
Verifying Concurrent Programs
against Sequential Specifications

Ahmed Bouajjani, Michael Emmi, Constantin Enea, and Jad Hamza

LIAFA, Université Paris Diderot
{abou,mje,cenea,jhamza}@liafa.univ-paris-diderot.fr

Abstract. We investigate the algorithmic feasibility of checking whether
concurrent implementations of shared-memory objects adhere to their
given sequential specifications; sequential consistency, linearizability, and
conflict serializability are the canonical variations of this problem. While
verifying sequential consistency of systems with unbounded concurrency is
known to be undecidable, we demonstrate that conflict serializability, and
linearizability with fixed linearization points are EXPSPACE-complete,
while the general linearizability problem is undecidable.
Our (un)decidability proofs, besides bestowing novel theoretical results,
also reveal novel program explorations strategies. For instance, we show
that every violation to conflict serializability is captured by a conflict cycle
whose length is bounded independently from the number of concurrent
operations. This suggests an incomplete detection algorithm which only
remembers a small subset of conflict edges, which can be made complete
by increasing the number of remembered edges to the cycle-length bound.
Similarly, our undecidability proof for linearizability suggests an incom-
plete detection algorithm which limits the number of “barriers” bisecting
non-overlapping operations. Our decidability proof of bounded-barrier
linearizability is interesting on its own, as it reduces the consideration
of all possible operation serializations to numerical constraint solving.
The literature seems to confirm that most violations are detectable by
considering very few conflict edges or barriers.

1 Introduction

A key class of correctness criteria for concurrent systems is adherence to better
established sequential specifications. Such criteria demand that each concurrent
execution of operations corresponds, at the level of abstraction described by
the operations’ specification, to some serial sequence of the same operations
permitted by the specification. For instance, given a conventional specifica-
tion of a mathematical set, a concurrent execution in which the operations
add(a), remove(b), is empty(true), remove(a), add(b) overlap could be permitted,
though one with only the operations add(a) and remove(b) could not.

Variations on this theme of criteria are the accepted correctness conditions for
various types of concurrent systems. In the context of processor memory architec-
tures, sequential consistency (SC) [24] allows only executions of memory access

0The proofs to many of our technical results appear in an extended report [7].

2 Ahmed Bouajjani, Michael Emmi, Constantin Enea, and Jad Hamza

operations for which the same operations taken serially adhere to the specification
of individual memory registers—i.e., where each load reads the last-written value.
Additionally, any two operations of the serialization carried out by the same
process must occur in the same order as in the original concurrent execution.
In the context of concurrent data structure implementations, linearizability [21]
demands additionally that two operations which do not overlap in the original
concurrent execution occur in the same order in any valid serialization.

The same kinds of criteria are also used in settings where operation specifica-
tions are less abstract. For transactional systems (e.g., databases, and runtime
systems which provide atomic sections in concurrent programs), (strict) serializ-
ability [28] allows only executions for which the same transactions taken serially
adhere to the specification of an entire (random-access) memory observable by
the transactions; additionally, transactions executed by the same process (or
which did not overlap, in the strict case) are obliged to occur in the same order in
any valid serialization. Practical considerations, such as the complexity of deter-
mining whether a given trace is serializable, have generated even more restrictive
notions of serializability. Conflict serializability (Papadimitriou [28] calls this
property “DSR”) demands additionally—viewing a serialization as a reordering
of actions which untangles the operations of a concurrent execution—that no
two conflicting actions are reordered in the serialization. The typical definition of
“conflict” relates accesses to the same memory location or region, with at least
one being a store.

In this work we investigate the fundamental questions about the algorithmic
feasibility of verifying concurrent programs with respect to sequential specifica-
tions. While our results consider programs with unbounded concurrency arising
from, e.g., dynamic thread-creation, they, as do most other (un)decidability
results concerning concurrent program analysis, apply to programs where the
domain of data values is either finite, or reduced by a finitary abstraction.

While the problem of determining whether a given concurrent system is
sequentially consistent with respect to a given sequential specification is known
to be undecidable, even when the number of concurrent processes is bounded [1],
the decidability of the analogous questions for (conflict) serializability and lin-
earizability, for unbounded systems of concurrent processes, remains open. (Alur
et al. [1] have proved both of these problems decidable1, resp., in PSPACE and
EXPSPACE, when the number of concurrent processes is bounded.) In this work
we establish these decidability and complexity results for unbounded systems,
and as byproduct, uncover program exploration strategies which prioritize the
discovery of naturally-occurring property violations.

Our first result, of Section 3, is that conflict serializability is decidable, and
complete for exponential space. Since existing techniques rely on cycle detection in
an exhaustive exploration of possible conflict relations (graphs) among concurrent
operations [17], allowing for an unbounded number of concurrent operations
renders these techniques inapplicable to verification, since the unbounded set of
possible conflict graphs cannot generally be enumerated in finite time. Contrarily,

1The correct decidability proof for serializability is due to Farzan and Madhusudan [17].

Verifying Concurrent Programs against Sequential Specifications 3

here we demonstrate that every cyclic conflict graph contains a cycle which is
bounded independently of the number of concurrent operations; this cycle length
is instead bounded as a linear function in the number of memory locations. This
suggests that an incomplete cycle detection algorithm which only remembers a
small subset of conflict edges can be made complete by increasing the number of
remembered edges to the given cycle-length bound. Even so, we expect that most
violations to conflict serializability can be efficiently detected by remembering very
few conflict edges: those we have seen reported in the literature are expressed with
length 2 cycles [13, 19], and for systems satisfying certain supposedly-common
symmetry conditions, any violation must occur with only two threads [19].

Our second result, of Section 4, is that the static linearizability problem, in
which the so-called “linearization points” of operations which modify the shared-
object state are fixed to particular implementation actions, is also decidable, and
complete for exponential space. Informally, a linearization point of an operation
in an execution is a point in time where the operation is conceptually effectuated;
given the linearization points of each operation, the only valid serialization is
the one which takes operations in order of their linearization points. Although
static linearizability is a stronger criterion than linearizability, it is based on a
fairly-well established proof technique [21] which is sufficiently weak to prove
linearizability of many common concurrent data-structure algorithms [31].

Turning to the general problem, in Section 5, we show that verifying lineariz-
ability for unbounded concurrent systems is undecidable. Our proof is a reduction
from a reachability problem on counter machines, and relies on imposing an
unbounded number of “barriers” which bisect non-overlapping operations in order
to encode an unbounded number of zero-tests of the machines’ counters. Infor-
mally, a barrier is a temporal separation between two non-overlapping operations,
across which valid serializations are forbidden from commuting those operations.

Besides disarming our proof of undecidability, bounding the amount of bar-
riers reveals an incomplete algorithm for detecting linearizability violations, by
exploring only those expressed with few barriers. Similarly to the small-cycle
case in conflict serializability, we expect that most violations to linearizability
are detectable with very few barriers; indeed the naturally-occurring bugs we are
aware of, including the infamous “ABA” bug [26], induce violations with zero or
one barrier. Our decidability proof of bounded-barrier linearizability in Section 6
is interesting on its own, since it effectively reduces the problem of considering
all possible serializations of an unbounded number of operations to a numerical
constraint solving problem. Using a simple prototype implementation leveraging
SMT-based program exploration, we use this reduction to quickly discover bugs
known in or injected into textbook concurrent algorithms.

