
Quorum Tree Abstractions of Consensus
Protocols

Berk Cirisci1[0000−0003−4261−090X], Constantin Enea2[0000−0003−2727−8865], and
Suha Orhun Mutluergil3[0000−0002−0734−7969]

1 IRIF, Université Paris Cité
cirisci@irif.fr

2 LIX, Ecole Polytechnique, CNRS and Institut Polytechnique de Paris
cenea@lix.polytechnique.fr

3 Sabanci University
suha.mutluergil@sabanciuniv.edu

Abstract. Distributed algorithms solving agreement problems like con-
sensus or state machine replication are essential components of modern
fault-tolerant distributed services. They are also notoriously hard to un-
derstand and reason about. Their complexity stems from the different as-
sumptions on the environment they operate with, i.e., process or network
link failures, Byzantine failures etc. In this paper, we propose a novel ab-
stract representation of the dynamics of such protocols which focuses on
quorums of responses (votes) to a request (proposal) that form during a
run of the protocol. We show that focusing on such quorums, a run of
a protocol can be viewed as working over a tree structure where differ-
ent branches represent different possible outcomes of the protocol, the
goal being to stabilize on the choice of a fixed branch. This abstraction
resembles the description of recent protocols used in Blockchain infras-
tructures, e.g., the protocol supporting Bitcoin or Hotstuff. We show
that this abstraction supports reasoning about the safety of various al-
gorithms, e.g., Paxos, PBFT, Raft, and HotStuff, in a uniform way. In
general, it provides a novel induction based argument for proving that
such protocols are safe.

1 Introduction

Consensus or state-machine replication protocols are essential ingredients for
maintaining strong consistency in modern fault-tolerant distributed systems.
Such protocols must execute in the presence of concurrent and asynchronous
message exchanges as well as benign (message loss, process crash) or Byzantine
failures (message corruption). Developing practical implementations or reason-
ing about their correctness is notoriously difficult. Standard examples include
the classic Paxos [21] or PBFT [5] protocols, or the more recent HotStuff [37]
protocol used in Blockchain infrastructures.

In this paper, we propose a new abstraction for representing the executions
of such protocols that can be used in particular, to reason about their safety,

2 B. Cirisci et al.

i.e., ensuring Agreement (e.g., all correct processes decide on a single value) and
Validity (e.g., the decided value has been proposed by some node participat-
ing in the protocol). Usually, protocol executions are composed of a number of
communication-closed rounds [11], and each round consists of several phases in
which a process broadcasts a request and expects to collect responses from a
quorum of processes before advancing to the next phase. The abstraction is de-
fined as a sequential object called Quorum Tree (QTree) which maintains a tree
structure where each node corresponds to a different round in an execution. The
operations of QTree, to add or change the status of a node, model quorums of
responses that have been received in certain phases of a round.

For instance, a round in single-decree Paxos consists of two phases: a prepare
phase where a pre-determined leader broadcasts a request for joining that round
and expects a quorum of responses from the other processes before advancing to
a vote phase where it broadcasts a value to agree upon and expects a quorum
of responses (votes) in order to declare that value as decided in that round.
Rounds are initiated by their respective leaders and can run concurrently. The
idea behind QTree is to represent a Paxos execution using a rooted tree where
each node different from the root corresponds to a round where the leader has
received a quorum of responses in the prepare phase. The parent-child relation
models the data flow from one round to a later round: responses to join requests
contain values voted for in previous rounds (if any) and one of them will be
included by the leader in the vote phase request. The round in which that value
was voted defines the parent. Then, each node has one out of three possible
statuses: ADDED if the vote phase can still be successful (the leader can collect a
quorum of votes) but this did not happen yet, GHOST if the vote phase can not
be successful (e.g., a majority of processes advanced to the next round without
voting), and COMMITTED if the leader has received a quorum of responses in the
vote phase. This is a tree structure because before reaching a quorum in the vote
phase of a round, other rounds can start and their respective leaders can send
other vote requests (with possibly different values). The specific construction of
requests and responses in Paxos ensures that all the COMMITTED nodes in this
tree belong to a single branch, which entails the agreement property (this will
become clearer when presenting the precise definition of QTree in Section 2).

The QTree abstraction is applicable to a wide range of protocols beyond
the single-decree Paxos sketched above. It applies to state-machine replication
protocols like Raft [36] and HotStuff [37] where the tree structure represents logs
of commands (inputted by clients) stored at different processes and organized
according to common prefixes (each node corresponds to a single command) and
multi-decree consensus protocols like multi-Paxos [21] and its variants [16, 26,
23, 18], or PBFT [5] where different consensus instances (for different indices in
a sequence of commands) are modeled using different QTree instances.

We show that all these protocols are refinements of QTree in the sense that
their executions can be mapped to sequences of operations on a QTree state,
which are about agreeing on a branch of the tree called the trunk. These oper-
ations are defined as invocations of two methods add and commit for adding a

Quorum Tree Abstractions of Consensus Protocols 3

new leaf to the tree (during which some other nodes may turn to GHOST) and
changing the status of a node from ADDED to COMMITTED, respectively. Any se-
quence of invocations to these methods ensures that all the COMMITTED nodes lie
on the same branch of the tree (the trunk). In relation to protocol executions,
add and commit invocations that concern the same node correspond to receiving
a quorum of responses in two specific phases of a round, which vary from one
protocol to another.

The mapping between protocol executions and QTree executions is defined as
in proofs of linearizability for concurrent objects with fixed linearization points.
Analogous to linearizability, where the goal is to show that an object method
takes effect instantaneously at a point in time called linearization point, we
show that it is possible to mark certain steps of a given protocol as linearization
points of add or commit operations4, such that the sequence of add and commit
invocations defined by the order between linearization points along a protocol
execution is a correct QTree execution. We introduce a declarative character-
ization of correct QTree executions that simplifies the proof of the latter (see
Section 3).

The QTree abstraction offers a novel view on the dynamics of classic consen-
sus or state-machine replication protocols like Paxos, Raft, and PBFT, which
relates to the description of recent Blockchain protocols like HotStuff and Bit-
coin [27], i.e., agreeing on a branch in a tree. It provides a formal framework
to reason uniformly about single-decree consensus protocols and state-machine
replication protocols like Raft and HotStuff. For single-decree protocols (or com-
positions thereof), the parent-child relation between QTree nodes corresponds
to the data-flow between a quorum of responses to a leader and the request he
sends in the next phase while for Raft and HotStuff, it corresponds to an order
set by a leader between different commands.

Our work relies on a hypothesis that correctness proofs based on establishing
a refinement towards an operational specification such as QTree, which can be
understood as a sequence of steps, are much more intuitive and “explainable”
compared to classic proofs based on inductive invariants. An inductive invariant
has to describe all intermediate states produced by all possible orders of receiving
messages and a precise formalization is quite complex. As an indication, the
Paxos invariant used in recent work [29] (see formulas (4) to (12) in Section 5.2)
is a conjunction of eight quantified first-order formulas which are hard to reason
about and not re-usable in the context of a different protocol.

We believe that operational specifications are also helpful in taming com-
plexity while designing new protocols or implementations theoreof, or in gaining
confidence about their correctness without going through ad-hoc and brittle
proof arguments. For instance, our proofs are very clear about the phases of a
round in which quorums need to intersect, which provides flexibility and opti-

4 These linearization points are fixed in the sense that they correspond to specific
instructions in the code of the protocol, and they do not depend on the future of
an execution. For an expert reader, this actually corresponds to a proof of strong
linearizability [15].

4 B. Cirisci et al.

mization opportunities for deciding on quorum sizes in each phase. Depending
on environment assumptions, quorum sizes can be optimized while preserving
correctness. Compared to previous operational specifications for reasoning about
consensus protocols, e.g., [3, 12], QTree is designed to be less abstract so that
the refinement proof, establishing the relationship between a given protocol and
QTree, is less complex (see Section 8 for details).

2 Quorum Tree

We describe the QTree sequential object which operates on a tree and has two
methods add and commit for adding a new node and modifying an attribute
of a node (committing a node), respectively. When used as an abstraction of
consensus protocols, invocations of these two methods correspond to certain
quorums that are reached during a round of the protocol.

2.1 Overview

QTree is a sequential rooted-tree, a possible state being depicted in Figure 1.
The nodes with black dashed margins are not members of the tree and they are
discussed later. Each node in the tree contains a round number, a value, and a
status field set to ADDED, GHOST, or COMMITTED. The round number acts as an
identifier of a node since there can not exist two nodes with the same round
number. The Root node is part of the initial state and its status is COMMITTED.
A QTree state consists of a trunk, alive branches, and dead branches; a branch is
a chain of nodes connected by the parent relation. Alive branches are extensible
with new ADDED nodes but dead branches are not. The trunk is a particular
branch of the tree that starts from the root. It contains all the COMMITTED nodes
and it ends with a COMMITTED node. It may also contain ADDED or GHOST nodes.
For example, in Figure 1, the trunk consists of Root and n3. All alive branches are
connected to the last COMMITTED node of the trunk (alive branches can include
ADDED or GHOST nodes). For instance, in Figure 1, the subtree rooted at n3
contains a single alive branch whose leaf node is n5. Dead branches can contain
only GHOST nodes. In Figure 1, the tree contains a single dead branch containing
the node n1.

