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Abstract. We define a correctness criterion, called robustness against concur-
rency, for a class of event-driven asynchronous programs that are at the basis of
modern UI frameworks in Android, iOS, and Javascript. A program is robust when
all possible behaviors admitted by the program under arbitrary procedure and event
interleavings are admitted even if asynchronous procedures (respectively, events)
are assumed to execute serially, one after the other, accessing shared memory in
isolation. We characterize robustness as a conjunction of two correctness criteria:
event-serializability (i.e., events can be seen as atomic) and event-determinism (ex-
ecutions within each event are insensitive to the interleavings between concurrent
tasks dynamically spawned by the event). Then, we provide efficient algorithms
for checking these two criteria based on polynomial reductions to reachability
problems in sequential programs. This result is surprising because it allows to
avoid explicit handling of all concurrent executions in the analysis, which leads to
an important gain in complexity. We demonstrate via case studies on Android apps
that the typical mistakes programmers make are captured as robustness violations,
and that violations can be detected efficiently using our approach.

1 Introduction
Asynchronous event-driven programming is a widely adopted style for building respon-
sive and efficient software. It allows programmers to use asynchronous procedure calls
that are stored for later executions, in contrast with synchronous procedure calls that must
be executed immediately. Asynchronous calls are essential for event-driven program-
ming where they correspond to callbacks handling the occurrences of external events.
In particular, modern user interface (UI) frameworks in Android, iOS, and Javascript,
are instances of asynchronous event-driven programming. These frameworks dedicate
a distinguished main thread, called UI thread, to handling user interface events. Since
responsiveness to user events is a key concern, common practice is to let the UI thread
perform only short-running work in response to each event, delegating to asynchronous
tasks the more computationally demanding part of the work. These asynchronous tasks
are in general executed in parallel on different background threads, depending on the
computational ressources available on the execution platform.

The apparent simplicity of UI programming models is somewhat deceptive. The
difficulty of writing safe programs given the concurrency of the underlying execution
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platform is still all there. A formal programming abstraction that is simple, yet exposes
both the potential benefits and the dangers of the UI frameworks would go a long way in
simplifying the job of programmers. Programs written against this abstraction would then
be insensitive to implementation and platform changes (e.g., automatic load balancing).
Indeed, the choice of parameters such as the number of possible threads running in
parallel, the dispatching policy of pending tasks over these threads, the scheduling
policy for executing shared-memory concurrent tasks, etc., should be transparent to
programmers, and the semantics of a program should be independent from this choice.
Therefore the conformance to this abstraction (i.e., a program can be soundly abstracted
according it) would be a highly desirable correctness criterion.

The objectives of our work are (1) to provide such a programming abstraction that
leads to a suitable correctness criterion for event-driven shared memory asynchronous
programs, and (2) to provide efficient algorithms for verifying that a program is correct
w.r.t. this criterion.

The programming abstraction we consider compares two semantics, the multi-thread
and the single-thread semantics:

– The multi-thread semantics reflects the concurrency of the actual program: The main
(UI) thread and asynchronous tasks posted to background threads interact over the
shared memory in a concurrent way. No limit on the number of tasks, no limit on
the number of threads, and no restriction on the dispatching and scheduling policies
are assumed.

– The single-thread semantics is a reference model where a program is supposed
to run on a single thread handling user events in a serial manner, one after the
other. Each event is handled by executing its corresponding code including the
created asynchronous tasks until completion. The asynchronous tasks created by an
event handler (and recursively, by its callee) are executed asynchronously (once the
execution of the creator finishes) serially and in the order of their invocation.

While the multi-thread semantics provides greater performance and responsiveness, the
single-thread semantics is simpler to apprehend. The inherent non-determinism due to
concurrency and asynchronous task dispatching from the multi-thread semantics is not
present in the context of the single-thread one.

We consider that a desirable property of a program is that its multi-thread semantics
is a refinement of its single-thread semantics in the sense that the sets of observable
reachable states of the program w.r.t. both semantics are exactly the same. A program
that satisfies this refinement condition is said to be robust against concurrency (or simply
robust). In fact, robustness violations correspond to “concurrency bugs”, i.e., violations
that are due to parallelization of tasks, and that do not show up when tasks are executed
in a serial manner.

Then, let us focus now on the problem of verifying the robustness of a given program.
We show in this paper that, surprisingly, for the class of UI event-driven asynchronous
programs, this problem can be reduced in linear time to the state reachability problem in
sequential programs. This means that the robustness of such a concurrent program can
be checked in polynomial time on an (instrumented) sequential version of the program,
without exploring all its concurrent executions. Let us describe the way we achieve that.

First, we show that robustness against concurrency can be characterized as the
conjunction of event-serializability and event determinism, which are variants of the



classical notions of serializability and determinism, adapted to our context. Intuitively,
since the single-thread semantics defines a unique execution, given a set of external
events (partially ordered w.r.t. some causality relation imposed by the environment),
then (1) the executions of the event handlers must be serializable (to an order compatible
with their causality relation), i.e., the execution of each event handler and its subtasks
can be seen as an atomic transaction, and (2) the execution of each event handler is
deterministic, i.e., it always leads to the same state, for any possible scheduling of its
parallel subtasks.

To search efficiently for event-serializability and event-determinism violations,
we make use of conflict-based approximations in the style of [27], called conflict-
serializability and conflict-determinism, respectively. Indeed, these conflict-based criteria
do not take into account actual data values, but rather syntactical dependencies between
operations (e.g., writing to the same variable), which makes them stronger, but also “eas-
ier” to check, while still accurate enough for catching real bugs, introducing rarely false
positives, as our experiments show. We reduce verifying conflict event-serializability
and conflict event-determinism to detecting cycles in appropriately defined dependency
(or happen-before) relations between concurrent events and asynchronous procedure
invocations, respectively. Our key contribution is that these cycle detections can be
done by reasoning about the computations of sequential programs instead of concurrent
programs, avoiding explicit encodings of (potentially unbounded) sets of pending tasks
and exploring all their possible interleavings. Let us explain this in more details.

An event handler is conflict-deterministic when all its executions have conflict-
preserving permutations where tasks are executed serially in the same order as in the
single-thread semantics. Scheduling tasks in this order corresponds to the DFS (Depth
First Search) traversal of the call-tree of tasks (representing the relation caller-callee).
We show that detecting a conflict-determinism violation, i.e., an asynchronous execution
with no serial DFS counterpart, can be done by reasoning about an instrumented version
of the procedural program obtained from the code of the event handler by roughly,
turning asynchronous calls to synchronous ones. This instrumented program simulates
borderline violations, if any, i.e., violations where removing the last action leads to a
correct execution. We show that the amount of auxiliary memory needed to witness such
violations is finite (and small). Moreover, such violations are “almost” asynchronous
executions where tasks are scheduled serially according to the DFS traversal of the
call-tree. Such executions can be simulated using synchronous procedure calls because
roughly, the latter are also initiated according to the DFS traversal of the call-tree.
However, they are interleaved in a different way compared to the asynchronous calls and
the event handler must undergo a syntactic transformation described in Section 6.3.

As for conflict-serializability, a first issue in checking it is that event handlers may
consist of different concurrently-executing tasks. This issue is solved by assuming that
the conflict-determinism check is done a-priori. If this check fails then the program
is not robust and otherwise, checking conflict-serializability can assume sequential
event handlers which are in fact the instrumented procedural programs used in the
conflict-determinism check.

Even assuming sequential event handlers, general results about conflict-serializability
state that this problem is PSPACE-complete for a fixed number of threads [6, 15], and



EXPSPACE-complete for an unbounded number of threads [10] (assuming a fixed
data domain and absence of recursive procedure calls). However, we prove that, in
the programming model we consider in this paper, the problem of checking conflict-
serializability is polynomial! This result relies on two facts: (1) there is only one dis-
tinguished thread, the UI thread, for which the order in which procedure invocations
are executed is relevant, and (2) we assume that each asynchronous task executed in the
background (not on the UI thread) is running on a fresh thread. This assumption is valid
since background threads are not manipulated explicitly by the programmer but by the
runtime, and therefore, we need to consider the situation where concurrency is maximal.

In fact, we show that when events are conflict-deterministic, the problem of checking
conflict-serializability can also be reduced to a reachability problem in a sequential
program. Again, we prove that it is sufficient to focus on a particular class of (borderline)
violations of conflict-serializability. Then, we show that detecting these violations can
be done by reasoning about the executions of a program where events are executed in
a sequential manner, in any order (chosen nondeterministically), and where the tasks
generated by each event are executed as in the single-thread semantics. For that, we
define an instrumentation of that program that consists in simulating the delaying effects
of the multi-thread semantics, guessing the actions involved in the violation and tracking
the dependencies between them in order to check the correctness of the guess (that
they indeed form a cycle). The cycle detection in the case of conflict-serializability is
technically more complex than in the case of conflict-determinism. But still, a crucial
point in the reduction is that we do not need to store the whole cycle during the search,
but it is enough to maintain a fixed number of variables to traverse the elements of
this cycle. This leads to a polynomial reduction of the conflict-robustness problem to a
reachability problem in a sequential program.

