loop: 𝛼 = _1 · · · _𝑛 is a sequence of 𝑛 ≥ 1 local layers, 𝑞′ = 𝑞, and there are no

other self-loops 𝑞
𝛼′−→ 𝑞.

(2) Single write layer edges: 𝛼 = _ is a single write layer.
The interpretation of the automaton, denoted by JAK, as a layer expression is defined as

expected, except that the label of a self-loop is not starred. For instance, the interpretation of an
automaton consisting of a single state 𝑞 and self-loop 𝑞

𝛼−→ 𝑞 is defined as 𝛼 instead of 𝛼∗.
Theorem C.2. Given an object 𝑂 and a layer automaton A = (Q,Q0,Λ, 𝛿), the layer expression

JAK is an abstraction of a quotient of 𝑂 if
• the starred union of the basic layer expressions labeling transitions of A is an abstraction of a
quotient of 𝑂 (Theorem 5.6),
• every initial configuration of𝑂 is represented by some abstract state in Q0, and every reachable
configuration is represented by some abstract state in Q,

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1:30 Constantin Enea and Eric Koskinen

• for every layer _ in JAK, if there exists an execution 𝜌 representing _ from a reachable

configuration 𝐶 to a configuration 𝐶 ′, then A contains a transition 𝑞
𝛼′−→ 𝑞 where 𝑞 is an

abstraction of 𝐶 and 𝑞′ is an abstraction of 𝐶 ′.
The automaton in Fig. 1 is a layer automaton for the MSQ (see Section 6.1 for more details).
Corollary C.3. (To Thm. 3.5) If a layer expression expr is an abstraction of a quotient and there

is a linearization point mapping for every trace in JexprK that is robust against re-ordering, then the
object is linearizable.

C.2 Computing Layer Automata
In Sec. 7 we discuss how candidate layer automata can be computed for some canonical examples.
This section explains the algorithm in detail. Given a set of layers _1,. . .,_𝑛 whose starred union is
an abstraction of an object quotient (cf. Theorem 5.6), a layer automaton satisfying Theorem C.2
can be computed automatically. For lack of space we only sketch the procedure. The algorithm
consists of the following steps:

(1) States: Compute the automaton abstract states as boolean conjunctions of the weakest
pre-conditions (and their negations) of traces in the support of a layer _𝑖 with 1 ≤ 𝑖 ≤ 𝑛.
We assume that the initial state can be determined from the object spec.

(2) Edges: Whenever a state 𝑞 implies the precondition of a write layer _𝑖 with write path 𝑘𝑤 ,
compute every post-state 𝑞′ that can hold, and add an edge 𝑞

_𝑖−→ 𝑞′. This can be encoded as
an assertion violation in a program that assumes 𝑞; 𝑘𝑤 and asserts the negation of 𝑞′.

(3) Self-Loops: For every state 𝑞 collect every local layer that is enabled from 𝑞 and create a
single self-loop consisting of a concatenation of all these layers.

D SLS QUEUE SOURCE CODE
Below is the implementation of the Scherer et al. [Scherer III et al. 2006] queue. Path labels such
as 1t or 1f are included to indicate which paths from Sec. 6.2 correspond to those program
locations, where possible. (We have slightly refactored the second portion of the implementation in
our path graph.)
1 public void enq(T e) {

2 Node offer = new Node(e, NodeType.ITEM);

3 while (true) {

4 Node t = tail.get(), h = head.get();

5 if (h == t || t.type == NodeType.ITEM) {

6 Node n = t.next.get();

7 if (t == tail.get()) {

8 if (n != null) {

9 tail.compareAndSet(t, n); 1t , 1f

10 } else if (t.next.compareAndSet(n, offer)) {

11 3t

12 tail.compareAndSet(t, offer); 3’t , 3’f

13 while (offer.item.get() == e); 3”

14 h = head.get();

15 if (offer == h.next.get()) {

16 head.compareAndSet(h, offer); return; 3”at , 3”af

17 } else { return; 3”b }

18 } else { restart 3f }

19 } else { restart 2 }

20 } else {

21 Node n = h.next.get();

22 if (t != tail.get() || h != head.get() || n == null 4) {

23 continue;

24 }

25 boolean success = n.item.compareAndSet(null , e); 5t , 5f

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

Scenario-based Proofs for Concurrent Objects 1:31

3t1t1f

3’t3’f

3’’

3’’at3’’af 3’’b

2 3f
5t

4

5f

Entry / Loop header

Path 1t or 1f

t:=tail;
h:=head;
{h==t \/

 t.ty=ITEM}

n:=t.next;
{t==tail}

{n!=null}

cas(tail,t,n)

Path 3’t or 3’f)

skip
cas(tail,t,of)

Path 3’’

while(of.item==e);

Path 3’’at or 3’’af

h:=head;
{of=h.next}

cas(head,h,of)/?

return

Path 3’’b

h:=head;
{of!=h.next};

return

Path 2

t:=tail;
h:=head;
{h==t \/

 t.ty=ITEM}

n:=t.next;
{t!=tail}

Path 3f or 3t

t:=tail;
h:=head;
{h==t \/

 t.ty=ITEM}

n:=t.next;
{t==tail}

{n==null}

cas(t.next,n,of)

Path 4

t:=tail;
h:=head;

{h!=t}
{t.ty=RES}
n:=h.next;

{n==null}

Path 5t or 5f

t:=tail;
h:=head;

{h!=t}
{t.ty=RES}
n:=h.next;

{n!=null}

cas(n.item,null,e)

Path 6bt or 6bf

h:=head;

{h==head}

cas(head,h,n)

false true false true

false true

false true

false true

false true

Path 6a

h:=head;

{h!=head}

Path 7bt or 7bf

h:=head;

{h==head}

cas(head,h,n)/?

return

Path 7a

h:=head;

{h!=head};

return

6bt6a 6bf

false true

7bt7a 7bf

Fig. 7. (Reproduction of Fig. 11: The implementation of a synchronous queue due to Scherer III et al. [2006].)

26 head.compareAndSet(h, n); {6,7}bt , {6,7}bf

27 if (success)

28 return; 7a , 7bt , 7bf

29 else

30 restart 6a , 6bt , 7bf

31 }

32 }

33 }

D.1 SLS queue implementation graph
We describe the implementation in Fig. 11, beginning with the cloud-surrounded area in upper
left-hand half of the diagram which is, essentially, the Michael-Scott queue. In this region the queue
is a list of items (with a dummy head node), whereas the new portions of the implementation apply
when the queue is a list of reservations. Paths 1t and 1f attempt to advance the tail pointer. Path
2 is interrupted by a recently changed tail pointer. Paths 3t and 3f attempt to swap tail’s next
to their new item offer node. If successful, paths 3’t and 3’f attempt to advance the tail pointer.

Path 3” is the synchronous part of the algorithm: waiting for an enqueued item to be consumed
by a dequeuer. At that point, the head pointer may be stale, and paths 3”at , 3”af and 3”b try
to advance the head pointer.

Alternatively the queue may be a list of reservations, again with a dummy head node. Paths 5t
and 5f attempt to fulfill a dequeuer’s reservation by swapping null for an element. Path 5f is
doomed to restart, while path 5t will soon return. In either case, the enqueue first attempts to
advance the head pointer (paths 6a , 6bf , 6bt , 7a , 7bf , 7bt).
The implementation of dequeue is a sort of dual operation. When the queue is a non-empty list

of items, dequeue tries to take the first item by swapping the head’s next value for null (and then

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1:32 Constantin Enea and Eric Koskinen

Fig. 8. An increment-only execution for which there is an equivalent representative execution (as suggested
by the large wavy arrow) that is in the layer quotient.

Fig. 9. An execution where the second thread executes a decrement, which is equivalent to the representative
execution suggested by the wavy arrow.

tries to advance the head pointer). When the queue is empty or a list of reservations, dequeue
redirects the tail’s next to its new reservation node (and then tries to advance the tail pointer). After
appending the reservation, dequeue spins until a value is swapped in, and then tries to advance the
head pointer before returning.

E DETAILED EXPLANATION FOR COUNTER
To explain the equivalence between arbitrary interleavings of increment invocations and represen-
tative executions in quotient ⟨⌊𝑂⌋⟩, we consider the execution pictured in Figure 8. This execution
is not in ⟨⌊𝑂⌋⟩ because the unsuccessful iteration of thread 3 is interleaved with two successful
CASs: it reads ctr before the first successful CAS (in thread 1) and after the second successful CAS
(in thread 2). Yet, as explained above, a layer interleaves an unsuccessful iteration with a single
successful CAS.

However, the second read of ctr, corresponding to the unsuccessful CAS in thread 3, is enabled
even if executed earlier just after the first successful CAS. Moreover, since retry-loop iterations
are “forgetful”, i.e., there is no flow of data from one iteration to the next (the value of ctr is read
anew in the next iteration), executing the unsuccessful CAS earlier would not affect the future
behavior of this thread (and any other thread because it is a read) even if this reordering makes
this unsuccessful CAS read a different value of ctr (value 1 instead of 2). This reasoning extends
even when the iteration of thread 3 is interleaved with more than two other iterations.