To summarize, the contributions of this work are the first known (un)decidability
results for (§3) conflict serializability, (§4) static linearizability, (§5) lineariz-
ability, and (§6) bounded-barrier linearizability, for systems with unbounded
concurrency. Furthermore, besides substantiating these theoretical results our
proofs reveal novel prioritized exploration strategies, based on cycle- and barrier-
bounding. Since most known linearizable systems are also static-linearizable,

4 Ahmed Bouajjani, Michael Emmi, Constantin Enea, and Jad Hamza

combining static-linearizability with bounded-barrier exploration ought to pro-
vide a promising approach for proving either correctness or violation for many
practically-occurring systems.

2 Preliminaries

In this work we consider a program model in which an unbounded number of
operations concurrently access finite-domain shared data. Operations correspond
to invocations of a finite library of methods. Here, methods correspond to the
implementations of application programming interface (API) entries of concurrent
or distributed data structures, and less conventionally, to the atomic code sections
of concurrent programs, or to the SQL implementations of database transactions.
A library is then simply the collection of API implementations, or transactional
code. Usually concurrent data structure libraries and transactional runtime
systems are expected to ensure that executed operations are logically equivalent
to some understood serial behavior, regardless of how clients concurrently invoke
their methods or transactions; the implication is that such systems should function
correctly for a most-general client which concurrently invokes an unbounded
number of methods with arbitrary timing. In what follows we formalize these
notions as a basis for formulating our results.

2.1 Unbounded Concurrent Systems

A method is a finite automaton M = 〈Q,Σ, I, F, ↪→〉 with labeled transitions
〈m1, v1〉 a

↪−→ 〈m2, v2〉 between method-local states m1,m2 ∈ Q paired with
finite-domain shared-state valuations v1, v2 ∈ V . The initial and final states
I, F ⊆ Q represent the method-local states passed to, and returned from, M . A
library L is a finite set of methods, and we refer to the components of a particular
method (resp., library) by subscripting, e.g., the states and symbols QM and ΣM
(resp., QL and ΣL). Though here we suppose an abstract notion of shared-state
valuations, in later sections we interpret them as valuations to a finite set of
finite-domain variables.

A client of a library L is a finite automaton C = 〈Q,Σ, `0, ↪→〉 with initial
state `0 ∈ Q and transitions ↪→ ⊆ Q × Σ × Q labeled by the alphabet Σ =
{M(m0,mf) : M ∈ L,m0,mf ∈ QM} of library method calls; we refer to a client
C’s components by subscripting, e.g., the states and symbols QC and ΣC . The
most general client C? = 〈Q,Σ, `0, ↪→〉 of a library L nondeterministically calls
L’s methods in any order: Q = {`0} and ↪→ = Q×Σ ×Q.

We consider unbounded concurrent systems L[C] in which the methods of a
library L are invoked by an arbitrary number of concurrent threads executing a
copy of a given client C; note that any shared memory program with an unbounded
number of finite-state threads can be modeled using a suitably-defined client
C. A configuration c = 〈v, u〉 of L[C] is a shared memory valuation v ∈ V ,
along with a map u mapping each thread t ∈ N to a tuple u(t) = 〈`,m0,m〉,
composed of a client-local state ` ∈ QC , along with initial and current method

Verifying Concurrent Programs against Sequential Specifications 5

Internal
u1(t) = 〈`,m0,m1〉
〈m1, v1〉

a
↪−−→ 〈m2, v2〉

u2 = u1 (t 7→ 〈`,m0,m2〉)

〈v1, u1〉
〈a,t〉−−−→
L[C]

〈v2, u2〉

Call
u1(t) = 〈`1,⊥,⊥〉

m0 ∈ IM `1
M(m0,mf)

↪−−−→C `2
u2 = u1 (t 7→ 〈`1,m0,m0〉)

〈v, u1〉
call(M,m0,t)−−−−−−−−→

L[C]
〈v, u2〉

Return
u1(t) = 〈`1,m0,mf 〉

mf ∈ FM `1
M(m0,mf)

↪−−−→C `2
u2 = u1 (t 7→ 〈`2,⊥,⊥〉)

〈v, u1〉
ret(M,mf ,t)−−−−−−−→

L[C]
〈v, u2〉

Fig. 1. The transition relation →L[C] for the library-client composition L[C].

states m0,m ∈ QL ∪ {⊥}; m0 = m = ⊥ when thread t is not executing a library
method. In this way, configurations describe the states of arbitrarily-many threads
executing library methods. The transition relation →L[C] of L[C] is listed in

Figure 1 as a set of operational steps on configurations. A configuration 〈v, u〉
of L[C] is called v0-initial for a given v0 ∈ V when v = v0 and u(t) = 〈`0,⊥,⊥〉
for all t ∈ N, where `0 is the initial state of client C. An execution of L[C] is a
sequence ρ = c0c1 . . . of configurations such that ci →L[C] ci+1 for all 0 ≤ i < |ρ|,
and ρ is called v0-initial when c0 is.

We associate to each concurrent system L[C] a canonical vector addition
systems with states (VASS),2 denoted AL[C], whose states are the set of shared-
memory valuations, and whose vector components count the number of threads in
each thread-local state; a transition of AL[C] from 〈v1,n1〉 to 〈v2,n2〉 updates the
shared-memory valuation from v1 to v2 and the local state of some thread t from
u1(t) to u2(t) by decrementing the u1(t)-component of n1, and incrementing the
u2(t)-component, to derive n2. Several of our proof arguments in the following
sections invoke the canonical VASS simulation of a concurrent system, which we
define fully in our extended report [7].

A call action of thread t is a symbol call(M,m, t), a return action is a symbol
ret(M,m, t), and an internal action is a symbol 〈a, t〉. We write σ to denote a
sequence of actions, and τ to denote a trace—i.e., a sequence of actions labeling
some execution. An M [m0,mf]-operation θ (or more simply, M -operation, or just
operation) of a sequence σ is a maximal subsequence of actions of some thread t
beginning with a call action call(M,m0, t), followed by a possibly-empty sequence
of internal actions, and possibly ending with a return action ret(M,mf , t); mf = ∗
when θ does not end in a return action. When θ ends with a return action, we
say θ is completed, and otherwise θ is pending ; a sequence σ is complete when all
of its operations are completed. Two operations θ1 and θ2 of σ overlap when the
minimal subsequence of σ containing both θ1 and θ2 is neither θ1 · θ2 nor θ2 · θ1.
Two non-overlapping operations θ1 followed by θ2 in σ are called serial when θ1
is completed; note that all operations of the same thread are serial. A sequence
σ is (quasi) serial when no two (completed) operations of σ overlap.

A (strict) permutation of an action sequence σ containing operations Θ is an
action sequence π with operations Θ such that every two same-thread operations

2See our extended report [7] for a standard definition of VASS.

6 Ahmed Bouajjani, Michael Emmi, Constantin Enea, and Jad Hamza

(resp., every two serial operations) of σ occur in the same serial order in π. Note
that π itself is not necessarily a trace of a system from which σ may be a trace.

2.2 Conflict Serializability

The notion of “conflict serializability” is a restriction to the more liberal “seri-
alizability” [28]: besides requiring that each concurrent execution of operations
corresponds to some serial sequence, a “conflict relation,” relating the individual
actions of each operation, must be preserved in deriving that serial sequence from
a permutation of actions in the original concurrent execution. Both notions are
widely accepted correctness criteria for transactional systems.

