
Datalog-Based Scalable Semantic Diffing of Concurrent
Programs

Chungha Sung

University of Southern California

Los Angeles, CA, USA

Shuvendu K. Lahiri

Microsoft Research

Redmond, WA, USA

Constantin Enea

University Paris Diderot

Paris, France

Chao Wang

University of Southern California

Los Angeles, CA, USA

ABSTRACT
When an evolving program is modified to address issues related to

thread synchronization, there is a need to confirm the change is

correct, i.e., it does not introduce unexpected behavior. However,

manually comparing two programs to identify the semantic differ-

ence is labor intensive and error prone, whereas techniques based

on model checking are computationally expensive.

To fill the gap, we develop a fast and approximate static analysis
for computing synchronization differences of two programs. The

method is fast because, instead of relying on heavy-weight model

checking techniques, it leverages a polynomial-time Datalog-based

program analysis framework to compute differentiating data-flow

edges, i.e., edges allowed by one program but not the other. Al-

though approximation is used our method is sufficiently accurate

due to careful design of the Datalog inference rules and iterative in-

crease of the required data-flow edges for representing a difference.

We have implemented our method and evaluated it on a large num-

ber of multithreaded C programs to confirm its ability to produce,

often within seconds, the same differences obtained by human; in

contrast, prior techniques based on model checking take minutes

or even hours and thus can be 10x to 1000x slower.

CCS CONCEPTS
• Software and its engineering → Software verification and
validation;

KEYWORDS
Concurrency, semantic diffing, change impact, static analysis, race

condition, atomicity, Datalog

ACM Reference Format:
Chungha Sung, Shuvendu K. Lahiri, Constantin Enea, and Chao Wang.

2018. Datalog-Based Scalable Semantic Diffing of Concurrent Programs. In

Proceedings of the 2018 33rd ACM/IEEE International Conference on Automated
Software Engineering (ASE ’18), September 3–7, 2018, Montpellier, France.
ACM,NewYork, NY, USA, 11 pages. https://doi.org/10.1145/3238147.3238211

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ASE ’18, September 3–7, 2018, Montpellier, France
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5937-5/18/09. . . $15.00

https://doi.org/10.1145/3238147.3238211

1 INTRODUCTION
When an evolving concurrent program is modified, often times, the

sequential program logic is not changed; instead, the modification

focuses on thread synchronization, e.g., to optimize performance

or remove bugs such as data-races and atomicity violations. Since

concurrency is hard, it is important to ensure the modification is

correct and does not introduce unexpected behavior. However, man-

ually comparing two programs to identify the semantic difference

is difficult, and the situation is exacerbated in the presence of thread

interactions: changing a single instruction in a thread may have

a ripple effect on many instructions in other threads. Although

techniques have been proposed to compute the synchronization dif-

ference, e.g., by leveraging model checkers [14], they are expensive

for practice use. For example, comparing two versions of a program

with 578 lines of C code takes half an hour.

To fill the gap, we develop a fast and approximate static analysis
to compute such differences with the goal of reducing analysis time

from hours or minutes to seconds. We assume the two programs

are closely related versions of an evolving software where changes

are made to address issues related to thread synchronization as

opposed to the sequential computation logic. Therefore, same as

in prior works [14, 44], we focus on synchronization differences.

However, our method is orders-of-magnitude faster because in-

stead of model checking we leverage a polynomial-time declarative

program analysis framework which uses a set of Datalog rules to

model and reason about thread interactions.

The reason why prior techniques are expensive is because they

insist on being precise. Specifically, they either enumerate inter-

leavings or use a model checker to ensure a semantic difference,

represented as a set of data-flow edges, is allowed by one of the pro-

grams but not by the other. However, this in general is equivalent to

program verification, which is an undecidable problem [43]; even in

cases where it is reduced to a decidable problem, the cost of model

checking is too high. Our insight is that in practice, it is relatively

easy for developers to inspect a given difference to determine if it

is feasible; what is not easy and hence requires tool support is a

systematic exploration of behaviors of the two programs to identify

all possible differences in the first place. Unfortunately, developing

such a tool is a non-trivial task; for example, the naive approach of

comparing individual thread interleavings would not work due to

the often exponential blowup in the number of interleavings.

Our method avoids the problem by being approximate in that

it does not enumerate interleavings. This also means infeasible

behaviors are sometimes included. However, our approximation is

carefully designed to take into consideration the program semantics

https://doi.org/10.1145/3238147.3238211
https://doi.org/10.1145/3238147.3238211

ASE ’18, September 3–7, 2018, Montpellier, France Chungha Sung, Shuvendu K. Lahiri, Constantin Enea, and Chao Wang

LLVM Datalog

Facts

Datalog
Facts

Patch info

μZ Datalog
Engine in Z3

Datalog
Inference Rules

LLVM

Differences

Δ12 =
Δ21 =

Query

EC-Diff Framework

Figure 1: Overview of our semantic diffing method.

most relevant to thread interaction. Furthermore, the approxima-

tion can be refined by iteratively increasing the number of data-flow

edges used to characterize a synchronization difference. We shall

show through experiments that our fast and approximate analysis
method does not lead to overly inaccurate results. To the contrary,

the synchronization differences reported by our method closely

match the ones identified by human. Compared to the prior tech-

nique based on model checking, which often takes minutes or even

hours, our method can be 10x to 1000x faster.

Figure 1 shows the overall flow of our method. The input consists

of two versions of a concurrent program: P1 is the original version,
P2 is the changed version, and patch info represents their syntactic
difference, e.g., information about which instructions are added,

removed or modified. The output consists of a set of differences,

each of which is represented by a set of data-flow edges allowed in

one of the programs but not the other. When data-flow edges are

allowed in P1 but not P2, for example, they represent a removed

behavior. Conversely, when data-flow edges are allowed in P2 but
not P1, they represent a new behavior introduced by the change.

Our method first generates a set of Datalog facts that encode

the structural information of the control flow graphs. These facts

are then combined with inference rules that codify the analysis

algorithm. When the combined program is fed to a Datalog solver,

the resulting fixed point contains new relations (facts) that represent

the analysis result. Specifically, it contains data-flow edges that may

occur in each program. By comparing data-flow edges from the two

programs, we can identify the semantic differences.

Since program verification is undecidable in general, and with

concurrency, it is undecidable even for Boolean programs [43],

approximation is inevitable. Our method makes two types of ap-

proximations. The first one is in checking the feasibility of data-flow

edges. The second one is related to the number of data-flow edges

used to characterize a difference, also referred to as the rank of

an analysis [14]. Although in the worst case, a precise analysis

means the rank needs to be as large as the length of the execution,

we restrict it to a small number in our method because prior re-

search [12, 40] shows that concurrency bugs often can be exposed

by executions with a bounded number of context switches.

Since our method is approximate in nature, the usefulness de-

pends on how close it approaches the ground truth. Ideally, we want

to have few false positives and few false negatives. Toward this end,

we choose to stay away from the tradition of insisting the analysis

being either sound or complete when one cannot have both. For a

concurrent program, being sound often means existential abstrac-
tion: a data-flow edge is considered feasible (in all interleavings)

if it is feasible in an interleaving, and being complete often means

universal abstraction: a data-flow edge is considered feasible only

if it is feasible in all interleavings. Both cases result in extremely

coarse-grained approximations, which in turn lead to numerous

false positives or false negatives. Instead, we want to minimize the

difference between our analysis result and the ground truth.

We have implemented our method in a tool named EC-Diff,
which uses LLVM [9] as the front-end and µZ [24] in Z3 as the

Datalog solver.We evaluated EC-Diff on 47multithreaded programs

with 13,500 lines of C code in total. These are benchmarks widely

used in prior research [1–7, 11, 13, 23, 38, 47, 50–52, 55]: some

illustrate real concurrency bug patterns [52] and the corresponding

patches [29] while others are applications from public repositories.

We applied EC-Diff to these benchmarks while comparing with

the prior technique of Bouajjani et al. [14]. Our results show that

EC-Diff can detect, often in seconds, the same differences identified

by human. Furthermore, compared to the prior technique based on

model checking, EC-Diff is 10x to 1000x faster.

To summarize, this paper makes the following contributions:

• We propose a fast and approximate analysis based on a

polynomial-time declarative program analysis framework to

compute synchronization differences.

• We show why our approximate analysis is reasonably accu-

rate due to the custom-designed inference rules and iterative

increase of the number of data-flow edges.

• We implement our method in a practical tool and evaluate

it on a large number of benchmarks to confirm its high

accuracy and low overhead.

The remainder of the paper is as follows. First, we motivate our

work using examples in Section 2. Then, we provide the technical

background in Section 3 before presenting our analysis method

in Section 4. This is followed by our procedures for interpreting

the analysis result and optimizing performance in Section 5. We

present our experimental results in Section 6. Finally, we review

the related work in Section 7 and give our conclusions in Section 8.