The case of increment-only executions is simpler because it does not include the so-called ABA
scenarios in which ctr is changed to a new value and later restored to a previous value. Every
successful CAS will write a new value to ctr and will make all the other invocations that read ctr
just before to restart.
Interleavings of increment and decrement invocations can exhibit the ABA scenario described

above, as exemplified in Figure 9. The value 0 read by thread 3 before the first successful CAS
is restored by the second successful CAS (performed in a decrement invocation). This execution
is not a representative execution in ⟨⌊𝑂⌋⟩ because the successful retry-loop iteration in thread 3
interleaves with other two successful iterations while in ⟨⌊𝑂⌋⟩ executions, every successful iteration
is executed in isolation w.r.t. other successful iterations. However, the equality test in the successful
CAS of thread 3 (ctr == 0) is enough to conclude that the previous read can be commuted to the
right and just before the CAS. This allows to group together the actions of the third layer and
obtain a representative execution from ⟨⌊𝑂⌋⟩, extended to include decrements. To this end, we
introduce decrement layers of the form [(c:=ctr𝑛𝑖𝑛𝑐 ·c:=ctr𝑚𝑑𝑒𝑐) ·c:=ctr;cas(ctr,c,c-1)/true ·

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

Scenario-based Proofs for Concurrent Objects 1:33

Fig. 10. An automaton representation of layer-serialized executions of the counter.

(cas/false𝑚
𝑑𝑒𝑐
·cas/false𝑛𝑖𝑛𝑐). In this expression,𝑛 concurrent increment threads and𝑚 concurrent

decrement threads interleave with a single successful decrement thread (we also subscripted with
𝑖𝑛𝑐/𝑑𝑒𝑐 to indicate where the action came from.). All unsuccessful threads’ operations commute
with each other and are put in a canonical form (later the interpretation of 𝑎𝑛 will order 𝑎’s according
to thread ids). We similarly augment the increment layers with concurrent decrement threads.

Decrement invocations can also be formed exclusively of read-only iterations when they observe
that ctr is 0. The last iteration in such invocations returns 0 and performs no write to the shared
memory. Such loop iterations that read the value of ctr at the same time (after the same number
of successful CASs) are grouped in a layer as well. They can be assumed to execute in isolation
because they execute a single memory access.

F LAYER AUTOMATON FOR COUNTER
Overall, a quotient of the counter contains sequences of layers as described above. The order in
which layers can occur in an execution can be constrained using regular expressions or equivalently,
automata representations as shown in Fig. 10. In this layer automaton, states are properties of the
shared memory that identify preconditions enabling shared-memory writes (successful CASs), and
transitions represent layers.
This automaton consists of two states depicted in dark gray, distinguishing shared-memory

configurations where the precondition of a successful CAS in decrement invocations (ctr >

0) holds. The self-loop on the initial state represents a layer (Layer 1) formed of an arbitrary
number of decrement iterations returning value 0, executed by possibly different threads. “dec:10-
11-ret(0)” refers to the control-flow path of decrement from Line 10 to Line 11 to return. This
is just an abbreviation; formally it is represented with KAT expressions. Layer 2 occurs on the
outgoing transition from the initial state and this layer is formed from a successful increment
iteration interleaved with an arbitrary number of unsuccessful increment iterations executed
by different threads (when ctr equals 0 all decrement retry-loop iterations reach the return
statement). Iterations are represented as control-flow paths in the code of the methods. inc:3-5-
cas()/true summarizes the single successful write path in the layer: an increment control-flow path
that begins on Line 3, proceeds to the CAS, succeeds the CAS and returns. The final expression in
Layer 2 summarizes an arbitrary number of threads failing the test on Line 4 (due to the successful
write path), and loop back to Line 3. The outgoing transitions from the second state represent layers
containing a successful increment (Layer 3) or decrement iteration (Layer 4), each interleaved with
an arbitrary number of unsuccessful increment or decrement iterations. Finally, the transition from
ctr>0 to ctr=0 involves the same Layer 4, despite landing in a new automaton state.

G QUOTIENT FOR MICHAEL-SCOTT QUEUE (FURTHER DETAILS)
The write operations in the layers induce the state changes as shown by the various edges in Fig. 1.
For example, the Dequeue Succeed Layer can move from automaton state 𝑞2 to automaton state 𝑞1.

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1:34 Constantin Enea and Eric Koskinen

Naturally, some edges are not enabled. For example, there is no edge from 𝑞1 to 𝑞2, because the
latter is not reachable from the former via a single write path/layer. Also, while there are outbound
edges from 𝑞1, there is no layer involving a deq write operation (since the queue is empty). Other
layers self-loop, such as the Dequeue Succeed Layer self-loop at 𝑞4.
There are also four local layers that self-loop. These involve local paths that return (e.g., Read

Only Layer 1 where deq returns because the queue is empty) or paths that loop while waiting
(e.g., Read Only Layer 3 where enq awaits the advancer thread).

The layer quotient as represented in this layer-automaton is in some sense not optimal because
some pairs of write paths commute, e.g., enqwriting to Q.tail and deqwriting to Q.headwhen the
queue is non-empty. However, in these circumstances the overall enq/deq commute in the sequential
semantics of the object. Commuting these write linearization points in the layers corresponds to
commuting the overall methods. Consequently, the layer quotient can be seen as optimal modulo
method-level commutativity.

Theorem G.1. The above layer automaton is an abstraction of a quotient for Michael-Scott Queue.

Proof by the methodology of Def. 5.6. (WPC) For the deq successful CAS on Q.head and adv
successful CAS on Q.tail, old reads are not possible because every CAS changes those pointers to
fresh values. Thus, if the CAS was successful, the read must be in the current layer (there are no
other successful CASs in between). The enq CAS on Q.tail->next is similar to Treiber’s stack:
Q.tail->next is only written once, so any old value of Q.tail->next will have the same value in
the current layer so an old read can move to the current layer. Furthermore, if there was an old
read of Q.tail, the value of Q.tail could not have changed without Q.tail->next first having
been changed.
(LPC) CAS operations always change the value so it is always possible to move a late “failing”

CAS to the left so that it occurs after the first successful CAS following the previous reads in the
same iteration.

Note that the Advancer Succeed Layer in reality cannot self-loop from 𝑞3 because an invariant of
the MSQ is that Q.tail can only lag behind by one link in the list. This happens because weakest
preconditions from a true postcondition are over-approximate and did not include complicated
invariant reasoning to accurately express the single-link lag condition. Consequently this layer
automaton (soundly) over-approximates the executions of the MSQ.

H QUOTIENT FOR THE SLS QUEUE
Implementation. The implementation of the SLS queue is illustrated in Fig. 11 (the source code is
given in Apx. D). This diagram is like a control-flow graph (entry point, loop header, branch/merge
points, etc.), but with some flattening to make paths more explicit. Paths are identified where
they end, with write paths denoted as 1t and local paths as 4 . Two paths that share a prefix
and differ only based on a CAS result are denoted with a single box, but with true/false exit arcs,
e.g., 1t and 1f . Later below we will write D1t versus E1t when we are referring specifically
to dequeue versus enqueue. This is the source for enqueue (which appends item nodes or fulfills
reservation nodes) and the source for dequeue is identical (except dequeue appends reservation
nodes or consumes item nodes).
SLS, like MSQ, involves manipulating a list of nodes that are items with a dummy head node.

There is a synchronous blocking on path 3” . However, for SLS, alternatively the queue may be a
list of reservations, and the right-hand paths attempt to fulfill a dequeuer’s reservation by swapping
null for an element. The implementation of dequeue is a sort of dual, omitted for lack of space.
Below we denote paths such as D5t to mean the dequeue dual of enqueue’s 5t . Note that, unlike

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

Scenario-based Proofs for Concurrent Objects 1:35

3t1t1f

3’t3’f

3’’

3’’at3’’af 3’’b

2 3f
5t

4

5f

Entry / Loop header

Path 1t or 1f

t:=tail;
h:=head;
{h==t \/

 t.ty=ITEM}

n:=t.next;
{t==tail}

{n!=null}

cas(tail,t,n)

Path 3’t or 3’f)

skip
cas(tail,t,of)

Path 3’’

while(of.item==e);

Path 3’’at or 3’’af

h:=head;
{of=h.next}

cas(head,h,of)/?

return

Path 3’’b

h:=head;
{of!=h.next};

return

Path 2

t:=tail;
h:=head;
{h==t \/

 t.ty=ITEM}

n:=t.next;
{t!=tail}

Path 3f or 3t

t:=tail;
h:=head;
{h==t \/

 t.ty=ITEM}

n:=t.next;
{t==tail}

{n==null}

cas(t.next,n,of)

Path 4

t:=tail;
h:=head;

{h!=t}
{t.ty=RES}
n:=h.next;

{n==null}

Path 5t or 5f

t:=tail;
h:=head;

{h!=t}
{t.ty=RES}
n:=h.next;

{n!=null}

cas(n.item,null,e)

Path 6bt or 6bf

h:=head;

{h==head}

cas(head,h,n)

false true false true

false true

false true

false true

false true

Path 6a

h:=head;

{h!=head}

Path 7bt or 7bf

h:=head;

{h==head}

cas(head,h,n)/?

return

Path 7a

h:=head;

{h!=head};

return

6bt6a 6bf

false true

7bt7a 7bf

Fig. 11. The implementation of a synchronous queue due to Scherer III et al. [2006].