Our reductions hold regardless of the used data domain, for programs with recursive
procedure calls, and unbounded numbers of events and tasks. These reductions allow
to leverage existing analysis tools for sequential programs to check conflict-robustness.
When the data domain is bounded, we obtain a polynomial-time algorithm for checking
conflict-robustness for UI event-driven asynchronous programs (with recursive procedure
calls, and unboundedly many events and tasks).

We validate our approach on a set of real-life applications, showing that with few
exceptions all detected robustness violations are undesirable behaviours. Interestingly,
the use of conflict versions of the correctness criteria characterizing robustness is efficient
and quite accurate, producing only few false positives (that can be eliminated easily).

Finally, let us mention that our work also leads to an efficient approach for verifying
functional correctness of UI event-driven asynchronous programs that consists in reduc-
ing this problem to two separate problems: (1) showing that the program is functionally
correct w.r.t the single-thread semantics, and (2) showing that it is robust against con-
currency. Both of these problems can indeed be solved efficiently by considering only
particular types of computations that are captured by sequential programs.

To summarize, our contributions are:

– Introduction of the notion of robustness against concurrency that provides a program-
ming abstraction for event-driven asynchronous programs, and its characterization
as the conjunction of event-serializability and event-determinism.



– Efficient algorithms for checking robustness based on reductions from conflict
event-serializability and conflict event-determinism to state reachability problems in
sequential programs. Decidability and complexity results for verifying robustness in
the case of finite data domains.

– Experimentations showing the relevance of our correctness criteria and the efficiency
of our approach.

2 Motivating Examples
We demonstrate the relevance of robustness using several excerpts from Android ap-
plications. To argue that robustness is not too strong as a requirement, we discuss two
concurrency bugs reported in open-source repositories that are also robustness violations,
more precisely, event-serializability and event-determinism violations. We also provide
a typical example of a robust program.

2.1 A Violation to Event Serializability

ActionEditText msgTxt;
boolean onKey(...) {
// actions on UI thread
new SendTask().execute();

}

void onDoubleClicked(String name){
text += " " + name;
msgTxt.setText(text);

}

class SendTask extends AsyncTask {
void onPreExecute(){

e.command = msgTxt.getText();
}
void doInBackground (..) {
write msgTxt.getText() into JSON obj
/* corrected version:
write e.command into JSON obj */

}
}

Fig. 1: A program with an event-
serializability violation.

Figure 1 lists a a real code excerpt from the
Android IrcCloud app [2] for chatting on
the IRC. Under the concrete multi-thread se-
mantics, the user event of pressing the “send”
key is handled by the procedure onKey. Ac-
tions associated with this event handler in-
clude actions performed by onKey on the
main (UI) thread, actions performed by
SendTask.onPreExecute() on the UI thread
before the actions performed asynchronously
on a background thread by SendTasks’s
doInBackground procedure. Another event
handler in this example is onDoubleClicked,
which appends to the message text the name
name of the user whose name is clicked
on. The multi-thread semantics allows in-
terference between the two event handlers,

onDoubleClicked can interleave with doInBackground. In contrast, the single-thread se-
mantics allows no such interference. The event handlers and the asynchronous tasks
they create are executed entirely on the UI thread, and all the tasks created by onKey are
executed before any other event handler invocation.

This program is not robust and a violation can be generated under the following
scenario. Suppose that the user types “Hello”, presses “send”, and then double-clicks
on another IRC user’s name. Under the multi-thread semantics, onDoubleClicked may
start running on the UI thread while SendTask.doInBackground is in progress. These
two procedures’ accesses can interfere with each other. In particular, the ordering of
msgTxt.getText() with respect to the appending of name to msgTxt determines whether
“Hello” or “Hello foo” gets sent on the network. Moreover, since onKey first records
msg.getText() to a field e.command, an execution of these two events can end in a
program state in which e.command contains “Hello” while msgTxt contains “Hello foo”.
This end state is not possible with any execution of these two event handlers under the



// Event 1
void searchForNews(String key) {
new SearchTask.execute(key);
new SaveTask.execute(key); }

// Event 2
void showDetail(int id) {
// show detail of the idth news
new DownloadTask.execute(id); }

class SaveTask extends AsyncTask {
void doInBackground(String key) {

// write key to the database } }

class SearchTask extends AsyncTask {
List result = null;
void doInBackground(String key) {

result = ...
// get from the network

}
void onPostExecute() {

list = result;
// display the list of titles } }

class DownloadTask extends AsyncTask {
String content = null;
void doInBackground(int id) {

content = ... // get from the network
}
void onPostExecute() {

// display the content } }

Fig. 3: A robust program.

single-thread semantics, where the event handlers are executed serially one after the
other. This is a violation to event serializability. Actually, this behavior was reported as a
bug, and the code was updated [1] so that e.command (instead of msgTxt, which may have
changed) is written into a JSON object and sent on the network. It was the designers’
intent for the entire event handling code for the “send” key to appear atomic. With this
modification the program becomes robust.

2.2 A Violation to Event Determinism

void iconPackUpdated(){
new Thread( new Runnable(){
void run() {
..
mAdapter=new AppRowAdapter (..);

} } ).start();
new Handler().postDelayed(
new Runnable() {
void run() {
..
if(setAdapter)
listView.setAdapter(mAdapter);

..
mAdapter.notifyDataSetChanged();

} }, 1000);
}

Fig. 2: A program with an event-
determinism violation.

Figure 2 lists an event handler called
iconPackUpdated which creates an asyn-
chronous task (the first runnable to be executed
by the created thread) to initialize the mAdapter

object. Then it creates another task, to be run
by the UI thread, that uses mAdapter to update
the list view of displayed icons. In an effort
to ensure that the second task runs after the
first task completes, the programmer posts the
second task after a second’s delay.

Under the concrete multi-thread semantics,
it is possible for the first task not to complete
even after a second. In this case, the second
runnable code will produce a null pointer ex-

ception, while in other schedules, the code works as intended. Although the programmer
had intended a deterministic outcome there are executions with different outcomes,
including errors. Therefore, this event handler is not event-deterministic, and not robust.

2.3 A Robust Program

The program in Figure 3 has two event handlers searchForNews and showDetail which
can be invoked by the user to search for news containing a keyword and to display the
details of a selected news respectively.

The procedure searchForNews creates two AsyncTask objects SearchTask and SaveTask

whose execute method will invoke asynchronously doInBackground followed by onPostExecute,



in the case of the former. Under the multi-thread semantics, doInBackground is invoked
on a new thread and onPostExecute is invoked on the main thread. When the user input
to search for news is triggered, the invocation doInBackground of searchTask connects to
the network, searches for the keyword and fetches the list of resulting news titles. Then,
the invocation onPostExecute displays the list of titles to the user. SaveTask saves the key-
word to a database representing the search history in the background. The background
tasks SearchTask.doInBackground and SaveTask.doInBackground might interfere but
any interleaving produces the same result, i.e., searchForNews is deterministic.

The second event, to show the details of a title, can be triggered once the list of titles
are displayed on the screen. It invokes an asynchronous task to download the contents of
the news in the background and then displays it. In this case, the tasks are executed in a
fixed order and the event is trivially deterministic.

Concerning serializability, the invocation of SaveTask in the first event and the
second event might interleave (under the concrete semantics). However, assuming that
the second event is triggered once the results are displayed, any such interleaving results
in the same state as a serial execution of these events.

3 Programs

In order to give a generic definition of robustness, which doesn’t depend on any particular
asynchronous-programming platform or syntax, we frame our discussion around the
abstract notion of programs defined in § 3.1. Two alternative multi-thread and single-
thread semantics to programs are given in § 3.2 and § 3.3. We consider programs that
are data-deterministic, in the sense that the evaluation of every (boolean) expression is
uniquely determined by the variable valuation.

3.1 Asynchronous Event-Driven Programs

We define an event handler as a procedure which is invoked in response to a user or
a system input. For simplicity, we assume that inputs can arrive in any order. Event
handlers may have some asynchronous invocations of other procedures, to be executed
later on the same thread or on a background thread.

We fix sets G and L of global and local program states. Local states ` ∈ L represent
the code and data of an asynchronous procedure or event-handler invocation, including
the code and data of all nested synchronous procedure calls. A program is defined as
a mapping between pairs of global and local states which gives the semantics of each
statement in the code of a procedure (the association between threads, local states, and
procedure invocations is defined in § 3.2 and § 3.3). To formalize the conflict-based
approximation of robustness, this mapping associates with each statement a label called
program action that records the set of variables read or written and the asynchronous
invocations in that statement. An event set E ⊂ L is a set of local states; each e ∈ E
represents the code and data for a single event handler invocation (called event for short).