Nodes can be added to the tree as leaves. The status of a newly added node is
either ADDED or GHOST. The status ADDED may turn to GHOST or COMMITTED. The
GHOST status is “final” meaning that it can never turn into COMMITTED afterwards.
However, GHOST nodes can be part of alive branches, and they can help in growing
the tree.

QTree has two methods add and commit :

– add generates a new leaf with a round number r value v and parent p iden-
tified by the round number rp given as an input. Its status is set to ADDED
or GHOST provided that some conditions hold. If the status of the new node
is set as ADDED, then it either extends (has a path to the end of) an existing
alive branch or creates a new alive branch from the trunk. The new node

Quorum Tree Abstractions of Consensus Protocols 5

may also “invalidate” some other nodes by changing their status from ADDED
to GHOST.

– commit extends the trunk by turning the status of a node from ADDED to
COMMITTED. This extension of the trunk may prevent some branches to be
extended in the future (some alive branches may become dead), i.e., future
invocations of add that extend those branches will add only GHOST nodes.

Each node models the evolution of a round in a consensus protocol and the value
attribute represents the value proposed by the leader of that round. The round
and value attributes of a node are immutable and cannot be changed later. We
assume that round numbers are strictly positive except for Root whose round
number is 0.

QTree applies uniformly to a range of consensus or state-machine replication
protocols. We start by describing a variation that applies to single-decree con-
sensus protocols, where a number of processes aim to agree on a single value.
Multi-decree consensus protocols that are used to solve state-machine replication
can be simulated using a number of instances of QTree, one for each decree (the
instances are independent one from another). Then, state-machine replication
protocols like HotStuff that rely directly on a tree structure to order commands
can be simulated by the QTree for single-decree consensus modulo a small change
that we discuss later.

2.2 Definition of the Single-Decree Version

Algorithm 1 lists a description of QTree in pseudo-code. The following set of
predicates are used as conditions inside methods:

1. link(n) ≡ n.parent ∈ Nodes ∧ n.parent.round < n.round
2. newRound(n) ≡ ∀n′ ∈ Nodes. n′.round 6= n.round
3. maxCommitted(n) ≡ n.status = COMMITTED ∧

(∀n′ ∈ Nodes. n′.status = COMMITTED =⇒ n′.round < n.round)
4. extendsTrunk(n) ≡ ∃n′ ∈ Nodes. maxCommitted(n′) ∧

(n extends n′ ∨ n.round < n′.round)
5. valid(n) ≡ link(n) ∧ newRound(n) ∧ extendsTrunk(n)
6. valueConstraint(n) ≡ n.parent 6= Root =⇒ n.value = n.parent.value

The add method (lines 5-17) generates a new node n with round, value, and
parent set according to the method’s inputs. Then, it adds n to the tree by
linking it to the selected parent if n satisfies the following validity conditions:
– n’s parent belongs to the tree and its round number is smaller than r (pred-

icate link at (1)),
– the tree does not contain a node with round number r (predicate newRound

at (2)),
– if r is bigger than the round number of the last node of the trunk, then n

must extend the trunk (predicate extendsTrunk at (4)),
– n’s value must be the same as its parent’s value unless the parent is the Root

(predicate valueConstraint at (6)).

6 B. Cirisci et al.

Algorithm 1: The QTree object
1 Initialize:

/* ⊥ denotes non-initialized values */
2 Root.round = 0; Root.status = COMMITTED;
3 Root.value = ⊥; Root.parent = Root;
4 Nodes = {Root};
5 Method add (r, v, rp)
6 Pre: r > 0
7 n = new Node(round = r, status = ⊥,

value = v, parent = p : p.round = rp);
8 if valid(n) ∧ valueConstraint(n)

9 Nodes = Nodes ∪ {n};
10 n.status = ADDED;
11 if ∃n′ ∈ Nodes. n′.round > n.round
12 n.status = GHOST;

13 forall n′ ∈ Nodes. n′.round < n.round
14 if n is conflicting with n′

15 n′.status ← GHOST;

16 return OK

17 return FAIL

18 Method commit (r)
19 if ∃ n ∈ Nodes. n.round = r ∧

n.status = ADDED
20 n.status ← COMMITTED;
21 return OK

22 return FAIL

round = 0
value = ⏊

round = 2
value = v2

n2

Root

round = 3
value = v3

n5

n3

round = 5
value = v3

round = 6
value = v3

n6

round = 1
value = v1

n1

round = 4
value = v1

n4

Fig. 1: A state of QTree.
We represent ADDED nodes
with green solid margins,
GHOST nodes with red double-
line margins, and COMMITTED
nodes with blue thick mar-
gins. The nodes with black
dashed margins are not part
of the state, they are ficti-
tious nodes used to explain
the method for adding new
nodes.

The valid predicate at (5) is the conjunction of the first three constraints.
For example, let us consider an invocation of add in a state of QTree that

contains the non-dashed nodes in Figure 1. If the invocation generates n2, n4, or
n6 (receiving as input the corresponding attributes), then n2 and n6 do satisfy
all these constraints and can be added to the tree. The node n4 fails the extend-
sTrunk predicate because it is not extending the last node of the trunk (n3) and
its round number is higher.

If a node n satisfies the conditions above, the add method turns its status
to either ADDED or GHOST. If there is another node in the tree with a higher
round number, n’s status becomes GHOST. Otherwise, it becomes ADDED. As a
continuation of the example above, the status of n2 is set to GHOST because the
tree contains node n3 with a higher round number and the status of n6 is set to
ADDED.

Moreover, the addition of n can “invalidate” some other nodes, turn their
status to GHOST. This is based on a notion of conflicting nodes. We say that
two nodes are conflicting if they are on different branches, i.e., there is no path
from one node to the other. An add invocation that adds a node n changes the

Quorum Tree Abstractions of Consensus Protocols 7

round = 0
value = ⊥

round = 1
value = v1

round = 0
value = ⊥

round = 1
value = v1

round = 3
value = v2

round = 0
value = ⊥

round = 1
value = v1

round = 3
value = v2

round = 2
value = v1

41

round = 0
value = ⊥

round = 1
value = v1

round = 3
value = v2

round = 2
value = v1

2

QTree

n1 n1 n3 n3n1

n2 n2

n1 n3

Root Root Root Root

Fig. 2: Explaining the behavior of add and commit methods. Colors are inter-
preted as in Fig 1.

status of all the nodes n′ in the tree that conflict with n and have a lower round
number than n, to GHOST. For example, Figure 2 pictures a sequence of QTree
states in an execution, to be read from left to right. The first state represents
the result of executing add(1, v1, 0) on the initial state of QTree, adding node
n1. Executing add(3, v2, 0) on this first state creates another node n3 and sets
its status to ADDED. This invocation will also turn the status of n1 to GHOST since
its round number is less than the round number of n3 and they are on different
branches. Afterwards, by executing add(2, v1, 1), a node n2 is added to the tree
with status GHOST since there is a node n3 on a different branch which has a
higher round number.

The method add returns OK when the created node is effectively added to
the tree (it satisfies the conditions described above) and FAIL, otherwise.

Lastly, the commit method takes a round number r as input and turns the
status of the node containing r to COMMITTED if it was ADDED. If successful, it
returns OK and FAIL, otherwise. As a continuation of the example above, the
right part of Figure 2 pictures a state obtained by executing commit(3) on the
state to the left. This sets the status of n3 to COMMITTED as n3 was previously
ADDED. Note that the conditions in add ensure that the tree can not contain two
nodes with the same round number.

Safety Properties. We show that the QTree object in Algorithm 1 can be used
to reason about the safety of single-decree consensus protocols, in the sense that
it satisfies a notion of Validity (processes agree on one of the proposed values)
and Agreement (processes decide on a single value). More precisely, we show that
every state that is reachable by executing a sequence of invocations of add and
commit (in Algorithm 1), called simply reachable state, satisfies the following:

– Validity : every node different from Root contains the same value as a child
of Root, and

– Agreement : every two COMMITTED nodes different from Root contain the same
value.

Proposition 1 (Validity). Every node in a reachable state that is different
from Root contains the same value as a child of Root.

Proof. A node n is added to the tree only if the predicate valueConstraint holds,
which implies that it is either a child of Root or it has the same value as its

8 B. Cirisci et al.

parent which is a descendant of Root. Also, since the value attribute of a node
is immutable, any COMMITTED node contains the same value that it had when it
was created by an add invocation.

Therefore, the fact that a consensus protocol refining QTree satisfies validity,
i.e., processes decide on a value proposed by a client of the protocol, reduces
to proving that the phases of a round simulated by add invocations that add
children of Root use values proposed by a client. This is ensured using additional
mechanisms, i.e., a client broadcasts its value to all participants in the protocol,
so that each participant can check the validity of a value proposed by a leader.