Treiber’s stack or the MSQ, in the SLS queue a method invocation could involve a series of paths,
e.g., the sequence 3t ; 3’t ; 3” ; 3”at , that involves multiple write operations.

The cloud-surrounded area in the upper left-hand half of the diagram is essentially MSQ and it
involves manipulating a list of nodes that are itemswith a dummy head node. There is a synchronous
blocking on path 3” . Alternatively the queue may be a list of reservations, and the right-hand
paths attempt to fulfill a dequeuer’s reservation by swapping null for an element.
The SLS queue demonstrates that a method implementation could consist of sequentially com-

posed paths which define different layers. As we will see, advancing the tail pointer (and the head
pointer) are subpaths of method implementation. Moreover, the synchronous behavior involves
busy-wait/blocking during the implementation, after which point further paths are executed.

Quotient. The quotient for SLS is discussed in Sec. 6.2. In this appendix, we show Fig. 12 which
is similar to the Sec. 6.2 quotient, but with precise CFG locations in the layer definitions.
Technically the states require one further predicate to indicate whether there is currently a

thread at location 3t , omitted for lack of space. This is needed because the subsequent paths use
the local variable t which is an old read done in the previous path. This is acceptable because
it is only possible that one thread can be at location 3t so the old read is still valid during the
subsequent path. Typically we have found that implementations do not perform such “old reads”
which are only correct as a result of very delicate reasoning.

Theorem H.1. The SLS queue is linearizable.

Proof: The following expression uses the same layers, some marked 𝐸 or 𝐷 for linearization points:
([Dapp · TA · (Eswap𝐸; 𝐷 · HR · Dapp · TA)∗ · Eswap𝐸; 𝐷 · HR] // LHS
+ [Eapp𝐸 · TA · (Dswap𝐷 · HR · Eapp𝐸 · TA)∗ · Dswap𝐷 · HR] // RHS
)∗ · ([Dapp · TA]∗ + [Eapp𝐸 · TA]∗)

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1:36 Constantin Enea and Eric Koskinen

Dswap

Dswap

When the queue is a list of items
(enq appends items at tail, deq removes items at head)

When the queue is a list of reservations
(deq appends resv at tail, enq removes resv at head)

Layer

Definitions:

Layer

Automaton:

Eswap

Eswap

empty

head=tail

>0 items

head good

tail good

>0 items

head good

tail stale

>0 items

head stale

tail good

>0 items

head stale

tail stale

HR

TA
Eapp

TA
Eapp

HR

Eapp

>0 reservs

head good

tail good

>0 reservs

head good

tail stale

>0 reservs

head stale

tail good

>0 reservs

head stale

tail stale

HR

TA
Dapp

TA
Dapp

HR

Dapp

Tail advance (TA)
(1t) with (1f + 2 + 3’f)*

or
(3’t) with (1f + 2 + 3’f)*

Head reap (HR)
(3”at) with (1f+2+3”af+3”

 b+4+6a+6bf+7a+7bf)*
Or with (as above)*
Or with (as above)*

Enq swap res for item (Eswap)
(5t) with (4+5f)*

Enq append item node (Eapp)
(3t) with (3f)*

Deq swap item for null (Dswap)
with (4+5f)*

Deq append reservation (Dapp)
 with (3f)*

DE1t

DE3’t

DE3’’at

DE6bt

DE7bt

E5t

E3t

D5t

D3t

Fig. 12. Layer automaton for the synchronous SLS queue. Layers’ acronyms and their definitions are given in
the lower half of the figure. For conciseness, layer definitions do not split the prefix/suffix of the read paths.

This expression captures iterating through the left and righthand sides of the automaton (passing
through the empty ADT state in between), followed by either unmatched appended dequeue
reservations or unmatched appended enqueue items. When the queue consists of reservations, the
Eswap layer provides the linearization point for enqueue, but also the corresponding dequeue. TA
and HR layers are positioned next to a corresponding app and swap (resp.).
We thus prove (#1) This expression is an abstraction of the quotient: by induction on any

execution, feasible actions can be reordered into layers and those layers can be ordered into
the above expression. (#2) For linearizability, we project out the LP operations to obtain simply
(𝐸 ·𝐷)∗ · (𝐸∗+𝐷∗). Thus, combining with #1, all executions meet the sequential spec. of a queue.

I QUOTIENT FOR TREIBER’S STACK
Recall the implementation of Treiber’s stack [Treiber 1986], stored as a linked list from a global
pointer top, and manipulated as follows:

1 void push(int item){ while (1){

2 node_t* n = malloc (...);

3 n->val = item;

4 node_t* oldTop = top;

5 n->next = oldTop;

6 if(CAS(top ,oldTop ,n) ret;

7 } }

1 int pop(){ while (1){

2 node_t* oldTop = top;

3 if(oldTop ==NULL) { ret 0; }

4 newTop = oldTop ->next;

5 if(CAS(top ,oldTop ,newTop) ret oldTop ->val;

6 } }

The states for the layer-automaton of the Treiber’s Stack (derived from the pre-conditions of
successful push and pop operations) are simply top=null and top≠null. The Treiber stack can
thus be decomposed into a layer automaton as follows:

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

Scenario-based Proofs for Concurrent Objects 1:37

Above the automaton states are given in rounded dark boxes, and edges are labeled with layers.
We abbreviate local paths using source code line numbers rather than KAT expressions. For example
pop:2-5means the path starting at the beginning of Line 2 of pop and proceeding to the beginning
of Line 5. Layer 1 is a local layer, in which the state is top=null. In this layer, there is only one local
path from pop that is enabled for some 𝑛 threads and it pertains to returning 0 to indicate empty.
Layer 2 occurs from a state where top≠null and the pop ARW action for the compare-and-swap
occurs, causing 𝑛 other pushes’ and𝑚 pops’ CAS attempts to fail (on their lines 6 and 5, respectively)
and thus they restart (transition back to their respective Line 2s). The write path is in bold. The
other layers are similar, with a single pop or push ARW invalidating other pop/push attempts.
Layer 2 occurs as a label in two different transitions. Layer 5 self-loops at state top≠null, which
abstracts over all non-empty stacks.

Lemma I.1. The above layer automaton is an abstraction of a quotient for Treiber’s stack.

Proof: By the methodology of Def. 5.6. Per WPC, we must show that an old read of top and
top->next, with then arbitrarily many write paths interleaved, can be moved to the right just
before the successful CAS (an unsuccessful CAS belongs to a local path, discussed next). The
successful CAS checks that top is unchanged since the old read. Moreover, since top->next is only
written once, if top is unchanged then top->next must also be unchanged6. Therefore both old
reads could be moved to the right just before the successful CAS, and a whole write path can be
assumed to execute without interruption.
Per LPC, requiring that each local path, pops returning 0 or iterations with failed CASs, can be

re-ordered to interleave with at most one write path. Iterations where a pop returns 0 perform
a single access to shared-memory (reading top) and therefore, they can be assumed to execute
without interruption. The failed CAS in an iteration can be re-ordered to occur just after the first
successful CAS that follows the read of top in the same iteration. This holds because in Treiber’s
stack successful CAS operations always mutate top to a fresh value (assuming memory freshness).

J QUOTIENT FOR ELIMINATION STACK
The Elimination Stack [?] augments Treiber’s stack with a protocol for “colliding” push and pop
invocations so that the push passes its input directly to the pop without affecting the underlying
data structure. An invocation starts this protocol after performing a loop iteration in Treiber’s
stack and failing (due to contention on top). The protocol uses two arrays: (1) a location array
indexed by thread ids where a push or pop invocation publishes a descriptor object with fields op
for the type of invocation (push or pop), id for the id of the invoking thread, and input for the
input of a push operation, and (2) a collision array indexed by arbitrary integers which stores
ids of threads announcing their availability to collide.

6We assume a semantics modeling garbage collection where memory cannot be reallocated. Without this assumption, it is
possible that top is unchanged, but top->next has changed. This is known as an ABA bug.

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1:38 Constantin Enea and Eric Koskinen

Each invocation starts by publishing their descriptor in the location array (line 3). Then, it
reads a random cell of the collision array while also trying to publish their id at the same index
using a CAS (lines 4–7). If it reads a non-NULL thread id, then it tries to collide with that thread. A
successful collision requires 2 successful CASs on the location cells of the two threads (we require
CASs because other threads may compete to collide with one of these two threads): the initiator of
the collision needs to clear its cell (line 11) and modify the cell of the other thread (line 12) to pass
its input if the other thread is a pop. The first CAS failing means that a third thread successfully
collided with the initiator and the initiator can simply return (lines 18–20). Failing the second CAS
leads to a restart (line 15). If the invocation reads a NULL thread id from collision, then it tries to
clear its cell before restarting (line 22). If it fails, then as in the previous case, a collision happened
with a third thread and the current thread can simply return (line 23–25).