Formally, let X = {rd(x),wr(x) : x ∈ . . .} be the set of memory accesses, W =
{main,any} the set of invocation places, and B= {invoke(`,w) : ` ∈ L,w ∈W}∪{return}∪
X ∪{ε} the set of program actions, where ε represents irrelevant program actions. The
rd(x) and wr(x) represent read and write accesses to variable x; invoke(`,w) represents
an asynchronous invocation whose initial local state is `; the invocation is to be run on



x := y y := x assume y call p(y) async[w] p(y) return

Fig. 4: A canonical program syntax. The metavariables x and y range over global and
local variable names, respectively, p ranges over procedure names, and w over the
symbols “main” and “any.”

a distinguished main thread when w = main, and on an arbitrary thread when w = any.
Finally, the return program action represents the return from an asynchronous procedure
invocation.

A program P : G×L→ G×L×B maps global states g ∈ G and local states ` ∈ L
to new states and program actions; each P(g, `) represents a single program transition.
We assume that when b is an asynchronous invocation or return program action and
P(g, `) = 〈g′, ,b〉 then g = g′.
Canonical Program Syntax. Supposing that the global states g ∈ G are maps from
program variables x to values g(x), and that local states ` ∈ L map program variables y to
values `(y) and a program counter variable pc to program statements `(pc), we give an
interpretation to the canonical program syntax listed in Figure 4. We assume atomicity
of the statements at the bytecode level. For simplicity, we omit the interpretation of
synchronous procedure calls call p(y) which is defined as usual. For instance, writing
`+ to denote `[pc 7→ `(pc)+1], then P(g, `) is

– 〈g[x 7→`(y)], `+,wr(x)〉 when `(pc) is a global-variable write x := y,
– 〈g, `+[y7→g(x)], rd(x)〉 when `(pc) is a global-variable read y := x,
– 〈g, `+, rd(y)〉 when `(pc) is assume(y) and `(y) 6= 0,
– 〈g, `,ε〉 when `(pc) is assume(y) and `(y) = 0,
– 〈g, `+, invoke(`′,w)〉 when `(pc) is an asynchronous invocation async[w] p(y),

where `′ maps the parameters of procedure p to the invocation arguments y and pc
to the initial statement of p, and

– 〈g, `, return〉 when `(pc) is the return statement.
The semantics of other statements, including if-then-else conditionals, while loops, or
goto statements, etc. (we assume that boolean conditions use only local variables), is
standard, and yield the empty program action ε.

An event is called sequential when its code doesn’t contain asynchronous invocations
async[w] p(y). Also, a program P with event set E is called sequential when every
event e ∈ E is sequential. Otherwise, P is called concurrent.

3.2 Multi-thread Asynchronous Semantics

Our multi-thread semantics maximizes the set of possible program behaviors by allowing
events to interleave and interfere with each other. It dispatches the event handlers serially
on the main thread but allows the asynchronous procedure invocations to execute on
separate threads, not necessarily in invocation order. Configurations of the multi-thread
semantics thus maintain sets of running procedure invocations as well as an unordered
queue of pending invocations, and invocations are associated with events and threads.

To characterize executions by the event-serializability and event-determinism criteria,
we expose the following set A of actions in execution traces:

A ={start( j),end( j) : j ∈ N}∪X ∪{invoke(i),begin(i), return(i) : i ∈ N}



EVENT
e ∈ E i, j are fresh

g, t,q
0,〈 , j,start( j)〉
−−−−−−−−−→ g, t,q∪{〈e, i, j,0〉}

ASYNC
P(g, `1) = 〈 , `′1 , invoke(`2 ,w)〉 u2 = 〈`2 , i2 , j,k2〉
i2 is fresh k2 is 0 if w = main or fresh otherwise

g, t ∪{〈`1, i, j,k〉},q
k,〈i, j,invoke(i2)〉−−−−−−−−−−−→ g, t ∪{〈`′1 , i, j,k〉},q

DISPATCH
u = 〈`, i, j,k〉 k is idle

g, t,q∪{u}
k,〈i, j,begin(i)〉
−−−−−−−−−→ g, t ∪{u},q

RETURN
P(g, `) = 〈 , , return〉 j ∈ {event(u) : u ∈ t ∪q}

g, t ∪{〈`, i, j,k〉},q
k,〈i, j,return(i)〉
−−−−−−−−−→ g, t,q

END EVENT
P(g, `) = 〈 , , return〉 j 6∈ {event(u) : u ∈ t ∪q}

g, t ∪{〈`, i, j,k〉},q
k,〈i, j,return(i)〉 k,〈i, j,end( j)〉
−−−−−−−−−−−−−−−−−−−→ g, t,q

LOCAL
P(g, `) = 〈g′, `′,a〉 a ∈ {ε, rd(x),wr(x)}

g, t ∪{〈`, i, j,k〉},q
k,〈i, j,a〉
−−−−−→ g′, t ∪{〈`′, i, j,k〉},q

Fig. 5: The multi-thread transition function→ for a program P with event set E.

By convention, we denote asynchronous procedure invocation, event, and thread iden-
tifiers, respectively, with the symbols i, j,k. The start( j) and end( j) actions represent
the start and end of event j; the invoke(i), begin(i), and return(i) actions represent an
asynchronous procedure invocation (when it is added to the queue of pending invo-
cations), the start of i’s execution (when it is removed from the queue), and return of
i, respectively. The set X of memory accesses is defined as in the program actions of
Section 3.1.

A task u = 〈`, i, j,k〉 is a local state ` ∈ L along with invocation, event and thread
identifiers i, j,k ∈ N, and U denotes the set of tasks. We write invoc(u), event(u),
and thread(u) to refer to i, j, and k, respectively. A configuration c = 〈g, t,q〉 is a
global state g ∈ G along with sets t,q⊆U of running and waiting tasks such that: (1)
invocation identifiers are unique, i.e., invoc(u1) 6= invoc(u2) for all u1 6= u2 ∈ t ∪q, and
(2) threads run one task at a time, i.e., thread(u1) 6= thread(u2) for all u1 6= u2 ∈ t. The
set of configurations is denoted by Cm. We say that a thread k is idle in c when k 6∈
{thread(u) : u ∈ t}, and that an identifier i, j,k is fresh when i, j,k 6∈ {α(u) : u ∈ (t ∪q)}
for α ∈ {invoc,event, thread}, respectively. A configuration is idle when all threads are
idle.

The transition function→ in Figure 5 is determined by a program P and event set E,
and maps a configuration c1 ∈Cm and thread identifier k ∈ N to another configuration
c2 ∈Cm and label λ = 〈i, j,a〉 where i and j are invocation and event identifiers, and
a ∈ A is an action — we write invoc(λ), event(λ), and act(λ) to refer to i, j, and a,
respectively. EVENT transitions mark the beginnings of events. We assume that all
events are initiated on thread 0, which is also referred to as the main thread. Also, for
simplicity, we assume that events can be initiated arbitrarily at any time. Adding causality
constraints between events, e.g., one event can be initiated only when a certain action has
been executed, is possible but tedious. ASYNC transitions create pending asynchronous
invocations, DISPATCH transitions begin the execution of pending invocations, and
RETURN transitions signal their end (the condition in the right ensures that this is not a
return from an event). END EVENT transitions mark the end of an event and by an abuse
of notation, they map c1 and k to a configuration c2 and two labels, return(i) denoting
the end of the asynchronous invocation and end( j) denoting the end of the event. All
other transitions are LOCAL.

An execution of a program P under the multi-thread semantics with event set E to

configuration cn is a configuration sequence c0c1 . . .cn such that cm
km,λm+1−−−−−→ cm+1 for



0 ≤ m < n. We say that cn is reachable in P with E under the multi-thread semantics,
and we call the sequence λ1 . . .λn the trace of c0c1 . . .cn. The reachable states of P with
E, denoted Rm(P,E), is the set of global states in reachable idle configurations. The set
of traces of P with E under the multi-thread semantics is denoted by JP,EKm. We may
omit P when it is understood from the context, and write JEKm instead of JP,EKm.

The call tree of a trace τ is a ranked tree CallTreeτ = 〈V,E,O〉 where V are the
invocation identifiers in τ, and the set of edges E contains an edge from i1 to i2 whenever
i2 is invoked by i1, i.e., τ contains a label 〈i1, , invoke(i2)〉. The function O : E→N
labels each edge (i1, i2) with an integer n whenever i2 is the nth invocation made by i1,
i.e., 〈i1, , invoke(i2)〉 is the nth label of the form 〈i1, , invoke( )〉 occurring in τ (reading
τ from left to right).

3.3 Single-thread Asynchronous Semantics

Conversely to the multi-thread semantics of Section 3.2, our single-thread semantics min-
imizes the set of possible program behaviors by executing all events and asynchronous
invocations on the main thread, the asynchronous procedure invocations being executed
in a fixed order.

We explain the order in which asynchronous invocations are executed using the event
handler searchForNews in Figure 3. This event handler is supposed to add the keyword to
the search history only after the fetching of the news containing that keyword succeeds.
This expectation corresponds to executing the asynchronous procedures according to the
DFS traversal of the call tree. In general, this traversal is relevant because it preserves
causality constraints which are imprinted in the structure of the code, like in the case
of standard synchronous procedure calls. The DFS traversal of the call tree also has
a technical advantage as it corresponds with the call stack semantics of synchronous
procedure calls. Note however that this semantics is not equivalent to interpreting
asynchronous invocations as synchronous, since the caller finishes before the callee
starts. In the formalization of this semantics, the DFS traversal is modeled using a stack
of FIFO queues for storing the pending invocations.