We fix a symmetric3 relation ≺ on the internal library actions ΣL called
the conflict relation. Although here we assume an abstract notion of conflict,
in practice, two actions conflict when both access the same memory location,
and at least one affects the value stored in that location; e.g., two writes to the
same shared variable would conflict. A permutation π of a trace τ is conflict-
preserving when every pair 〈a1, t1〉 and 〈a2, t2〉 of actions of τ appear in the
same order in π whenever a1 ≺ a2. Intuitively, a conflict-preserving permutation
w.r.t. the previously-mentioned notion of conflict is equally executable on a
sequentially-consistent machine.

Definition 1 (Conflict Serializability [28]). A trace τ is conflict serializable
when there exists a conflict-preserving serial permutation of τ .

This definition extends to executions, to systems L[C] whose executions are all
conflict serializable, and to libraries L when C is the most general client C?.

2.3 Linearizability

Contrary to (conflict) serializability, linearizability [21] is more often used in
contexts, such as concurrent data structure libraries, in which an abstract specifi-
cation of operations’ serial behavior is given explicitly. For instance, linearizability
with respect to a specification of a concurrent stack implementation would require
the abstract push(·) and pop(·) operations carried out in a concurrent trace τ
correspond to some serial sequence σ of push(·)s and pop(·)s, in which each pop(a)
can be matched to a previous push(a); Figure 2 illustrates an automaton-based
specification of a two-element unary stack. Note that linearizability does not
require that a corresponding reordering of the trace τ can actually be executed by
this stack implementation, nor that the implementation could have even executed
these operations serially.

A specification S of a library L is a language over the specification alphabet

ΣS
def
= {M [m0,mf] : M ∈ L,m0,mf ∈ QM}.

In this work we assume specifications are regular languages; in practice, spec-
ifications are prefix closed. We refer to the alphabet containing both symbols

3All definitions of conflict that we are aware of assume symmetric relations.

Verifying Concurrent Programs against Sequential Specifications 7

qε qa qa,a
push[a, true]

pop[·, true] pop[·, true]

push[a, true]

pop[·, false]

Fig. 2. The sequential specification of two-
element stacks containing the (abstract)
value a, given as the language of a finite
automaton, whose operation alphabet indi-
cates both the argument and return values.

qε qa qa,a

push[a, ∗],
push[a, true]

pop[·, ∗],
pop[·, true]

pop[·, ∗],
pop[·, true]

push[a, ∗],
push[a, true]

pop[·, false]

pop[·, ∗],
push[a, ∗]

pop[·, ∗],
push[a, ∗]

pop[·, ∗],
push[a, ∗]

Fig. 3. The pending closure of the stack
specification from Figure 2.

M [m0,mf] and M [m0, ∗] for each M [m0,mf] occurring in ΣS as the pending-
closed alphabet of S, denoted ΣS .

Informally, a library L is linearizable w.r.t. a specification S when the op-
erations of any concurrent trace can be serialized to a sequence of operations
belonging to S, which must preserve the order between non-overlapping opera-
tions. However, the presence of pending operations introduces a subtlety: a trace
may be considered linearizable by supposing that certain pending operations have
already been effectuated—e.g., a trace of a concurrent stack implementation in
which push(a) is pending and pop(a) has successfully completed is linearizable—
while simultaneously supposing that other pending operations are ignored—e.g., a
trace in which push(a) is pending and pop(a) returned false is also linearizable.
To account for the possible effects of pending operations, we define a completion
of a (quasi) serial sequence σ = θ1θ2 . . . θi of operations to be any sequence
f(σ) = f(1)f(2) . . . f(i) for some function f preserving completed operations
(i.e., f(j) = θj when θj is completed), and either deleting (i.e., f(j) = ε) or
completing (i.e., f(j) = θj · ret(M,mf , t), for some mf ∈ QM) each M [m0, ∗]
operation of some thread t. Note that a completion of a (quasi) serial sequence σ
is a complete serial sequence. Finally, the S-image of a serial sequence σ, denoted
σ | S, maps each M [m0,mf]-operation θ to the symbol M [m0,mf] ∈ ΣS .

Definition 2 (Linearizability [21]). A trace τ is S-linearizable when there
exists a completion4 π of a strict, quasi-serial permutation of τ such that (π|S)∈S.

This notion extends naturally to executions of a system L[C], to the system L[C]
itself, and to L when C is the most general client C?.

Example 1. The trace pictured in Figure 4 can be strictly permuted into a quasi-
serial sequence whose completion (shown) excludes the pending push operation,
and whose S-image

push[a, true] pop[·, true] pop[·, false] push[a, true]

belongs to the stack specification from Figure 2.

4Some works give an alternative yet equivalent definition using the completion of a strict,
quasi-serial permutation of the S-image, rather than the S-image of a completion.

8 Ahmed Bouajjani, Michael Emmi, Constantin Enea, and Jad Hamza

call(push, a, t1)

ret(push, true, t1)

call(pop, ·, t2)

ret(pop, true, t2)

call(push, a, t3)

ret(push, true, t3)

call(push, a, t4)

call(pop, ·, t1)

ret(pop, false, t1) call(push, a, t1) · ret(push, true, t1)

· call(pop, ·, t2) · ret(pop, true, t2)

· call(pop, ·, t1) · ret(pop, false, t1)

· call(push, a, t3) · ret(push, true, t3)

Fig. 4. The visualization of a trace τ with four threads executing four completed and
one pending operation, along with a completion of a strict, quasi-serial permutation of
τ (ignoring internal actions).

2.4 Linearizability with Pending-Closed Specifications

In fact, even though the subtlety arising from pending operations is a necessary
complication to the definition of linearizability, for the specifications we consider
in this work given by regular languages, this complication can be “compiled away”
into the specification itself. This leads to an equivalent notion of linearizability
without the need to find a completion of a given quasi-serial operation sequence.

The pending closure of a specification S, denoted S is the set of S-images of
serial sequences which have completions whose S-images are in S:

S
def
= {(σ | S) ∈ Σ∗S : ∃σ′ ∈ Σ∗S . (σ′ | S) ∈ S and σ′ is a completion of σ}.

The language of the automaton of Figure 3 is the pending closure of the spec-
ification from Figure 2; looping transitions labeled from ΣS \ ΣS correspond
to deleting a pending operation in the completion, while non-loop transitions
labeled from ΣS \ΣS correspond to completing a pending operation.

The following straightforward results allow us to suppose that the complication
of closing serializations of each trace is compiled away, into the specification.

Lemma 1. The pending closure S of a regular specification S is regular.

Lemma 2. A trace τ is S-linearizable if and only if there exists a strict, quasi-
serial permutation π of τ such that (π | S) ∈ S.