2 MOTIVATION
We use examples to motivate the need for conducting a differential

analysis. Programs used in these examples illustrate common bug

patterns (also used during our experiments in Section 6). In each

example, there are two program versions: the original one may

violate a hypothetical assertion and the changed one avoids it. These
assertions are hypothetical (added for illustration purposes only)

in the sense that our method does not need them to operate.

2.1 The First Example
Fig. 2(a) shows a two-threaded program where the shared vari-

able x is initialized to 0. The assertion at Line 3 may be violated,

e.g., when thread1 executes the statement at Line 2 right after

thread2 executes the statement at Line 5. The reason is because

no synchronization operation is used to enforce any order.

Assume the developer identifies the problem and patches it by

adding locks (Figure 2(b)), the assertion violation will be avoided.

To see why this is the case, consider the data-flow edge from Line 5

to Line 2: due to the critical sections enforced by lock-unlock pairs,

the load of x at Line 2 is not affected by the store of x at Line 5. For
example, if the critical section containing Line 5 is executed first,

the subsequent unlock(a)must be executed before the lock(a) in
thread1, which in turn must be executed before Line 1 and Line 2.

Datalog-Based Scalable Semantic Diffing of Concurrent Programs ASE ’18, September 3–7, 2018, Montpellier, France

thread1 {

1: x = x + 1;

2: if (x == 0)

3: assert(0);

}

thread2 {

4: x = 1;

...

5: x = 0;

}

RF

RF

(a) Before change

thread1 {

lock(a);

1: x = x + 1;

2: if (x == 0)

3: assert(0);

unlock(a);

}

thread2 {

4: x = 1;

...

lock(a);

5: x = 0;

unlock(a);

}

RF

RF

(b) After change

Figure 2: Example programs with synchronization differ-
ences (lock-unlock).

Since the store of x at Line 1 is the most recent, the load of x at

Line 2 will get its value, not the value written at Line 5.

Thus, the allowed data-flow edges are as follows: RF(L4,L2)
and RF(L5,L2) for the original program, and RF(L4,L2) for the

changed program. This notion of comparing concurrent executions

was introduced by Shasha and Snir [44] and extended by Bouajjani

et al. [14], although in both cases, enumeration or model check-

ing techniques were used. In our work, the goal is to avoid such

heavyweight analyses while maintaining sufficient accuracy.

In addition to RF edges, there are other types of relations con-

sidered during our analysis, including program order, inter-thread

order imposed by thread create, join, signal-wait as well as store-store
order. Nevertheless, when interpreting the final results, we focus

on differences in the RF edges because they affect the externally

observable behavior of a program, e.g., characterized by assertions

and other reachability properties.

2.2 The Second Example
Fig. 3 shows a more sophisticated example: the use of signal-wait,
which is often difficult for static analyzers. Since the variable x is
initialized to 0, when the critical section in thread1 is executed

before thread2, the load of x at Line 1 will get the value 0, which
leads to the assertion violation in Fig. 3(a). Assume the intended

behavior is for thread2 to complete first, an inter-thread execution

order must be enforced, e.g., by using the signal-wait pair shown
in Fig. 3(b). The assertion violation is avoided because the load of x
at Line 1 can only read from the store of x at Line 5.

To correctly deploy the signal-wait pair, a variable named cBool
needs to be added. If the operating system voluntarily schedules

thread2 first, thread1 needs to be aware – by checking the value

of cBool – and then skips the execution of wait; otherwise, wait
may get stuck because the corresponding signal has already been

fired (and lost). But if thread1 is executed first, since cBool has

not been set, it will invoke wait which forces the corresponding

signal to be sent.

As for the data-flow edges, we can see that RF(L5,L1) and

RF(L3,L4) are allowed in the original program, but only RF(L5,L1)
is allowed in the changed program. RF(L3,L4) is not allowed be-

cause Line 4 must happen before Line 5, Line 5 must happen before

thread1 {

lock(a);

1: if (x == 0)

2: assert(0);

3: y = foo(x);

unlock(a);

}

thread2 {

...

lock(a);

4: bar(y);

5: x = 4;

unlock(a);

}

RF

RF

(a) Before change

thread1 {

lock(a);

if (!cBool)

wait(cond);

1: if (x == 0)

2: assert(0);

3: y = foo(x);

unlock(a);

}

thread2 {

...

lock(a);

4: bar(y);

5: x = 4;

cBool = 1;

signal(cond);

unlock(a);

}

RF

RF

(b) After change

Figure 3: Example programs with synchronization differ-
ences (signal-wait).

mustHB {(1, 2), (2, 3), (1, 3), (4, 5)}
Fig 2(a) mayHB mustHB ∪ {(1, 4), (1, 5), (2, 4),

(2, 5), (3, 4), (3, 5), (4, 1), (4, 2), ...}
MayRF {(4, 1), (4, 2), (5, 1), (5,2)}
mustHB {(1, 2), (2, 3), (1, 3), (4, 5)}

Fig 2(b) mayHB mustHB ∪ {(1, 4), (1, 5), (2, 4),
(2, 5), (3, 4), (3, 5), (4, 1), (4, 2), ...}

MayRF {(4, 1), (4, 2), (5, 1)}

mustHB {(1, 2), (2, 3), (1, 3), (4, 5)}
Fig 3(a) mayHB mustHB ∪ {(1, 4), (1, 5), (2, 4),

(2, 5), (3, 4), (3, 5), (4, 1), (4, 2), ...}
MayRF {(3,4), (5, 1), (5, 3)}
mustHB {(1, 2), (2, 3), (1, 3), (4, 5),

Fig 3(b) (4,1),(4,2),(4,3),(5,1),(5,2),(5,3)}
mayHB mustHB
MayRF {(5, 1), (5, 3)}

Figure 4: Analysis steps for programs in Figs. 3(a) and 3(b).

signal, and signal must happen before wait, which resides before

Lines 1-3 in thread1. Thus, there is a cycle (contradiction).

2.3 How Our Method Works
Our method differs from prior techniques which rely on either enu-

merating interleavings and conducing pairwise comparison [44],

or model checking based techniques [14]. Both are computationally

expensive. Instead, we use lightweight static analysis.

Our method represents the control and data dependencies of

each program as a set of Datalog facts. We also design a set of

Datalog inference rules, which capture our algorithm for deriving

new facts from existing facts. Leveraging a Datalog solver, we can

repeatedly apply the inference rules over the facts until a fixed

point is reached. We will explain details of our Datalog facts and

inference rules in Section 4.

ASE ’18, September 3–7, 2018, Montpellier, France Chungha Sung, Shuvendu K. Lahiri, Constantin Enea, and Chao Wang

For now, consider the steps of computing synchronization dif-

ferences for the programs in Fig. 2 and Fig. 3, which are outlined

by the tables in Fig. 4.

First, our method computes must-happen-before (mustHB) edges,
which represent the execution order of two instructions respected

by all thread interleavings. From mustHB, our method computes

may-happen-before (mayHB) edges, which represent the execution

order respected by some interleavings, e.g., thread context switches

not contradicting to mustHB. From mayHB, our method computes

MayRF edges, which represent data flows (over shared variables)

from store instructions to the corresponding load instructions.

The MayRF edges are over-approximated in that, if an edge is

included in MayRF, the corresponding data flow may occur in an

execution. But if an edge is not included in MayRF, we know for sure

the corresponding data flow is definitely infeasible. For example, in

Fig. 4, MayRF has four edges for Fig. 2(a) but only three edges for

Fig. 2(b). RF(L5,L2) is no longer allowed in the changed program,

indicating it is a difference between the two programs.

For the example in Fig. 3, we compute mustHB based on the

sequential program order and, in Fig. 3(b), the inter-thread execu-

tion order imposed by signal-wait. Then, from mustHB we compute

mayHB, which includes edges in mustHB andmore. For Fig. 3(a), since

there is no restriction on the inter-thread execution order, all pairs

of events are included, whereas for Fig. 3(b), there is only one-way

data flow. Finally, we compute MayRF based on mayHB. There are
three edges for Fig. 3(a) but only two for Fig. 3(b).

2.4 The Rank of an Analysis
When comparing MayRF in these two examples, we identify the

difference as edges allowed in only one of the two programs, such

as RF(L5,L2)in Fig. 2 and RF(L3,L4) in Fig. 3.

However, even if MayRF edges are allowed individually, they

may not occur in the same execution. For example, RF(L5,L1) and

RF(L3,L4) in Fig. 3(a) cannot occur together because, otherwise,

they form a cycle together with the program order edges. Our

method has inferences rules designed to check if two or more data-

flow edges can occur together—this is referred to as the rank [14].