The formalization of the single-thread semantics reuses the notions of task and label
in §3.2. Let U0 be the set of tasks u = 〈`, i, j,0〉 executing on thread 0. We overload
the term configuration which in this context is a tuple c = 〈g,u,q〉 where g ∈ G, u ∈
(U0 ∪{⊥}) is a possibly-empty task placeholder (at most one task is running at any
moment), and q ∈ (Tuples(U0))

∗ is a sequence of tuples of tasks (a tuple, resp., a
sequence, denotes a FIFO queue, resp., a stack). Cs is the set of configurations of the
single-thread semantics. We call c ∈Cs idle if u =⊥.

The transition function⇒ in Fig. 6 is essentially a restriction of→ where all the
procedures run on the main thread, an event begins when there are no pending invocations,
and the rules ASYNC and DISPATCH use a stack of FIFO queues for storing pending
invocations. The effect of pushing/popping a queue to the stack or enqueuing/dequeueing
a task to a queue is represented using the concatenation operation ·, resp.,◦, for sequences,
resp., tuples. Every task created by ASYNC is posted to the main thread and it is enqueued
in the queue on the top of the stack q. DISPATCH dequeues a pending task from the queue
f on the top of q, and pushes a new empty queue to q (for storing the tasks created during



EVENT
e ∈ E i, j are fresh

g,⊥,ε
0,〈 , j,start( j)〉
=========⇒ g,⊥,〈e, i, j,0〉

END EVENT
P(g, `) = 〈 , , return〉

g,〈`, i, j,k〉,ε
k,〈i, j,return(i)〉 k,〈i, j,end( j)〉
===================⇒ g,⊥,ε

ASYNC
P(g, `1) = 〈 , `′1 , invoke(`2 ,w)〉 u2 = 〈`2, i2 , j,0〉 i2 is fresh

g,〈`1 , i, j,k〉,q · f
0,〈i, j,invoke(i2)〉===========⇒ g,〈`′1, i, j,k〉,q · (f ◦ i2)

DISPATCH
u = 〈`, i, j,k〉 f = u◦ f ′ q′ is 〈〉 if f ′ = 〈〉 or f ′ · 〈〉, otherwise

g,⊥,q · f
0,〈i, j,begin(i)〉
=========⇒ g,u,q ·q′

RETURN
P(g, `) = 〈 , , return〉 j ∈ {event(u) : u ∈ q}

g,〈`, i, j,k〉,q
k,〈i, j,return(i)〉
=========⇒ g,⊥,q

LOCAL
P(g, `) = 〈g′, `′,a〉 a ∈ {ε, rd(x),wr(x)}

g,〈`, i, j,k〉,q
k,〈i, j,a〉
=====⇒ g′,〈`′, i, j,k〉,q

Fig. 6: The single-thread transition function⇒ for a program P with events E (ε and 〈〉
are the empty sequence and tuple, resp.,). Also, f and f ′ are tuples, and q is obtained by
popping a queue from q if this queue is empty, or q = q, otherwise.

the newly started invocation) if f doesn’t become empty. Moreover, the rules RETURN
and END EVENT pop the queue on the top of q if it is empty.

An execution of a program P under the single-thread semantics with event set E to

configuration cn is a sequence c0c1 . . .cn s.t. cm
0,λm+1
====⇒ cm+1 for 0≤ m < n. We say that

cn is reachable in P with E under the single-thread semantics, and we call the sequence
λ1 . . .λn the trace of c0c1 . . .cn. The reachable states of P with E, denoted Rs(P,E), is
the set of global states reachable in idle configurations.

The set of traces of P with E under the single-thread semantics is denoted by JP,EKs
(P may be omitted when it is understood from the context).

4 Robustness of Asynchronous Programs

Our robustness criterion is defined as the equality of the single-thread and multi-thread
semantics of a program, and decomposed into two independently-checkable criteria,
event serializability and event determinism.

Given a program P with event set E, each execution under the single-thread semantics
can be simulated by an execution under the multi-thread semantics: the latter corresponds
to a special scheduling policy that consists in executing all tasks created by an event
before starting executing tasks corresponding to another event, and moreover, tasks
are executed atomically, in the order given by the DFS traversal of the call tree. This
implies that the multi-thread semantics is a relaxation of the single-thread semantics,
and therefore, Rs(P,E)⊆ Rm(P,E). The reverse direction is the most interesting one:

Definition 1 (Robustness). A program P with events E is robust against concurrency
(or simply robust) when all reachable states in the multi-thread semantics are also
reachable in the single-thread semantics: Rm(P,E)⊆ Rs(P,E).

Robustness means that for the considered program, the concurrency introduced by
the multi-thread semantics does not modify the set of observable states, i.e., Rm(P,E) =
Rs(P,E). We introduce in the following two correctness criteria that capture precisely
the notion of robustness.



We say an execution with trace λ1 · · ·λn is event-serial when for all n1 < n3, if
act(λn1) = start( j) and act(λn3) = start( j′), then there is n2 such that n1 < n2 < n3 and
act(λn2) = end( j).
Definition 2 (Event-serializability). A program P with events E is event-serializable if
every global state in Rm(P,E) can be reached by an event-serial execution 4.

Given an event e, an e-execution starting from global state g0 is a g0-initialized execu-
tion (according to the multi-thread semantics) with trace λ1 · · ·λn such that (1) act(λ1) =
start( j), (2) act(λn) = end( j), for some j, and (3) for every m ∈ N such that 1 < m < n,
act(λm) is neither a start nor an end action. Intuitively, we consider executions of individ-
ual events, from their starting point until the completion of all the tasks they have created.
Then, let Rm(P,g0,e) be the set of global states in final configurations of e-executions
starting from g0. Notice that e-executions from g0 differ by the scheduling order of the
tasks created by e that are running in parallel on different threads.

Definition 3 (Event-determinism). An event e of a program P is deterministic if for
every global state g0, the set Rm(P,g0,e) is a singleton or empty. A program P with
events E is event-deterministic, if every e ∈ E is deterministic.

Notice that our notion of determinism is defined for events that are running alone,
without interference of other events.

Theorem 1. A program is robust against asynchrony if and only if it is event-serializable
and event-deterministic.

5 Conflict robustness

Following an idea introduced in the context of database transactions [27], we define
a syntactic, conservative notion of conflict robustness that is the conjunction of two
properties: conflict-event serializability and conflict-event determinism.

5.1 Conflict-Event Serializability.

Let ≺⊆ A×A be a conflict relation that relates any two actions a,a′ accessing the same
variable, i.e., a,a′ ∈ {rd(x),wr(x)} for some x, one of them being a write. A trace is
conflict-event serializable iff the “conflict-event graph” which tracks the conflict relation
between concurrent events is acyclic.

Formally, the conflict-event graph of a trace τ is the directed graph EvGτ = 〈V,E〉
whose nodes V are the event identifiers of τ, and which contains an edge from j1 to
j2 when τ contains a pair of labels λ1 and λ2 such that λ1 occurs before λ2, act(λ1)≺
act(λ2), event(λ1) = j1, and event(λ2) = j2.

Definition 4. A trace τ is called conflict-event serializable when EvGτ is acyclic. A
program P with event set E is conflict-event serializable iff every trace in JP,EKm is
conflict serializable.

4 For simplicity, we have ignored the set of events which are executed when comparing global
state reached by aribitrary and event-serial executions, resp. Reaching a global state using the
same set of events is easy to formalize but tedious.



A permutation τ′ of a trace τ is conflict-preserving when every pair λ1, λ2 of labels
in τ appear in the same order in τ′ whenever act(λ1) ≺ act(λ2). Note that a conflict-
preserving permutation τ′ leads to the same global state as the original trace τ. From now
on, whenever we use permutation we mean conflict-preserving permutation. A trace τ is
conflict-event serializable iff it is a conflict-preserving permutation of an event-serial
trace.

Theorem 2. A program P with event set E is event-serializable when it is conflict-event
serializable.

5.2 Conflict Determinism.

We define conflict determinism, which is also based on the acyclicity of a certain class of
“conflict graphs”, called conflict-invocation graphs. These graphs represent the conflicts
between the asynchronous invocations, but also the order in which these invocations
would be executed under the single-thread semantics, i.e., the DFS traversal of the call
tree. If the conflict-invocation graph of every trace τ of an event e is acyclic, then e is
deterministic because every trace τ is a conflict-preserving permutation of the trace t0
corresponding to the single-thread semantics, and thus leads to the same global state as
t0.

Given a trace τ, let <dfs be the total order between the invocation identifiers in τ

defined by the DFS traversal of CallTreeτ. The conflict-invocation graph of a trace τ

is the directed graph InvG(τ) = 〈V,E〉 whose nodes V are the asynchronous invocation
identifiers in τ, and which contains an edge from i1 to i2 when i1 <dfs i2, or τ contains
a pair of labels λ1 and λ2 of i1 and i2, resp., such that act(λ1)≺ act(λ2) and λ1 occurs
before λ2.