3 Deciding Conflict Serializability

Existing procedures for deciding conflict serializability (e.g., of individual traces,
or finite-state systems) essentially monitor executions using a “conflict graph”
which tracks the conflict relation between concurrent operations; an execution
remains conflict serializable as long as the conflict graph remains acyclic, while
a cyclic graph indicates a violation to conflict serializability. While the conflict
graph can be maintained in polynomial-space when the number of concurrent
threads is bounded [17], this graph becomes unbounded as soon as the number
of threads does. In this section we demonstrate that there exists an alternative
structure witnessing non-conflict-serializability, whose size remains bounded

Verifying Concurrent Programs against Sequential Specifications 9

θ1 θ2
θ3

θ4

θ5

a1 b1a2 b2
a3 b3

a4
b4

(a)

θ1

θ2

θ3θ4

θ5

(b)

θ1
θ2

θ3
θ4

θ5

a1
b1a2

b2

a3
b3

a4
b4

(c)

θ1

θ2

θ3θ4

θ5

(d)

Fig. 5. Conflict-violation witness embeddings and their corresponding conflict graph cy-
cles over five operations θ1, θ2, θ3, θ4, θ5. (a) The witness 〈a1, b1〉 〈a2, b2〉 〈a3, b3〉 〈a4, b4〉 is
not minimal when b2 = b3, since 〈a1, b1〉 〈a2, b3〉 〈a4, b4〉 is also a witness. (c) The witness
〈a1, b1〉 〈a2, b2〉 〈a3, b3〉 〈a4, b4〉 is not minimal when b2 = b3, since 〈b3, a2〉 〈a2, b2〉 〈a3, b3〉
is also a witness. The conflict graphs of (a) and (c) are shown in (b) and (d).

independently of the number of concurrent threads, and which we use to prove
EXPSPACE-completeness of conflict-serializability.

Definition 3 (Conflict-Graph [28]). The conflict graph of a trace τ is the
directed graph Gτ = 〈Θ,E〉 whose nodes Θ are the operations of τ , and which
contains an edge from θ1 to θ2 when either:

– θ1 and θ2 are serial and θ1 occurs before θ2 in τ , or
– there exist a conflicting pair of actions a1 and a2 of θ1 and θ2, resp., such

that a1 ≺ a2 and a1 occurs before a2 in τ .

Although a trace is serializable if and only if its conflict graph is acyclic [17], the
size of the conflict graph grows with the number of concurrent operations.

An embedding of a sequence of conflicting action pairs 〈a1, b1〉 . . . 〈ak, bk〉, into
a trace τ , is a function f from {ai, bi : 1 ≤ i ≤ k} to the actions of τ , such that:

– each f(ai) is executed by a different thread,
– f(bi) and f(aη(i)) are actions of the same thread,
– f(ai) precedes f(bi) in τ , and
– f(bi) precedes f(aη(i)) in τ when f(bi) and f(aη(i)) are of different operations,

for each 1 ≤ i ≤ k, where η(i) = (i mod k) + 1. A conflict-violation witness for a
trace τ is a sequence w for which there exists an embedding into τ .

Example 2. Figure 5a pictures the embeddings of two conflict-violation witnesses
containing 4 action pairs, corresponding to a cycle θ1θ2θ3θ4θ5θ1 in the conflict
graph of Figure 5c associated to the same trace.

The key to decidability of conflict-serializability is that any conflict cycle
constructed from two occurrences of the same conflicting action a ∈ ΣL can be
short-circuited into a smaller conflict cycle.

Lemma 3. A trace τ of a library L (w.r.t. some client C) is not conflict serial-
izable iff there exists a conflict-violation witness for τ of size at most |ΣL|+ 1.

10 Ahmed Bouajjani, Michael Emmi, Constantin Enea, and Jad Hamza

Proof. As a direct consequence of our definition, τ is not conflict serializable iff
there exists a witness w embedded into τ by some f . (Each w embedded in τ
defines a conflict graph cycle, and vice-versa). We show that if some bi besides b1
repeats in w, then there exists an even smaller witness w′.

For any i, j ∈ N such that 1 < i < j ≤ |w| and bi = bj , we consider the two
possibilities:

– Suppose f(bj) occurs after f(ai) in τ . Then there exists a smaller conflict-
violation witness for τ :

w′ = 〈a1, b1〉 . . . 〈ai, bi〉 〈aj+1, bj+1〉 . . . 〈ak, bk〉 .

The illustration of Figure 5a exemplifies this case when b2 = b3.
– Suppose f(bj) occurs before f(ai) in τ . Then, leveraging the fact that ≺ is

symmetric, there exists a smaller conflict-violation witness for τ :

w′ = 〈bj , ai〉 〈ai, bi〉 . . . 〈aj , bj〉 .

The illustration of Figure 5b exemplifies this case when b2 = b3.

In either case w is not minimal unless |w| ≤ |ΣL|+ 1. ut
As we have considered an abstraction notion of actions which constitute

a finite set ΣL, Lemma 3 would hold equally well for libraries accessing an
unbounded shared memory, given an equivalence relation whose quotient set is
finite—e.g., by partitioning memory into a finite number of regions—which is
obtained in practice by abstraction.

As soon as conflict cycles are bounded, the set of all possible cycles is finitely
enumerable. We use this fact to prove that conflict serializability is decidable in
exponential space by reduction to state-reachability in VASS, using an extension
to the canonical VASS AL[C] of a given system L[C] (see Section 2.1). We
augment the states of AL[C] to store a (bounded) conflict violation witness
w, which is chosen nondeterministically, and incrementally validated as AL[C]

simulates the behavior of L[C]. This algorithm is asymptotically optimal, since
state-reachability in VASS is also polynomial-time reducible to checking conflict
serializability. Our full proof is listed in an extended report [7].

Theorem 1. The conflict serializability problem for unbounded concurrent sys-
tems is EXPSPACE-complete.

Although exploring all possible conflict cycles up to the bound |ΣL| + 1
yields a complete procedure for deciding conflict serializability, we believe that
in practice incomplete methods—e.g., based on constraint solving—using much
smaller bounds could be more productive. The existing literature on verification
of conflict serializability seems to confirm that violations are witnessed with
very small cycles; for instance, two different violations on variations to the
Transactional Locking II transactional memory algorithm reported by Guerraoui
et al. [19] and Dragojević et al. [13] are witnessed by cycles formed by just two
pairs of conflicting actions between two operations. Furthermore, Guerraoui et al.
[19] show that any violation to conflict serializability in practically-occurring
transactional memory systems must occur in an execution with only two threads.

Verifying Concurrent Programs against Sequential Specifications 11

4 Deciding Static Linearizability

Due to the intricacy of checking whether a system is linearizable according to
the general notion, of Definition 2, Herlihy and Wing [21] have introduced a
stricter criterion, where the so-called “linearization points”—i.e., the points at
which operations’ effects become instantaneously visible—are specified manually.
Though it is sometimes possible to map linearization points to atomic actions in
method implementations, generally speaking, the placement of an operation’s
linearization point can be quite complicated: it may depend on other concurrently
executing operations, and it may even reside outside of the operation’s execution.
Vafeiadis [31] observed that in practice such complicated linearization points
arise mainly for “read-only” operations, which do not modify a library’s abstract
state; a typical example being the contains-operation of an optimistic set [27],
whose linearization point may reside in a concurrently executing add- or remove-
operation when the contains-operation returns, resp., true or false.

In this section we demonstrate that the static linearizability problem, in which
the linearization points of non-read-only operations can be statically fixed to
implementation actions, is decidable, and complete for exponential space.

Given a method M of a library L and m0,mf ∈ QM , an M [m0,mf]-operation
θ is read-only for a specification S if and only if for all w1, w2, w3 ∈ Σ∗S ,

1. If w1 ·M [m0,mf] · w2 ∈ S then w1 ·M [m0,mf]k · w2 ∈ S for all k ≥ 0, and
2. If w1 ·M [m0,mf] · w2 ∈ S and w1 · w3 ∈ S then w1 ·M [m0,mf] · w3 ∈ S.

The first condition is a sort of idempotence of M [m0,mf] w.r.t. S, while the
second says that M [m0,mf] does not disable other operations.