With the notion of rank, we can capture ordered sets of MayRF
edges, as opposed to individual MayRF edges. Thus, even if the

MayRF relation remains the same, there may be differences of high

ranks: two or more edges from MayRF may occur together in P1 but
not in P2. We will present our method for checking such differences

in Section 5 following the baseline procedure in Section 4.

3 PRELIMINARIES
3.1 Partial Trace Comparison
To compare the synchronizations of two concurrent programs, we

use the notion of partial trace introduced by Shasha and Snir [44]

and extended by Bouajjani et al. [14]. Let P be a program and

G be the set of global variables shared by threads in P . For each
x ∈ G, letW (x) denote a store instruction and R(x) denotes a load
instruction. Let I be the set of all instructions in the program. Any

binary relation over these instructions is a subset of I × I.
For example, ŝo ⊆ I × I is a relation that orders the store in-

structions;W1(x) <W2(x) meansW1 ∈ I is executed beforeW2 ∈ I.
Thus, in Fig. 2(a), (L1,L4), (L4,L1), (L1,L5), (L5,L1), (L4,L5)
belong to ŝo, but (L5,L4) does not belong to ŝo because it is not
consistent with the program order.

Similarly,
ˆr f is a relation between load and store instructions. In

Fig. 2(a), we have (L4,L2) and (L5,L2) in
ˆr f , meaning the load at

Line 2 may read from values written at Lines 4 and 5. Given ŝo and
ˆr f , we define ˆsets as a set of subsets of ˆr f ∪ ŝo, where each element

ss ∈ ˆsets has at most k edges.

Edges in ss are from either
ˆr f or ŝo – they capture the abstract

trace. The number k , which is called the rank [14], is bounded by

the length of the trace.

Definition 1 (Abstract Tracewith Rankk). An abstract trace
with rank k is a tuple T̂ = ⟨ŝo, ˆr f , ˆsets,k⟩, where ŝo ⊆ {W1(x) ×
W2(x) | W1 ∈ I,W2 ∈ I, andW1 < W2 in some execution trace},
ˆr f ⊆ {W (x) × R(x) | W ∈ I and R ∈ I}, and ˆsets ⊆ {ss ⊆ ˆr f ∪
ŝo | |ss | ≤ k}.

Given the abstract traces T̂1 and T̂2 of two programs P1 and P2,
respectively, we define their difference as ∆ = (∆12,∆21), where
∆12 = T̂1 \ T̂2 and ∆21 = T̂2 \ T̂1. Next, we define what it means for

T̂1 to be a refinement of T̂2, denoted T̂1 ⊆ T̂2.

Definition 2 (Abstract Trace Refinement). Given two ab-
stract traces T̂1 = ⟨ ˆso1, ˆr f1, ˆsets1,k⟩ and T̂2 = ⟨ ˆso2, ˆr f2, ˆsets2,k⟩, we
say T̂1 is a refinement of T̂2, denoted T̂1 ⊆ T̂2, if and only if ˆso1 ⊆ ˆso2,
ˆr f1 ⊆ ˆr f2, and ˆsets1 ⊆ ˆsets2.

That is, when T̂1 ⊆ T̂2, the abstract behavior of P1 is covered by

that of P2. And the difference (T̂2 \ T̂1) is characterized by ˆso2 \ ˆso1,
ˆr f2 \ ˆr f1, and ˆsets2 \ ˆsets1. Finally, if the abstract traces of P1 and
P2 refine each other, we say they are rank-k equivalent.

Although comparison of abstract traces involves ŝo and ˆr f , when

reporting the differences, we focus on the
ˆr f edges only because

they directly affect the observable behaviors of the programs. In

contrast, store-store ordering (ŝo) may not be observable unless

they also affect the read-from (
ˆr f) edges.

3.2 Datalog-Based Analysis
Datalog is a logic programming language but in recent years has

been widely used for declarative program analysis [10, 15, 16, 21,

22, 37, 48, 56]. The main advantage is that a Datalog program is

polynomial-time solvable and the corresponding fixed-point com-

putation maps naturally to fixed-point computations in program

analysis algorithms. In this context, structural information of the

program is represented as relations called the facts, while the fixed-
point algorithm is expressed as recursive relations called the infer-
ence rules.

Consider a relation named PO(a,b), which represents the pro-

gram order of two immediate adjacent instructions a and b, while
HB(c,d) means c must happen before d . First, we write down the

Datalog facts based on the CFG structure:

PO(s1, s2), PO(s1, s3), PO(s2, s4), PO(s3, s4), PO(s4, s5).

Then, we write down the Datalog inference rules:

HB(a, b) ← PO(a, b)
HB(c, e) ← HB(c, d) ∧ HB(d, e)

Here, the left arrow (←) separates the inferred Datalog facts on

the left-hand side from the existing Datalog fact(s) on the right-

hand side. The first rule says the program-order relation implies

the must-happen-before relation. The second rule says the must-

happen-before relation is transitive.

Datalog-Based Scalable Semantic Diffing of Concurrent Programs ASE ’18, September 3–7, 2018, Montpellier, France

ADatalog solver, based on the above facts and rules, will compute

the maximal set of edges for the HB relation. By sending a query to

the Datalog solver, one may confirm that HB(s1, s5) indeed holds

whereas HB(s2, s3) does not hold.

4 CONSTRAINT-BASED SYNCHRONIZATION
ANALYSIS

In this section, we present our method for computing abstract traces

of a single program. In the next section, we leverage the abstract

traces of two programs to compute their differences.

First, we define the elementary relations that can be constructed

directly from the CFG of a program.

• St(s1, th1): Statement s1 resides in Thread th1
• Po(s1, s2): Statement s1 is before s2 in a thread

• Dom(s1, s2): Statement s1 dominates s2 in a thread

• PostDom(s1, s2): s1 post-dominates s2 in a thread

• ThrdCreate(th1, s1, th2): Thread th1 creates th2 at s1
• ThrdJoin(th1, s1, th2): Thread th1 joins back th2 at s1
• CondWait(s1,v1): s1 waits for condition variable v1
• CondSignal(s1,v1): s1 sends condition variable v1
• Load(s1,v1): Statement s1 reads from variable v1
• Store(s1,v1): Statement s1 writes to variable v1
• InCS(s1, l1): s1 resides in a critical section guarded by lock(l1)–
unlock(l1) pair
• SameCS(s1, s2, l1): s1 and s2 are in the same critical section

guarded by l1
• DiffCS(s1, s2, l1): s1 and s2 are in different critical sections

guarded by l1
While traversing the CFG to compute the Po, Dom, and Post-

Dom relations, we take loops into consideration. For example, two

instructions involved with the same loop may not have a Dom or

PostDom relation, but an instruction outside the loop can have a

Dom or PostDom relation with an instruction inside the loop.

Next, we define inference rules for computing new relations such

asMayHb,MustHb, andMayRf.

4.1 Rules for Intra-thread Dependency
To capture the execution order of instructions, we define the fol-

lowing relations: MayHb(s1, s2) means s1 may happen before s2 in
some execution, andMustHb(s1, s2)means s1 happens before s2 in
all executions when both occur. Since the program order in each

thread implies the execution order, we have the following rule:

MustHb(s1, s2) ← Po(s1, s2)

In this work, we assume sequential consistency but Datalog is capa-

ble of handling weaker memory models [32] as well.

By definitionMustHb impliesMayHb, which means

MayHb(s1, s2) ← MustHb(s1, s2)

4.2 Rules for Inter-thread Dependency
When a parent thread th1 creates a child thread th2 at the statement

s1, e.g., by invoking pthread_create, any statement s2 in the child

thread must occur after s1.

MustHb(s1, s2) ← ThrdCreate(th1, s1, th2) ∧ St(s2, th2)

Similarly, when a parent thread th1 joins back a child thread th2 at
s1, any statement s2 in th2 must occur before s1.

MustHb(s2, s1) ← ThrdJoin(th1, s1, th2) ∧ St(s2, th1)

thread1() {
a = 1;
cond = true;

}

thread2() {
while(!cond) {}
x = a;

}

Figure 5: Ad hoc synchronization (cond = false initially).

4.3 Rules for Signal-Wait Dependency
When a condition variable c is used, e.g., through signal(c) and
wait(c), it imposes an execution order.

MustHb(s1, s2) ← CondSignal(v1, s1) ∧ CondWait(v1, s2)

However, the rule needs to be used with caution. In practice,

wait(c) is often wrapped in an if-condition as shown in Figure 3(b).

To be conservative, our method analyzes the control flow of these

threads and applies the above rule only after detecting the usage

pattern. Since our method does not analyze the concrete values of

any shared variables, it does not check if the if-condition is valid.

Also, developers may use condition variables in a different way.

Thus, in our experiments (Section 6), we evaluated the impact of

this conservative approach—assuming the if-condition is always

valid—to confirm it does not lead to significant loss of accuracy.