Next, we focus on Agreement, and show that COMMITTED nodes belong to a
single branch of the tree.

Proposition 2. Let n1 and n2 be two COMMITTED nodes in a reachable state.
Then, n1 and n2 are not conflicting.

Proof. Assume towards contradiction that QTree reaches a state where two
COMMITTED nodes n1 and n2 are conflicting. Let r1 = n1.round and r2 = n2.round.
Without loss of generality, we assume that r1 < r2. Such a state is reachable if
add(r1,_,_) and add(r2,_,_) resulted in adding the nodes n1 and n2 and set
their status to ADDED (we use _ to denote arbitrary values), and subsequently,
commit(r1) and commit(r2) switched the status of both n1 and n2 to COMMITTED.
If add(r1,_,_) were to execute before add(r2,_,_), then add(r2,_,_) would
have changed the status of n1 to GHOST because it is conflicting with n2. Other-
wise, if add(r2,_,_) were to execute before add(r1,_,_) , then the latter would
have set the status of n1 to GHOST since the tree contains n2 that has a higher
round number. In both cases, executing commit(r1) can never turn the status of
n1 to COMMITTED.

Proposition 2 allows to conclude that any two COMMITTED nodes (different
from Root) contain the same value. Indeed, a node can become COMMITTED only
if it was ADDED, which implies that is has the same value as its parent (the
predicate valueConstraint holds), and by transitivity, as any of its ancestors,
except for Root.
Proposition 3 (Agreement). Let n1 and n2 be two COMMITTED nodes in a
reachable state, which are different from Root. Then, n1.value = n2.value.

2.3 State Machine Replication Versions

The single-decree version described above can be extended easily to a multi-
decree context. As multi-decree consensus protocols, used in state machine repli-
cation, can be seen as a composition of multiple instances of single-decree consen-
sus protocols, a multi-decree version of QTree is obtained by composing multiple
instances of the single-decree version. Each of these instances manipulates a tree
as described above without interference from other instances. The validity and
agreement properties above apply separately to each instance.

The single-decree version can also be extended for state machine replica-
tion protocols like HotStuff and Raft where the commands (values) are a-priori

Quorum Tree Abstractions of Consensus Protocols 9

structured as a tree, i.e., each command given as input is associated to a pre-
determined parent in this tree. Then, the goal of such a protocol is to agree
on a sequence in which to execute these commands, i.e., a branch in this tree.
Simply removing the valueConstraint condition in the add method (underlined
in Algorithm 1) enables QTree to simulate such protocols. A node’s value need
not be the same as its parent’s value to be valid for add . Proposition 2 that
implies the agreement property of such protocols still holds (Proposition 3 does
not hold when the valueConstraint condition is removed; this property is specific
to single-decree consensus). Since the value field remains immutable, the validity
property of such protocols reduces to ensuring that the values generated during
phases simulated by add correspond to commands issued by the client (Proposi-
tion 1 is also specific to single-decree consensus and it does not hold). As before,
this requires additional mechanisms, i.e., a client broadcasting a command to
all the participants in the protocol, whose correctness can be established quite
easily.

3 Consensus Protocols Refining QTree

In the following, we show that a number of consensus protocols are refinements of
QTree in the sense that their executions can be mimicked with add and commit
invocations. This is similar to a linearizable concurrent object being mimicked
with invocations of a sequential specification. The refinement relation allows to
conclude that the Validity and Agreement properties of QTree imply similar
properties for any of its refinements.

The definition of the refinement relation relies on a formalization of protocols
and QTree as labeled transition systems. For a given protocol, a state is a tuple of
process local states and a set of messages in transit, and a transition corresponds
to an indivisible step of a process (receiving a set of messages, performing a local
computation step, or sending a message). For QTree, a state is a tree of nodes
as described above and a step corresponds to an invocation to add or commit .
An execution is a sequence of transitions from the initial state.

Refinement corresponds to a mapping between protocol executions and QTree
executions. This mapping is defined as in proofs of linearizability for concurrent
objects with fixed linearization points, where the goal is to show that each con-
current object method appears to take effect instantaneously at a point in time
that corresponds to executing a fixed statement in its code. Therefore, certain
steps of a given protocol are considered as linearization points of add and commit
QTree invocations (returning OK), and one needs to prove that the sequence of
invocations defined by the order of linearization points in a protocol execution
is a correct execution of QTree.

Formally, a labeled transition system (LTS) is a tuple L = (Q, q0, T ,AL)
where Q is a set of states, q0 is the unique initial state, AL is a set of actions
(transition labels) and T is a set of transitions (q, a, q′) such that q, q′ ∈ Q
and a ∈ AL. An execution E from q0 is a finite sequence of alternating states
and actions such that E = q0, a0, q1, a1, . . . , qn with (qi, ai, qi+1) ∈ T for each

10 B. Cirisci et al.

0 ≤ i ≤ n−1. A trace t is the sequence of actions projected from some execution
E. T (L) denotes the set of traces of L.

The standard notion of refinement between LTSs states that an LTS L is a
refinement of another LTS L′ when T (L) ⊆ T (L′). In this paper, we consider a
slight variation of this definition of refinement that applies to LTSs that do not
share the same set of actions, representing for instance, some concrete protocol
and QTree, respectively. This notion of refinement is parametrized by a mapping
Γ between actions of L and L′, respectively. We say that L Γ -refines L′ when
Γ (T (L)) ⊆ T (L′). Here, a mapping Γ : AL → AL′ is extended to sequences
and sets of sequences as expected, e.g., Γ (a1 . . . an) = Γ (a1) . . . Γ (an). With this
extension, the preservation of safety specifications from an LTS to a refinement
of it requires certain constraints on the mapping Γ that will be discussed in
Section 4.2.

In the context of proving that a concrete protocol refines QTree, the goal is
to define a mapping Γ between actions of the protocol and QTree add/commit
invocations such that Γ applied to protocol executions results in correct QTree
executions. In the following, we provide a characterization of correct QTree ex-
ecutions that simplifies such refinement proofs.

3.1 Characterizing QTree Invocation Sequences

An invocation label add(r, v, rp) ⇒ RET or commit(r) ⇒ RET combines a
QTree method name with input values and a return value RET ∈ {OK,FAIL}.
An invocation label is called successful when the return value is OK. A sequence
σ of invocation labels is called correct when there exist QTree states q0, . . ., q|σ|,
such that q0 is the QTree initial state and for each i ∈ [1, |σ|], executing σi
starting from qi−1 leads to qi.

Theorem 1. A sequence σ of successful invocation labels is correct if and only
if the following hold (we use _ to denote arbitrary values):

1. for every r, σ contains at most one invocation label add(r,_,_) and at most
one invocation label commit(r)

2. every commit(r) is preceded by an add(r,_,_)
3. if rp > 0, every add(r, v, rp) is preceded by add(rp, v

′,_) where 0 < rp < r
(a) and v = v ′

4. if σ contains add(r,_,_) and add(r′,_, r′′) with r′′ < r < r′, then σ does
not contain commit(r)

Properties 1–3 are straightforward consequences of the add and commit defini-
tions. Indeed, it is impossible to add two nodes with the same round number r,
which implies that there can not be two successful add(r,_,_) invocations, the
status of a node can be flipped to COMMITTED exactly once, which implies that
there can not be two successful commit(r) invocations, and a commit(r) is suc-
cessful only if a node with round number r already exists, hence Property 2 must
hold. Moreover, a node’s parent defined by the input rp must already exist in the

Quorum Tree Abstractions of Consensus Protocols 11

tree, which implies that Property 3 must also hold. Property 4 is more involved
and relies on the fact that a node n with round number r can be COMMITTED only
if there exist no other conflicting node n′ with a bigger round number r′ (the
parent of n′ having a round smaller than r implies that n and n′ are conflicting).

Proof. (⇒): Assume that σ is correct. We show that it satisfies the above prop-
erties:

– Property 1: The newRound(n) predicate used at line 8 in Algorithm 1 en-
sures that it is impossible to add two nodes with the same round number r,
and therefore σ can not contain two successful add(r,_,_) ⇒ OK invoca-
tions. The conditions at line 19 ensure that commit(r) ⇒ OK can flip the
status of a node only once, and therefore only one such successful invocation
can occur in σ.

– Property 2: The conditions at line 19 in Algorithm 1 imply that the state
in which commit(r) ⇒ OK is executed contains a node with round num-
ber r. This node could have only added by a previous add(r,_,_) ⇒ OK
invocation.

– Property 3: The link(n) predicate used at line 8 in Algorithm 1 ensures
that the state in which add(r, v, rp) ⇒ OK is executed contains a node
with round number rp. This node could have only added by a previous
add(rp, v

′,_)⇒ OK invocation, for some v′.
• Property 3a: It is a direct consequence of the valueConstraint(n) pred-

icate used at line 8 in Algorithm 1.
– Property 4: Let n and n′ be the nodes of the QTree state q reached after exe-

cuting σ, which have been added by add(r,_,_)⇒ OK and add(r′,_, r′′)⇒
OK, respectively. We have that n′.round > n.round > n.parent.round. Since
the round numbers decrease when going from one node towards Root in a
reachable QTree state, it must be the case that n and n′ are conflicting. By
Lemma 1, we get that n.status is GHOST. Since the GHOST status can not
be turned to COMMITTED and vice-versa, it follows that σ can not contain
commit(r)⇒ OK.