Remark 1. Whether an operation is read-only can be derived from the specifica-
tion. Roughly, an operation M [m0,mf] is read-only for a specification given by
a finite automaton A if every transition of A labeled by M [m0,mf] is a self-loop.
For instance, the specification in Fig. 2 dictates that pop[·, false] is read-only.

The control graph GM = 〈QM , E〉 is the quotient of a method M ’s transition
system by shared-state valuations V : 〈m1, a,m2〉 ∈ E iff 〈m1, v1〉 ↪→a

M 〈m2, v2〉
for some v1, v2 ∈ V . A function LP : L → ℘(ΣL) is called a linearization-point
mapping when for each M ∈ L:

1. each symbol a ∈ LP(M) labels at most one transition of M ,
2. any directed path in GM contains at most one symbol of LP(M), and
3. all directed paths in GM containing a ∈ LP(M) reach the same ma ∈ FM .

An action 〈a, i〉 of an M -operation is called a linearization point when a ∈ LP(M),
and operations containing linearization points are said to be effectuated ; LP(θ)
denotes the unique linearization point of an effectuated operation θ. A read-points
mapping RP : Θ → N for an action sequence σ with operations Θ maps each
read-only operation θ to the index RP(θ) of an internal θ-action in σ.

Remark 2. One could also define linearization points which depend on predicates
involving, e.g., shared-state valuations, loop iteration counts, and return values.

12 Ahmed Bouajjani, Michael Emmi, Constantin Enea, and Jad Hamza

An action sequence σ is called effectuated when every completed operation
of σ is either effectuated or read-only, and an effectuated completion σ′ of σ is
effect preserving when each effectuated operation of σ also appears in σ′. Given
a linearization-point mapping LP, and a read-points mapping RP of an action
sequence σ, we say a permutation π of σ is point preserving when every two
operations of π are ordered by their linearization/read points in σ.

Definition 4. A trace τ is 〈S, LP〉-linearizable when τ is effectuated, and there
exists a read-points mapping RP of τ , along with an effect-preserving completion
π of a strict, point-preserving, and serial permutation of τ such that (π | S) ∈ S.

This notion extends naturally to executions of a system L[C], to the system L[C]
itself, and to L when C is the most general client C?.

Definition 5 (Static Linearizability). The system L[C] is S-static lineariz-
able when L[C] is 〈S, LP〉-linearizable for some mapping LP.

Example 3. The execution of Example 1 is 〈S, LP〉-linearizable with an LP which
assigns points denoted by ×s in Figure 4; the completion of a strict, point-
preserving, and serial permutation which witnesses this fact is also shown.

Lemma 4. Every S-static linearizable library is S-linearizable.

To decide 〈LP, S〉-static-linearizability we reduce to a reachability problem on
an extension of the given system L[C]. The extension simulates the specification
automaton AS , updating its state when operations are effectuated—i.e., at
linearization points. Besides ensuring that the method corresponding to each
read-only operation θ is enabled in AS at some point during θ’s execution, our
reachability query ensures that each effectuated operation corresponds to an
enabled transition in AS ; otherwise the current execution is not S-linearizable,
w.r.t. the mapping LP. Technically, we discharge this reachability query via state-
reachability on the canonical VASS of L[C]’s extension (see Section 2.1), which
yields an exponential-space procedure. As the set of possible linearization-point
mappings is finite, this procedure is hoisted to an exponential-space procedure
for static-linearizability, leveraging Savitch’s Theorem. Our proof in our extended
report [7] also demonstrates asymptotic optimality, since VASS state-reachability
is also polynomial-time reducible to static linearizability.

Theorem 2. The static linearizability problem for unbounded concurrent systems
with regular specifications is EXPSPACE-complete.

5 Undecidability of Linearizability in the General Case

Though verifying linearizability is decidable for finite-state systems [1], allowing
for an unbounded number of concurrent operations lends the power, e.g., to
encode unbounded counters. In this section we demonstrate how to harness this
power via a reduction from the undecidable state-reachability problem of counter

Verifying Concurrent Programs against Sequential Specifications 13

machines to linearizability of unbounded concurrent systems. Technically, given
a counter machine A, we construct a library LA and a specification SA such
that LA[C?] is not SA-linearizable exactly when A has an execution reaching
the given target state. In what follows we outline our simulation of A, ignoring
several details in order to highlight the crux of our reduction. Our full proof is
listed in an extended report [7].

In our simulation of A the most general client C? invokes an arbitrary sequence
of methods from the library LA containing a transition method T[t] for each
transition t of A, and an increment method I[ci], a decrement method D[ci], and
a zero-test method Z[ci], for each counter ci of A. As our simulation should allow
only concurrent traces which correspond to executions of A, and C? is a priori
free to invoke operations at arbitrary times, we are faced with constructing the
library LA and specification SA so that only certain well-formed concurrent
traces are permitted. Our strategy is essentially to build LA to allow only those
traces corresponding to valid sequences of A-transitions, and to build SA to
allow only those traces, which either do not reach the target state of A, or which
erroneously pass some zero-test—i.e., on a counter whose value is non-zero.

Figure 6 depicts the structure of our simulation, on an A-execution where
two increments are followed by two decrements and a zero test, all on the same
counter c1. Essentially we simulate each execution by a trace in which:

1. A sequence t1t2 . . . ti of A-transitions is modeled by a pairwise-overlapping
sequence of T[t1] · T[t2] · · ·T[ti] operations.

2. Each T[t]-operation has a corresponding I[ci], D[ci], or Z[ci] operation, de-
pending on whether t is, resp., an increment, decrement, or zero-test transition
with counter ci.

3. Each I[ci] operation has a corresponding D[ci] operation.
4. For each counter ci, all I[ci] and D[ci] between Z[ci] operations overlap.
5. For each counter ci, no I[ci] nor D[ci] operations overlap with a Z[ci] operation.
6. The number of I[ci] operations between two Z[ci] operations matches the

number of D[ci] operations.

The library LA ensures Properties 1–4 using rendezvous synchronization,
with six types of signals: a T/T signal between T[·]-operations, and for each
counter ci, T/I, T/D, and T/Z signals between T[·]-operations and, resp., I[ci],
D[ci], and Z[ci] operations, an I/D signal between I[ci] and D[ci] operations,
and a T/C signal between T[t] operations and I[ci] or D[ci] operations, for zero-
testing transitions t. An initial operation (not depicted in Figure 6) initiates a
T/T rendezvous with some T[t] operation. Each T[t] operation then performs a
rendezvous sequence: when t is an increment or decrement of counter ci, then T[t]
performs a T/T rendezvous, followed by a T/I, resp., T/D for counter ci, followed
by a final T/T rendezvous; when t is a zero-test of counter ci, T[t] performs a
T/T rendezvous, followed by some arbitrary number of T/Cs for ci, followed by a
T/Z for ci, and finally a last T/T rendezvous. Each I[ci] operation performs T/I,
then I/D, and finally T/C rendezvous for counter ci, while each D[ci] operation
performs I/D, then T/D, and finally T/C rendezvous for ci; the Z[ci] operations
perform a single T/Z rendezvous for ci. T/T rendezvousing ensures Property 1,

14 Ahmed Bouajjani, Michael Emmi, Constantin Enea, and Jad Hamza

T[inc c1]

T[inc c1] T[dec c1]

T[dec c1]

T[jz c1 ..]

T[...]