4.4 Ad Hoc Synchronization
We handle ad hoc synchronization similar to signal-wait. Fig. 5
shows an example where cond is a user-added flag initialized to

0. The busy-waiting in thread2 ensures that a=1 always occurs

before x=a. By traversing the CFGs of these threads, we can identify
the pattern; this is practical since the number of usage patterns

is limited. After that, we add aMustHb edge from cond=true to
while(!cond). This is similar to adding MustHb edges for Cond-

Wait and CondSignal. As a result, we can decide the read-from
edge between x=a and the initialization of a is infeasible.

4.5 Transitive Closure
SinceMustHb is transitive, we use the following rule to compute

the transitive closure:

MustHb(s1, s3) ← MustHb(s1, s2) ∧MustHb(s2, s3)

When instructions in concurrent threads are not ordered byMustHb,

we assume they may occur in any order:

MayHb(s1, s2) ← St(s1, th1) ∧ St(s2, th2) ∧ ¬MustHb(s2, s1)

The MayHb relation is also transitive:

MayHb(s1, s3) ← MayHb(s1, s2) ∧MayHb(s2, s3)

4.6 Lock-Enforced Critical Section
For critical sections based on lock-unlock, we introduce rules based
on access patterns. First, we compute CoveredStore(s1,v1, l1),
meaning the store in s1 is overwritten by a subsequent store in

the same critical section. Consider lk(a)→W1(v)→W2(v)→ unlk(a),

whereW1(v) is a covered store and thus not visible to reads in

other critical sections protected by the same lock.

CoveredStore(s1, v1, l1) ← Store(s1, v1) ∧ Store(s2, v1)
∧PostDom(s2, s1) ∧ SameCS(s1, s2, l1)

Similarly, CoveredLoad(s2,v1, l1) means the load of v1 in s2 is

covered and thus can only read from a preceding store in the same

ASE ’18, September 3–7, 2018, Montpellier, France Chungha Sung, Shuvendu K. Lahiri, Constantin Enea, and Chao Wang

P1 P2 P2P1

Figure 6: Differences of abstract traces: ∆12 (left) and ∆21
(right).

critical section.

CoveredLoad(s2, v1, l1) ← Store(s1, v1) ∧ Load(s2, v1)
∧Dom(s1, s2) ∧ SameCS(s1, s2, l1)

Consider lk(a)→ W(v)→ R(v)→ unlk(a) as an example: R(v) is cov-
ered by W(v) and thus cannot read from stores in other critical

sections protected by the same lock.

4.7 Read-from Relation
Finally, we compute NoRf(s1, s2) which means the read-from edge

between s1 and s2 is infeasible.

NoRf(s1, s2) ← Store(s1, v1) ∧ Store(s3, v1) ∧ Load(s2, v1)
∧MustHb(s1, s3) ∧MustHb(s3, s2)

That is, in W(x) → W(x) → R(x), the first store cannot be read
by the load. In addition to this generic rule, we have two more

inference rules:

NoRf(s1, s2) ← Store(s1, v1) ∧ Load(s2, v1) ∧MayHb(s1, s2)
∧CoveredLoad(s2, v1, l1) ∧ DiffCS(s1, s2, l1)

This rule means if one store may happen before one load, the load is

covered, and the store is in a different critical section, the load can-

not read from the store. This is because another store will overwrite

the value to be read.

NoRf(s1, s2) ← Store(s1, v1) ∧ Load(s2, v1) ∧MayHb(s1, s2)
∧CoveredStore(s1, v1, l1) ∧ DiffCS(s1, s2, l1)

This rule means if a store is covered, i.e., overwritten by a subse-

quent store, the store cannot reach to any load in other critical

sections protected by the same lock.

We also compute MayRf(s1, s2) which means the load in s2 may

read from the store in s1.

MayRf(s1, s2) ← Store(s1, v1) ∧ Load(s2, v1) ∧MayHb(s1, s2)
∧¬NoRf(s1, s2)

5 COMPUTING THE DIFFERENCES
In this section, we show how to compare abstract traces of the two

programs to identify the differences.

5.1 Symmetric Difference
Fig. 6 shows the Venn diagram of our method for computing the

differences when given the abstract traces of two programs. The

actual behaviors of programs P1 and P2 are represented by the

circles with solid lines. The approximate behaviors, in the form of

abstract traces T̂1 and T̂2, are represented by the circles with dashed

lines. Conceptually, the symmetric difference is computed based

on ∆12 = T̂1 \ T̂2 and ∆21 = T̂2 \ T̂1, and for each is presented as

pink-colored region in Fig. 6 (left and right). The details of them

are presented in the remainder of this section.

To compute the difference, we define two relations DiffP1 and

DiffP2 and rules for computing them:

DiffP1(s1, s2) ← MayRf(s1, s2, P1) ∧ ¬MayRf(s1, s2, P2)
DiffP2(s1, s2) ← MayRf(s1, s2, P2) ∧ ¬MayRf(s1, s2, P1)

s1:W(x) s2:W(x)

s3:R(x)

RF RF

s4:R(x)

s1:W(x)

s2:R(x)

s3:W(x)

RF RF MustHBMustHB

Figure 7: Illustrating the first two rank-2 inference rules.

DiffP1 represents edges that may happen in P1 but not in P2. Sim-

ilarly, DiffP2 represents edges that may happen in P2 but not in
P1. If DiffP1 is not empty, there are more behaviors in P1; and if

DiffP2 is not empty, there are more behaviors in P2.
Since the Datalog solver may enumerate all possible MayHb

edges (used to compute MayRf), and the number of MayHb edges

increases rapidly as the program size increases, we need to reduce

the computational overhead. Our insight is that, since we are only

concerned with synchronization differences in the end, as opposed

to behaviors of the sequential computation, we can restrict our

analysis to instructions that access global variables. Toward this

end, we define a new relation named Access(v1, s1) which means

s1 accesses a global variable v1, and use it to guard the inference

rules for MayHb (and hence MustHb). It forces the Datalog solver

to consider only global accesses, which reduces the computational

overheadwithout losing accuracy.We demonstrate the effectiveness

of this optimization using experiments in Section 6.

5.2 Differences at Higher Ranks
The rules so far use individual read-from edges to characterize the

differences, which is equivalent to rank-1 analysis [14], but some

programs may not have rank-1 difference but have differences of

higher ranks. To detect them, we need to compute ordered sets of

data-flow edges allowed in one program but not in the other.

To be specific, for rank-2, we extend the MayRf relation, which

was defined over two instructions (an edge), toMayRfs defined over

four instructions, to represent an ordered set of (two) read-from
edges. Similarly, we extend the NoRf relation to NoRfs, which is

also defined over four instructions to represent an ordered set of

(two) read-from edges.

Previously,NoRf(s1, s2)means there is no execution trace where

the store s1 can be read by the load s2, whereasMayRf(s1, s2)means

there may exist some execution trace that allows the read-from edge

(s1, s2). Similarly, NoRfs((s1, s2), (s3, s4)) means there is no execu-

tion trace where the two read-from edges (s1, s2) and (s3, s4) occur
together and in that order; andMayRfs((s1, s2), (s3, s4))means there

may exist some execution trace that allows the two read-from edges

to occur together and in that order.

First, we present our rules for computing NoRfs, which in turn

is used to computeMayRfs. Since it is not possible to enumerate

all scenarios due to theoretical limitations, we resort to the most

common scenarios. Nevertheless, we guarantee that NoRfs is an

under-approximation, and the corresponding MayRfs is an over-

approximation.

NoRfs((s1, s3), (s2, s3)) ← MayRf(s1, s3) ∧MayRf(s2, s3)

This rule is obvious because, as in Fig. 7 (left), in the same execution

trace a load (s3) cannot read from two different stores (s1, s2).

NoRfs((s1, s2), (s3, s4)) ← MayRf(s1, s2) ∧MayRf(s3, s4)
∧MustHb(s2, s3) ∧MustHb(s4, s1)

Datalog-Based Scalable Semantic Diffing of Concurrent Programs ASE ’18, September 3–7, 2018, Montpellier, France

lk(l1)

s1:W(x)

s4:R(x)

unlk(l1)

lk(l1)

s2:R(x)

s3:W(x)

unlk(l1)

RF

RF

lk(l1)

s4:R(x)

unlk(l1)

s1:W(x) lk(l1)

s2:R(x)

s3:W(x)

unlk(l1)

RF
RF

PostDom

Figure 8: Illustrating rank-2 rules related to lock-unlock.

This rule is also obvious because, as shown in Fig. 7 (right), if the two

read-from edges form a cycle together with the must-happen-before

edges, they lead to a contradiction.