(⇐): We prove that every sequence σ that satisfies properties 1–4 is correct. We
proceed by induction on the size of σ. The base step is trivial. For the induction
step, let σ be a sequence of size k + 1. If σ satisfies properties 1-4, then the
prefix σ′ containing the first k labels of σ satisfies properties 1-4 as well. By
the induction hypothesis, σ′ is correct. We show that the last invocation of σ,
denoted by σk+1 can be executed in the QTree state q|σ′| reached after executing
σ′. We start with a lemma stating an inductive invariant for reachable QTree
states:

Lemma 1. For every node n in any state q reached after executing a correct
sequence σ of successful invocations, n.status is COMMITTED if n is Root or σ
contains a commit(r) invocation. Else, n.status is GHOST if q contains a node n′
with n′.round > n.round and n′ is conflicting with n, and it is ADDED, otherwise.

12 B. Cirisci et al.

Proof. We proceed by induction on the size of σ. The base step is trivial. For
the induction step, let σ be a sequence of size m+1. Let qm be the state reached
after executing the prefix of size m of σ, and let σm+1 be the last invocation
label of σ. We show that the property holds for any possible σm+1 that takes
the QTree state qm to some other state qm+1:

– σm+1 = add(r, v, rp) ⇒ OK, for some r, v, rp: Let n be the new node
added by this invocation. The status of n can be ADDED or GHOST. If qm
contains a node n′ with n′.round > r (since round numbers are decreasing
going towards the Root and n is a new leaf node, any existing node with a
higher round number such as n′ is also conflicting with n), then the status
of n becomes GHOST by the predicate at line 11 in Algorithm 1 (otherwise,
it remains ADDED). This implies that n’s status satisfies the statement in the
lemma. This invocation may also turn the status of some set of nodes N
from ADDED to GHOST by the statement at line 13 in Algorithm 1. The nodes
in N have a lower round number than r and conflicting with n. Therefore,
the statement of the lemma is satisfied for the nodes in N .

– σm+1 = commit(r) ⇒ OK, for some r: For commit(r) to be successful the
conditions at line 19 in Algorithm 1 must be satisfied. If it is satisfied, only
the status of node n is changed from ADDED to COMMITTED. Note that Root
exists by definition and its status is COMMITTED. Since the statuses of the rest
of the nodes stay the same, the statement of the lemma holds. �

There are two cases to consider depending on whether σk+1 is an add or
commit invocation label:

– add(r, v, rp): This invocation label is successful if and only if the predicates
valid(n) and valueConstraint(n) at line 8 in Algorithm 1 are satisfied after
generating a new node n with the given inputs in the state q|σ′|:
• newRound(n): Due to Property 1, r 6= n′.round for any other node
n′ ∈ q|σ′| and the predicate is satisfied.

• link(n): To satisfy this predicate, there must exist a node in q|σ′| with
round rp where rp < r. By Property 3, if σ contains add(r,_, rp)⇒ OK
with rp 6= 0, then add(rp,_,_) ⇒ OK also exists in σ. Hence, there
exists a node p with round rp in q|σ′|, and the predicate is satisfied. If
rp = 0, then q|σ′| contains the Root node (with round 0) which ensures
that the predicate is satisfied.

• extendsTrunk(n): This predicate states that n extends the node n′

which has the highest round number among the nodes with COMMITTED
status, if n.round > n′.round. Assume by contradiction that this is not
the case, i.e., n.round > n′.round but n and n′ are conflicting. Let n1 be
the lowest common ancestor of n and n′ (the first common node on the
paths from n and n′ to theRoot). Since the round numbers decrease when
going from one node towards Root, we have that n1.round < n′.round.
If we consider the nodes on the path from n to n1, since n.round >
n′.round, there must exist a node n2 such that n2.round > n′.round
but n2.parent.round < n′.round. The node n2 in q|σ′| corresponds to the

Quorum Tree Abstractions of Consensus Protocols 13

invocation label add(n2.round,_, n2.parent.round) in σ′. Moreover, the
COMMITTED status of n′ implies the existence of commit(n′.round) in σ′
as stated in Lemma 1. However, it is impossible that σ′ contains both
these invocation labels if Property 4 holds.

• valueConstraint(n): It is implied trivially as Property 3a holds.
– commit(r): It is successful if and only if the conditions at line 19 in Algo-

rithm 1 are satisfied. Then by Property 1 and 2, there exist add(r,_,_)
in σ′ but not commit(r). As add(r,_,_) is successful, there already exist
a node n in q|σ′| where its round is r but its status can be either ADDED or
GHOST. Towards a contradiction, assume that n.status = GHOST in q|σ′|. This
means that there exists a node n′ conflicting with n such that n′.round >
n.round as stated in Lemma 1. Let n1 be the least common ancestor of n and
n′. Since round numbers are decreasing going towards the Root, n1.round <
n.round. If we consider nodes on the path from n′ to n1, there exists a node
n2 such that n2.round > n.round and n2.parent.round < n.round. That’s
why, there is an invocation label add(n2.round,_, n2.parent.round) in σ′.
However, σ cannot contain both of these invocation labels together according
to Property 4. �

4 Linearization Points

We describe an instrumentation of consensus protocols with linearization points
of successful QTree invocations, and illustrate it using Paxos as a running ex-
ample. Section 5 and Section 6 will discuss other protocols like HotStuff, Raft,
PBFT, and multi-Paxos. This instrumentation defines the mapping Γ between
actions of a protocol and QTree, respectively, such that the protocol is a Γ -
refinement of QTree. We also discuss the properties of this instrumentation which
imply that establishing Γ -refinement is an effective proof for the safety of the
protocol.

The identification of linearization points relies on the fact that protocol exe-
cutions pass through a number of rounds, and each round goes through several
phases (rounds can run asynchronously – processes need not be in the same
round at the same time). The protocol imposes a total order over the phases
inside a round and among distinct rounds. Processes executing the protocol can
only move forward following the total order on phases/rounds. Going from one
phase to the next phase in the same round is possible if a quorum of processes
send a particular type of message. The refinement proofs require identifying two
quorums for each round where a value is first proposed to be agreed upon and
then decided. They correspond to linearization points of successful add(r,_,_)
and commit(r), respectively. The linearization point of add(r, v, rp) ⇒ OK oc-
curs when intuitively, the value v is proposed as a value to agree upon in round
r. For the protocols we consider, v is determined by a designated leader after
receiving a set of messages from a quorum of processes. For single-decree con-
sensus, members of the quorum send the latest round number and value they
adopted (voted) in the past and the leader picks a value corresponding to the

14 B. Cirisci et al.

maximum round number rp. If no one in the quorum has adopted any value yet,
then the leader is free to propose any value received from a client, and rp equals
a default value 0. For state-machine replication protocols like HotStuff or Raft,
the round rp is defined in a different manner – see Section 5 (and the full version
of this work [9]). The linearization point of commit(r) ⇒ OK occurs when a
quorum of nodes adopt (vote for) a value v proposed at round r.

By Theorem 1, proving that the order between linearization points along a
protocol execution defines a correct QTree execution reduces to showing Prop-
erties 1–4. In general, Properties 1–3 are quite straightforward to establish and
follow from the control-flow of a process. Property 3a is specific to single-decree
consensus protocols or compositions thereof, e.g., (multi-)Paxos and PBFT. It
will not hold for Raft or Hotstuff. Property 4 is related to the fact that any two
quorums of processes intersect in a correct process.

Above, we have considered the case of a protocol that is a refinement of a
single instance of QTree. State machine replication protocols that are composed
of multiple independent consensus instances, e.g., PBFT (see Section 6), are
refinements of a set of QTree instances (identified using a sequence number) and
every linearization point needs to be associated with a certain QTree instance.

4.1 Linearization Points for Paxos

For concreteness, we exemplify the instrumentation with linearization points
on the single-decree Paxos protocol. We start with a brief description of this
protocol that focuses on details relevant to this instrumentation.

Paxos proceeds in rounds and each round has a unique leader. Since the set
of processes running the protocol is fixed and known by every process, the leader
of each round can be determined by an a-priorly fixed deterministic procedure
(e.g., the leader is defined as r mod N where r is the round number and N the
number of processes). For each round, the leader acts as a proposer of a value
to agree upon.

A round contains two phases. In the first phase, the leader broadcasts a
START message to all the processes to start the round, executing the START
action below, and processes acknowledge with a JOIN message if some conditions
are met, executing the JOIN action:

• START Action: The leader p of round r > 0 (the proposer) broadcasts a
START(r) message to all processes.

• JOIN Action: When a process p′ receives a START(r) message, if p′ has not
sent a JOIN or VOTE message (explained below) for a higher round in the
past5, it replies by sending a JOIN(r) message to the proposer. This message
includes the maximum round number (maxVotedRound) for which p′ has sent
a VOTE message in the past and the value (maxVotedValue) proposed in that
round. If it has not voted yet, these fields are 0 and ⊥.