I[c1]

I[c1]

D[c1]

D[c1]

Z[c1]
T/I T/I T/D T/D T/C

I/D I/D

T/ZT/TT/T T/T T/T T/T

Fig. 6. The LA simulation of an A-execution with two increments followed by two
decrements and a zero-test of counter c1. Operations are drawn as horizontal lines con-
taining rendezvous actions drawn as circles. Matching rendezvous actions are connected
by dotted lines labeled by rendezvous type. Time advances to the right.

T/I, T/D, and T/Z rendezvousing ensures Property 2, I/D rendezvousing ensures
Property 3, and T/C rendezvousing ensures Property 4. Note that even in the
case where not all pending I[ci] and D[ci] operations perform T/C rendezvous
with a concurrent T[t] operation, where t is a zero-test transition, at the very least,
they overlap with all other pending I[ci] and D[ci] operations having performed
T/I, resp., T/D, rendezvous since the last Z[ci] operation.

The trickier part of our proof is indeed ensuring Properties 5 and 6. There
we leverage Property 4: when all I[ci] and D[ci] operations between two Z[ci]
operations overlap, every permutation of them, including those alternating be-
tween I[ci] and D[ci] operations, is strict, i.e., is permitted by the definition of
linearizability. Our specification SA takes advantage of this in order to match
the unbounded number of I[ci] and D[ci] operations using only bounded memory.

Lemma 5. The specification SA accepting all sequences which either do not end
with a transition to the target state, or in which the number of alternating I[ci]
and D[ci] operations between two Z[ci] operations are unequal, is regular.

Lemma 5 gives a way to ensure Properties 5 and 6, since any trace which
is SA-linearizable either does not encode an execution to A’s target state, or
respects Property 5 while violating Property 6—i.e., the number of increments
and decrements between zero-tests does not match—or violates Property 5: in the
latter case, where some I[ci] or D[ci] operation θ1 overlaps with an Z[ci] operation
θ2, θ1 can always be commuted over θ2 to ensure that the number of I[ci] and D[ci]
operations does not match in some interval between Z[ci] operations. Thus any
trace which is not SA-linearizable must respect both Properties 5 and 6. It follows
that any trace of LA which is not SA-linearizable guarantees Properties 1–6, and
ultimately corresponds to a valid execution of A, and visa versa, thus reducing
counter machine state-reachability to SA-linearizability.

Theorem 3. The linearizability problem for unbounded concurrent systems with
regular specifications is undecidable.

Verifying Concurrent Programs against Sequential Specifications 15

6 Deciding Bounded Barrier Linearizability

Our proof in Section 5 that verifying linearizability is undecidable relies on
constructing an unbounded amount of “barriers” bisecting serial operations in
order to encode unboundedly-many zero-tests of a counter machine. Besides
disarming our undecidability proof, bounding the number of barriers leads to
an interesting heuristic for detecting violations to linearizability, based on the
hypothesis that many violations occur in executions expressed with few barriers.
In this section we demonstrate not only that the bounded-barrier linearizability
problem is decidable, but that when restricting exploration to bounded-barrier
executions, checking linearizability reduces to a constraint solving problem on the
valuations of counters counting the number of each operation occurring in a finite
number of barrier-separated intervals. Similarly to how context-bounding reduces
the problem of exploring concurrent program interleavings to sequential program
behaviors [22], barrier-bounding reduces the problem of exploring concurrent
operation serializations to counter-constraint solving.

Formally, a barrier of a trace τ is an index 0 < B < |τ | such that τ(B) is a
call action, and the nearest preceding non-internal action of τ is a return action.
An interval is a maximal integer interval I = [i1, i2] of τ -indices containing no
barriers except i1, in the case that i1 > 0; we index the intervals of a trace
sequentially from 0, as I0, I1, . . . , Ik. The span of an operation θ of τ is the pair
〈Ii, Ij〉 of intervals such that θ begins in Ii and ends in Ij—and Ij = ω when θ
is pending. The trace τ of Example 1 contains two barriers, B1 and B2, where
τ(B1) = call(pop, ·, t1) and τ(B2) = call(push, a, t3), thus dividing τ into three
intervals, I0 = [0, B1 − 1], I1 = [B1, B2 − 1], and I2 = [B2, |τ | − 1]; the span of,
e.g., the operation of threads t2 and t4 are, resp., 〈I0, I1〉 and 〈I0, ω〉. Note that
the spans of two serial operations of a trace are disjoint.

Definition 6. The system L[C] is 〈S, k〉-linearizable when every trace of L[C]
with at most k barriers is S-linearizable.

In what follows we develop the machinery to reduce this bounded-barrier lineariz-
ability problem to a reachability problem on systems which count the number of
each operation spanning each pair of intervals.

An interval-annotated alphabet Σ̇
def
= Σ × N× (N ∪ {ω}) attaches (non-zero)

interval indices to each symbol of Σ, and an interval-annotated sequence σ̇ ∈ Σ̇∗
is k-bounded when i1 ≤ k and either i2 ≤ k or i2 = ω for each symbol 〈a, i1, i2〉
of σ̇. The homomorphism ḣ : Σ̇ → Σ maps each symbol 〈a, , 〉 to ḣ(〈a, , 〉) = a.
An interval-annotated sequence σ̇ is timing consistent when i1 ≤ i2, i3 ≤ i4, and
i1 ≤ i4 for any symbol 〈 , i1, i2〉 occurring before 〈 , i3, i4〉 in σ̇.

We say that the sequence over the interval-annotated (and pending closed,
see Section 2.4) specification alphabet σ̇ ∈ Σ̇∗S is consistent when σ̇ is timing
consistent, and i2 = ω iff mf = ∗, for all symbols 〈M [m0,mf], i1, i2〉 of σ̇. The

(k-bounded) interval-annotated specification Ṡ of a specification S is the language
containing all consistent interval-annotated sequences σ̇ such that h(σ̇) ∈ S.
For example, we obtain the 1-bounded interval-annotated specification from

16 Ahmed Bouajjani, Michael Emmi, Constantin Enea, and Jad Hamza

the specification of Figure 3 by attaching the interval indices 〈1, ω〉 to each
pop[·, ∗] and push[a, ∗] symbol, and 〈1, 1〉 to each pop[·, false], pop[·, true], and
push[a, true] symbol.

Lemma 6. The k-bounded interval-annotated specification Ṡ, of a regular speci-
fication S, is also regular.

Proof. For any given k > 0 the set W ⊆ Σ̇∗S of k-bounded consistent interval-
annotated sequences is regular. As regular languages are closed under inverse
homomorphism and intersection, Ṡ = W ∩ ḣ−1(S) is also regular. ut

To relate traces to an interval-annotated specification Ṡ, we define the interval-
annotated S-image σ̇ of an action sequence σ as the multiset σ̇ : Σ̇S → N map-
ping each 〈M [m0,mf], i1, i2〉 ∈ Σ̇S to the number of occurrences of M [m0,mf]-
operations in σ with span 〈i1, i2〉.
Example 4. The interval-annotated image τ̇ of the trace τ from Example 1 maps
the interval-annotated symbols

push[a, true][1, 1], push[a, ∗][1, ω], pop[·, true][1, 2],

pop[·, false][2, 3], and push[a, true][3, 3]

to 1, and the remaining symbols of Σ̇S to zero.