Definition 5. A trace τ is DFS-serial iff InvG(τ) is acyclic. An event e is conflict-
deterministic iff every trace in JeKm is DFS-serial.

A trace τ is called invocation-serial iff for every three labels λ1,λ2,λ3 occurring in
τ in this order, if invoc(λ1) = invoc(λ3), then invoc(λ1) = invoc(λ2). For an event e, a
DFS-serial trace τ in JeKm is a permutation of an invocation-serial trace τ0 ∈ JeKm where
invoc(λ1)<dfs invoc(λ2) for every two labels λ1 and λ2 occurring in this order in τ0.

Theorem 3. An event is deterministic when it is conflict-deterministic.

6 Checking Conflict Determinism
We reduce the problem of checking conflict determinism of an event to a reachability
problem in a sequential program. We present the reduction in two steps. First, conflict de-
terminism of an event interpreted under the multi-thread semantics, whose asynchronous
invocations run concurrently, is reduced to a reachability problem in a program running
on the single-thread semantics, where asynchronous invocations are executed serially
(Section 6.1 and 6.2). The latter is then reduced to a reachability problem in a sequential
program (Section 6.3).

This reduction uses the fact that a certain class of conflict determinism violations can
be simulated by a sequential program up to conflict-preserving permutations of actions
(note that any conflict-preserving permutation of a violation is also a violation). This



class of violations called borderline violations are minimal in the sense that removing
the last action leads to a correct trace. Besides the simulation, we show that fixed-size
additional memory is required to witness the conflicts inducing a cycle in the conflict
invocation graph.

Definition 6 (Borderline Conflict Determinism Violation). A trace τ is a borderline
violation to conflict determinism if it is not DFS-serial but every strict prefix of τ is
DFS-serial.

For instance, the trace τ1 given in Figure 7(a) contains a borderline violation. This
trace is generated by an event e that invokes two procedures p and q in this order, each
procedure on a different thread. The only conflict between memory accesses is that
between the wr(x) actions in q and resp., p. The conflict-invocation graph of τ1 contains
a cycle between the invocations of p and q: the edge from the invocation of p to that of
q is implied by the fact that p is invoked before q within the same procedure (we have
“p <dfs q”), and the edge in the other direction exists because q writes to the variable x
before p does. The trace τ1 until after the second wr(x) is a borderline violation since
its maximal strict prefix (without the second wr(x)) is DFS-serial. The last label of a
borderline violation τ, in this example wr(x), is called the pivot of τ. The label of τ which
precedes and conflicts with its pivot and which induces the cycle in its conflict-invocation
graph is called the root of τ. Formally, if i1 is the invocation containing the pivot of τ,
the root of τ is an action conflicting with the pivot and which is included in an invocation
i2 such that i1 <dfs i2. For the trace in Figure 7(a), the root is the action wr(x) in the
invocation of q.

6.1 Simulating Borderline Violations

We define a code-to-code translation from an event e to an event detStr−(e) which
simulates 5 permutations of every DFS-serial or borderline violation trace in JeKm. The
event detStr−(e) uses additional non-deterministically enabled statements to simulate
the particular interleavings present in those traces. The instrumentation required to
witness violations is introduced in Section 6.2.

Overview We give an informal description of the translation using as examples the
traces pictured in Figure 7.

Delaying the pivot We first explain the simulation of the invocation that contains the
pivot, which may interfere with invocations that are supposed to be executed later under
the single-thread semantics. For the borderline violation in Figure 7(a), the invocation of
p that contains the pivot wr(x) destroys the value written to x by q, an invocation which
is executed after p under the single-thread semantics.

The maximal strict prefix (ending before the second wr(x)) is DFS-serial and can
be reordered to a trace where the order between transition labels is consistent with the
invocation order (i.e., e before p and before q). Figure 7(b) pictures such a reordering,
denoted by τ′1. Our goal is to show that the trace τ′1 can be simulated by an execution
under the single-thread semantics of a slightly modified version of e. First note that τ′1

5 We refer to the standard notion of (stuttering) simulation where (sequences of) transitions in
detStr−(e) are mapped to transitions of e.
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Fig. 7: Simulating borderline conflict determinism violations on the single-thread seman-
tics. The event e makes two fresh thread asynchronous invocations to p and q in this
order. Boxes represent sequences of trace labels ordered from top to bottom. Actions of
the same thread are aligned vertically. The arrows represents transition label conflicts.
For readability, we omit the event and task identifiers in the trace labels and keep only
the memory accesses. The grey blocks labeled by delay, resp., skip, denote sequences of
actions that are delayed, resp., skipped.

is not admitted by the single-thread semantics of e because the invocation of p is only
partially included in this prefix. And the single-thread semantics executes every task
until completion. However, it is possible to “delay” the execution of the pivot wr(x) in
p until q finishes, even under the single-thread semantics, by adding a suitable set of
auxiliary variables to e. This mechanism is pictured in Figure 7(c). Every statement in
the procedure p is guarded by (the negation of) an auxiliary boolean flag skip which
can be non-deterministically flipped to true in order to skip over statements. Moreover,
an auxiliary global variable pivotLabel will record the next control flow label ` when
this flag is set to true. Then, extending the invocation of q with goto pivotLabel
allows to resume the invocation of p and execute the pivot. To simulate every borderline
violation, the goto statement is non-deterministically enabled in every invocation.

Incomplete invocations While the violation in Figure 7(a) includes only one incomplete
invocation (the one containing the pivot) this is not always the case. A borderline
violation may contain unboundedly-many other incomplete invocations. For instance,
the violation in Figure 7(d) includes incomplete invocations of e and q (they finish after



the pivot). Should the simulation of this borderline violation execute e and q entirely,
the pivot may never be enabled. The correct simulation, pictured in Figure 7(e), will
make use of the same mechanism based on the boolean flag skip in order to skip over
statements in e and q. In general, an invocation can be skipped in its entirety. This
simulation also shows that the goto statement can be executed after an incomplete
invocation.

Main thread invocations The last issue concerns the main thread which has the particu-
larity of being able to execute more than one invocation (all the other threads execute a
single invocation). It executes invocations serially and only the last one may be incom-
plete. For instance, consider the DFS-serial trace τ3 pictured in Figure 7(f). This is the
trace of an event e that invokes p1, q, p2, and p3, in this order, and except q all the tasks
are assigned to the main thread. Since p1 is invoked before p3, a DFS-serial permutation
τ′3 of τ3 contains the incomplete invocation of p1 before the complete invocation of p3, as
shown in Figure 7(g). None of the semantics we defined allows such traces. The problem
is that both invocations are executed by the main thread which has to complete a task
before executing another one. Our simulation will however admit such traces but it will
verify that they are conflict-preserving permutations of valid traces. This verification
procedure (included in the definition of detStr−(e)) checks that the conflict invocation
graph doesn’t contain a path of memory conflicts, i.e., conflicts induced by read and
write accesses, from the incomplete invocation on the main thread to any future complete
invocation on the same thread. Let us consider again the trace τ3 in Figure 7(f). Since τ3
is DFS-serial, its conflict invocation graph doesn’t contain paths of memory conflicts
from p3 to any other invocation ordered before p3 in the DFS traversal of the call tree.
This includes the incomplete invocation p1 and q. For the permutation τ′3, this implies
that its conflict invocation graph contains no paths of memory conflicts from p1 to p3.
When a trace satisfies this condition, i.e., an incomplete invocation on the main thread
doesn’t conflict with a future complete invocation on the same thread, all the complete
invocations on the main thread can be reordered before the incomplete one (preserving
the order between conflicting trace labels) and this results in a valid trace (under the
multi-thread semantics). The simulation of τ′3 on the single-thread semantics, pictured in
Figure 7(g), enables this verification procedure during the invocation of p1 because it is
executed on the main thread and it skips over statements. It is also possible that other
invocations on the main thread, e.g., p2, are skipped entirely.

Notations We introduce several notations used in the definition of detStr−(e). This
event is obtained by rewriting every statement s of a procedure transitively invoked by e
to a code fragment s1;if(c) then s;s2 where s1 and s2 are statements and c is a boolean
expression. We use before(s), guard(s), and after(s) to refer to s1, c, and s2, respectively.
For every statement s, `(s) denotes the control flow label of s, that can be used for
instance in goto statements. Also, rdSet(s), resp., wrSet(s), is the set of global variables
read, resp., written, by s. We have wrSet(s) = {x} and rdSet(s) = /0 when s is x := y, and
wrSet(s) = /0 and rdSet(s) = {x} when s is y := x. Otherwise, rdSet(s) = wrSet(s) = /0.

We assume that every procedure p is augmented with two local variables rdSetProc
and wrSetProc tracking the global variables read and written by p, respectively (rdSet(s)
and wrSet(s) are added to rdSetProc and wrSetProc, respectively, after every state-
ment s that gets executed).



