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The notions of serializability, linearizability, and sequential consistency
are used in the specification of concurrent systems. We show that the
model checking problem for each of these properties can be cast in terms
of the containment of one regular language in another regular language
shuffled using a semicommutative alphabet. The three model checking
problems are shown to be, respectively, in PSPACE, in EXPSPACE, and
undecidable. ] 2000 Academic Press

1. INTRODUCTION

A common way of specifying concurrent systems is to describe the desired
sequential behavior of the system and then to allow the implementation to execute
certain operations in parallel, provided the appearance of sequential behavior is
maintained for a suitable observer. The earliest such notion of correctness was
serializability (see, for instance, [EGLT76, Pap86, BHG87]), which requires that a
collection of transactions that are scheduled in parallel must produce the same
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result as the same transactions scheduled in some sequential order. Thus, an
observer without the knowledge of the actual order of scheduling would not be able
to infer that the transactions were not executed sequentially. A more abstract
notion of correctness of a concurrent implementation is sequential consistency
[Lam79]. In this case, an abstract specification of the desired sequential behavior
is provided, and the concurrent implementation is required to produce behaviors
that appear correct to an observer that has knowledge of only the local history of
each parallel process. The notion of linearizability [HW90] is similar, but an
observer knows, apart from local histories, also the ordering between any two
transactions of different processes that do not overlap in time.

Each of these notions of correctness has its place. There are cases when
serializability is adequate (as in database applications). In other cases, such as
cache coherence, an abstract service specification is required, and hence sequential
consistency is the appropriate correctness criterion (although it is sometimes
relaxed in practice). In still other cases, especially the implementation of concurrent
objects in software, the stricter requirement of linearizability is met. It ensures that
when the client's invocation to some operation on a concurrent object has returned,
the effects of the operation have been committed and will be visible to all future
calls by other clients. This allows clients without pending calls to communicate with
each other without shattering the illusion of sequentiality.

Implementations of such specifications are often based on fairly subtle protocols
between concurrent processes. While the correctness of many of the standard solu-
tions (e.g., two-phase locking for serializability) has been proved rigorously using
proof theory (see, for instance, [LMWF94]), the specific implementations are still
prone to bugs due to the optimizations introduced by the designers. Because of
indeterminacy of scheduling and communication latency, they are subject to com-
plex race conditions and deadlocks that can easily go undetected in testing and
simulation due to their infrequency of occurrence. Thus, it is desirable to formally
verify that the protocol meets its specification in all circumstances. The technique
of model checking suggests itself for this purpose, since the protocols involved can
in many cases be effectively modeled as finite state machines, at least with enough
generality to examine the concurrency issues involved. This raises the question of
the complexity of verifying concurrency properties on finite state models.

The complexity of deciding sequential consistency and serializability for a single
finite execution trace has been previously studied (we will call this the membership
problem). For the case of serializability2, this membership problem has a polyno-
mial algorithm [EGLT76]. The serializability problem for regular languages has
also been treated in the context of trace theory [FR85]; however complexity results
were not obtained. For sequential consistency the membership problem is known to
be NP-complete [GK92], and for linearizability it is also NP-complete [GK92],
though it is in P if the number of processes is bounded. The complexity of the
model checking problem in these two cases has not been studied, to our knowledge.
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weaker notion called view-serializability [Pap86], for which the membership problem is NP-complete.
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In this paper, we show that each of the three model checking problems��
serializability, sequential consistency, and linearizability��can be cast in terms of
the containment of one regular language in a regular language on a semi-
commutative alphabet. The ability to commute alphabet symbols corresponds to
the observer's inability to distinguish the order of occurrence of certain concurrent
events. Our results are that for serializability the model checking problem is in
Pspace, for linearizability it is in Expspace, and for sequential consistency it is
undecidable.

2. PROBLEM DEFINITIONS

2.1. Preliminaries

Language Operations

For a string _ over an alphabet 7 and a subset 7$ of 7, the projection of _ to
7$, denoted _ A 7$, is the string obtained by deleting symbols not in 7$. Let Lj be
a language over an alphabet 7j for j=1. . .n. The asynchronous product &j Lj is the
language L over the alphabet �j 7j such that a string _ is in L iff for each j, _ A 7j

is in Lj .