1 void push/pop(descriptor p){ while (1) {

2 one iteration of Treiber stack

3 location[mytid] = p;

4 pos = nondet ();

5 do {

6 him = collision[pos]

7 } while (!CAS(& collision[pos], him , mytid))

8 if him != NULL {

9 q = location[him]

10 if (q != NULL & q.id = him & p.op != q.op) {

11 if (CAS(& location[mytid],p,NULL)) {

12 if (CAS (& location[him], q, p/NULL))

13 return NULL/q.input

14 else

15 continue

16 }

17 else {

18 val = NULL/location[mytid].input;

19 location[mytid] = NULL;

20 return val

21 } } }

22 if (!CAS(& location[mytid],p,NULL)) {

23 val = NULL/location[mytid].data;

24 location[mytid] = NULL;

25 return val

26 } } }

We use the automaton below to describe a sound abstraction of the quotient. Layers of Treiber’s
stack (defined in Section I) interleave with layers of the collision protocol (some components are
not exactly layers as in Definition 5.2, but very similar).

Publish
descriptors

(push/pop:3-4)*
Publish collision

intent

(push/pop:6)n

(push/pop:6-7- cas(collision[pos])/true)

(push/pop:7-6)n

Active collider
finished

(push/pop:8-11- cas(location[mypid])/true)n

push/pop: 8-13- cas(location[him])/true

(push/pop:14-2)n
Treiber’s

stack

pop/push:8-22 return val

+ pop/push:8-10-22 return val

+ pop/push:8-17 return val

Executions in the quotient serialize collisions and proceed as follows: (1) some number of threads
publish their descriptor and choose a cell in the collision array, (2) some number of threads
publish their id in the collision array (there may be more than one such thread – note the self-loop
on the top right state), (3) some number of threads succeed the CAS to clear their location cell

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

Scenario-based Proofs for Concurrent Objects 1:39

but only one succeeds to also CAS the location cell of some arbitrary but fixed thread him and
return, and (4) the thread him returns after possibly passing the tests at line 8 or 10. We emphasize
that collisions happen in a serial order, i.e., at any point there is exactly one thread that succeeds
on both CASs required for a collision and immediately after the collided thread returns (publishing
descriptors or collision intent interleaves arbitrarily with such serialized collisions).

Theorem J.1. The above automaton is an abstraction of a quotient for the Elimination Stack.

Proof: (Sketch) We need to show that every execution of the Elimination stack is equivalent to some
execution represented by this automaton up to reordering of commutative actions. The interactions
in the Treiber’s stack component do not interfere with collisions (they use disjoint addresses in the
shared memory) and therefore every execution can be assumed (up to commutativity) to execute in
phases as follows: some number of invocations executing a sequence of layers as in the Treiber’s
stack layer automaton (competing on the top pointer) followed by some number of invocations
trying to collide with each other, followed again by Treiber’s stack layers, and so on. In the following
we show that the collisions can be reordered to occur serially as in the above automaton.

We proceed by induction on the number of successful CASs at line 12 (the second CAS required
for a successful collision). Consider the first such successful CAS, denoted as 𝐶𝐴𝑆2/𝑇 and let F2
be the set of threads whose next step in the execution after this point is a failed CAS on the
same address. As in previous proofs, all these failed CASs can be reordered (to the left) to occur
immediately after the successful one. Then, by the control-flow of an invocation, all threads in F2
executed the successful CAS at line 11 before their failed CAS. All these successful CASs turn the
location cell of those threads to NULL. Since no other thread (besides themselves) can turn it back
to some non-NULL value (see the test at line 10), they can be reordered to occur immediately before
𝐶𝐴𝑆2/𝑇 . This leads to an interleaving around 𝐶𝐴𝑆2/𝑇 that conforms to the expression that labels
the transition leading to “Active collider finished”. Then, looking at other steps before 𝐶𝐴𝑆2/𝑇 ,
for every successful CAS on a collision cell, one can construct a layer as the one labeling the
transitions leading to “Publish collision intent” and also serialize the steps 3–4 for every thread.
This is possible because all these interactions concern different memory addresses. Finally,𝐶𝐴𝑆2/𝑇
wrote on the location cell of a thread him, and no other thread can modify this value until him
reads it, observes to have been collided and returns (𝐶𝐴𝑆2/𝑇 writes either NULL to location[him]
in which case the first conjunct at line 10 will fail in another thread, or a descriptor with an id
field different from him in which case the second conjunct at line 10 will fail). Therefore, all those
steps of him can be reordered to the left to occur immediately after the interaction around𝐶𝐴𝑆2/𝑇 ,
which completes the handling of this first collision. The subsequent collisions can be handled in a
similar manner.

K QUOTIENT FOR RDCSS
The Restricted Double-Compare Single-Swap (RDCSS) [?] is a restricted version of a double-word
CAS (acting atomically on two addresses) which modifies a so-called data location provided that this
location and another so-called control location have some given expected values. This is an instance
of an atomic read-modify operation, i.e., the tests and the write should happen atomically. It is
assumed that data and control locations are disjoint (i.e., the same address can not be a data address
in some invocation and a control address in another). The code of the main RDCSS operation is
given below (for simplicity, we omit the read operation):

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1:40 Constantin Enea and Eric Koskinen

1 void RDCSS(descriptor *d){

2 do {

3 r = CAS(d->DATA_ADDR , d->exp_data , d);

4 if (isDescriptor(r)) Complete(r);

5 } while (isDescriptor(r))

6 if (r == d->exp_data) Complete(d)

7 return r;

8 }

9 void Complete(descriptor *d) {

10 if (* d->CONTROL_ADDR == d->exp_control)

11 CAS(d->DATA_ADDR , d, d->new_data);

12 else

13 CAS(d->DATA_ADDR , d, d->exp_data)

14 }

The inputs of the operation are put inside a descriptor structure: DATA_ADDR and CONTROL_ADDR
are the data and control addresses, respectively, exp_data and exp_control are the expected values
of these addresses, and new_data is the new value to be written to the data address (provided that
the data and control addresses store the expected values).

RDCSS attempts a standard CAS on the data address to change the old value into a pointer to
the descriptor (line 3). This CAS checks that the data address has the expected value, and if it
fails, the operation simply returns. In the context of this implementation, we assume that a CAS
returns the value of the location before any modification (if any) and not just a Boolean. If the CAS
succeeds, then the operation calls Complete in order to check the control location and finalize the
modification if possible (line 6). Complete checks the value of the control location and if it has
the expected value, then it attempts a CAS to change the data address (line 11); note that the data
address currently stores a pointer to a descriptor. Otherwise, it attempts a CAS to revert the data
address to its old value (line 13).

When multiple threads compete to change the same data address, it may happen that the thread
succeeding the first CAS at line 3 (the initiator) is slow and before it executes the call to Complete,
another thread fails its CAS but finds a descriptor at this address (it is assumed that descriptor
pointers can be distinguished from data values). Then, this other thread will try to help the slower
one and call Complete itself (line 4). Note that all the information needed to help the slower thread
is stored in the descriptor.

We use the expression below to describe a sound abstraction of the quotient:
// successful modification(
3-CAS/true · (3-CAS/false-4)𝑛 · { 4-6-11-CAS/true · (4-11-CAS/false)𝑛

+ 3-CAS/false-4-11-CAS/true· (4-11-CAS/false)𝑛 · 4-6-11-CAS/false }
+
// fail: wrong control value
3-CAS/true · (3-CAS/false-4)𝑛 · { 4-6-13-CAS/true · (4-13-CAS/false)𝑛

+ 3-CAS/false-4-13-CAS/true· (4-13-CAS/false)𝑛 · 4-6-13-CAS/false }
+
// fail: wrong data value

(3-CAS/false)∗
)
∗

Executions in the quotient are iterations (note the outer ∗) of three types of “phases” (note the
outer union and read expressions from top to bottom): (1) a phase in which the data address is
modified successfully (without or with help), (2) a phase in which the modification fails because
the control address does not have the expected value (noticed by the initiator of the modification or
a helper thread), and (3) a phase in which the modification fails because the data address does not
have the expected value.
The first two phases have a common prefix: some initiator thread succeeding the CAS at line 3

and some number 𝑛 of threads failing the same CAS and reading the descriptor written by the
initiator. Next, for the first phase, there are two cases: (1) the initiator succeeds the second CAS at
line 11 (after calling Complete at line 6), and those 𝑛 threads will fail the same CAS (after calling
Complete at line 4), or (2) some helping thread which fails the same CAS as the other 𝑛 threads

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

Scenario-based Proofs for Concurrent Objects 1:41

will succeed the CAS at line 11 (after calling Complete at line 4), and the initiator together with the
other 𝑛 threads fail the same CAS. For the second phase, there are two analogous cases in which
either the initiator or a helping thread observes a wrong value for the control location and succeeds
the CAS at line 13 to revert the value of the data location. The third phase is trivial and consists of
an arbitrary number of failed instances of the CAS at line 3.