NoRfs((s1, s2), (s3, s4)) ← SameCS(s1, s4, l1) ∧ SameCS(s2, s3, l1)
∧DiffCS(s1, s2, l1)

This rule is related to lock-unlock pairs. The rationale behind it can

be explained using the diagram in Fig. 8 (left). Due to the lock-unlock
pairs, there are only two possible interleavings: (1) if s1 happens
before s2, s4 must happen before s3 and s2, which contradicts to the

read-from edge (s3, s4); (2) if s3 happens before s4, s2 must happen

before s1, which contradicts to the read-from edge (s1, s2). Thus,
the read-from edges cannot occur in the same execution trace.

Next, we define another rule related to lock-unlock pairs. In this

rule, we use PostDom(s3, s2) to mean, after s2 is executed, s3 is

guaranteed to be executed as well.

NoRFs((s1, s2), (s1, s4)) ← Store(s3, v1) ∧ PostDom(s3, s2)
∧DiffCS(s2, s4, l1) ∧ SameCS(s2, s3, l1)

The rationale behind this rule can be explained using the diagram in

Fig. 8 (right). Here, the loads and stores access the same variable. If

the read-from edge (s1, s2) is ahead of (s1, s4) in the same execution

trace, the store in s3 contradicts to the read-from edge (s1, s4).
Finally, we computeMayRFs based on NoRFs:

MayRFs((s1, s2), (s3, s4)) ← ¬NoRFs((s1, s2), (s3, s4))

It means the read-from edges (s1, s2) and (s3, s4) may occur together

and in that order in some execution trace. WithMayRFs, we com-

pute differences (DiffP1 and DiffP2) by replacing MayRf with

MayRFs. Our method for computing differences of rank 3 or higher

are similar, and we omit the details for brevity.

5.3 Example for Rank-2 Analysis
Fig. 9 shows an example that illustrates the rank-2 analysis. Here,

thread1 sets t to 0 and x to 1 before creating thread2. Due to lock-
unlock pairs, the assertion cannot be violated in Fig. 9(a). However,

if the lock-unlock in thread1 is removed as in Fig. 9(b), the assertion

may be violated because, in between Lines 4 and 5, there may be a

context switch which was not allowed previously.

However, the synchronization difference cannot be captured by

any individual MayRF edge. In fact, the table in Fig. 10 shows that

the two programs have the same set of MayRF edges. In particular,

since there are two stores of x, the load at Line 2 may read from

both Line 1 and Line 5.

To capture the difference, we need rank-2 analysis.

• Assume RF(L1,L4) occurs first, meaning thread2 acquires

the lock and thus prevents thread1 from acquiring the same

thread1 {

t = 0;

1: x = 1;

create(t2);

lock(a);

...

2: assert(x != t);

unlock(a);

}

thread2 {

...

lock(a);

4: t = x;

...

5: x = 2;

unlock(a);

...

}

1 :RF

2 :RF

RF

(a) Before change

thread1 {

t = 0;

1: x = 1;

create(t2);

lock(a);

...

2: assert(x != t);

unlock(a);

}

thread2 {

...

lock(a);

4: t = x;

...

5: x = 2;

unlock(a);

...

}

1 :RF

HB
2 :RF

(b) After change

Figure 9: Example programs with rank-2 differences.

mustHB {(1, 2), (1, 4), (1, 5), (4, 5)}
Fig 9(a) mayHB mustHB ∪ {(2, 4), (2, 5), (4, 2), (5, 2)}

MayRF {(1, 2), (1, 4), (5, 2)}
Rank2 {[(1, 2) → (1, 4)], [(1, 4) → (5, 2)]}
mustHB {(1, 2), (1, 4), (1, 5), (4, 5)}

Fig 9(b) mayHB mustHB ∪ {(2, 4), (2, 5), (4, 2), (5, 2)}
MayRF {(1, 2), (1, 4), (5, 2)}
Rank2 {[(1, 2) → (1, 4)], [(1, 4) → (5, 2)],

[(1,4)→ (1,2)]}

Figure 10: Steps of our analysis for the programs in Fig. 9.

lock until thread2 exits the critical section. It means the

store at Line 5 will set x to 2. Therefore, the load of x at

Line 2 will have to read from Line 5, not from Line 1. In

other words, RF(L1,L2) cannot occur after RF(L1,L4) in

the same execution.

• Assume RF(L1,L2) occurs first and thread2 will not be

executed until thread1 finishes. In this case, RF(L1,L4) is
allowed since no store of x is in thread1.

As a result, the program in Fig. 9(a) allows the ordered set {RF(L1,L2),
RF(L1,L4)} but not the ordered set {RF(L1,L4), RF(L1,L2)}.

However, the program in Fig. 9(b) allows the ordered set {RF(L1,L4),
RF(L1,L2)} as well, due to the removal of the lock-unlock pairs

in thread1. Specifically, when RF(L1,L4) occurs at the start of an

execution, thread1 may execute Line 2 before thread2 execute

Line 5, which allows Line 2 to read the value of x from Line 1.

Our steps of conducting the rank-2 analysis, based on inference

rules presented so far, are shown in Fig. 10. There is no difference in

the MayRF sets; however, when comparing the ordered set of MayRF
edges, we can still see the difference. To support this analysis, we

apply the aforementioned inference rules of rank 2, which checks

the existence of (1, 4) → (1, 2).

ASE ’18, September 3–7, 2018, Montpellier, France Chungha Sung, Shuvendu K. Lahiri, Constantin Enea, and Chao Wang

6 EXPERIMENTS
We have implemented the method in a tool named EC-Diff, which
uses LLVM [9] as the frontend and µZ [24] in Z3 as the Datalog

solver at the backend. Specifically, we use Clang/LLVM to parse the

C/C++ code of multithreaded programs and construct the LLVM

intermediate representation (IR). Then, we traverse the LLVM IR

to generate program-specific Datalog facts. These Datalog facts,

when combined with a set of program-independent inference rules,

form the entire Datalog program. Finally, the µZ Datalog solver is

used to solve the program, which repeatedly applies the rules to

the fact until a fixed point is reached. By querying relations in the

fixed point, we can retrieve the analysis result.

6.1 Experimental Setup
We used two sets of benchmarks in our experiments. The first set

of benchmarks consists of 41 multithreaded programs, which pre-

viously [29] have been used to illustrate concurrency bug patterns

found in real applications [1–7, 11, 13, 23, 38, 51, 52]. With these

programs, our goal is to evaluate how well the various types of

concurrency bugs are handled by our method, and how our results

compare to that of the prior technique based onmodel checking [14].

For these benchmarks, the prior technique is not able to soundly

instrument all applications. Therefore, we manually insert asser-

tions to be checked later by the CBMC bounded model checker for

detecting only one different edge.

The second set of benchmarks consists of 6 medium-sized appli-

cations from open-source repositories; they have also been used

previously [49, 52] to evaluate testing and automated program re-

pair tools. Similarly, we are not able to apply the prior technique [14]

because it has limitations to instrument large size programs and it

is impossible for us to manually insert assertions. Nevertheless, we

can evaluate how efficient our new method EC-Diff is on these real

applications. In total, our benchmarks has 13,500 lines of C code.

For each benchmark program, there are two versions, one of

which is the original program and the other is the changed program.

These changed programs are patches collected from various sources:

some are from benchmarks used in prior research on testing [49,

52] and repair [29], whereas others are from benchmarks used in

differential analysis [14]. We also created four programs, case1-4, to
illustrate motivating examples used throughout this paper. These

benchmark programs, together with our experimental data, the

LLVM-based tool, as well as data obtained from applying the prior

technique [14], have been made available online
1
.

Our experiments were designed specifically to answer the fol-

lowing research questions:

• Is our new method, based on a fast and approximate static
analysis as opposed to heavy-weight model checking tech-

niques, accurate enough for identifying the actual synchro-

nization differences in the benchmark programs?

• Is our new method significantly more efficient, measured in

terms of the analysis time, than the prior technique based

on model checking?

In all these experiments, we used a computer with an Intel Core

i5-4440 CPU @ 3.10 GHz x 4 CPUs with 12 GB of RAM, running

the Ubuntu-16.04 LTS operating system.

1
https://github.com/ChunghaSung/EC-Diff

6.2 Results on the First Set of Benchmarks
Table 1 shows our results on the first set of benchmarks, with 41

programs illustrating common bug patterns. Columns 1 and 2 show

the name and the number of lines of C code. Column 3 shows the

number of threads. Column 4 shows the type of bug illustrated by

the program. Specifically, Sync. means the bug is due to misuse

of locks, and thus to repair it, some lock-unlock pairs have been

added, removed or modified; Cond. means the bug is due to misuse

of condition variables, and thus to repair it, some signal-wait pairs
have been added, removed or modified; Th.Ordermeans the bug is

related to thread creation and join and thus involves ThrdJoin or

ThrdCreate; and Order. means the bug is related to ordering of

instructions imposed by ad-hoc synchronization. Note that, in each

of these benchmarks, there is some synchronization difference.