Traces

A concurrent alphabet is a pair (7, D), where 7 is a finite alphabet and D is a
binary relation over 7 called the dependency relation. Unlike in trace theory
[Maz87], we do not require D to be symmetric. Two symbols a and b are
commutable (or independent) iff (a, b) � D. For a concurrent alphabet (7, D), define
OD to be the least binary relation over 7* satisfying

(1) OD is reflexive and transitive, and

(2) for all strings _, _$ # 7* and (a, b) � D, _ } ab } _$ OD _ } ba } _$.

Thus, _ OD _$ precisely when the string _$ can be obtained from _ by repeatedly
commuting commutable pairs of symbols. Given a concurrent alphabet (7, D) and
language L over 7, the closure of L with respect to D, denoted clD(L), consists of
all strings _$ such that _$ OD _ for some _ # L.

Example. Let 7=[a, b] and L=(ab)*. For D=[(b, a)], clD(L) contains all
strings _ such that _ contains the same number of a's and b's, and in every prefix
of _, the number of b's does not exceed the number of a's. On the other hand, for
D=<, clD(L) contains all strings with the same number of a's and b's.

Note that when D is symmetric, the relation OD is also symmetric and hence an
equivalence relation over 7*. Then, the equivalence classes of OD are called
Mazurkiewicz traces.

The next lemma establishes that the closure operation preserves context-
sensitivity of a language.
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Lemma 1. If (7, D) is a concurrent alphabet, and L is a context-sensitive
language over 7, then clD(L) is context-sensitive.

Proof. One can modify a given context-sensitive grammar for L as follows:
introduce a new nonterminal A for each terminal symbol a. Then, replace each
occurrence of a in the rules by A. For each terminal symbol a and the corresponding
new nonterminal A, add the rewriting rule A � a. Finally, for each pair of symbols
(a, b) � D and corresponding new nonterminals A and B, add a rewriting rule
AB � BA. K

Unfortunately, the closure operation does not preserve regularity. The next
example shows that it is possible that L is regular but clD(L) is not even context-
free.

Example. Let 7=[a, b, c], L=(abc)*, and D=<. The closure clD(L)
contains all the strings with the same number of a's, b's and c's. This is known to
be context-sensitive and not context-free.

For all the correctness conditions that we consider, the verification problem can
be reduced to checking language-inclusion L�clD(L$) for suitably chosen D and
regular languages L and L$.

Specification of Objects

The definition of an object (or an abstract data type) A consists of a signature
and a specification. The signature of an object A consists of a finite set O(A) of
operations and for every operation o # O(A), a set Wo of input values for the opera-
tion o and a set Vo of responses that the operation o may return. Let P be a finite
set of processes. The event o( p, A, w, v), for an operation o # O(A), a process p # P,
and values w # Wo and v # Vo , denotes the event that the object A returns the
response v when the process p applies the operation o with argument w. The
alphabet 7(A) consists of all events of A. Each object also has a specification that
tells which sequences of operations are legal. A specification S(A) of an object A is
a language over the alphabet 7(A).3

Example. An atomic bit has two operations read and write. The read operation
has no argument and returns either 0 or 1. The input to the write operation can be
either 0 or 1, and it returns no value. For the sake of concise notation, we will drop
the unused argument or value components of operations and use labels such as
read(0) to denote the disjunction +p read( p, x, 0), where the register name x is
understood. The specification of the atomic bit is the language of the automaton
shown in Fig. 1.
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ministic, input-enabled, and symmetric with respect to process names; that is, for every string _ in S(A),
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FIG. 1. Specification of Test-and-set and atomic bits.

Example. A test-and-set bit has two operations T6S and reset. The T6S opera-
tion has no argument and may return either 0 or 1. The reset operation has no
argument and does not return any value. The specification of test-and-set bit is the
language of the automaton of Fig. 1.

The object A is said to be finite-state with size k if k is a bound on the number
of operations, the number of possible input arguments, the number of possible
output responses, and the number of states of the NFA generating S(A). Thus, both
the objects of Fig. 1 are finite-state with size 2.

2.2. Sequential Consistency

The intuition behind sequential consistency (introduced by Lamport [Lam79])
is that an implementation of a collection of concurrent objects should appear to be
correct to an observer that is able to record the history of each individual process,
but has no global clock by which to determine the relative order of events of
different processes.