5 Each process has a local variable maxJoinedRound that stores the maximal round
it has joined or voted for in the past and checks whether maxJoinedRound < r

Quorum Tree Abstractions of Consensus Protocols 15

If the leader receives JOIN messages from a quorum of processes, i.e., at least
f+1 processes from a total number of 2f+1, the second phase starts. The leader
broadcasts a PROPOSE message with a value, executing the PROPOSE action
below. Processes may acknowledge with a VOTE message if some conditions are
met, executing a VOTE action. If the leader receives VOTE messages from a
quorum of processes, then the proposed value becomes decided (and sent to the
client) by executing a DECIDE action:

• PROPOSE Action: When the proposer p receives JOIN(r) messages from a
quorum of (f + 1) processes, it selects the one with the highest vote round
number and proposes its value by broadcasting a PROPOSE(r) message (which
includes that value). If there is no such highest round (all vote rounds are
0), then the proposer selects the proposed value randomly simulating a value
given by the client (whose modeling we omit for simplicity).

• VOTE Action: When a process p′ receives a PROPOSE(r) message, if p′ has
not sent a JOIN or VOTE message for a higher round in the past, it replies
by sending a VOTE(r) message to the proposer with round number r.

• DECIDE Action: When the proposer p receives VOTE(r) messages from a quo-
rum of processes, it updates a local variable called decidedVal to be the value
it has proposed in this round r. This assignment means that the value is de-
cided and sent to the client.

Linearization points in Paxos.We instrument Paxos with linearization points
as follows:

– the linearization point of add(r, v, r′) ⇒ OK occurs when the proposer
broadcasts the PROPOSE(r) message containing value v after receiving a
quorum of JOIN(r) messages (during the PROPOSE action in round r). The
round r′ is extracted from the JOIN(r) message selected by the proposer.

– the linearization point of commit(r)⇒ OK occurs when the leader of round
r updates decidedVal after receiving a quorum of VOTE(r) messages (during
the DECIDE Action).

We illustrate the definition of linearization points for Paxos in relation to QTree
executions in the full version [9].

Theorem 2. Paxos refines QTree.

Proof. We show that the sequence of successful add and commit invocations
defined by linearization points along a Paxos execution satisfies the properties
in Theorem 1 and therefore, it represents a correct QTree execution:

– Property 1: Each round has a unique leader and the leader follows the rules
of the protocol (no Byzantine failures), thereby, making a single proposal.
Therefore, the linearization point of an add(r,_,_) ⇒ OK will occur at
most once for a round r. Since a single value can be proposed in a round,
and all processes follow the rules of the protocol, they can only vote for that
single value. Thus, at most one linearization point of commit(r)⇒ OK can
occur for a round r.

16 B. Cirisci et al.

– Property 2: This holds trivially as all the processes follow the rules of the
protocol and they need to receive a PROPOSE(r) message (which can occur
only after the linearization point of an add(r,_,_)⇒ OK) from the leader
of round r to send a VOTE(r) message.

– Property 3: By the definition of the PROPOSE action, the proposer selects
a highest vote round number r′ from a quorum of JOIN(r) messages that
it receives, before broadcasting a PROPOSE(r) message. If such a highest
vote round number r′ > 0 exists, then there must be a VOTE(r′) message
which is a reply to a PROPOSE(r′) message. Thus, if the linearization point of
add(r,_, r′)⇒ OK occurs where r′ 6= 0, then it is preceded by add(r′,_,_).
Also, by the definition of JOIN, a process can not send a JOIN(r) message
after a VOTE(r′) message if r ≯ r′.
• Property 3a: By the definition of PROPOSE, the proposer selects the

JOIN message with the highest vote round number and proposes its
value. Thus, if the linearization points of both add(r, v, r′) ⇒ OK and
add(r′, v′,_)⇒ OK occur, then v = v ′.

– Property 4: Assume by contradiction that the linearization point of commit
(r)⇒ OK occurs along with the linearization points of add(r,_,_)⇒ OK
and add(r′,_, r′′) ⇒ OK, for some r′′ < r < r′. The linearization point of
commit(r) occurs because of a quorum of VOTE(r) messages sent by a set
of processes P1, and add(r′,_, r′′) occurs because of a quorum of JOIN(r′)
messages sent by a set of processes P2. Since P1 and P2 must have a non-
empty intersection, by the definition of JOIN, it must be the case that r′′ ≥ r,
which contradicts the hypothesis.
The proof of Property 4 relies exclusively on the quorum of processes in

the first phase of a round intersecting the quorum of processes in the second
phase of a round. It is not needed that quorums in first, resp., second, phases
of different rounds intersect. This observation is at the basis of an optimization
that applies to non-Byzantine protocols like Flexible Paxos [18] or Raft (see the
full version [9]).

4.2 Inferring Safety

The main idea behind these linearization points is that successful add and
commit invocations correspond to some process doing a step that witnesses for
the receipt a quorum of messages sent in a certain phase of a round. Intuitively,
linearization points of successful add invocation occur when some process in
some round is certain that a quorum of processes received or will receive the
same proposal (same value, parent etc.) for the same round and acts accordingly
(sends a message). Such proposal on a value v in a round r is denoted by the
linearization point of successful add(r, v, r′) for some r′. On the other hand, the
linearization point of a successful commit(r) invocation occurs when a process
decides on a value in round r (e.g., after receiving a quorum of votes). Formally,
if we denote the actions of a protocol that correspond to linearization points of
successful add(r, v, r′) and commit(r) invocations using aa and ac, respectively,
then Γ (aa) = add(r, v, r′)⇒ OK and Γ (ac) = commit(r)⇒ OK.

Quorum Tree Abstractions of Consensus Protocols 17

When the protocol is such a Γ -refinement of QTree, then, it satisfies agree-
ment and validity. If a decision on a value v in a round r of a protocol is the
linearization point of a successful commit(r), then by Theorem 1, the corre-
sponding QTree state contains a node n with n.round = r, n.value = v, and
n.status = COMMITTED. For single-decree consensus, Proposition 3 ensures that
all rounds decide on the same value. For state machine replication protocols
like Raft and HotStuff, where the goal is to agree on a sequence of commands,
Proposition 2 ensures that all the decided values lie on the same branch of the
tree which ensures that all processes agree on the same sequence of commands.

For validity, when valueConstraint(n) is considered, successful add(r, v, 0)
invocations represent proposals of client values. Theorem 1 ensures that these
invocations correspond to nodes n that are immediate children of Root and for
any such node n, n.value = v. Therefore, by Proposition 1, we can conclude that
only client values can be decided. When valueConstraint(n) is not considered,
the fact that the value of each node is obtained from a client is ensured using
additional mechanisms that are straightforward, e.g., a client broadcasting a
command to all the participants in the protocol.

5 HotStuff Refines QTree

We present an instrumentation of HotStuff with linearization points of successful
add and commit invocations. We use HotStuff as an example of a state machine
replication protocol where processes agree over a sequence of commands to exe-
cute, and any new command proposed by a leader to the other processes comes
with a well-identified immediate predecessor in this sequence. Agreement over
a command entails agreement over all its predecessors in the sequence. This is
different from protocols such as multi-Paxos or PBFT, discussed in the next
section, where commands are associated to indices in the sequence and they can
be agreed upon in any order. Instrumentation of Raft is presented in the full
version [9] and behaves in a similar manner.

In HotStuff, f out of a total of N = 3f + 1 processes might be Byzantine
in the sense that they might show arbitrary behavior and send corrupt or spu-
rious messages. However, they are limited by cryptographic protocols. HotStuff
requires that messages are signed using public-key cryptography, which implies
that Byzantine processes cannot imitate messages of correct (non-faulty) pro-
cesses. Additionally, after receiving a quorum of messages, leaders must include
certificates in their own messages to prove that a quorum has been reached.
These certificates are constructed using threshold signature schemes and correct
processes will not accept any message from the leader if it is not certified. Be-
cause of Byzantine processes, HotStuff requires quorums of size of 2f + 1 which
ensures that the intersection of any two quorums contains at least one correct
process.

Each process stores a tree of commands. When a node in this tree (represent-
ing some command) is decided, all the ancestors of this node in the tree (nodes
on the same branch) are also decided. For a node to become decided, a leader

18 B. Cirisci et al.

must receive a quorum of messages in 3 consecutive phases after the proposal.
After each quorum is established, the leader broadcasts a different certificate to
state which quorum has been achieved and the processes update different local
variables accordingly, with the same node (if the certificate is valid). These local
variables are preNode, votedNode and decidedNode in the order of quorums.