1 // guard(s) for p ∈ P (e)\P0(e):
2 !skip
3
4 // before(s) for p ∈ P (e)\P0(e):
5 if ( !skip & ∗1 ) then
6 skip := true
7 if ( ∗2 ) then
8 [pivotLabel := `(s) ]ev(pivotSet)
9 if ( skip&pivotSet&∗3) then

10 [goto pivotLabel ]ev(gotoDone)
11
12 // guard(s) for p ∈ P0(e):
13 ! skipProc & ! skip
14
15 // before(s) for p ∈ P (e):
16 if ( ∗4 ) then
17 [skip := true ]ev(skipMainSet)
18 rdSetGlobal := rdSetProc
19 wrSetGlobal := wrSetProc
20 if ( ∗5 ) then
21 [pivotLabel := `(s) ]ev(pivotSet)

22 // at the beginning of each p ∈ P (e):
23 if ( ∗6 ) then skipProc := true
24 validMain := false
25
26 // after(s) for p ∈ P (e), after(s):
27 if ( skipMainSet & ( rdSetGlobal∩wrSetProc 6= /0

28 | wrSetGlobal∩rdSetProc 6= /0

29 | wrSetGlobal∩wrSetProc 6= /0

30 | conflictDetected) ) then
31 rdSetGlobal := rdSetGlobal∪rdSetProc
32 wrSetGlobal := wrSetGlobal∪wrSetProc
33 conflictDetected := true
34
35 // at the end of each p ∈ P (e):
36 if ( skipMainSet & ! skipProc & ! skip ) then
37 assume ! conflictDetected
38 validMain := true
39 if ( pivotSet & ∗7 ) then
40 [goto pivotLabel ]ev(gotoDone)

(a) Simulating Borderline Violations

41 // added to before(s):
42 if (!skip&pivotSet&∗ ) then
43 [rootLabel := `(s) ]ev(rootSet)

44 // added to after(s):
45 if (conflict(pivotLabel,rootLabel) & pivotLabel == `(s)
46 & gotoDone & rootSet ) then error := true;

(b) Witnessing Borderline Violations

Fig. 8: Instrumentation for Checking Conflict-Determinism.

The instrumentation uses the non-deterministic choice denoted by ∗ (formally, ∗ is a
distinguished boolean variable that evaluates non-deterministically to true or false).
To refer to the different non-deterministic choices in the instrumentation, we may index
them with natural numbers.

To reduce clutter in the instrumentation, we use [s ]ev(b) to denote a statement s that
is executed at most once during the execution of the event and the boolean variable b is
set to true when s gets executed.

For an event e, let P (e) be the set of the procedures possibly invoked by e, which
is defined inductively by: (1) e ∈ P (e) and (2) for every p ∈ P (e), if async[w] q(y)
occurs syntactically in the code of e, then q ∈ P (e). Also, let P0(e) be the subset of
P (e) consisting of procedures posted to the main thread, i.e., in the previous inductive
definition, we take w = main. W.l.o.g. we assume that the procedures in P0(e) are
distinct from the procedures q contained in asynchronous invocations “async[any] q(. . .)”
executed on other threads.

All the boolean variables added by the instrumentation are initially false.
Defining the instrumentation

Dealing with fresh thread invocations To simulate incomplete invocations executed by
threads other than the main thread, every procedure in P (e)\P0(e) is augmented with a
boolean flag skip that is non-deterministically set to true. Once skip is set to true, the
rest of statements are skipped and the first skipped statement may be chosen as the pivot
and its label stored in pivotLabel. The pivot may get executed non-deterministically at
a later time.

The program instrumentation to simulate borderline violations is given in Figure 8a.
For every statement s of procedure p ∈ P (e)\P0(e), guard(s) and before(s) are defined



respectively at lines 1 and 4 where skip is a local variable and pivotLabel is a global
variable.

Dealing with main thread invocations For procedures in P0(e), the instrumentation
ensures that at most one invocation of such a procedure is incomplete, and also, that
the invocation graph contains no path of memory conflicts from such an incomplete
invocation to any future complete invocation of a procedure in P0(e). Such paths of
memory conflicts may cross invocations of procedures which are not in P0(e), therefore
the instrumentation of the latter must also be modified.

To simulate an incomplete invocation on the main thread, for every statement s of
a procedure p ∈ P0(e), before(s) is defined as in line 15 in Figure 8a where skip is a
boolean local variable. As for invocations executed on other threads, the first skipped
statement may be chosen as the pivot. To be able to track paths of memory conflicts,
the variables read and written during the incomplete invocation are stored in the global
variables rdSetGlobal and wrSetGlobal, respectively. For invocations of procedures
p ∈ P0(e), skip can be set to true at most once during the execution of the event.

Other tasks posted to the main thread can be skipped entirely or executed completely,
by setting a local flag skipProc. When they are executed completely, a global boolean
flag validMain is used to witness that they are not the destination of a path of memory
conflicts as explained above. At the beginning of each procedure, validMain is reset to
false as shown at line 22. Then, guard(s) of every statement s of a procedure p ∈ P0(e)
checks for skipProc as in line 13.

Once an incomplete invocation on the main thread is present, i.e., skipMainSet is
true, the procedure for checking the absence of paths of memory conflicts is enabled.
For every statement s of every procedure p ∈ P (e), after(s) is set as in line 26 where
conflictDetected is a boolean local variable. This conditional checks whether the
current procedure conflicts with the incomplete invocation or transitively, with all the
other invocations that conflict with the latter. If this is the case, then its set of memory
accesses is continuously added to the global sets rdSetGlobal and wrSetGlobal of
memory accesses.

When a main thread invocation finishes, if it has been executed completely and if it
follows an incomplete main thread invocation, the instrumentation checks for absence of
paths of memory conflicts and may non-deterministically execute the pivot. The code at
line 35 is added at the end of every p ∈ P0(e).
Relationship between e and detStr−(e) The following result expresses the relationship
between the original event e and detStr−(e). It shows that the single-thread semantics of
detStr−(e) simulates permutations of all the DFS-serial traces and borderline violations
of e under the multi-thread semantics (modulo a thread id renaming). Moreover, every
trace of detStr−(e) under the single-thread semantics where the last value of validMain
is true, this set of traces being denoted by JdetStr−(e)KvalidMains , corresponds to a trace
of e under the multi-thread semantics (modulo the instrumentation added in detStr−(e)
and a thread id renaming). For a trace τ of detStr−(e), τ is the trace obtained from τ by
erasing all transition labels corresponding to statements added by the instrumentation.
For readability, we ignore the issue of renaming thread ids.

Theorem 4. For every trace τ1 in JeKm, if τ1 is DFS-serial or a borderline conflict
determinism violation, then there exists a trace τ2 in JdetStr−(e)Ks such that τ′1 = τ2 is a



conflict-preserving permutation of τ1. Moreover, for every trace τ1 in JdetStr−(e)KvalidMains
there exists a trace τ2 in JeKm such that τ2 = τ1.

6.2 Witnessing Borderline Violations

The instrumentation used to verify that a trace is indeed a borderline violation consists
in guessing a candidate for the root and then, when the pivot gets executed, checking
whether it conflicts with the chosen candidate. For instance, if we consider the single-
thread semantics simulation in Figure 7(c), the action wr(x) in q is guessed as the root
and its label is stored in an auxiliary variable rootLabel. This label is used to check
that the root candidate conflicts with the pivot when the latter is executed. The root must
be chosen after the pivot in order to guarantee that this leads to a cycle in the conflict
invocation graph (i.e., the DFS traversal of the call tree orders the invocation containing
the pivot before the one containing the root).

We define a new event detStr(e) that sets an error flag to true whenever the
current trace is not DFS serial and the root and pivot candidates are valid. This event is
obtained from detStr−(e) by adding two global variables error and rootLabel, and:

– Concatenating the code at line 41 in Figure 8b to before(s). This allows to non-
deterministically choose s to be the root of the violation. In order to avoid choos-
ing the pivot after the root, we must also replace ∗2 and ∗5 in detStr−(e) with
! rootSet & ∗2 and ! rootSet & ∗5, respectively.

– Concatenating the code at line 44 in Figure 8b to after(s) where

conflict(pivotLabel,rootLabel) ::= rdSet(`−1(pivotLabel))∩wrSet(`−1(rootLabel)) 6= /0

| rdSet(`−1(rootLabel))∩wrSet(`−1(pivotLabel)) 6= /0

| wrSet(`−1(rootLabel))∩wrSet(`−1(pivotLabel)) 6= /0

This allows to validate that the root does indeed conflict with the pivot, once the
latter gets executed. If the conflict is validated, then error is set to true.

Since the added instrumentation only reads variables of detStr−(e), the new event
detStr(e) still satisfies the claim in Theorem 4.

Theorem 5. An event e (under the multi-thread semantics) satisfies conflict determinism
iff the program detStr(e) under the single-thread semantics does not reach a state where
error= true.

For complexity, detStr(e) can be constructed in linear time and its number of vari-
ables increases linearly in the number of variables and procedures of e.