Example. In the case of the atomic bit x, the event sequence

read( p, x, 0), write( p$, x, 1)

meets the object's specification (recall that 0 is the initial value). On the other hand,
the event sequence

write( p$, x, 1), read( p, x, 0)

does not meet the specification. It is sequentially consistent, however, since the
histories of the two individual processes are the same as those of the correct
sequence. The sequence

read( p, x, 1), write( p$, x, 0)

neither meets the specification nor is sequentially consistent, since every correct
sequence in which p reads 1 must contain an operation that writes 1 to x.
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Let 7 be the set of events of all objects. The specification S is the asynchronous
product &A S(A); that is, a string meets the sequential specification if its projections
on individual objects satisfy their respective specifications. We say that a string _
is sequentially consistent iff there exists a string _$ # S such that, for all processes p,
_ A p equals _$ A p. A sequentially consistent implementation is any language I over
the events 7, such that all strings in I are sequentially consistent.

An equivalent definition of sequential consistency uses dependency relations.
Define the (symmetric) dependency relation sc over 7 to contain all the pairs
o(( p, A, w, v), o$( p$, A$, w$, v$)) such that p= p$. Thus, operations of the same
process are dependent, and those of different processes are commutable. By
definition, a string _ is sequentially consistent iff _ # clsc(S). Checking whether an
implementation I is sequentially consistent with respect to S reduces to checking

I�clsc(S).

One case where sequential consistency is commonly used is in the specification of
shared memory systems. In this case, a finite state protocol is used to maintain the
contents of local cache memories in such a way that loads and stores appear
sequentially consistent to the programmer. In this case, each memory address is an
atomic read�write object, and each processor accessing the shared memory is a con-
current process. For a fixed number of memory addresses, the implementation is
finite-state and thus the language of the implementation is regular. We might there-
fore hope to verify the protocol for the case of a small number of processors and
addresses by using a model checking approach. It is known that the general
problem I�clsc(S) is undecidable [AH89]. In Section 3, we show that the problem
remains undecidable even in the special case when the specification S is a collection
of atomic read�write objects (however, we leave open the possibility that an algo-
rithm exists for some fixed number of objects less than four). Undecidability implies
that the language clsc(S) of sequentially consistent strings is not regular (in fact, it
is not even context-free); thus any finite state implementation that is sequentially
consistent obeys some property that is stronger. For verification purposes, it may
therefore be more appropriate to use a specification that is stronger than sequential
consistency per se.

2.3. Linearizability

Linearizability was introduced by Herlihy and Wing [HW90] as a stronger
requirement than sequential consistency.

Concurrent Implementations of Objects

The specification of an object assumes that the operations are instantaneous or
atomic. In an actual implementation, each operation spans over a period of time
and may involve a sequence of steps. For instance, the specification of a stack
asserts the legal sequences of push and pop operations. In an actual implementation,
a single push operation may correspond to a series of steps that invoke operations
on simpler objects such as registers and arrays. Furthermore, when processes
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accessing the object run concurrently, different operations may execute con-
currently. Hence, we split each operation into an invocation and a return.

Given an object A, for each process p, an operation o, and an input w, let
oi ( p, A, w) denote the event that the process p invokes the code that implements
the operation o on object A with input w. For a response v, let or ( p, A, v) denote
the event that for the process p, the execution of the operation o on object A
returns with response v. The set of all invocation events of the object A is denoted
by 7 i (A), its set of response events by 7 r(A), and their union by 7 ir (A). The union
of such events over all objects is denoted 7 ir. The set of invocation and response
events belonging to a single process p is denoted by 7 ir ( p). Let 7 ir ( p, A)=
7 ir ( p) & 7 ir (A).

A concurrent implementation is a language over the alphabet 7 ir. While opera-
tions by different processes may execute concurrently, an individual process
accesses the object in a sequential fashion; that is, the invocation and response
events of a single process alternate. For each process p, the language

[+A, o (+w oi ( p, A, w) } +v or ( p, A, v))]*

over the alphabet 7 ir ( p) is denoted by Lir ( p). A string _ over the alphabet 7 ir is
well formed iff for every process p, _ A 7 ir ( p) is in the language Lir ( p). A concurrent
implementation is a language I consisting of well-formed strings over the alphabet 7 ir.

Linearizability Definition

Recall that S is the asynchronous product of specifications of individual objects.
Let S ir be the language over the alphabet 7 ir obtained by replacing every symbol
o( p, A, w, v) by the string oi ( p, A, w) or ( p, A, v). Every string in S ir is well formed
with responses immediately following the invocations. Such strings are called
sequential. The (asymmetric) dependency relation lin is defined to be

.
p

[7 ir ( p)_7 ir ( p)] _ [7 r_7 i].