Theorem K.1. The above expression is an abstraction of a quotient for RDCSS.

Proof: (Sketch) Since steps of RDCSS invocations on different data addresses commute (the assump-
tion that data and control addresses are disjoint is important here), we focus on invocations that
act on the same data address. We follow the same strategy as for Elimination Stack, and proceed by
induction on the successful CASs in Complete (line 11 or line 13). Consider the first such CAS and
assume that it is at line 11. This corresponds to the first phase above and the case of line 13 which
corresponds to the second phase can be handled similarly. There are two cases to consider:

• The thread 𝑡 performing this CAS called Complete at line 6. If there are threads whose next
step in the execution after this point is a failed CAS on the same address and expecting
to find the same descriptor, then all of these steps can be reordered to the left to occur
immediately after the successful one. By control-flow, these other threads arrived there
by calling Complete at line 4 which means that they fail their CAS at line 3 and they read
the same descriptor. All of these failed CASs can be reordered to occur immediately after 𝑡
succeeding its CAS at line 3. Overall, these reorderings lead to an execution fragment with
the shape described in the first line of the expression above.
• The thread 𝑡 performing this CAS called Complete at line 4. Following a similar reasoning
while taking into account that another thread 𝑡 ′ initiated this modification by succeeding a
CAS at line 3, one can reorder steps to obtain a prefix with the shape given by the second
line of the expression above.

While building serializations of phases of type (1) and (2) above, any failed CASs at line 3 that
return the same value can be reordered to occur one after another, thereby creating phases of type
(3). And these phases of type (3) can occur “outside” of phases of type (1) and (2) since they have no
effect on the shared memory.

L QUOTIENT FOR THE LIST SET
We here consider a List Set Object and describe the layer expressions and proof that they are an
abstraction of the List Set’s quotient. This example is a Set object implemented as a sorted linked
list [O’Hearn et al. 2010], which involves a read-only traversal locate, and then small atomic
sections to link/unlink nodes (for insert/delete, respectively). locate traverses the list from the
head and returns a pair of nodes (x,y) such that y has the key of interest or else x points to the last
node whose key is below k. It is implemented as a loop that may perform an unbounded number of
shared-memory reads. We assume that it is abstracted with the postcondition at line 3 in insert
stating that y is the successor of x, the input k is in between x.key and y.key, and that at some
point between the invocation of the operation and “now”, x resides on a valid search path for k
that starts at the head of the list, denoted as �head

k→ x. Recent work [Feldman et al. 2018, 2020]
shows that this postcondition can be derived easily by showing that roughly, list nodes are never
updated once they become unreachable. Therefore, the implementations of insert and delete
are as follows:

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

1:42 Constantin Enea and Eric Koskinen

1 int insert(int k) { while (1) {

2 struct node_t *z = ...;

3 assume x.next = y ∧ x.key < k ≤ y.key ∧ �head k→ x

4 atomic {

5 if (x->next == y && x->del == 0) {

6 if (y->key != k) {

7 z->next = y;

8 x->next = z;

9 return 1;

10 } else { return 0; }

11 }

12 } }

1 int delete(int k) { while (1) {

2 assume x.next = y ∧ x.key < k ≤ y.key ∧ �head k→ x

3 atomic {

4 if(x->next == y && x->del == 0) {

5 if (y->key == k) {

6 y->del = 1;

7 x->next = y->next;

8 return 1;

9 } else { return 0; }

10 }

11 }

12 } }

The insert method will link a node z in between x and y, provided that k wasn’t already in the
list. The delete method returns 0 if the element wasn’t in the list and otherwise, marks node y for
deletion, and then updates x to skip past node y. The delete method marks deleted nodes with a
del flag before they are unlinked. Because delete marks deleted nodes’ del fields, a concurrent
locate that has just found this node, but was then preempted by delete, will return a node that’s
marked as deleted and unlinked, not simply unlinked.
As we discuss below, for List Set the layer expressions based on interleavings of two threads

generalizes to arbitrary threads. We thus define the states of the automaton in terms of the possible
values from the perspective of one reader and one writer. In these states below, x𝑤 denotes the
writer’s x, x𝑟 denotes the reader’s x and similar for the other variables. The x and y variables are
existentially-quantified in the pre-conditions because they are method-local variables and not
inputs. We omit the sub-formula �head

k→ x because this condition does not affect the enabled
status of a layer.

q1 = J∃x𝑟 ,y𝑟 . x𝑟 ->next=y𝑟 ∧ !x𝑟 ->del ∧ k𝑟 =y𝑟 ->keyK,
q2 = J∃x𝑟 ,y𝑟 . x𝑟 ->next=y𝑟 ∧ !x𝑟 ->del ∧ x𝑟 ->key < k𝑟 < y𝑟 ->keyK,
q3 = J∃x𝑟 ,y𝑟 ,x𝑤 ,y𝑤 . x𝑤->next=y𝑤 ∧ !x𝑤->del ∧ x𝑤->key < k𝑤 < y𝑤->key ∧

x𝑟 =x𝑤 ∧ x𝑟 ->key < k𝑟 < y𝑟 ->keyK,
q4 = J∃x𝑟 ,y𝑟 ,x𝑤 ,y𝑤 . x𝑤->next=y𝑤 ∧ !x𝑤->del ∧ x𝑤->key < k𝑤 < y𝑤->key ∧

x𝑟 =x𝑤 ∧ k𝑟 =y𝑟 ->keyK,
q5 = J∃x𝑟 ,y𝑟 ,x𝑤 ,y𝑤 . x𝑤->next=y𝑤 ∧ !x𝑤->del ∧ k𝑤=y𝑤->key ∧ x𝑟 =x𝑤 ∧

x𝑟 ->key < k𝑟 < y𝑟 ->keyK,
q6 = J∃x𝑟 ,y𝑟 ,x𝑤 ,y𝑤 . x𝑤->next=y𝑤 ∧ !x𝑤->del ∧ k𝑤=y𝑤->key ∧ x𝑟 =x𝑤 ∧ k𝑟 =keyK,
q7 = J∃x𝑟 ,y𝑟 . x𝑟 ->next=y𝑟 ∧ x𝑟 ->del ∧ x𝑟 ->key < k𝑟 ≤ y𝑟 ->keyK

With these 7 states, 2 write paths (one from insert, one from delete) and 6 read paths, there
are many transitions to consider, although many of them are labeled with the same layer. In fact,
the List Set can be decomposed into 8 layers, enumerated below. For lack of space, we omit the
automaton, but the definitions, including all 77 feasible transitions, can be seen in the output of our

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

Scenario-based Proofs for Concurrent Objects 1:43

tool (which we discuss in the next section) shown in Apx. A. Below we refer to example transitions
in Apx A, denoted 𝛿𝑖 .

(1) A layer with a delete write path that updates x.next to point to y.next, causing one
insert and one delete path to fail when finding x.next≠y.(e.g., 𝛿2)

(2) A layer with an insert write path that updates x.next to point to z, causing one insert
and one delete paths to fail when finding x.next≠y. (e.g., 𝛿9)

(3) A local layer consisting of one delete path, when the key is not in the set. (e.g., 𝛿31)
(4) A local layer consisting of one insert path, when the element is already in the set. (e.g., 𝛿47)
(5) Four local layers consisting of insert or delete paths when the node x is already marked

for deletion. (e.g., 𝛿63)
Note that insert and delete have more than one control-flow path that “fails” because of the
nested conditional inside the atomic read-write.
As in the Michael/Scott queue, here again the layer-quotient is optimal modulo method-level

commutativity. At the method-level, operations such as insertion/deletion of different elements
commute and their corresponding linearizations can be commuted (different orders of write layers)
in the layer quotient.

Lemma L.1. The above layer automaton is an abstraction of a quotient for the List Set.

Proof by the methodology of Def. 5.6. To prove the lemma we first note that the post-condition
of locate ensures that x was reachable and that y=x->next. In all read and write paths, the ARW
checks that y=x->next still holds. Furthermore, an invariant of the implementation is that if x was
reachable at some point in the past (i.e., when locate executed) and !x->del holds in the atomic
section, then x is still reachable in the atomic section (this holds because elements are marked
before being unlinked). Therefore, if locate’s postcondition was true in the past, it remains true
when the ARW succeeds and the assume can be reordered to occur just before it. For local paths,
as in previous cases, a failed ARW can be commuted to the left to occur just after the first ARW
that modifies the location x.