The remaining columns show the statistics reported by EC-Diff
as well as the prior technique [14]. Specifically, Column 5 shows if

EC-Diff detected the synchronization difference. Column 6 shows

at which rank our analysis is conducted (Section 5): we iteratively

increase the rank starting from 1, until a synchronization difference

is detected. To be efficient, we bound the rank to 3 during our

evaluation. Columns 7 and 8 show the number of differences in

∆12 = T̂1 \ T̂2 and ∆21 = T̂2 \ T̂1. For a rank-1 analysis, it is the

number of read-from edges; for a rank-2 or rank-3 analysis, it is the

number of ordered sets of read-from edges. The next two columns

show the total number of MayHb edges (used to compute MayRf)

in P1 and P2, respectively.
The last two columns compare the analysis time of our method

and the model checking time of the prior technique [14] to check

one different edge.

For each benchmark, we limit the run time to one hour.

Our results show EC-Diff often finishes each benchmark in a

second whereas the prior technique can take up to 2,384 seconds

(rtl8169-2). In total, EC-Diff took less than 16 seconds whereas

the prior technique took more than 3 hours. In terms of accuracy,

except for one program, EC-Diff detected all the synchronization

differences. This has been confirmed through manual inspection

where the reported differences are compared with the ground truth.

Since we have randomly labeled the original and changed programs

as P1 and P2, some of the differences are in ∆12 whereas the others

are reported in ∆21. In total, EC-Diff found 251 differences in ∆12

and 151 differences in ∆21.

The missed difference resides in rtl8169-3: after running the

rank-3 analysis, our method still could not find it. The reason is

because the differentiating behavior involves a deadlock and the

patch that removed it. We explain why our method cannot detect

it in Section 6.4.

6.3 Results on the Second Set of Benchmarks
Table 2 shows our results on the second set of benchmarks, con-

sisting of six medium-sized programs. Note that these programs

are already out of the reach of the prior technique [14] due to its

requirement of manual code instrumentation; therefore, we only

report the statistics of applying EC-Diff. Again, the original and
modified programs are randomly labeled as P1 and P2, respectively,
to facilitate evaluation.

In total EC-Diff found 30 differences in ∆12 and 42 differences in

∆21. Furthermore, all of them were found during rank-1 analysis,

and confirmed by manual inspection. What is impressive is that

these differences were identified by sifting through a combined

Datalog-Based Scalable Semantic Diffing of Concurrent Programs ASE ’18, September 3–7, 2018, Montpellier, France

Table 1: Experimental results on the first set of benchmark programs.

EC-Diff Prior Technique [14]

Name LoC Threads Type Difference Rank |∆12 | |∆21 | # of mayHB in P1 # of mayHB in P2 Time (s) Time (s)

case1 52 3 Sync. yes 1 0 7 1,343 1,343 0.26 11.53

case2 53 3 Cond. yes 1 0 3 1,357 1,474 0.26 4.80

case3 67 3 Th.Order yes 1 2 0 546 482 0.19 46.64

case4 94 3 Sync. yes 2 0 1 421 421 0.20 8.59

i2c-hid [14] 76 3 Sync. yes 1 1 0 2,570 2,570 0.28 27.28

i2c-hid-noa [14] 70 3 Sync. yes 1 1 0 1,573 1,573 0.26 7.48

r8169-1 [14] 65 3 Order yes 1 1 0 870 852 0.25 3.38

r8169-2 [14] 80 3 Order yes 1 1 0 873 839 0.25 2.17

r8169-3 [14] 105 4 Order yes 1 1 0 769 769 0.25 8.37

rtl8169-1 [14] 578 8 Order yes 1 1 0 60,741 60,691 0.89 1580.16

rtl8169-2 [14] 578 8 Order yes 1 1 0 60,741 60,741 0.89 2384.14

rtl8169-3 [14] 578 8 Order no 3 0 0 60,741 60,741 2.40 0.00

cherokee [52] 150 3 Sync. yes 1 0 2 1,148 1,148 0.31 7.59

transmission [52] 91 3 Cond. yes 1 1 0 690 613 0.29 6.89

apache-21287 [52] 74 3 Sync. yes 1 2 0 1,406 1,406 0.27 6.29

apache-25520 [52] 181 3 Sync. yes 2 8 0 3,206 3,206 0.33 23.81

account [11] 82 4 Cond. yes 1 0 2 3,701 3,881 0.30 13.46

barrier [11] 138 4 Cond. yes 1 3 0 7,289 6,655 0.26 150.54

boop [11] 134 3 Sync. yes 1 3 0 2,625 2,625 0.25 8.90

fibbench [11] 63 3 Cond. yes 1 0 71 5,248 6,321 0.28 1483.33

lazy [11] 76 4 Cond. yes 2 0 6 3,409 3,549 0.24 32.16

reorder [11] 170 5 Cond. yes 1 3 0 9,493 8,737 0.40 12.79

threadRW [11] 147 5 Cond. yes 1 2 0 9,092 8,552 0.30 7.57

lineEq-2t [13] 90 3 Sync. yes 2 0 8 2,905 2,905 0.30 23.34

linux-iio [13] 114 3 Sync. yes 1 3 0 5,851 5,851 0.31 24.13

linux-tg3 [13] 130 3 Cond. yes 1 2 0 15,979 15,160 0.63 617.01

vectPrime [13] 127 3 Sync. yes 2 2 0 35,014 35,014 0.52 2.22

mozilla-61369 [38] 84 3 Cond. yes 1 0 1 473 565 0.25 3.57

mysql-3596 [38] 92 3 Cond. yes 1 1 0 773 733 0.25 3.82

mysql-644 [38] 110 3 Cond. yes 1 0 2 1,343 1,434 0.33 5.40

counter-seq [23] 47 3 Sync. yes 2 0 2 1,135 1,135 0.26 18.13

ms-queue [23] 116 3 Sync. yes 2 2 0 5,754 5,754 0.59 29.01

mysql5 [29] 59 3 Sync. yes 2 0 4 1,283 1,283 0.20 22.92

freebsd-a [51] 176 4 Cond. yes 1 0 22 7,910 10,109 0.33 25.40

llvm-8441 [7] 127 3 Cond. yes 1 0 10 3,042 3,118 0.41 16.36

gcc-25530 [2] 87 3 Sync. yes 2 2 0 806 806 0.20 12.15

gcc-3584 [3] 83 3 Sync. yes 2 2 0 1,843 1,843 0.24 17.23

gcc-21334 [1] 136 3 Sync. yes 2 8 0 5,290 5,290 0.35 195.20

gcc-40518 [4] 102 3 Sync. yes 1 0 8 3,027 3,027 0.25 14.31

glib-512624 [5] 95 3 Sync. yes 1 198 0 5,748 5,748 0.32 ∗ >3600.00
jetty-1187 [6] 69 3 Sync. yes 2 0 2 885 885 0.22 19.34

Total 251 151 338,913 339,849 15.57 > 3h

∗ > 3600.00 means verification of the edge in P1 succeeded, but verification of the edge in P2 timed out after an hour.

total of 24 million MayHb edges, and yet, the analysis of all pro-

grams took only 140 seconds. The efficiency is, in large part, due

to the restriction of our analysis on instructions that access global

variables as opposed to all instructions in the program (refer to the

last paragraph of Section 5.1). Otherwise, the number of MayHb

edges would have been orders-of-magnitude larger.

6.4 Discussion
Now, we answer the two research questions.

Q1: Is EC-Diff accurate enough for identifying synchronization dif-
ferences? The answer is yes. As shown in our experimental results,

EC-Diff produced a large number of differences, the majority of

which are at rank 1, which means they are individual read-from
edges allowed in only one of the two programs, while the rest are

at rank 2. Although we do not guarantee that EC-Diff finds all

differentiating behaviors, these detected ones have been confirmed

by manual inspection.

Given that these benchmarks contain real concurrency bug pat-

terns reported and analyzed by many existing tools for testing and

repair, the result of EC-Diff is sufficiently accurate. The success

in a large part is due to the nature of these programs, where two

versions behave almost same except for the thread synchronization.

In such cases, our approximate analysis can come really close to

the ground truth.

Q2: Is EC-Diff more efficient than the prior technique based on model
checking? The answer is yes. As shown in our results, EC-Diff was

10x to 1000x faster and, in total, completed the differential analysis

of 13,500 lines of multithreaded C code in about 160 seconds. In

contrast, the prior technique took a much longer time to analyze

these programs.

ASE ’18, September 3–7, 2018, Montpellier, France Chungha Sung, Shuvendu K. Lahiri, Constantin Enea, and Chao Wang

Table 2: Experimental results on the second set of benchmark programs.