Annotating operations with the intervals in which they occur allows a compact
representation of specifications’ ordering constraints, while abstracting away the
order of same-interval operations—as they are free to commute. To realize this
abstraction, we recall that the Parikh image of a sequence σ ∈ Σ∗ is the multiset
Π(σ) : Σ → N mapping each symbol a ∈ Σ to the number of occurrences of a in σ.
The Parikh image of a language L ⊆ Σ∗ are the images Π(L)

def
= {Π(σ) : σ ∈ L}

of sequences in L. We prove the following key lemma in our extended report [7].

Lemma 7. A trace τ with at most k barriers is S-linearizable iff τ̇ ∈ Π(Ṡ),
where Ṡ is the (k+1)-bounded interval-annotated specification of S.

Lemma 7 essentially allows us to reduce the bounded-barrier linearizability
problem to a reachability problem: given a trace τ with at most k barriers, τ
is linearizable so long as its image τ̇ is included in the Parikh image of the
(k+1)-bounded specification Ṡ. In effect, rather than considering all possible
serializations of τ , it suffices to keep count of the number of pending and completed
operations over each span of intervals, and ensure that these counts continually
remain within the semi-linear set of counts allowed by the specification. For the
purposes of our results here, we keep these counts by increasing the dimension of
the canonical vector addition systemAL[C] (see Section 2.1) of a given system L[C].
Furthermore, since Bouajjani and Habermehl [6] prove that checking whether
reachable VASS configurations lie within a semi-linear set is itself reducible
to VASS reachability, and the Parikh image of a regular set is a semi-linear,
ensuring these counts continually remain within those allowed by the specification
is therefore reducible to VASS reachability. In fact, our proof in our extended
report [7] shows this reduction-based procedure is asymptotically optimal, since
VASS reachability is also polynomial-time reducible to to 〈S, k〉-linearizability.

Verifying Concurrent Programs against Sequential Specifications 17

Theorem 4. The bounded-barrier linearizability problem for unbounded concur-
rent systems with regular specifications is decidable, and asymptotically equivalent
to VASS reachability.

Theorem 4 holds for any class of specifications with semi-linear Parikh images,
including, e.g., context-free languages. Furthermore, though Theorem 4 leverages
our reduction from serializations to counting operations for decidability with
unbounded concurrent systems, in principle this reduction applies to any class
of concurrent systems, including infinite-data systems—without any guarantee
of decidability—provided the ability to represent suitable constraints on the
counters of annotated specification alphabet symbols. We believe this reduction
is valuable whether or not data and/or concurrency are bounded, since we avoid
the explicit enumeration of possible serializations.

As a proof of concept, we have implemented a prototype of our reduction.
First we instrument a given library implementation (written in Boogie) with
(1) auxiliary counters, counting the number of each operation within each bounded
span, (2) with Presburger assertions over these counters, encoding the legal
specification images, and (3) with a client nondeterministically invoking methods
with arbitrary arguments. As a second step we translate this instrumented
(concurrent) program to a sequential (Boogie) program, encoding a subset of
delay-bounded executions [16], then discover assertion violations using an SMT-
based sequential reachability engine [23]. Note that the bounded-barrier reduction,
which treats operation serialization, composes naturally with the bounded-delay
reduction, which treats operation interleaving. Furthermore, the reduction to
SMT allows us to analyze infinite-data implementations; e.g., we analyze an
unbounded stack with arbitrary data values, according to a specification which
ensures each pop is preceded by a matching push—which is context-free, thus
has a semi-linear Parikh image—while ignoring the pushed and popped values.

We have applied our prototype to discover bugs known in or manually-
injected into several textbook concurrent data structure algorithms; the resulting
linearizability violations are discovered within a few seconds to minutes. Besides
evidence to the practical applicability of our reduction algorithm, our small set
of experiments suggests that many linearizability violations occur with very few
barriers; we discover violations arising from the infamous “ABA” bug [26], along
with bugs injected into a 2-lock queue, a lock-coupling set, and Treiber’s stack,
in executions without any barriers. For instance, in an improperly-synchronized
Treiber-style stack algorithm, two concurrent pop(a) operations may erroneously
remove the same element added by one concurrent push(a) operation; however, no
serialization of pop(a), pop(a), and push(a) is included in our stack specification.

Of course, some violations do require barriers. A very simple example is a
violation involving one pop(a) serial with one push(a) operation, though since
pop(a) and push(a) are not concurrent, a bug causing this violation is unlikely.
More interestingly, a lost update due to improper synchronization between two
concurrent inc() operations in a zero-initialized counter can only be observed
as a linearizability violation when a barrier prevents, e.g., a subsequent read(1)
operation from commuting over an inc() operation.

18 Ahmed Bouajjani, Michael Emmi, Constantin Enea, and Jad Hamza

7 Related Work

Papadimitriou [28] and Gibbons and Korach [18] studied variations on the prob-
lems of deciding serializability, sequential consistency, and linearizability for
single concurrent traces, finding the general problems to be NP-complete, and
pointing out several PTIME variants, e.g., when serializations must respect a
suitable conflict-order. Alur et al. [1] studied the complexity of similar decision
problems for all traces of finite-state concurrent systems: while sequential consis-
tency already becomes undecidable for finite-state systems—though Bingham
[4] proposes certain decidable pathology-omitting variations—checking conflict
serializability is declared PSPACE-complete5 while linearizability is shown to be
in EXPSPACE. Our work considers the complexity of these problems for systems
where the number of concurrent operations is unbounded.

Though many have developed techniques for proving linearizability [33, 2, 32,
3, 25, 14, 27, 31, 34, 10], we are not aware of decidability or complexity results for
the corresponding linearizability and static linearizability verification problems
for unbounded systems. While a few works propose testing-based detection of
linearizability violations [9, 11, 10], they rely on explicit enumeration of possible
serializations; prioritizing the search for violations with few barriers, and the
resulting reduction to numerical constraint solving, are novel.

Several works have also developed techniques for verifying sequential consis-
tency [20, 29, 5, 8] and serializability [12, 30, 17, 19, 15]; Farzan and Madhusudan
[17] demonstrate a complete technique for verifying conflict serializability with a
bounded number of concurrent operations, and while Guerraoui et al. [19] identify
symmetry conditions on transactional systems with which conflict serializability
can be verified completely, for an unbounded number of concurrent operations,
they propose no means of checking that these symmetry conditions hold on any
given system. On the contrary, we show that verifying conflict serializability
without bounding the number of concurrent operations is EXPSPACE-complete.

References

[1] R. Alur, K. L. McMillan, and D. Peled. Model-checking of correctness
conditions for concurrent objects. Inf. Comput., 160(1-2):167–188, 2000.

[2] D. Amit, N. Rinetzky, T. W. Reps, M. Sagiv, and E. Yahav. Comparison
under abstraction for verifying linearizability. In CAV ’07: Proc. 19th Intl.
Conf. on Computer Aided Verification, volume 4590 of LNCS, pages 477–490.
Springer, 2007.

[3] J. Berdine, T. Lev-Ami, R. Manevich, G. Ramalingam, and S. Sagiv. Thread
quantification for concurrent shape analysis. In CAV ’08: Proc. 20th Intl.
Conf. on Computer Aided Verification, volume 5123 of LNCS, pages 399–413.
Springer, 2008.

[4] J. Bingham. Model Checking Sequential Consistency and Parameterized
Protocols. PhD thesis, The University of British Columbia, August 2005.

5The correct proof of PSPACE-completeness is given by Farzan and Madhusudan [17].