M QUOTIENT FOR THE HERLIHY-WING QUEUE
Recall the queue due to Herlihy and Wing [Herlihy and Wing 1990], reproduced below:

1 int deq() { while (1) {

2 assume 0 <= range < back; int j = 0;

3 while(j<range) {

4 v := swap(items[j],null);

5 if (v != null) return v;

6 j++; }

7 } }

1 void enq(int v) {

2 i := back ++;

3 items[i] = v;

4 }

Enqueue (on the right) reserves the next slot in the array items by atomically reading and in-
crementing the shared variable back, and then assigns the value to that slot in a second write to
the shared state. Meanwhile, dequeue (on the left), in an outer loop reads into range any value
strictly smaller than back and then iterates from 0 to range, looking for a slot containing an item to
atomically dequeue. For every j, it atomically reads items[j] into v and writes null (written as a
swap instruction), and if the read value is not null, it returns it. This is actually a sound abstraction
of the original version which assigns back-1 to range instead of any smaller value. Soundness
follows easily from the fact that reading a smaller value will only make the dequeue restart more
often (perform more traversals in which there is no occupied slot), but not affect safety. In the
reasoning below, we will use the fact that such a non-deterministic read commutes to the right of
any increment of back (it is a right mover).

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

1:44 Constantin Enea and Eric Koskinen

We show that the Herlihy-Wing queue quotient can be abstracted by an expression given below.
To this end we first, as below in Apx. M.1, prove that any iteration of the dequeue’s outer while(1)
loop can be considered atomic, modulo commutative re-orderings. Consequently, there exists a
quotient of Herlihy and Wing Queue where outer loop iterations in dequeue are atomic sections.
Since items[i] = v steps in enqueues commute (they write on different slots of the array), there
exists a quotient where additionally, every sequence of items[i] = v steps before a dequeue
iteration that is successful (contains a non null swap) is ordered w.r.t. the array slots that they write.
The following expression is an abstraction of such a quotient: (deqF∗ · (enqI)+ · enqW∗ · deqT∗)∗
where enqI and enqW denote the statements i:=back++ and items[i] = v in enqueue, respectively,
and deqT and deqF represent entire iterations of the outer loop in dequeue that end in a return
and restarting the loop, respectively. The interpretation of enqW∗ is refined to be a set of sequences
of labels items[i] = v (with thread ids) that are ordered w.r.t. the position 𝑖 that they write to.
Above, we also use straightforward feasibility arguments like “enqueues increment back before
writing to items,” and “a deqT must be preceded by a write to items in an enqueue.”

Theorem M.1. The above expression is an abstraction of the HWQ quotient.

Theorem M.2. The HWQ is linearizable.

The set of traces represented by this expression admits a “simple” linearization point mapping
which identifies enqW and deqT steps with linearization points of enqueues and dequeues, respec-
tively. The restriction to traces in this quotient is instrumental for such a simple linearization point
mapping. For arbitrary traces, the Herlihy andWing Queue is known for having linearization points
that depend on the future and that can not be associated to fixed statements, see e.g. [Schellhorn
et al. 2012] !

M.1 Proof of atomicity of outer loop
We prove that any iteration of the outer while(1) loop can be considered to be an atomic section,
modulo re-orderings of commutative actions. That is, there exists a quotient of this object formed
of traces where all steps of such an iteration occur consecutively one after another.
We proceed by induction on the number of steps executing the swap at line 4 in dequeue and

that find a non-null value in items[j]. In the base case, i.e., the number of such steps is 0, all
the swaps at line 4 in all dequeue invocations find null values. Therefore, any possible write to
an items slot (in enqueues) can be re-ordered after all swaps. Now all steps in the same outer
loop iteration of a dequeue (the non-deterministic read of back and swaps returning null) can be
re-ordered to occur consecutively one after another. In particular this relies on the fact that the
non-deterministic read of back can return the same value even if executed after more increments
of back. For a trace with 𝑛 + 1 swaps returning non-null values, we focus on the first such step.
Assume that it is a swap on some position k. All the writes to items slots strictly before k can be
re-ordered to the right of this first non-null swap. This relies on the fact that all the other previous
swaps return a null value and anyway, do not “observe” these writes. Similarly to the base case,
all steps in the same outer loop iteration of a dequeue that completes before this first non-null
swap (including) can be re-ordered to occur consecutively one after another. We are again using
the fact that swaps read null values and there is no more write on the slots that they read. Now,
removing the write to items[k] in enqueue and the dequeue iteration that removes this value
from the current trace, we get another feasible trace that has 𝑛 non-null swaps, for which one can
apply the induction hypothesis.

2157

2158

2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

2205

Scenario-based Proofs for Concurrent Objects 1:45

N EVALUATION: ALGORITHM AUTHORS’ CORRECTNESS ARGUMENTS
As discussed in Sec. 1, our goal is to provide a formal foundation for the scenario-based correctness
arguments found in the literature. In this section, we evaluate our work by revisiting various such
arguments in the literature, and comparing them with the quotient-based proofs presented in this
paper. At the high level, our comparison shows that quotients make scenario-based reasoning more
explicit and ensure that all cases are considered.

N.1 Treiber’s Stack
Treiber’s stack is fairly straight-forward. As such, it provided a good starting point for defining
quotients yet the prose correctness arguments are fairly minimal. For example, the following is a
comment on linearizability:

The linearization point of both the push() and the pop() methods is the successful compareAndSet(), or the throwing of
the exception in case of a pop() on an empty stack. – Herlihy and Shavit [2008b]

This prose identifies specific linearization points as (1) the “successful compareAndSet” and (2) the
not-found exception. These LPs correspond to the layers in the quotient shown in Apx. I. Layers 2,
3, 4 are “successful compareAndSet” linearization points, and read-only Layer 1 is the linearization
point for the not-found exception.

Summary. The following table summarizes the various elements of the correctness argumen-
t/proof, and identifies examples of where they occur in the Herlihy and Shavit [2008b] proof, and
where they occur in the quotient proof.
Proof Element Herlihy and Shavit [2008b] Proof Quotient Proof
ADT states “empty stack” ADT states, e.g. (top=null)
Concurrent threads (general description) Superscripting (...)𝑛
Thread-local step seq. “try to swing [top] ... if [] succeeds,

push() returns, and if not, the []
attempt is repeated”

Layer paths, e.g., push:2-6

Linearization pts. “The linearization point of both the
push() and the pop()methods is the
successful compareAndSet(), ...”

The successful CAS in Layers 2, 3
and 4.

(continued) “...or the throwing of the exception
in case of a pop() on an empty
stack.”

Read-Only Layer 1

The layer quotient and, especially, the layer automaton (shown in Apx. I) helps make the Herlihy
and Shavit [2008b] proof more explicit. The layer automaton makes the ADT states explicit. From
each ADT state, one can consider which (i.e. all possible) layers are enabled, and which target states
are reached via those layers. Linearization points are explicit in the layer quotient, occurring once
with each layer transition. The layer quotient automaton also has the benefit of explicitly showing
all of the linearizable executions: i.e. all the possible runs of the automaton. This is left as implicit
in the Herlihy and Shavit [2008b] proof.

N.2 Elimination Stack
Section 5 of ? gives a correctness proof for the elimination stack. We now review the proof and
compare it with the quotient given in Apx. J. For reference, the following is a replication of the
quotient automaton:

2206

2207

2208

2209

2210

2211

2212

2213

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

2237

2238

2239

2240

2241

2242

2243

2244

2245

2246

2247

2248

2249

2250

2251

2252

2253

2254

1:46 Constantin Enea and Eric Koskinen

We note that a set is a relaxation of a stack that does not require LIFO ordering. We begin by proving that our algorithm
implements a concurrent set, without considering a linearization order. We then prove that our stack implementation is
linearizable to the sequential stack specification of Definition 5.1. Finally we prove that our implementation is lock-free.
– ?

We now prove that our algorithm has correct set semantics, i.e. that pop operations can only pop items that were
previously pushed, and that items pushed by push operations are not duplicated. This is formalized in the following
definition [omitted Set semantics for methods Push/Pop] – ?

? decompose the proof into first Set semantics and then ordering considerations. In the quotient
this is unnecessary because the layers capture the ordering and the elements in them. In the bottom
right layer in the bold action, a single push or pop succeeds, colliding with another operation of the
oppose type, and passing the element from the push to the pop. (Note that the quotient automaton
could also have been written in a more verbose way where the bottom right layer is replaced with
two layers: (1) a layer where a push’s successful CAS takes with it a corresponding pop, and (2) a
layer where a pop’s successful CAS takes with it a corresponding push. For succinctness, we have
combined those layers using the “push/pop” notation.) As discussed below, the thread that succeeds
its CAS in the bottom right later is referred to as the “active” thread, and the thread with which
the active thread collides is referred to as “passive.” These concepts are explicit in the quotient:
the thread taking the bold action in the bottom right is the “active” thread, and the thread that
finds itself collided with in the layers on the arcs that exit the “Active Collider Finished” state, are
“passive.”

We now continue to examine the authors’ proof:
In the following, we prove that operations that exchange their values through collisions are also correct set operations,
thus we show that our algorithm has correct set semantics. ... We say that a colliding operation op is active if it executes
a successful CAS in lines C2 or C7. We say that a colliding operation is passive if op fails in the CAS of line S10 or S19.
[underlines added] – ?

The authors lay out a few definitions, which are also captured by the layer quotient. Above the
authors’ intuitive concept of “active” is captured by the paths in a layer that succeed their CAS.
Likewise for “passive” and CAS failure. As mentioned above, the active thread is captured as the
bold thread that succeeds its CAS in the bottom right layer; the passive thread is the thread that
finds itself collided with in the layers on arcs exiting the bottom right layer.