EC-Diff

Name LoC Threads Type Difference Rank |∆12 | |∆21 | # of mayHB in P1 # of mayHB in P2 Time (s)

pbzip-1 [49, 52] 1,143 5 Th.Order yes 1 6 0 782,846 773,934 14.98

pbzip-2 [49, 52] 1,143 7 Th.Order yes 1 12 0 1,150,404 1,135,428 30.61

aget-1 [49, 52] 1,523 4 Cond. yes 1 4 0 1,099,047 1,078,695 9.41

aget-2 [49, 52] 1,523 6 Cond. yes 1 8 0 3,218,034 3,162,684 28.60

pfscan-1 [49] 1,327 3 Cond. yes 1 0 6 2,094,446 2,107,760 19.72

pfscan-2 [49] 1,327 5 Cond. yes 1 0 36 4,138,361 4,164,989 39.96

Total 30 42 12,483,138 1,242,3490 140.28

thread1() {
lock(a);
lock(b);
...
unlock(b);
unlock(a);

}

thread1() {
lock(b);
lock(a);
...
unlock(a);
unlock(b);

}

Figure 11: Code from rtl8169-3: the original (left) and
changed (right) versions.

Thus, we conclude that EC-Diff is effective in identifying syn-

chronization differences in evolving programs. In practice, when

developers update a program to fix concurrency bugs or remove

performance bugs (e.g., by eliminating redundant locks), the differ-

ences in behavior are often reflected in (sets of) data-flow edges

being feasible in one version but not in the other version. Thus,

computing these (sets of) data-flow edges can be a fast way of

checking if the changes introduce unexpected behaviors.

The Missing Case: Although EC-Diff detected most of the actual

differences, it missed one in rtl8169-3. Fig. 11 shows the code snippet
of thread1 from the original program (P1 on the left) and the

changed program (P2 on the right). The purpose of this patch is to

resolve a deadlock issue by changing the acquisition order of locks.

Since EC-Diff focuses solely on data-flow edges, it is not able to

detect behavioral differences related to locking only. In some sense,

this is a limitation shared by techniques relying on the notion of

abstract traces [14, 44]: the two programs do not have data-related

semantic difference other than the fact that a deadlock exists in one

program but does not exist in the other program.

7 RELATEDWORK
There has been prior work on statically computing the semantic

differences of sequential and concurrent programs.

For sequential programs, Jackson and Ladd [26] proposed a

method for computing the semantic differences by summarizing

and comparing the dependencies between input and output. God-

line and Strichman [18] proposed the use of inference rules to prove

the equivalence of two programs. In the SymDiff project, Lahiri et

al. [33, 34] developed a language-agnostic assertion checking tool

for computing the differences of imperative programs. In the con-

text of incremental symbolic execution [42], various change-impact

analysis techniques were used to identify instructions that are af-

fected by code modification and use the information to compute

the corresponding test inputs [39]. However, these methods are not

directly applicable to concurrent programs.

For concurrent programs, Joshi et al. [28] proposed the use of

failure frequencies of assertions to compare two programs, while

the general framework of refinement checking [8] could also be

applied to traces of two programs. However, these techniques are

limited to individual executions. Change-impact analysis [36] were

also applied to concurrent programs, e.g., in regression testing [54],

prioritized scheduling [27, 30], and incremental symbolic execu-

tion [19, 53]. However, these techniques focus on reducing the cost

of testing and analysis as opposed to identifying the synchroniza-

tion differences.

As we have mentioned earlier, the most closely related work is

that of Bouajjani et al. [14], which computes the differences be-

tween partial data-flow dependencies of two concurrent programs

using a bounded model checker. However, the method is costly;

furthermore, it requires code instrumentation to insert assertions

so they can be verified using a model checker. For example, it took

about 30 minutes for a program (rtl8169) that can be analyzed by

our method in less than a second.

Our method relies on the Datalog-based declarative program

analysis framework, which previously has been applied to both

sequential and concurrent programs as well as web applications [10,

15, 17, 19–22, 25, 35, 37, 41, 45, 48, 56]. In the context of static analy-

sis of concurrent programs, for example, Kusano and Wang [31, 32]

used Datalog in a thread-modular abstract interpretation to check

the feasibility of inter-thread data-flow edges on sequentially con-

sistent and weaker memory models. Sung et al. [46] used a similar

technique for modeling preemption scheduling of interrupts and

thus improving the accuracy of static analysis for interrupt-driven

programs. However, none of these existing methods computes the

synchronization differences of evolving programs.

8 CONCLUSIONS
We have presented a fast and approximate static analysis method

for computing the synchronization differences of two concurrent

programs. The method uses Datalog to capture structural informa-

tion of the programs, and uses a set of inference rules to codify

the analysis algorithm. The analysis result, computed by an off-

the-shelf Datalog solver, consists of sets of data-flow edges that

are allowed by only one of the two programs. We implemented the

proposed method and evaluated it on a large number of benchmark

programs. Our results show the method is orders-of-magnitudes

faster than the prior technique while being sufficiently accurate in

identifying the actual differences.

ACKNOWLEDGMENTS
This work was supported in part by the U.S. National Science Foun-

dation (NSF) under grant CCF-1722710, the Office of Naval Research

(ONR) under grant N00014-17-1-2896, the European Research Coun-

cil (ERC) under the European Union’s Horizon 2020 research and

innovation program (grant agreement No 678177).

Datalog-Based Scalable Semantic Diffing of Concurrent Programs ASE ’18, September 3–7, 2018, Montpellier, France

REFERENCES
[1] Gcc bug 21334. http://gcc.gnu.org/bugzilla/show_bug.cgi?id=21334.

[2] Gcc bug 24430. http://gcc.gnu.org/bugzilla/show_bug.cgi?id=25330.

[3] Gcc bug 3584. http://gcc.gnu.org/bugzilla/show_bug.cgi?id=3584.

[4] Gcc bug 40518. http://gcc.gnu.org/bugzilla/show_bug.cgi?id=40518.

[5] Glib bug 51264. https://bugzilla.gnome.org/show_bug.cgi?id=512624.

[6] Jetty bug 1187. https://jira.codejaus.org/browse/JETTY-1187.

[7] Llvm bug 8441. http://llvm.org/bugs/show_bug.cgi?id=8441.

[8] Martín Abadi and Leslie Lamport. The existence of refinement mappings. Theo-
retical Computer Science, 82(2):253–284, May 1991.

[9] Vikram Adve, Chris Lattner, Michael Brukman, Anand Shukla, and Brian Gaeke.

LLVA: A Low-level Virtual Instruction Set Architecture. In ACM/IEEE interna-
tional symposium on Microarchitecture, Dec 2003.

[10] Aws Albarghouthi, Paraschos Koutris, Mayur Naik, and Calvin Smith. Constraint-

based synthesis of datalog programs. In International Conference on Principles
and Practice of Constraint Programming, pages 689–706, 2017.

[11] Dirk Beyer. Software verification and verifiable witnesses. In International
Conference on Tools and Algorithms for Construction and Analysis of Systems,
pages 401–416, 2015.

[12] Sandeep Bindal, Sorav Bansal, and Akash Lal. Variable and thread bounding for

systematic testing of multithreaded programs. In International Symposium on
Software Testing and Analysis, pages 145–155, 2013.

[13] Roderick Bloem, Georg Hofferek, Bettina Könighofer, Robert Könighofer, Simon

Außerlechner, and Raphael Spörk. Synthesis of synchronization using uninter-

preted functions. In International Conference on Formal Methods in Computer-
Aided Design, pages 11:35–11:42, 2014.

[14] Ahmed Bouajjani, Constantin Enea, and Shuvendu K. Lahiri. Abstract Semantic
Diffing of Evolving Concurrent Programs, pages 46–65. Springer International
Publishing, Cham, 2017.

[15] Martin Bravenboer and Yannis Smaragdakis. Strictly declarative specification of

sophisticated points-to analyses. In ACM SIGPLAN Conference on Object Oriented
Programming, Systems, Languages, and Applications, pages 243–262, 2009.

[16] Steven Dawson, C. R. Ramakrishnan, and David S. Warren. Practical program

analysis using general purpose logic programming systems—a case study.

In ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion, pages 117–126, 1996.

[17] Azadeh Farzan and Zachary Kincaid. Verification of parameterized concurrent

programs bymodular reasoning about data and control. InACMSIGACT-SIGPLAN
Symposium on Principles of Programming Languages, pages 297–308, 2012.

[18] Benny Godlin and Ofer Strichman. Time for verification. chapter Inference Rules

for Proving the Equivalence of Recursive Procedures, pages 167–184. Springer-

Verlag, Berlin, Heidelberg, 2010.

[19] Shengjian Guo, Markus Kusano, and ChaoWang. Conc-iSE: Incremental symbolic

execution of concurrent software. In IEEE/ACM International Conference On
Automated Software Engineering, pages 531–542, 2016.

[20] Shengjian Guo, Markus Kusano, Chao Wang, Zijiang Yang, and Aarti Gupta. As-

sertion guided symbolic execution of multithreaded programs. In ACM SIGSOFT
Symposium on Foundations of Software Engineering, pages 854–865, 2015.