Verifying Concurrent Programs against Sequential Specifications 19

[5] J. D. Bingham, A. Condon, A. J. Hu, S. Qadeer, and Z. Zhang. Automatic
verification of sequential consistency for unbounded addresses and data
values. In CAV ’04: Proc. 16th Intl. Conf. on Computer Aided Verification,
volume 3114 of LNCS, pages 427–439. Springer, 2004.

[6] A. Bouajjani and P. Habermehl. Constrained properties, semilinear systems,
and petri nets. In CONCUR ’96: Proc. 7th Intl. Conf. on Concurrency
Theory, volume 1119 of LNCS, pages 481–497. Springer, 1996.

[7] A. Bouajjani, M. Emmi, C. Enea, and J. Hamza. Verifying concurrent
programs against sequential specifications. Technical report, January 2013.

[8] S. Burckhardt, R. Alur, and M. M. K. Martin. CheckFence: checking
consistency of concurrent data types on relaxed memory models. In PLDI
07: Proc. ACM SIGPLAN 2007 Conf. on Programming Language Design
and Implementation, pages 12–21. ACM, 2007.

[9] S. Burckhardt, C. Dern, M. Musuvathi, and R. Tan. Line-up: a complete and
automatic linearizability checker. In PLDI ’10: Proc. 2010 ACM SIGPLAN
Conf. on Programming Language Design and Implementation, pages 330–340.
ACM, 2010.

[10] S. Burckhardt, A. Gotsman, M. Musuvathi, and H. Yang. Concurrent library
correctness on the TSO memory model. In ESOP ’12: Proc. 21st European
Symp. on Programming, volume 7211 of LNCS, pages 87–107. Springer, 2012.

[11] J. Burnim, G. C. Necula, and K. Sen. Specifying and checking semantic
atomicity for multithreaded programs. In ASPLOS ’11: Proc. 16th Intl.
Conf. on Architectural Support for Programming Languages and Operating
Systems, pages 79–90. ACM, 2011.

[12] A. Cohen, J. W. O’Leary, A. Pnueli, M. R. Tuttle, and L. D. Zuck. Verifying
correctness of transactional memories. In FMCAD 07: Proc. 7th Intl. Conf.
on Formal Methods in Computer-Aided Design, pages 37–44. IEEE Computer
Society, 2007.

[13] A. Dragojević, R. Guerraoui, and M. Kapalka. Dividing transactional
memories by zero. In TRANSACT ’08: Proc. 3rd ACM SIGPLAN Workshop
on Transactional Computing. ACM, 2008.

[14] T. Elmas, S. Qadeer, A. Sezgin, O. Subasi, and S. Taşıran. Simplifying
linearizability proofs with reduction and abstraction. In TACAS ’10: Proc.
16th Intl. Conf. on Tools and Algorithms for the Construction and Analysis
of Systems, volume 6015 of LNCS, pages 296–311. Springer, 2010.

[15] M. Emmi, R. Majumdar, and R. Manevich. Parameterized verification of
transactional memories. In PLDI ’10: Proc. 2010 ACM SIGPLAN Conf. on
Programming Language Design and Implementation, pages 134–145. ACM,
2010.

[16] M. Emmi, S. Qadeer, and Z. Rakamaric. Delay-bounded scheduling. In
POPL ’11: Proc. 38th ACM SIGPLAN-SIGACT Symp. on Principles of
Programming Languages, pages 411–422. ACM, 2011.

[17] A. Farzan and P. Madhusudan. Monitoring atomicity in concurrent programs.
In CAV ’08: Proc. 20th Intl. Conf. on Computer Aided Verification, volume
5123 of LNCS, pages 52–65. Springer, 2008.

20 Ahmed Bouajjani, Michael Emmi, Constantin Enea, and Jad Hamza

[18] P. B. Gibbons and E. Korach. Testing shared memories. SIAM J. Comput.,
26(4):1208–1244, 1997.

[19] R. Guerraoui, T. A. Henzinger, and V. Singh. Model checking transactional
memories. Distributed Computing, 22(3):129–145, 2010.

[20] T. A. Henzinger, S. Qadeer, and S. K. Rajamani. Verifying sequential
consistency on shared-memory multiprocessor systems. In CAV ’99: Proc.
11th Intl. Conf. on Computer Aided Verification, volume 1633 of LNCS,
pages 301–315. Springer, 1999.

[21] M. Herlihy and J. M. Wing. Linearizability: A correctness condition for
concurrent objects. ACM Trans. Program. Lang. Syst., 12(3):463–492, 1990.

[22] A. Lal and T. W. Reps. Reducing concurrent analysis under a context bound
to sequential analysis. Formal Methods in System Design, 35(1):73–97, 2009.

[23] A. Lal, S. Qadeer, and S. K. Lahiri. A solver for reachability modulo theories.
In CAV ’12: Proc. 24th Intl. Conf. on Computer Aided Verification, volume
7358 of LNCS, pages 427–443. Springer, 2012.

[24] L. Lamport. How to make a multiprocessor computer that correctly executes
multiprocess programs. IEEE Trans. Computers, 28(9):690–691, 1979.

[25] Y. Liu, W. Chen, Y. A. Liu, and J. Sun. Model checking linearizability via
refinement. In FM ’09: Proc. Second World Congress on Formal Methods,
volume 5850 of LNCS, pages 321–337. Springer, 2009.

[26] M. M. Michael. ABA prevention using single-word instructions. Technical
Report RC 23089, IBM Thomas J. Watson Research Center, January 2004.

[27] P. W. O’Hearn, N. Rinetzky, M. T. Vechev, E. Yahav, and G. Yorsh. Verifying
linearizability with hindsight. In PODC ’10: Proc. 29th Annual Symp. on
Principles of Distributed Computing, pages 85–94. ACM, 2010.

[28] C. H. Papadimitriou. The serializability of concurrent database updates. J.
ACM, 26(4):631–653, 1979.

[29] S. Qadeer. Verifying sequential consistency on shared-memory multiproces-
sors by model checking. IEEE Trans. Parallel Distrib. Syst., 14(8):730–741,
2003.

[30] S. Taşıran. A compositional method for verifying software transactional
memory implementations. Technical Report MSR-TR-2008-56, Microsoft
Research, April 2008.

[31] V. Vafeiadis. Automatically proving linearizability. In CAV ’10: Proc. 22nd
Intl. Conf. on Computer Aided Verification, volume 6174 of LNCS, pages
450–464. Springer, 2010.

[32] M. T. Vechev and E. Yahav. Deriving linearizable fine-grained concurrent
objects. In PLDI ’08: Proc. ACM SIGPLAN 2008 Conf. on Programming
Language Design and Implementation, pages 125–135. ACM, 2008.

[33] L. Wang and S. D. Stoller. Static analysis of atomicity for programs with
non-blocking synchronization. In PPOPP ’05: Proc. ACM SIGPLAN Symp.
on Principles and Practice of Parallel Programming, pages 61–71. ACM,
2005.

[34] S. J. Zhang. Scalable automatic linearizability checking. In ICSE ’11: Proc.
33rd Intl. Conf. on Software Engineering, pages 1185–1187. ACM, 2011.

	Verifying Concurrent Programs against Sequential Specifications
	Introduction
	Preliminaries
	Unbounded Concurrent Systems
	Conflict Serializability
	Linearizability
	Linearizability with Pending-Closed Specifications

	Deciding Conflict Serializability
	Deciding Static Linearizability
	Undecidability of Linearizability in the General Case
	Deciding Bounded Barrier Linearizability
	Related Work