We say that op is trying to collide at state s, if, in s, the value of t’s program counter is pointing at a statement of one of
the following procedures: LesOP, TryCollision, FinishCollision. Otherwise, we say that op is not trying to collide at s. – ?

Here the authors’ intuitive concept of “trying to collide” is captured by the “Publish collision intent”
quotient automaton state, as compared to the other states.

We next prove that operations can only collide with operations of the opposite type. First we need the following technical
lemma. Lemma 5.2. Every colliding operation op is either active or passive, but not both. – ?

As discussed above, the bottom right layer in the bold action, a single push or pop succeeds,
colliding with another operation of the oppose type, and passing the element from the push to the
pop. Furthermore, the bottom right layer shows that the colliding operations cannot be both active
and passive.

2255

2256

2257

2258

2259

2260

2261

2262

2263

2264

2265

2266

2267

2268

2269

2270

2271

2272

2273

2274

2275

2276

2277

2278

2279

2280

2281

2282

2283

2284

2285

2286

2287

2288

2289

2290

2291

2292

2293

2294

2295

2296

2297

2298

2299

2300

2301

2302

2303

Scenario-based Proofs for Concurrent Objects 1:47

Lemma 5.3. Operations can only collide with operations of the opposite type: an operation that performs a push can
only collide with operations that perform a pop, and vice versa. – ?

As discussed above, the bottom right layer in the bold action, a single push or pop succeeds,
colliding with another operation of the oppose type, and passing the element from the push to the
pop.

Lemma 5.4. An operation terminates without modifying the central stack object, if and only if it collides with another
operation. – ?

This is captured by the bottom left layer, which (1) involves return val statements, avoiding the
central stack and (2) is only reachable after a successful collision.

Lemma 5.5. For every thread p and in any state s, if p is not trying to collide in s, then it holds in s that the element
corresponding to p in the location array is NULL. – ?

Captured by the initial conditions and the (only possible) paths through the automaton.
Lemma 5.6. Let op be a push operation by some thread p; if location[p] ≠ NULL, then op is trying to push the value
location[p]->cell.pdata. – ?

Captured by the initial conditions and the (only possible) paths through the automaton.
we show that push and pop operations are paired correctly during collisions. Lemma 5.7. Every passive collider collides
with exactly one active collider. – ?

As discussed above, the bottom right layer in the bold action, a single push or pop succeeds,
colliding with another operation of the oppose type, and passing the element from the push to the
pop.

Lemma 5.8. Every active collider op1 collides with exactly one passive collider. – ?

As discussed above, the bottom right layer in the bold action, a single push or pop succeeds,
colliding with another operation of the oppose type, and passing the element from the push to the
pop.

Lemma 5.9. Every colliding operation op participates in exactly one collision with an operation of the opposite type. – ?

As discussed above, the bottom right layer in the bold action, a single push or pop succeeds,
colliding with another operation of the oppose type, and passing the element from the push to the
pop.

We now prove that, when colliding, opposite operations exchange values in a proper way. Lemma 5.10. If a pop operation
collides, it obtains the value of the single push operation it collided with. [Lemma 5.11 analogous for push-pop.] – ?

As discussed above, the bottom right layer in the bold action, a single push or pop succeeds,
colliding with another operation of the oppose type, and passing the element from the push to the
pop.

We can now finally prove that our algorithm has correct set semantics. Theorem 5.12. The elimination-backoff stack has
correct set semantics. – ?

As discussed above, separately proving Set semantics is unnecessary.
Linearizability.
we choose the following linearization points for all operations, except for passive-colliders: Lines T4, C2 (for a push
operation), Lines T10, T14, C7 (for a pop operation) – ?

The authors give linearization points for “active” threads as the time when the second CAS succeeds,
and linearization points for “passive” threads “the time of linearization of the matching active-
collider operation, and the push colliding-operation is linearized before the pop colliding-operation.”
The linearization points in the quotient are: (1) the bold successful CAS in the bottom right layer
in the quotient automaton, and (2) the subsequent automaton transition where a corresponding

2304

2305

2306

2307

2308

2309

2310

2311

2312

2313

2314

2315

2316

2317

2318

2319

2320

2321

2322

2323

2324

2325

2326

2327

2328

2329

2330

2331

2332

2333

2334

2335

2336

2337

2338

2339

2340

2341

2342

2343

2344

2345

2346

2347

2348

2349

2350

2351

2352

1:48 Constantin Enea and Eric Koskinen

passive thread finds it has been collided with. Importantly, every run of the quotient automaton
gives a serial linearization order that is a repetition of pairs of active/passive threads. All other
executions are equivalent to one such serialized run, up to commutativity.

For a passive-collider operation, we set the linearization point to be at the time of linearization of the matching
active-collider operation, and the push colliding-operation is linearized before the pop colliding-operation. – ?

Same as above.
Each push or pop operation consists of a while loop that repeatedly attempts to complete the operation. An iteration is
successful if its attempt succeeds, in which case the operation returns at that iteration; otherwise, another iteration is
performed . Each completed operation has exactly one successful attempt (its last attempt), and the linearization of the
operation occurs in that attempt. In other words, the operations are linearized in the aforementioned lineanirazation
points only in case of a successful CAS, which can only be performed in the last iteration of the while loop. – ?

Same as above.
To prove that the aforementioned lines are correct linearization points of our algorithm, we need to prove that these are
correct linearization points for the two types of operations: operations that complete by modifying the central stack
object, and operations that exchange values through collisions. – ?

Same as above.
Lemma 5.13. For operations that do not collide, we can choose the following linearization points: Line T4 (for a push
operation). Line T10 (in case of empty stack) or line T14 (for a pop operation) – ?

Follows from the quotient automaton for the Treiber central stack.
We still have to prove that the linearization points for collider-operations are consistent, both with one another, and
with non-colliding operations. We need the following technical lemma, whose proof is omitted for lack of space. Lemma
5.14. Let op1, op2, be a colliding operations-pair, and assume w.l.o.g. that op1 is the active-collider and op2 is the passive
collider, then the linearization point of op1 (as defined above) is within the time interval of op2. – ?

Same as above.
Lemma 5.15. The following are legal linearization points for collider-operations. • An active-collider, op1, is linearized
at either line C2 (in case of a push operation) or at line C7 (in case of a pop operation). • A passive-collider, op2, is
linearized at the linearization time of the active-collider it collided with. If op2 is a push operation, it is linearized
immediately before op1, otherwise it is linearized immediately after op1. – ?

Same as above.

Summary. The quotient naturally and succinctly captures the key concept of the Elimination
stack: that a single successful CAS of one type of operation is the linearization point for that
operation as well as the corresponding matched operation (order with the push before the pop).
Specifically, every run of the quotient automaton gives a serial linearization order that is a repetition
of pairs of active/passive threads. All other executions are equivalent to one such serialized run,
upto commutativity.
Many of the lemmas and reasoning in the ? proof are used to set up a bijection between active

and passive threads. The quotient instead simplifies the proof through the serialized representative
executions. The quotient similarly simplifies the other logistics of threads preparing/completing in
the other quotient automaton states.

N.3 Michael-ScottQueue
The layer quotient for the MSQ is given in Apx. G. We will refer to the layers defined there.

We now review all the steps in detail. An enqueuer creates a new node with the new value to be enqueued (Line 10),
reads tail, and finds the node that appears to be last (Lines 12–13). To verify that node is indeed last, it checks whether
that node has a successor (Line 15). If so, the thread attempts to append the new node by calling compareAndSet()
(Line 16). (A compareAndSet() is required because other threads may be trying the same thing.) – Herlihy and Shavit
[2008b]

2353

2354

2355

2356

2357

2358

2359

2360

2361

2362

2363

2364

2365

2366

2367

2368

2369

2370

2371

2372

2373

2374

2375

2376

2377

2378

2379

2380

2381

2382

2383

2384

2385

2386

2387

2388

2389

2390

2391

2392

2393

2394

2395

2396

2397

2398

2399

2400

2401

Scenario-based Proofs for Concurrent Objects 1:49

The above scenario involves a single successful enqueuer and unboundedly many other enqueuers
attempting. This scenario is captured by the Enqueue Succeed Layer, and the automaton transitions
shown in Fig. 1.

If the compareAndSet() succeeds, the thread uses a second compareAndSet() to advance tail to the new node (Line 17).
Even if this second compareAndSet() call fails, the thread can still return successfully because, as we will see, the call
fails only if some other thread “helped” it by advancing tail. – Herlihy and Shavit [2008b]

The above scenario corresponds to the Advancer Succeed Layer, where some advancer succeeds.
If the tail node has a successor (Line 20), then the method tries to “help” other threads by advancing tail to refer directly
to the successor (Line 21) before trying again to insert its own node. – Herlihy and Shavit [2008b]

The above scenario corresponds to the Advancer Succeed Layer, and the fact that “trying again to
insert” occurs in a subsequent layer.