To start a new round, processes send their preNode’s to the leader of the
next round in ROUND-CHANGE(r) messages and increment their round number.
After getting a quorum of messages and selecting the preNode with the highest
round, the leader broadcasts a PROPOSE(r) message with a new node (value
is taken from the client) whose parent is the selected preNode. When the mes-
sage is received by a process, it first checks if the new node extends the selected
preNode. Then it accepts the new node if the node extends its own votedNode (it
is a descendant of votedNode in the tree) or it has a higher round number than
the round number of its votedNode, and sends6 a JOIN(r) message with the
same content. In the second (resp., third) phase, if a quorum of JOIN(r) (resp.,
PRECOMMIT_VOTE(r)) messages is received by the leader, it broadcasts a PRE-
COMMIT(r) (resp., COMMIT(r)) message, and processes update their preNode
(resp., votedNode) with the new node, sending a PRECOMMIT_VOTE(r) (resp.,
COMMIT_VOTE(r)) message. In the fourth phase, when the leader receives a
quorum of COMMIT_VOTE(r), it broadcasts a DECIDE(r) message and pro-
cesses update their decidedNode accordingly. See the full version [9] for more
details.

For HotStuff, the linearization points of add and commit occur with the
broadcasts of PRECOMMIT(r) and DECIDE(r) messages, respectively, that are
valid , i.e., (1) they contain certificates for quorums of JOIN(r) or COM-
MIT_VOTE(r) messages, respectively, which respect the threshold signature
scheme, and (2) they contain the same node as in those messages. More pre-
cisely,

– the linearization point of add(r, v, r′) ⇒ OK occurs the first time when a
valid PRECOMMIT(r) message containing node v is sent. r′ is the round of the
node which is the parent of v and it is contained in a previous PROPOSE(r)
message (r′ can be 0 in which case parent of v is a distinguished root node
that exists in the initial state).

– the linearization point of commit(r) ⇒ OK occurs the first time when a
valid DECIDE(r) message is sent.

Note that a Byzantine leader can send multiple valid PRECOMMIT(r) messages
that include certificates for different quorums of JOIN(r) messages. A lineariza-
tion point occurs when the first such message is sent. Even if processes reply to
another valid PRECOMMIT(r) message sent later, this later PRECOMMIT(r) mes-
sage contains the same preNode value, and their reply will have the same content.
The same holds for DECIDE(r) messages. This remark along with the restriction

6 For all received messages, a correct process also checks if the round number of the
node sent by the leader is equal to the current round number of its own, and can
send only one message for each phase in each round.

Quorum Tree Abstractions of Consensus Protocols 19

to valid messages and the fact that any two quorums intersect in at least one
correct process implies that the sequence of successful add and commit invoca-
tions defined by these linearization points satisfies the properties in Theorem 1
and therefore,

Theorem 3. HotStuff refines QTree.

A detailed proof of the theorem above is given in the full version [9].

6 PBFT Refines QTree

The protocols discussed above are refinements of a single instance of QTree.
State-machine replication protocols based Multi-decree consensus like Multi-
Paxos or PBFT can be seen as compositions of a number of single-decree con-
sensus instances that run concurrently, one for each index in a sequence of com-
mands to agree upon, and they are refinements of a set of independent QTree
instances. We describe the instrumentation of PBFT and delegate multi-Paxos
(and variants) to the full version [9].

PBFT is a multi-decree consensus protocol in which processes aim to agree
on a sequence of values. As in HotStuff, f out of a total number of 3f + 1
processes might be Byzantine and quorums are of size at least 2f +1. To ensure
authentication, messages are signed using public-key cryptography. Messages
sent after receiving a quorum of messages in a previous phase include that set
of messages as a certificate.

A new round r starts with the leader receiving a quorum of ROUND-CHANGE(r)
messages (like in HotStuff). Each such message from a process p includes the
VOTE message with the highest round (similarly to the JOIN action of Paxos)
that p sent in the past, for each sequence number that is not yet agreed by
a quorum. For an arbitrary set of sequence numbers sn, the leader selects the
VOTE message with the highest round and broadcasts a PROPOSE(r,sn) message
that includes the same value as in the VOTE message or a value received from a
client if there is no such highest round. As mentioned above, this message also
includes the VOTE messages that the leader received as a certificate for the selec-
tion. When a process receives a PROPOSE(r,sn) message, if r equals its current
round, the process did not already acknowledge a PROPOSE(r,sn) message, and
the value proposed in this message is selected correctly w.r.t. the certificate, then
it broadcasts a JOIN(r,sn) message with the same content (this is sent to all
processes not just the leader). If a quorum of JOIN(r,sn) messages is received
by a process, then it broadcasts a VOTE(r,sn) message with the same content.
If a process receives a quorum of VOTE(r,sn) messages, then the value in this
message is decided for sn. When a process sends its highest round number VOTE
messages to the leader of the next round (in ROUND-CHANGE messages), it also
includes the quorum of JOIN messages that it received before sending the VOTE,
as a certificate.

PBFT is a refinement of a set of independent QTree instances, one instance
for each sequence number. The linearization points will refer to a specific instance

20 B. Cirisci et al.

identified using a sequence number, e.g., sn.add(r, v, r′) denotes an add(r, v, r′)
invocation on the QTree instance sn. Therefore,

– the linearization point of sn.add(r, v, r′)⇒ OK occurs the first time when a
process p sends a VOTE(r, sn) message, assuming that p is honest, i.e., it al-
ready received a quorum of JOIN(r, sn) messages with the same content. v is
the value of the VOTE(r′, sn) message that is included in the PROPOSE(r,sn)
message (it is possible that r′ = 0 and v is selected randomly).

– the linearization point of sn.commit(r)⇒ OK occurs the first time when a
process p decides a value for sn, assuming that p is honest, i.e., it already
received a quorum of JOIN(r, sn), resp., VOTE(r, sn), messages with the
same content.

A protocol refines a set of QTree instances identified using sequence numbers
when it satisfies Properties 1-4 in Theorem 1 for each sequence number, e.g.,
Property 1 becomes for every sn and every r, a protocol execution contains a
linearization point for at most one invocation sn.add(r,_,_) ⇒ OK and at
most one invocation sn.commit(r) ⇒ OK. A detailed proof of the following
theorem is given in the full version [9].

Theorem 4. PBFT refines a composition of independent QTree instances.

7 Discussion

Protocols considered in this work can be grouped under three classes: single-
decree consensus (Paxos), multi-decree consensus (PBFT, Multi-Paxos) and
state machine replication (Raft, HotStuff)7. We show that they all refine QTree:
a single instance for Paxos and HotStuff, and a set of independent instances
(one for each sequence number in a command log) for PBFT, Multi-Paxos, and
Raft. The more creative parts of the refinement proofs are the identification of
add and commit linearization points and establishing Property 4 in Theorem 1
which follows from the intersection of quorums achieved in different phases of a
round. The other 3 properties in Theorem 1 which guarantee that the lineariza-
tion points are correct are established in a rather straightforward manner, based
on the control-flow of a process participating to the protocol.

The linearization points of successful add and commit invocations correspond
to some process doing a step that witnesses for the receipt a quorum of messages
sent in a certain phase of a round, e.g., the leader broadcasting a PROPOSE(r)
message in Paxos entails that a quorum of JOIN(r) messages have been sent in
the first phase and received. Protocols vary in the total number of phases in a
round, and the phases for which quorums of sent messages should be received in
order to have a linearization point of add or commit . A summary is presented in
Table 1. The * on the total number of phases means that the first phase is skipped
in rounds where the leader is stable. For Multi-Paxos and Raft, if the first phase
7 This is a slight abuse of terminology since multi-decree consensus protocols are
typically used to implement state machine replication.

Quorum Tree Abstractions of Consensus Protocols 21

is skipped, then the linearization point of an add is determined by a quorum of
received messages sent in the next phase (and coincides with the linearization
point of a commit). We use “1/2” to denote this fact. In PBFT and HotStuff,
due to Byzantine processes, quorums of messages sent in two consecutive phases
need to be received in order to ensure that the processes are going to vote on
the same valid proposal. The 3rd phase in HotStuff is used to ensure progress
and can be omitted when reasoning only about safety.

Table 1: Summary of linearization point definitions. For each protocol, we give
the total number of phases in a round and the number of the phase for which
a quorum of sent messages should be received in order to have a linearization
point of add or commit .

Class Protocol #Phases add Quorum Pha. commit Quorum Pha.
Single-Decree Cons. Paxos 2 1 2

Multi-Decree Cons. Multi-Paxos 2* 1/2 2
PBFT 3* 2 3

State Machine Repl. Raft 2* 1/2 2
HotStuff 4 2 4

8 Conclusion and Related Work

We have proposed a new methodology for proving safety of consensus or state-
machine replication protocols, which relies on a novel abstraction of their dy-
namics. This abstraction is defined as a sequential QTree object whose state rep-
resents a global view of a protocol execution. The operations of QTree construct
a tree structure and model agreement on values or a sequence of state-machine
commands as agreement on a fixed branch in the tree. Our methodology applies
uniformly to a range of protocols like (multi-)Paxos, HotStuff, Raft, and PBFT.
We believe that this abstraction helps in improving the understanding of such
protocols and writing correct implementations or optimizations thereof.