6.3 Reduction to the procedural semantics

As a continuation to Theorem 5, we define a code-to-code translation from an event e to
a sequential event seq(e) such that seq(e) admits exactly the set of traces of e under the
single-thread semantics 6.

6 Modulo the omission of the labels invoke(i), begin(i), return(i) related to asynchronous invoca-
tions.



Single-thread semantics vs procedural semantics Essentially, seq(e) is obtained from e
by rewriting asynchronous procedure invocations to regular procedure calls. However,
this rewriting can’t be applied directly because of the following issue. Consider a
procedure p invoking another procedure q. If the invocation of q is asynchronous, the
single-thread semantics executes p completely before starting q. Under the procedural
semantics, when q is invoked using a regular procedure call, the execution of p is blocked
when q is invoked and resumed when q is completed. For instance, consider the event:
procedure e1(){y:=1;async[main] p();y:=2;} procedure p(){y:=3;}

Executing e1 on the single-thread semantics, we get the sequence of assignments y :=
1, y := 2, y := 3. Rewriting async[main] p() to a regular procedure call call p(),
we get an event that executes y := 1, y := 3, y := 2 in this order.

This issue doesn’t exist if all the asynchronous invocations occur at the end of the
procedures. For instance consider the following event e2:
procedure e2(){x:=1;async[main] p();} procedure q() {x:=3;}
procedure p(){x:=2;async[main] q();}

Rewriting every async[main] to a procedure call call , we get an event that
executes the assignments on x in exactly the same order as e2 under the single-thread
semantics. This holds because the single-thread semantics executes the asynchronous
invocations according to the DFS traversal of the call tree, which corresponds to the
“stack” semantics of procedure calls.

Therefore, the event seq(e) is obtained in two steps. A first translation is used to
move all asynchronous invocations at the end of the procedures. This results in an event
having exactly the same single-thread semantics as the original one. Then, we replace
every asynchronous invocation with a procedure call.
Defining seq(e) The event e is extended with auxiliary data structures that store the
names and the inputs of the asynchronous invocations. Using these data structures, all
the invocations are delayed till the end of the encompassing procedure. Thus,

– each procedure p is extended with an auxiliary local variable invocList which
stores a list of procedure names and inputs,

– when an asynchronous procedure q is invoked in p with inputs y, the procedure
name q together with its parameters y is appended to the local variable invocList
of p without invoking q,

– before returning from a procedure p, all the procedures stored in invocList are
invoked in the order they are recorded.
For the event e1, this boils down to simply moving the invocation in e1 at the end

(i.e., after y := 1). It is easy to see that the obtained event has the same single-thread
semantics as the original event.

Let seq(e) be the event obtained from e by applying the transformation above and
then, replacing every asynchronous invocation async[w] p(y) with call p(y).

For an event e, we overload the equality relation between traces τ1 ∈ JeKs and
τ2 ∈ Jseq(e)Ks as follows: τ1 = τ2 iff removing the labels invoke(i), begin(i), return(i)
with i ∈ N from τ1, and the transition labels corresponding to statements added by the
instrumentation from τ2, we get the same trace.

A sequential program Seq has the same set of traces under the multi-thread and the
single-thread semantics, so its set of traces is denoted JSeqK.



Theorem 6. For any event e, JeKs = Jseq(e)K.

For an event e, let detSeq(e) = seq(detStr(e)). By Theorem 6, detSeq(e) still sat-
isfies the claim in Theorem 4. The following is a direct consequence of Theorem 5
and 6.

Corollary 1. An event e (under the multi-thread semantics) satisfies conflict determinism
iff the sequential event detSeq(e) does not reach a state where error= true.

Concerning complexity, let e be an event where each procedure invokes at most k
other procedures, for some fixed k. Then, the time complexity of constructing detSeq(e)
and its number of variables are quadratic in the number of variables and procedures of e
and k.

7 Checking Conflict Robustness
Building on the reduction of conflict determinism to reachability in sequential programs,
we show that a similar reduction can be obtained for conflict robustness. This reduction
is based on two facts: (1) incomplete executions of conflict-deterministic events can
be simulated by a sequential program, which has been proved in Section 6, and (2)
conflict serializability for a set of conflict deterministic events can be again reduced to
reachability in sequential programs. To prove the latter we use the concept of borderline
violation, this time for conflict serializability. We show that interleavings corresponding
to such violations can be simulated by a sequential program. This program behaves like a
“most-general client” of the event-based program in the sense that it executes an arbitrary
set of events, in an arbitrary order, but serially without interference from others. We
show that the memory required to track the conflicts which induce a cycle in the conflict
graph is of bounded size, although the conflict graph cycles are of unbounded size in
general.

Definition 7 (Borderline Conflict Serializability Violation). A trace t is a borderline
violation to conflict serializability if it is not conflict serializable but every strict prefix of
τ is conflict serializable.

The trace τ1 in Figure 9(a) contains a borderline violation. Its conflict-event graph
contains a cycle between the three events e1, e2, and e3. The prefix of τ1 ending just
before rd(z) satisfies conflict serializability. The last label of a borderline violation τ is
called the pivot of τ (in this example rd(z)) and the event that contains the pivot is called
the delayed event of τ (in this example e1).
Simulating Borderline Violations For a set of conflict-deterministic events E, we
define a code-to-code translation to a set of sequential events that simulates every
conflict-serializable trace and every borderline serializability violation of E under the
multi-thread semantics.

As for conflict determinism, the maximal strict prefix of a borderline violation can be
reordered to a trace where events are executed serially, but possibly not until completion
(because it satisfies conflict serializability). Such a reordering for the trace τ1 is given in
Fig. 9(b). This reordering can be simulated by a sequential program that executes the
conflict determinism instrumentations detSeq(ei) with i ∈ [1,3] instead of the original
events, as shown in Fig. 9(c). The sequential program chooses non-deterministically
the delayed event, in this case e1, and the pivot, and stores the latter in an auxiliary
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Fig. 9: Simulating borderline conflict serializability violations with a sequential program.
Boxes represent sequences of trace labels ordered from top to bottom. Actions of the
same event are aligned vertically. The arrows represent all the conflicts in the trace. The
grey blocks labeled by delay, resp., skip, denote sequences of actions that are delayed,
resp., skipped.

variable pivotSerLabel when leaving the delayed event. While executing other possibly
incomplete events using the skipping mechanism introduced for conflict determinism, it
may non-deterministically choose to execute goto pivotSerLabel, in this case after e3.

Witnessing Borderline Violations To establish that a trace is indeed a borderline vio-
lation, the instrumentation guesses for each event a statement called exit point which
conflicts with an action of a future event and a statement called entry point which con-
flicts with the currently recorded exit point of a previous event. The conflict is validated
each time an entry point is chosen. This instrumentation is demonstrated in Figure 9(c).
For instance, while simulating e1, wr(x) is guessed as the exit point and its label is
recorded in the auxiliary exit variable. During the simulation of e2, wr(x) is guessed as
the entry point and the conflict is validated. As the simulation of e2 shows, the exit point
may occur before the entry point. In this case, the instrumentation uses an additional
variable tempExit to store the exit point of the current event until the conflict with a
previous event is validated. Once the conflict is confirmed the value of tempExit is
copied to exit. Since the conflicts must form a path in the conflict event graph, there is
no need to recall more than one exit point at a time.

The instrumentation added for checking conflict robustness is similar to the one
used for conflict determinism. Let robSeq(e) denote the sequential event obtained
from detSeq(e) by adding this instrumentation. For an event set E, let robSeq(E) =
{robSeq(e) : e ∈ E}.

Then, let robSeq(E) be the set of events robSeq(e) with e ∈ E.

Theorem 7. A program P with events E satisfies conflict robustness iff robSeq(E)
doesn’t reach a state where error= true.

For complexity, robSeq(E) can be constructed in linear time and the number of
additional variables is linear in the number of procedures in detSeq(E). The complexity
of checking conflict robustness is given by the following theorem.



Theorem 8. Checking conflict robustness of a program P with events E, a fixed number
of variables which are all boolean, and a fixed number of procedures, each procedure
containing a fixed number of asynchronous invocations, is polynomial time decidable.

8 Experimental Evaluation
The goal of our experimental work [5] is to show that (i) event-serializability and event-
determinism violations correspond to actual bugs, and (ii) detecting these violations
using the reduction to reachability in sequential programs is feasible.

We use the Soot framework [7] to implement the instrumentation required for
robustness checking. The reachability of the error state in the instrumented sequential
program is verified using Java Path Finder (JPF) [4].

We applied the conflict-robustness checking algorithm to a set of Android apps from
the FDroid [3] repository.The application code for reflection, dependency to external
libraries (e.g., for http connection, analytics tracker, maps), and the code which only
effects the display (e.g., displaying web pages, animation, custom graphics) is eliminated.
The remaining code factors out the variables that does not effect the concurrent behavior
of the program and keeps the program logic.