Thus, for two events a, b # 7 ir, (a, b) is in the dependency relation lin either iff both
events belong to the same process or if the first event is a response and the second
one is an invocation. A well-formed string _ over the alphabet 7 ir is linearizable
with respect to the specification S iff _ belongs to the closure cllin(S ir).

Intuitively, a string is linearizable if the invocations and responses can be com-
muted to obtain a sequential string in the specification. The dependency relation
ensures that if two operations belonging to different processes overlap then they
may appear in either order in the sequential string, but if the response of one
precedes the invocation of the other, then no commuting is possible.

Example. For the atomic bit x, Fig. 2 shows both a linearizable and a non-
linearizable string. The left end-point of each interval marks the invocation and the
right end-point marks the response. Thus, the string _ is

readi ( p1), writei ( p2 , 1), readi ( p3), readr ( p1 , 1), writer ( p2), readr ( p3 , 0).
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FIG. 2. Sample strings for atomic bit.

It is linearizable because we can commute its operations to obtain the sequential
string

readi ( p3), readr ( p3 , 0), writei ( p2 , 1), writer ( p2), readi ( p1), readr ( p1 , 1)

which meets the specification. On the other hand, in the string _$

writei ( p2 , 1), writer ( p2), readi ( p1), readr ( p1 , 0)

no commuting is possible, since the two operations do not overlap, and the string
is not linearizable.

The concurrent implementation I is linearizable iff every string in I is linearizable.
Thus, checking linearizability of an implementation I corresponds to checking
language-inclusion I�cllin(Sir).

It turns out that linearizability, unlike sequential consistency, can be checked
separately for individual objects [HW90]:

Lemma 2. A well-formed string _ over 7ir is linearizable iff for every object A,
_ A 7ir (A) is linearizable.

Formulation Using Commit Points

An alternative formulation of linearizability uses the notion of commit points. A
well-formed string _ is linearizable if we can insert between every pair of matching
invocation oi ( p, A, w) and response or ( p, A, v) the operation o( p, A, w, v) such that
the projection of the resulting string on the events in 7 is in the specification
language S. To formalize this intuition, consider the joint alphabet 7 _ 7ir, denoted
by 7oir. As before, the subset of 7 oir containing events by a single process p is
denoted by 7oir ( p). For each process p, the language

[+A, o +w (oi ( p, A, w) } +v (o( p, A, w, v) } or ( p, A, v)))]*
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FIG. 3. The language of invocations, commits, and responses for test-and-set.

over the alphabet 7 oir ( p) is denoted by Loir ( p). The language Loir ( p) corresponding
to a test-and-set bit is shown in Fig. 3.

Lemma 3. A well-formed string _ over the alphabet 7ir is linearizable with respect
to the specification S iff there exists a string { over the alphabet 7oir such that the
following three constraints are satisfied:

(C1) The projection { A 7ir equals _.

(C2) For each process p, the projection { A 7oir ( p) is in the language Loir ( p).

(C3) The projection { A 7 belongs to the specification S. K

Proof. Given a string _ over 7ir, let us call a string { over 7oir a witness for _
if { satisfies the conditions C1, C2, and C3. We wish to establish that a string is
linearizable iff it has a witness.

Only if direction. Assume that _ is linearizable. Then _=_n Olin _n&1 Olin } } }
Olin _0 for some sequential string _0 in S ir. We prove that all the strings _i in this
sequence have a witness by induction.

Consider the sequential string _0 # Sir. Insert the commit event o( p, A, w, v)
between every adjacent pair oi ( p, A, w) and or ( p, A, v). The resulting string {
satisfies C1, C2, and C3 and hence is a witness for _0 .

Now consider _i+1 Olin _i . Let _i+1=\1 } ab } \2 and _i=\1 } ba } \2 obtained
from _i+1 by commuting a and b. By induction hypothesis, _i has a witness, and
there exists a string { over 7oir satisfying C1, C2, and C3. By C1, {={1 } b } {2 } a } {3

such that {2 contains only the commit operations. First observe that if a is an
invoke operation then its matching commit lies in {3 , and we can shift a to the left
without destroying C2. Similarly, if b is a response operation, then its matching
commit lies in {1 , and we can shift b to the right without destroying C2. We will
construct a witness {$ for _i+1 by modifying {.