As a limitation, it is not clear whether QTree applies to protocols such as
Texel [31] which do not admit a decomposition in rounds. As future work, we
might explore the use of QTree in reasoning about liveness. This would require
some fairness condition on infinite sequences of add/commit invocations, and a
suitable notion of refinement which ensures that infinite sequences of protocol
steps cannot be mapped to infinite sequences of stuttering QTree steps.

The problem of proving the correctness of such protocols has been studied in
previous work. We give an overview of the existing approaches that starts with
safety proof methods based on refinement, which are closer to our approach.
Refinement based safety proofs. Verdi [35] is a framework for implementing
and verifying distributed systems that contains formalizations of various network

22 B. Cirisci et al.

semantics and failure models. Verdi provides system transformers useful for re-
fining high-level specifications to concrete implementations. As a case study, it
includes a fully-mechanized correctness proof of Raft [36]. This proof consists
of 45000 lines of proof code (manual annotations) in the Coq language for a
5000 lines RAFT implementation, showing the difficulty of reasoning on consen-
sus protocols and the manual effort required. Iron Fleet [17] uses TLA [22] style
transition-system specifications and refine them to low-level implementations de-
scribed in the Dafny programming language [25]. Boichat et al. [3] defines a class
of specifications for consensus protocols, which are more abstract than QTree
and can make correctness proofs harder. Proving Paxos in their case is reduced
to a linearizability proof towards an abstract specification, which is quite com-
plex because the linearization points are not fixed, they depend on the future of
an execution. As a possibly superficial quantitative measure, their Paxos proof
reduces to 7 lemmas that are formalized by Garcia-Perez et al. [12, 13] in 12
pages (see Appendix B and C in [13]), much more than our QTree proof. Our
refinement proof is also similar to a linearizability proof, but the linearization
points in our case are fixed (do not depend on the future of an execution) which
brings more simplicity. In principle, the specifications in [3] could apply to more
protocols, but we are not aware of such a case. The inductive sequentialization
proof rule [20] is used for a fully mechanized correctness proof of a realistic
Paxos implementation. This implementation is proved to be a refinement of a
sequential program which is quite close to the original implementation, much
less abstract than QTree, and relies on commutativity arguments implied by the
communication-closed round structure [11]. A similar idea is explored in [14],
but in a more restricted context.
Inductive invariant based safety proofs. Ivy [30] is an SMT-based safety
verification tool that can be used for verifying inductive invariants about global
states of a distributed protocol. In order to stay in a decidable fragment of
first-order logic, both the modeling and the specification language of IVY are
restricted. A simple model of Paxos obeying these restrictions is proven correct
in [29].
Beyond safety. The TLA+ infrastructure [22] of Lamport has been used to ver-
ify both safety and liveness (termination) of several variations of Paxos, e.g., Fast
Paxos [23] or Multi-Paxos [6]. Bravo et al. [4] introduce a generic synchronization
mechanism for round changes, called the view synchronizer, which guarantees
liveness for various Byzantine consensus protocols including our cases studies
HotStuff and PBFT. This work includes full correctness proofs for single-decree
versions of HotStuff and PBFT and a two-phase version of HotStuff. PSync [10]
provides a partially synchronous semantics for distributed protocols assuming
communication-closed rounds in the Heard-Of model [8]. PSync is used to prove
both safety and liveness of a Paxos-like consensus protocol called lastVoting.
Relating different consensus protocols. Lamport defines a series of refine-
ments of Paxos that leads to a Byzantine fault tolerant version, which is refined
by PBFT [24]. Our proof that Paxos refines QTree can be easily extended to
this Byzantine fault tolerant version in the same manner as we did for PBFT.

Quorum Tree Abstractions of Consensus Protocols 23

Wang et al. [34] shows that a variation of RAFT is a refinement of Paxos, which
enables porting some Paxos optimizations to RAFT. Renesse et al. [32] compare
Paxos, Viewstamped Replication [28] and ZAB [19]. They define a rooted tree of
specifications represented in TLA style whose leaves are concrete protocols. Each
node in this tree is refined by its children. Common ancestors of concrete pro-
tocols show similarities whereas conflicting specifications show the differences.
Similarly, [33] shows that Paxos, Chandra-Toueg [7] and Ben-Or [2] consensus
algorithms share common building blocks. Aublin et al. [1] propose an abstract
data type for specifying existing and possible future consensus protocols. Unlike
our QTree, core components of this data type are not implemented and inten-
tionally left abstract so that it can adapt to different network and process failure
models.

References

1. Aublin, P., Guerraoui, R., Knezevic, N., Quéma, V., Vukolic, M.: The next
700 BFT protocols. ACM Trans. Comput. Syst. 32(4), 12:1–12:45 (2015).
https://doi.org/10.1145/2658994, https://doi.org/10.1145/2658994

2. Ben-Or, M.: Another advantage of free choice: Completely asynchronous agree-
ment protocols (extended abstract). In: Probert, R.L., Lynch, N.A., Santoro,
N. (eds.) Proceedings of the Second Annual ACM SIGACT-SIGOPS Sympo-
sium on Principles of Distributed Computing, Montreal, Quebec, Canada, Au-
gust 17-19, 1983. pp. 27–30. ACM (1983). https://doi.org/10.1145/800221.806707,
https://doi.org/10.1145/800221.806707

3. Boichat, R., Dutta, P., Frølund, S., Guerraoui, R.: Deconstructing paxos.
SIGACT News 34(1), 47–67 (2003). https://doi.org/10.1145/637437.637447,
https://doi.org/10.1145/637437.637447

4. Bravo, M., Chockler, G.V., Gotsman, A.: Making byzantine consen-
sus live. In: Attiya, H. (ed.) 34th International Symposium on Dis-
tributed Computing, DISC 2020, October 12-16, 2020, Virtual Con-
ference. LIPIcs, vol. 179, pp. 23:1–23:17. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2020). https://doi.org/10.4230/LIPIcs.DISC.2020.23,
https://doi.org/10.4230/LIPIcs.DISC.2020.23

5. Castro, M., Liskov, B.: Practical byzantine fault tolerance. In: Seltzer, M.I.,
Leach, P.J. (eds.) Proceedings of the Third USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI), New Orleans, Louisiana,
USA, February 22-25, 1999. pp. 173–186. USENIX Association (1999),
https://dl.acm.org/citation.cfm?id=296824

6. Chand, S., Liu, Y.A., Stoller, S.D.: Formal verification of multi-paxos for dis-
tributed consensus. In: Fitzgerald, J.S., Heitmeyer, C.L., Gnesi, S., Philippou,
A. (eds.) FM 2016: Formal Methods - 21st International Symposium, Limas-
sol, Cyprus, November 9-11, 2016, Proceedings. Lecture Notes in Computer Sci-
ence, vol. 9995, pp. 119–136 (2016). https://doi.org/10.1007/978-3-319-48989-
6_8, https://doi.org/10.1007/978-3-319-48989-6_8

7. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed
systems. J. ACM 43(2), 225–267 (1996). https://doi.org/10.1145/226643.226647,
https://doi.org/10.1145/226643.226647

24 B. Cirisci et al.

8. Charron-Bost, B., Merz, S.: Formal verification of a consensus algorithm
in the heard-of model. Int. J. Softw. Informatics 3(2-3), 273–303 (2009),
http://www.ijsi.org/ch/reader/view_abstract.aspx?file_no=273&flag=1

9. Cirisci, B., Enea, C., Mutluergil, S.O.: Quorum tree abstractions of
consensus protocols (2023). https://doi.org/10.48550/ARXIV.2301.09946,
https://arxiv.org/abs/2301.09946

10. Dragoi, C., Henzinger, T.A., Zufferey, D.: Psync: a partially synchronous language
for fault-tolerant distributed algorithms. In: Bodík, R., Majumdar, R. (eds.) Pro-
ceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2016, St. Petersburg, FL, USA, January 20
- 22, 2016. pp. 400–415. ACM (2016). https://doi.org/10.1145/2837614.2837650,
https://doi.org/10.1145/2837614.2837650

11. Elrad, T., Francez, N.: Decomposition of distributed programs into
communication-closed layers. Sci. Comput. Program. 2(3), 155–173 (1982).
https://doi.org/10.1016/0167-6423(83)90013-8, https://doi.org/10.1016/0167-
6423(83)90013-8

12. García-Pérez, Á., Gotsman, A., Meshman, Y., Sergey, I.: Paxos consensus, decon-
structed and abstracted. In: Ahmed, A. (ed.) Programming Languages and Systems
- 27th European Symposium on Programming, ESOP 2018, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2018,
Thessaloniki, Greece, April 14-20, 2018, Proceedings. Lecture Notes in Computer
Science, vol. 10801, pp. 912–939. Springer (2018). https://doi.org/10.1007/978-3-
319-89884-1_32, https://doi.org/10.1007/978-3-319-89884-1_32

13. García-Pérez, Á., Gotsman, A., Meshman, Y., Sergey, I.: Paxos consensus, de-
constructed and abstracted (extended version). CoRR abs/1802.05969 (2018),
http://arxiv.org/abs/1802.05969