[21] Elnar Hajiyev, Mathieu Verbaere, and Oege de Moor. CodeQuest: Scalable source

code queries with datalog. In European Conference on Object-Oriented Program-
ming, pages 2–27, 2006.

[22] Nevin Heintze and Olivier Tardieu. Demand-driven pointer analysis. In ACM
SIGPLAN Conference on Programming Language Design and Implementation, pages
24–34, 2001.

[23] Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Programming. Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA, 2008.

[24] Krystof Hoder, Nikolaj Bjørner, and Leonardo de Moura. muZ - an efficient

engine for fixed points with constraints. In International Conference on Computer
Aided Verification, pages 457–462, 2011.

[25] SusanHorwitz, Thomas Reps, andMooly Sagiv. Demand interprocedural dataflow

analysis. In ACM SIGSOFT Symposium on Foundations of Software Engineering,
pages 104–115, 1995.

[26] Daniel Jackson and David A. Ladd. Semantic diff: A tool for summarizing the

effects of modifications. In International Conference on Software Maintenance,
pages 243–252, 1994.

[27] Vilas Jagannath, Qingzhou Luo, and Darko Marinov. Change-aware preemption

prioritization. In International Symposium on Software Testing and Analysis, pages
133–143, 2011.

[28] Saurabh Joshi, Shuvendu K. Lahiri, and Akash Lal. Underspecified harnesses

and interleaved bugs. In ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages, pages 19–30, 2012.

[29] Sepideh Khoshnood, Markus Kusano, and ChaoWang. Concbugassist: Constraint

solving for diagnosis and repair of concurrency bugs. In International Symposium
on Software Testing and Analysis, pages 165–176, 2015.

[30] Markus Kusano and Chao Wang. Assertion guided abstraction: A cooperative

optimization for dynamic partial order reduction. In IEEE/ACM International
Conference On Automated Software Engineering, pages 175–186, 2014.

[31] Markus Kusano and Chao Wang. Flow-sensitive composition of thread-modular

abstract interpretation. In ACM SIGSOFT Symposium on Foundations of Software
Engineering, pages 799–809, 2016.

[32] Markus J. Kusano and Chao Wang. Thread-modular static analysis for relaxed

memory models. In ACM SIGSOFT Symposium on Foundations of Software Engi-
neering, 2017.

[33] Shuvendu K. Lahiri, Chris Hawblitzel, Ming Kawaguchi, and Henrique Rebêlo.

SYMDIFF: A language-agnostic semantic diff tool for imperative programs. In

International Conference on Computer Aided Verification, pages 712–717, 2012.
[34] Shuvendu K. Lahiri, Kenneth L. McMillan, Rahul Sharma, and Chris Hawblitzel.

Differential assertion checking. In ACM SIGSOFT Symposium on Foundations of
Software Engineering, pages 345–355, 2013.

[35] Monica S. Lam, John Whaley, V. Benjamin Livshits, Michael C. Martin, Dzin-

tars Avots, Michael Carbin, and Christopher Unkel. Context-sensitive program

analysis as database queries. In ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems, pages 1–12, 2005.

[36] Steffen Lehnert. A taxonomy for software change impact analysis. In International
Workshop on Principles of Software Evolution and Annual ERCIM Workshop on
Software Evolution, pages 41–50, 2011.

[37] V. Benjamin Livshits and Monica S. Lam. Finding security vulnerabilities in java

applications with static analysis. In USENIX Security Symposium, pages 18–18,

2005.

[38] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. Learning from mis-

takes: A comprehensive study on real world concurrency bug characteristics. In

International Conference on Architectural Support for Programming Languages and
Operating Systems, pages 329–339, 2008.

[39] Paul Dan Marinescu and Cristian Cadar. KATCH: High-coverage testing of

software patches. In ACM SIGSOFT Symposium on Foundations of Software
Engineering, pages 235–245, 2013.

[40] Madanlal Musuvathi, Shaz Qadeer, Thomas Ball, Gérard Basler, Pira-

manayagam Arumuga Nainar, and Iulian Neamtiu. Finding and reproducing

heisenbugs in concurrent programs. In USENIX Symposium on Operating Systems
Design and Implementation, pages 267–280, 2008.

[41] Mayur Naik, Alex Aiken, and John Whaley. Effective static race detection for

java. In ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, pages 308–319, 2006.

[42] Suzette Person, Matthew B. Dwyer, Sebastian Elbaum, and Corina S. Pǎsǎreanu.

Differential symbolic execution. In ACM SIGSOFT Symposium on Foundations of
Software Engineering, pages 226–237, 2008.

[43] G. Ramalingam. Context-sensitive synchronization-sensitive analysis is undecid-

able. ACM Trans. Program. Lang. Syst., 22(2):416–430, 2000.
[44] Dennis Shasha andMarc Snir. Efficient and correct execution of parallel programs

that share memory. ACM Trans. Program. Lang. Syst., 10(2):282–312, 1988.
[45] Chungha Sung, Markus Kusano, Nishant Sinha, and Chao Wang. Static DOM

event dependency analysis for testing web applications. In ACM SIGSOFT Sym-
posium on Foundations of Software Engineering, pages 447–459, 2016.

[46] Chungha Sung, Markus Kusano, and Chao Wang. Modular verification of

interrupt-driven software. In IEEE/ACM International Conference On Automated
Software Engineering, pages 206–216, 2017.

[47] Chao Wang, Yu Yang, Aarti Gupta, and Ganesh Gopalakrishnan. Dynamic model

checking with property driven pruning to detect race conditions. In International
Symposium on Automated Technology for Verification and Analysis, pages 126–140,
2008.

[48] John Whaley and Monica S. Lam. Cloning-based context-sensitive pointer alias

analysis using binary decision diagrams. In ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, pages 131–144, 2004.

[49] Yu Yang, Xiaofang Chen, and Ganesh Gopalakrishnan. Inspect: A runtime model

checker for multithreaded C programs. Technical report, University of Utah,

2008.

[50] Yu Yang, Xiaofang Chen, Ganesh Gopalakrishnan, and Chao Wang. Automatic

discovery of transition symmetry in multithreaded programs using dynamic

analysis. In International SPIN Workshop on Model Checking Software, pages
279–295, 2009.

[51] Zuoning Yin, Ding Yuan, Yuanyuan Zhou, Shankar Pasupathy, and Lakshmi

Bairavasundaram. How do fixes become bugs? In ACM SIGSOFT Symposium
and the 13th European Conference on Foundations of Software Engineering, pages
26–36, 2011.

[52] Jie Yu and Satish Narayanasamy. A case for an interleaving constrained shared-

memory multi-processor. In International Symposium on Computer Architecture,
pages 325–336, 2009.

[53] Tingting Yu, Zunchen Huang, and Chao Wang. ConTesa: Directed test suite

augmentation for concurrent software. IEEE Transactions on Software Engineering,
2018.

[54] Tingting Yu, Witawas Srisa-an, and Gregg Rothermel. SimRT: An automated

framework to support regression testing for data races. In International Conference
on Software Engineering, pages 48–59, 2014.

[55] Tingting Yu, Tarannum S. Zaman, and Chao Wang. DESCRY: reproducing

system-level concurrency failures. In ACM SIGSOFT Symposium on Foundations
of Software Engineering, pages 694–704, 2017.

[56] Xin Zhang, Ravi Mangal, Radu Grigore, Mayur Naik, and Hongseok Yang. On

abstraction refinement for program analyses in datalog. In ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, pages 239–248,
2014.

http://gcc.gnu.org/bugzilla/show_bug.cgi?id=21334
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=25330
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=3584
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=40518
https://bugzilla.gnome.org/show_bug.cgi?id=512624
https://jira.codejaus.org/browse/JETTY-1187
http://llvm.org/bugs/show_bug.cgi?id=8441

	Abstract
	1 Introduction
	2 Motivation
	2.1 The First Example
	2.2 The Second Example
	2.3 How Our Method Works
	2.4 The Rank of an Analysis

	3 Preliminaries
	3.1 Partial Trace Comparison
	3.2 Datalog-Based Analysis

	4 Constraint-based Synchronization Analysis
	4.1 Rules for Intra-thread Dependency
	4.2 Rules for Inter-thread Dependency
	4.3 Rules for Signal-Wait Dependency
	4.4 Ad Hoc Synchronization
	4.5 Transitive Closure
	4.6 Lock-Enforced Critical Section
	4.7 Read-from Relation

	5 Computing the Differences
	5.1 Symmetric Difference
	5.2 Differences at Higher Ranks
	5.3 Example for Rank-2 Analysis

	6 Experiments
	6.1 Experimental Setup
	6.2 Results on the First Set of Benchmarks
	6.3 Results on the Second Set of Benchmarks
	6.4 Discussion

	7 Related Work
	8 Conclusions
	References