If a and b are invoke operations, then choose {$={1 } ab } {2 } {3 . If both a and b
are response operations, then use {$={1 } {2 } ab } {3 . If a is invoke and b is response,
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then choose {$={1 } a } {2 } b } {3 . In each case, {$ A 7 equals { A 7 and hence belongs
to S. {$ A 7 ir=({1 A 7 ir) } ab } ({3 A 7 ir) and hence {$ A 7 ir=\1 } ab } \2=_i+1 .
Furthermore, since a and b belong to different processes, and for each commit
operation, the enclosing invoke and response does not change, {$ A 7oir ( p)=
{ A 7oir( p), and hence {$ satisfies C2. This establishes that {$ is a witness for _ i .

If direction. Assume that _ has a witness, and let { be the corresponding string
satisfying C1, C2, and C3. By C1, the string _ embeds within {. By C2, each invoke
and response operation in { is identified with a unique commit operation. Conse-
quently, each symbol in _ can be identified with a unique commit operation in {.
For i< j, the pair (i, j ) of positions in _ is said to be out-of-order if, in {, the
commit operation corresponding to the i th symbol appears after the commit
operation for the j th symbol. We use induction on the number of out-of-order pairs
in _.

Suppose _ has no out-of-order pairs. Then _ has to be sequential. There is only
one possible way of introducing commits in a sequential string, and thus, { is
completely determined by _. In this case, since { satisfies C3, _ # S ir, and thus,
linearizable.

Suppose _ has k>0 out-of-order pairs. Observe that if _ has some out-of-order
pair, then some pair of adjacent positions has to be out-of-order. Then,
_=\1 } ab } \2 such that the commit corresponding to a is after the commit corre-
sponding to b in {. This can happen only when a and b belong to different processes
and are either both invokes, or both responses, or a is invoke and b is response.
Thus, (a, b) # lin. Let _$=\1 } ba } \2 , and we have _ Olin _$. Since { is a witness for
_, {={1 } a } {2 } b } {3 such that {2 contains only the commit operations. We
construct a string {$ that is a witness for _$.

If a and b are invoke operations, then choose {$={1 } ba } {2 } {3 . If both a and b
are response operations, then use {$={1 } {2 } ab } {3 . Suppose a is invoke and b is
response. Let {2={$2 } {"2 such that {$2 does not contain the commit corresponding
to a and {"2 does not contain the commit corresponding to b. This is possible
since we know that the commit for a is after the commit for b. Choose
{$={1 } {$2 } ba } {"2 } {3 . In each case, {$ A 7 equals { A 7 and hence belongs to S.
Furthermore, {$ A 7 ir=_$, and for each p, {$ A 7oir ( p)={ A 7oir ( p). This establishes
that {$ is a witness for _$.

The number of out-of-order pairs in _$ with respect to the witness {$ is k&1.
Hence by induction, _$ is linearizable. Since _ Olin _$, _ is linearizable. K

Recall that sequential consistency corresponds to considering two events to be
dependent only when they belong to the same process, equivalently, to replacing C1
by a weaker requirement C1$ which says that for every process p, { A 7 ir ( p) equals
_ A 7 ir ( p) (i.e., every process sees the same sequence of invocations and responses).
Thus, the string _$ of Fig. 2 is sequentially consistent.

The original formulation of linearizability [HW90] allows some pending invoca-
tions without a matching response. A string with pending invocations is linearizable
if it has a linearizable completion obtained by adding appropriate responses. We
consider only strings in which all invocations have been matched, and this leads to
simpler definitions. While applying our definition to a distributed implementation,
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one needs to check, in addition to linearizability, the existential property that every
invocation has a possible response, expressed by the Ctl-formula:

\g (involke � _hresponse).

2.4. Serializability

Serializability as a correctness criterion for database transactions was first dis-
cussed in [EGLT76]. Database transactions are a generalization of operations on
atomic objects; the execution of each transaction consists of several operations such
as reads and writes to memory objects. An execution of a transaction system is
sequential if the occurrences of the transactions are not interleaved, that is, transac-
tions execute in full, one after the other. Database serializability is a correctness
criterion for ensuring that database transactions appear to execute in a sequential
fashion. The criterion is defined using an equivalence relation among executions.
Strings that are equivalent are considered indistinguishable. A system is serializable
if every execution is indistinguishable from a sequential execution. For us, the
equivalence is defined by a symmetric dependency (conflict) relation among opera-
tions (this corresponds to the so-called conflict-serializability which is the most
broadly used definition among the various definitions appearing in the literature).
The transactions can occur multiple times in a single execution, and we allow inter-
nal choices in the transactions, which allow them to execute different operations in
different incarnations.