14. von Gleissenthall, K., Kici, R.G., Bakst, A., Stefan, D., Jhala, R.: Pretend syn-
chrony: synchronous verification of asynchronous distributed programs. Proc. ACM
Program. Lang. 3(POPL), 59:1–59:30 (2019). https://doi.org/10.1145/3290372,
https://doi.org/10.1145/3290372

15. Golab, W.M., Higham, L., Woelfel, P.: Linearizable implementations do
not suffice for randomized distributed computation. In: Fortnow, L.,
Vadhan, S.P. (eds.) Proceedings of the 43rd ACM Symposium on The-
ory of Computing, STOC 2011, San Jose, CA, USA, 6-8 June 2011.
pp. 373–382. ACM (2011). https://doi.org/10.1145/1993636.1993687,
https://doi.org/10.1145/1993636.1993687

16. Gray, J., Lamport, L.: Consensus on transaction commit. CoRR cs.DC/0408036
(2004), http://arxiv.org/abs/cs.DC/0408036

17. Hawblitzel, C., Howell, J., Kapritsos, M., Lorch, J.R., Parno, B., Roberts,
M.L., Setty, S.T.V., Zill, B.: Ironfleet: proving practical distributed systems
correct. In: Miller, E.L., Hand, S. (eds.) Proceedings of the 25th Sympo-
sium on Operating Systems Principles, SOSP 2015, Monterey, CA, USA, Octo-
ber 4-7, 2015. pp. 1–17. ACM (2015). https://doi.org/10.1145/2815400.2815428,
https://doi.org/10.1145/2815400.2815428

18. Howard, H., Malkhi, D., Spiegelman, A.: Flexible paxos: Quorum intersection re-
visited. CoRR abs/1608.06696 (2016), http://arxiv.org/abs/1608.06696

19. Junqueira, F.P., Reed, B.C., Serafini, M.: Zab: High-performance
broadcast for primary-backup systems. In: Proceedings of the 2011
IEEE/IFIP International Conference on Dependable Systems and Net-
works, DSN 2011, Hong Kong, China, June 27-30 2011. pp. 245–256.

Quorum Tree Abstractions of Consensus Protocols 25

IEEE Compute Society (2011). https://doi.org/10.1109/DSN.2011.5958223,
https://doi.org/10.1109/DSN.2011.5958223

20. Kragl, B., Enea, C., Henzinger, T.A., Mutluergil, S.O., Qadeer, S.: Inductive se-
quentialization of asynchronous programs. In: Donaldson, A.F., Torlak, E. (eds.)
Proceedings of the 41st ACM SIGPLAN International Conference on Program-
ming Language Design and Implementation, PLDI 2020, London, UK, June 15-
20, 2020. pp. 227–242. ACM (2020). https://doi.org/10.1145/3385412.3385980,
https://doi.org/10.1145/3385412.3385980

21. Lamport, L.: The part-time parliament. ACM Trans. Comput.
Syst. 16(2), 133–169 (1998). https://doi.org/10.1145/279227.279229,
https://doi.org/10.1145/279227.279229

22. Lamport, L.: Specifying Systems, The TLA+ Language and Tools
for Hardware and Software Engineers. Addison-Wesley (2002),
http://research.microsoft.com/users/lamport/tla/book.html

23. Lamport, L.: Fast paxos. Distributed Comput. 19(2), 79–103 (2006).
https://doi.org/10.1007/s00446-006-0005-x, https://doi.org/10.1007/s00446-006-
0005-x

24. Lamport, L.: Byzantizing paxos by refinement. In: Peleg, D. (ed.) Distributed
Computing - 25th International Symposium, DISC 2011, Rome, Italy, Septem-
ber 20-22, 2011. Proceedings. Lecture Notes in Computer Science, vol. 6950,
pp. 211–224. Springer (2011). https://doi.org/10.1007/978-3-642-24100-0_22,
https://doi.org/10.1007/978-3-642-24100-0_22

25. Leino, K.R.M.: Dafny: An automatic program verifier for functional correctness. In:
Clarke, E.M., Voronkov, A. (eds.) Logic for Programming, Artificial Intelligence,
and Reasoning - 16th International Conference, LPAR-16, Dakar, Senegal, April
25-May 1, 2010, Revised Selected Papers. Lecture Notes in Computer Science,
vol. 6355, pp. 348–370. Springer (2010). https://doi.org/10.1007/978-3-642-17511-
4_20, https://doi.org/10.1007/978-3-642-17511-4_20

26. Malkhi, D., Lamport, L., Zhou, L.: Stoppable paxos. Tech. Rep. MSR-TR-2008-192
(April 2008)

27. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system. Tech. rep. (2008),
https: //bitcoin.org/bitcoin.pdf

28. Oki, B.M., Liskov, B.: Viewstamped replication: A general primary copy.
In: Dolev, D. (ed.) Proceedings of the Seventh Annual ACM Symposium
on Principles of Distributed Computing, Toronto, Ontario, Canada, Au-
gust 15-17, 1988. pp. 8–17. ACM (1988). https://doi.org/10.1145/62546.62549,
https://doi.org/10.1145/62546.62549

29. Padon, O., Losa, G., Sagiv, M., Shoham, S.: Paxos made EPR: decidable reason-
ing about distributed protocols. Proc. ACM Program. Lang. 1(OOPSLA), 108:1–
108:31 (2017). https://doi.org/10.1145/3140568, https://doi.org/10.1145/3140568

30. Padon, O., McMillan, K.L., Panda, A., Sagiv, M., Shoham, S.: Ivy: safety ver-
ification by interactive generalization. In: Krintz, C., Berger, E.D. (eds.) Pro-
ceedings of the 37th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2016, Santa Barbara, CA, USA, June 13-
17, 2016. pp. 614–630. ACM (2016). https://doi.org/10.1145/2908080.2908118,
https://doi.org/10.1145/2908080.2908118

31. van Renesse, R.: Asynchronous consensus without rounds. CoRR abs/1908.10716
(2019), http://arxiv.org/abs/1908.10716

32. van Renesse, R., Schiper, N., Schneider, F.B.: Vive la différence: Paxos
vs. viewstamped replication vs. zab. IEEE Trans. Dependable Secur.

26 B. Cirisci et al.

Comput. 12(4), 472–484 (2015). https://doi.org/10.1109/TDSC.2014.2355848,
https://doi.org/10.1109/TDSC.2014.2355848

33. Song, Y.J., van Renesse, R., Schneider, F.B., Dolev, D.: The building blocks of con-
sensus. In: Rao, S., Chatterjee, M., Jayanti, P., Murthy, C.S.R., Saha, S.K. (eds.)
Distributed Computing and Networking, 9th International Conference, ICDCN
2008, Kolkata, India, January 5-8, 2008. Lecture Notes in Computer Science,
vol. 4904, pp. 54–72. Springer (2008). https://doi.org/10.1007/978-3-540-77444-
0_5, https://doi.org/10.1007/978-3-540-77444-0_5

34. Wang, Z., Zhao, C., Mu, S., Chen, H., Li, J.: On the parallels between
paxos and raft, and how to port optimizations. In: Robinson, P., Ellen,
F. (eds.) Proceedings of the 2019 ACM Symposium on Principles of Dis-
tributed Computing, PODC 2019, Toronto, ON, Canada, July 29 - August
2, 2019. pp. 445–454. ACM (2019). https://doi.org/10.1145/3293611.3331595,
https://doi.org/10.1145/3293611.3331595

35. Wilcox, J.R., Woos, D., Panchekha, P., Tatlock, Z., Wang, X., Ernst,
M.D., Anderson, T.E.: Verdi: a framework for implementing and for-
mally verifying distributed systems. In: Grove, D., Blackburn, S.M. (eds.)
Proceedings of the 36th ACM SIGPLAN Conference on Programming
Language Design and Implementation, Portland, OR, USA, June 15-17,
2015. pp. 357–368. ACM (2015). https://doi.org/10.1145/2737924.2737958,
https://doi.org/10.1145/2737924.2737958

36. Woos, D., Wilcox, J.R., Anton, S., Tatlock, Z., Ernst, M.D., Anderson, T.E.:
Planning for change in a formal verification of the raft consensus protocol. In:
Avigad, J., Chlipala, A. (eds.) Proceedings of the 5th ACM SIGPLAN Confer-
ence on Certified Programs and Proofs, Saint Petersburg, FL, USA, January
20-22, 2016. pp. 154–165. ACM (2016). https://doi.org/10.1145/2854065.2854081,
https://doi.org/10.1145/2854065.2854081

37. Yin, M., Malkhi, D., Reiter, M.K., Golan-Gueta, G., Abraham, I.: Hotstuff:
BFT consensus with linearity and responsiveness. In: Robinson, P., Ellen,
F. (eds.) Proceedings of the 2019 ACM Symposium on Principles of Dis-
tributed Computing, PODC 2019, Toronto, ON, Canada, July 29 - August
2, 2019. pp. 347–356. ACM (2019). https://doi.org/10.1145/3293611.3331591,
https://doi.org/10.1145/3293611.3331591