This enq() is total, meaning that it never waits for a dequeuer. A successful enq() is linearized at the instant where the
executing thread (or a concurrent helping thread) calls compareAndSet() to redirect the tail field to the new node at Line
21. – Herlihy and Shavit [2008b]

This linearization point occurrence is preserved in the layer quotient abstraction, at the point where
the tail is advanced.

The deq() method is similar to its total counterpart from the UnboundedQueue. If the queue is nonempty, the dequeuer
calls compareAndSet() to change head from the sentinel node to its successor, making the successor the new sentinel
node. The deq() method makes sure that the queue is not empty in the same way as before: by checking that the next
field of the head node is not null. – Herlihy and Shavit [2008b]

This scenario is captured by the Dequeue Succeed Layer (when the queue is non-empty) and by
Read Only Layer 1 (where dequeue returns because the queue was empty).

Regarding ADT states, the correctness argument mentions two aspects: (1) whether the queue was
empty and (2) whether the tail pointer was lagged. This is captured in the automaton representation
in Fig. 1, where the states capture both 1 and 2.

There is, however, a subtle issue in the lock-free case, depicted [above]: before advancing head one must make sure that
tail is not left referring to the sentinel node which is about to be removed from the queue. To avoid this problem we
add a test: if head equals tail (Line 31) and the (sentinel) node they refer to has a non-null next field (Line 32), then
the tail is deemed to be lagging behind. As in the enq() method, deq() then attempts to help make tail consistent by
swinging it to the sentinel node’s successor (Line 35), and only then updates head to remove the sentinel (Line 38). As in
the partial queue, the value is read from the successor of the sentinel node (Line 37). If this method returns a value,
then its linearization point occurs when it completes a successful compareAndSet() call at Line 38, and otherwise it is
linearized at Line 33. – Herlihy and Shavit [2008b]

There are multiple layers discussed above. First, there is an Advancer Succeed Layer as part of a
dequeue. Second, a Dequeue Succeed Layer (or Read Only Layer 1) may occur, but only after (“only
then”) the Advancer Succeed Layer. This scenario is focused on the refers to 𝑞3 in the quotient
automaton, where Q.tail=Q.head and yet Q.tail->next≠null. The automaton helps illuminate
this case because the states and arcs require one to consider all possible cases, which layers are
enabled, and where the arcs land after the layer.

2402

2403

2404

2405

2406

2407

2408

2409

2410

2411

2412

2413

2414

2415

2416

2417

2418

2419

2420

2421

2422

2423

2424

2425

2426

2427

2428

2429

2430

2431

2432

2433

2434

2435

2436

2437

2438

2439

2440

2441

2442

2443

2444

2445

2446

2447

2448

2449

2450

1:50 Constantin Enea and Eric Koskinen

Summary. See Sec. 6.1.

N.4 SLSQueue
We review the correctness argument presented by the original authors [Scherer III et al. 2006], quot-
ing their prose and discussing how those statements correspond to our quotient proof methodology
with layer expressions.

The reservation linearization point for this code path occurs at line 10 when we successfully insert our offering into the
queue – Scherer III et al. [2006]

First, this prose indicates that 3t is a linearization point. The write of 3t is atomic and so this
line number has a corresponding location in the layer expression, which is this same linearization
point. Second, this prose identifies a layer as an important state change: inserting an offer node
into the queue. This is the EAIN layer in our decomposition. Third, the prose describes what kind
of data change is important: the tail changing to non-null, a distinction we make in the states of
our layer automaton.

“A successful followup linearization point occurs when we notice at line 13 that our data has been taken. – Scherer III
et al. [2006]

Similarly here this linearization point appears in a layer where a dequeue mutates the state, and
local path 3” is feasible. This prose also identifies important state change: from an item to null.

The other case occurs when the queue consists of reservations (requests for data), and is depicted [below]. – Scherer III
et al. [2006]

In this case, after originally reading the head node (step A), we read its successor (line 21/step B) and verify consistency
(line 22). Then, we attempt to supply our data to the head-most reservation (line 25/C). If this succeeds, we dequeue the
former dummy node (26/D) and return – Scherer III et al. [2006]

This prose again indicates important state changes, which are reflected as distinct states (and
transitions between them) in our layer automata: whether head-most reservation has data supplied
and whether the head dummy node needs to be advanced.

If it fails, we need to go to the next reservation, so we dequeue the old dummy node anyway (28) and retry the entire
operation (32, 05). – Scherer III et al. [2006]

This is a description of the failure path 5f · (6bt + 6bf) and that interference (implicitly) caused
by a concurrent cas from 5t .

The reservation linearization point for this code path occurs when we successfully supply data to a waiting consumer at
line 25; the followup linearization point occurs immediately thereafter. – Scherer III et al. [2006]

Again, this prose indicates the important state transition at 5t , replacing a null with an item (as
seen in the states of our layer automaton), and corresponding automaton transition for layer EFHR.

Summary. A summary is given in Sec. 6.2.

2451

2452

2453

2454

2455

2456

2457

2458

2459

2460

2461

2462

2463

2464

2465

2466

2467

2468

2469

2470

2471

2472

2473

2474

2475

2476

2477

2478

2479

2480

2481

2482

2483

2484

2485

2486

2487

2488

2489

2490

2491

2492

2493

2494

2495

2496

2497

2498

2499

Scenario-based Proofs for Concurrent Objects 1:51

N.5 Herlihy-WingQueue
We now examine the author’s proof of this object. As discussed in Sec. 6.5, the quotient can be
abstracted as: (deqF∗ · (enqI)+ · enqW∗ · deqT∗)∗. A proof of correctness is given in Appendix II
of Herlihy and Wing [1990]. A key challenge of this object is that linearization points are non-fixed.

An Enq execution occurs in two distinct steps, which may be interleaved with steps of other concurrent operations: an
array slot is reserved by atomically incrementing back, and the new item is stored in items. – Sec 4.1 of Herlihy and
Wing [1990]

This describes an execution scenario with unboundedlymany threads, though is not yet an argument
for why that scenarios is correct. This scenario appears in the quotient as the fact that enqI and
enqW are distinct.
To cope with non-fixed linearization points (in this and other objects), the authors introduce a

proof methodology based on tracking all possible linearizations that could happen in the future:
For each linearized value, it is sometimes useful to keep track of which invocations were completed in the linearization
that yielded that value, and what their responses were. A possibility for a history 𝐻 is a triple (𝑣, 𝑃, 𝑅) , where 𝑣 is a
linearized value of 𝐻 , 𝑃 is the subset of pending invocations in 𝐻 not completed when forming the linearization that
yielded 𝑢, and 𝑅 is the set of responses appended to 𝐻 to form 𝑢. – Appendix I of Herlihy and Wing [1990]

This is a rather general method for linearizability. The quotient, however, allows one to consider
scenarios along the lines of “one or more enqueuers increment back, possibly some of them write
to the array, and then some dequeuers succeed,” following the quotient’s regular expression.

Importantly, while the Appendix I of Herlihy andWing [1990] methdology maintains a history to
allow for all possible linearization orders, quotient-based reasoning instead involves representative
executions (those that are accepted by the regular expression) with fixed linearization orders and
all other executions are equivalent to one such representative execution upto commutativity.

	Abstract
	1 Introduction
	1.1 Formalizing Scenarios with Quotients
	1.2 Example: Scenario-based proofs of the Michael-Scott Queue
	1.3 Challenges and Contributions

	2 Preliminaries
	3 Object Quotients
	4 Finite Abstract Representations of Quotients
	5 Layers: An Inductive Quotient Language
	5.1 Local-vs-Write Paths
	5.2 The Language of Layers
	5.3 Proof Methodology with Two-Thread Reasoning

	6 Evaluation: Verifying Concurrent Objects
	6.1 The Michael/Scott Queue
	6.2 The SLS Synchronous Reservation Queue
	6.3 The Hendler et al. Elimination Stack
	6.4 The Harris et al. Restricted Double-Compare Single-Swap (RDCSS)
	6.5 The Herlihy-Wing Queue

	7 Generating Candidate Quotient Expressions
	8 Related work
	9 Conclusion
	References
	A Unabridged Concurrent Object Semantics
	A.1 Executions, Traces, Linearizability

	B Proof of Theorem 5.6
	C Layer Automata
	C.1 Automaton Representation of Layer Quotients
	C.2 Computing Layer Automata

	D SLS queue source code
	D.1 SLS queue implementation graph

	E Detailed explanation for Counter
	F Layer automaton for Counter
	G Quotient for Michael-Scott Queue (Further Details)
	H Quotient for the SLS Queue
	I Quotient for Treiber's Stack
	J Quotient for Elimination Stack
	K Quotient for RDCSS
	L Quotient for the List Set
	M Quotient for the Herlihy-Wing Queue
	M.1 Proof of atomicity of outer loop

	N Evaluation: Algorithm Authors' Correctness Arguments
	N.1 Treiber's Stack
	N.2 Elimination Stack
	N.3 Michael-Scott Queue
	N.4 SLS Queue
	N.5 Herlihy-Wing Queue