We define an event as a procedure which is invoked by the Android app in order to
initialize an activity, in response to an user input (e.g., clicking on a button, writing text,
navigating back) or a system input (e.g., location change, network disconnect). Our tool
receives as input a driver class which initiates the application and invokes a set of events.
The tool checks conflict-robustness for the set of executions defined by the driver class.
In our experiments, we take into consideration causality constraints between events, e.g.,
the event handler of a UI component can not be invoked if it is not visible on the screen.

8.1 Event-determinism experiments
Application Event handler #inst #c #m #r/w #(*) t(m:s) Det?

aarddict
create activity 1307780 177 3016 90 1428 0:01 Y
lookup word 77203 222 3604 60 103 < 1s Y
scan sd 21334 167 2941 15 21 < 1s Y

apphangar select item 58908 222 3560 48 70 < 1s Y
update icon pack 13308927 264 4004 95 28833 00:33 N

bookworm

generate cover 34528 194 2928 30 41 < 1s Y
retrieve cover 36789 213 3440 31 41 < 1s Y
save edits 63017 189 3015 108 158 < 1s Y
search book 53250 185 3012 50 69 < 1s Y

grtgtfs

fav stops 53995 162 2885 142 113 < 1s Y
process bustimes 65945 159 2749 105 168 < 1s Y
search route 55077 167 2968 34 67 < 1s Y
search stop 56742 168 2968 52 75 0:01 Y

irccloud

save prefs 103344 293 3478 18 15 < 1s Y
save settings 102868 293 3478 17 13 < 1s Y
select buffer 136224103 379 4330 761 260605 8:04 Y
send message 162682 356 4140 171 77 < 1s Y

vlille
load stations 971665 404 5808 236 131 0:01 Y
load favorites 9583 141 2400 37 0 < 1s Y
update stations 975974 416 5905 265 131 0:01 Y

Table 1: Experimental data for conflict determin-
ism. The last column lists whether the event is
found conflict deterministic.

Table 1 lists the experimental data re-
lated to conflict-deterministic check-
ing. Related to the size of the event
handlers, we list the number of an-
alyzed instructions (#inst), loaded
classes (#c) and methods (#m). The
analysis time is affected by the num-
ber of resolved non-deterministic data
choices (#(*)), the number of asyn-
chronous invocations, whether the in-
strumented read/write accesses are
made in these invocations, and the ex-
ecution time of the analyzed program.

We have applied our algorithm to
various event handlers and all but one
are found to be deterministic. A deter-

minism violation is found in iconPackUpdated benchmark as explained in § 2. The pivot
of the violation is a write access to the mAdapter variable by a procedure running in the
background, and the root is a read on the same variable made by a procedure running on
the main thread.



8.2 Event-serializability experiments
Table 2 shows experimental data for conflict-serializability checking.
True bugs. Four of the benchmarks had traces with conflict serializability violations
which we concluded were true bugs (and true event-serializability violations) after
examining the code and the consequences of these violations.

Application Seq #inst #c #m #r/w #(*) t(m:s) Ser? Bug?

aarddict 1 1084371993 224 3620 154 1764359 23:12 N Y
2 101776570 169 2957 100 195370 1:42 N Y

bookworm

1 22701600 183 2801 202 77614 0:42 Y -
2 19179949 183 2801 201 61896 0:33 Y -
3 1094300968 189 3016 286 3494089 33:51 Y -
4 3547795 188 3029 131 15961 0:08 N Y

grtgtfs

1 74082801 168 2969 123 279857 2:04 Y -
2 - - - 149 - > 1h - -
3 1130239 139 2692 77 4712 0:02 Y -
4 60736622 170 2984 161 163236 1:21 N N

irccloud

1 33713083 293 3479 141 147000 2:55 Y -
2 1761539 293 3479 140 7851 0:10 Y -
3 171715464 294 3485 147 534338 08:51 Y -
4 - - - - 2110 > 1h - -
5 - - - - 902 > 1h - -
6 54556857 358 4165 849 208076 5:28 N Y
7 11104756 357 4154 833 39599 0:59 N Y

vlille 1 48935337 406 5824 286 143461 3:05 N Y
2 394535226 406 5824 292 1319041 28:52 N N

Table 2: Experimental data for conflict serial-
izability. The last two columns say whether
the example is serializable and whether a vi-
olation is not spurious.

The violation in aarddict app occurs
between the initialization of the activity
(initializes the UI components and starts
the dictionary service to load the dictio-
naries) and an event handler to lookup
a word. The lookup cannot retrieve the
requested word if the service gets initial-
ized after the lookup. The pivot of the se-
rializability violation is a write access to
a variable dictionaryService in an asyn-
chronous procedure invoked on the main
thread that conflicts with the asynchronous
procedure invoked on a background thread
by the second event handler. We detected
an event serializability violation in the
bookworm app between the events dealing

with user inputs to search for a book and navigating back to the previous screen. In
this violation, while the first event handler performs the search in the background and
not yet updated the currSearchTerm variable, the second event handler saves the stale
currSearchTerm value in the cache. The pivot of the violation is a write access to the
current search term in an asynchronous procedure invoked on the background thread.
A violation detected in the irccloud app is presented in § 2, which causes the app to
send wrong messages. The pivot is a read access to the message text in an asynchronous
procedure invoked on a background thread that conflicts with a write access in the double
click event. A similar violation occurs in another user input sequence where the user
types some text after pressing the “send” key. In the vlille benchmark, the serializability
violation in the first line occurs when the user removes an item from the favorites list
while the items are being loaded. The app throws an exception when the removal in the
second event handler interleaves with the asynchronous procedure in the background.
Avoidable false alarms. In the grtftfs benchmark, the conflict-serializability violation
is not a bug or a serializability violation. (Conflict-serializability is stronger than seri-
alizability.) This violation is triggered by making two queries one after another. In an
execution where the second event handler overwrites the query before the first event
handler reads it in the background, both asynchronous procedures end up performing the
same, later search. While technically this is not a serializability violation, we believe
it is worthwhile to report conflict-serializability violations to the programmer, because
fixing them would lead to improved code.
Inter-related events. Some event handlers intervene the execution of another event by
design. For such inter-related events, the event-serializability violation might not be a
bug. The vlille benchmark has such an example (the second row on the table). In this
scenario, the user navigates back while the app is loading a list of items asynchronously



in a background thread. The event handler for back navigation sets the mCancelled flag of
the AsyncTask. If this flag is set, the first event handler does not invoke the AsyncTask’s
asynchronous onPostExecute procedure. Our techniques can be modified to consider
inter-related events and task cancellation, but we leave this for future work.

9 Related Work
The UI framework in Android has been the focus of much work. Most existing tools for
detecting concurrency errors investigate race detection [25, 21, 8]. Race conditions are
low-level symptoms for a much broader class of concurrent programs which are often
not indicative of actual programming errors. In this paper, we attempt to characterize
and detect higher-level concurrency errors in Android programs. Robustness violations
are incomparable with data-race freedom violations. Data races do not generally imply
cyclic data dependencies among events, and cyclic data dependencies do not imply data
races: e.g., surrounding each individual memory access within a cycle by a common
lock eliminates possible races, but preserves cycles. Furthermore, checking conflict
robustness is fundamentally more efficient than checking for data race freedom. Conflict
event serializability requires tracking events, while data race freedom requires tracking
individual program actions like reads and writes, which greatly outnumber events.
Moreover, conflict robustness reduces to reachability in sequential programs, yielding
significantly lower asymptotic complexity.

Recent work [29] proposes a static analysis to detect “anomalies” in event driven
programs, i.e. accesses to the same memory location by more than one event handlers.
Since many events access shared memory locations, this approach produces many
false alarms, but programs without anomalies are conflict-event serializable. The works
in [23, 24] refactor applications by moving long running jobs to asynchronous tasks
and transform improperly-used asynchrony constructs into correct constructs. Ensuring
transformed asynchronous tasks do not race with their callers lends support to our work
as it guarantees event-determinism.

The works in [13, 12, 14, 26] target exploring interesting subsets of executions and
schedules for asynchronous programs, that offer a large coverage of the execution space.
This is orthogonal to the focus of our paper which is to investigate correctness criteria.

Conflict serializability [27] has been introduced in the context of databases and since
then used as a tractable approximation of atomicity. We use serializability to formalize the
fact that event handlers behave as if they were executed in isolation, without interference
from others. While in other uses of serializability the transactions are sequential, in our
case a single invocation of an event handler consists of several asynchronous procedures
that can interleave arbitrarily in between them. Farzan and Madhusudan [15, 16] and
Bouajjani et al. [10] investigate decision procedures for conflict serializability of finite-
state concurrent models while checking serializability in general has been approached
using both static, e.g., [18, 20, 32, 34], and dynamic tools, e.g., [17, 33, 19, 30].

Determinism has been largely advocated in the context of concurrent programs,
e.g., [9, 31], since it simplifies the debugging and verification process. Prior work has
introduced static verification techniques, e.g., [22] but also dynamic analyses based
on testing, e.g., [11, 28]. Differently from prior work, we provide a methodology for
checking determinism of event-driven asynchronous programs that ultimately reduces to
a reachability problem in a sequential program.
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