A database system DB consists of

v A finite set T of transactions. Every transaction T has a finite alphabet 7T

of operations. We assume that for T{T $, 7T and 7T $ are disjoint. Each alphabet
7T includes two special symbols begin(T) to mark the beginning of an instance of
the transaction and end(T ) to mark the end of of the transaction. Denote 7$T=
7T"[begin(T ), end(T )]. The set 7=�T 7T contains all events. The specification of
a transaction T is the regular language S(T ), which is required to be a subset of
begin(T )(7$T)* end(T ).

v A finite set of objects. Every object A has a finite alphabet 7A . It holds that
�A 7A=�T 7$T , i.e., every event besides begin and end transaction involves some
object. The specification of an object A is the regular prefix closed language S(A).

v A symmetric dependency relation se satisfying that (1) if (o(T, A, v, w),
o$(T $, A$, v$, w$)) # se then either T=T $ or A=A$ (that is, events can be dependent
only if they involve the same transaction or the same object), and (2) every opera-
tion of transaction T must be dependent on begin(T) and end(T). We assume that
the specifications of the transactions and the objects are closed under the
dependency relation, that is, S(T )=clse(S(T )) and S(A)=clse(S(A)).

The definition of a database system allows independency, i.e., concurrency, among
events that operate over the same object. This allows, e.g., concurrent reads of the
same object. Independence among events of the same transaction is allowed, but is
not typical.

177CORRECTNESS CONDITIONS FOR CONCURRENT OBJECTS



An occurrence of a transaction is a string from S(T ). It begins with the symbol
begin(T ), followed by a string over 7$T , followed by end(T). In the database system,
all the transactions run in parallel and occur repeatedly. The executions of a
database system DB is the asynchronous product I=(&T S(T )*) & (&A S(A)).

Observe that the possible interleavings of parallel transactions is constrained by
the synchronization introduced by the objects. Intuitively, serializability of a
language means that each execution in the language is trace equivalent to one in
which occurrences of transactions are executed completely one after the other. Let
SP=+T (begin(T ) (7$T)* end(T )). The database DB is serializable iff I�clse(SP*).

Example. Consider a typical database system, with the following operations:

rlock(T, x) -T locks object x for read only.
wlock(T, x) -T locks object x for write only.
unlock(T, x) -T unlocks object x.

In this case, two operations are dependent iff either (1) they belong to the same
transaction, or (2) they lock the same object and at least one of them is a write-lock.
A typical specification S(x) of the object x is the set of prefixes of:

[(&T (rlock(T ) unlock(T ))*) +T (wlock(T ) unlock(T))]*

That is, many read locks may be held concurrently, but write locks are exclusive.
If the database system has two copies T1 and T2 of the transaction whose specification
contains the single string

begin(T ) wlock(T, x) unlock(T, x) wlock(T, y) unlock(T, y) end(T )

then it is not serializable, since

begin(T1) begin(T2) wlock(T1 , x) unlock(T1 , x) wlock(T2 , x) unlock(T2 , x)

wlock(T2 , y) unlock(T2 , y) wlock(T1 , y) unlock(T1 , y) end(T1) end(T2)

is an execution of DB, which cannot be shuffled such that one of the occurrences
of the transactions executes entirely after the other. On the other hand, a database
with two copies of the transaction

begin(T ) wlock(T, x) wlock(T, y) unlock(T, x) unlock(T, y) end(T ),

following the well-known two-phase locking protocol, is serializable.

3. UNDECIDABILITY OF SEQUENTIAL CONSISTENCY

We now consider the model checking problem for sequential consistency, where
the implementation I is a regular language and S is a specification of a finite collec-
tion of finite-state objects. The basic result is that testing I�clsc(S) is undecidable,
even for the special case of read�write objects. We argue this in two steps. First, we
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show that I�clsc(S) is undecidable for arbitrary regular languages S. This is a
special case of a theorem in [AH89]. The proof in [AH89] shows that this
problem is undecidable even if we set I=7*. However, here we offer an alternative
proof, which may provide some additional insight into why the problem is
undecidable. Next, we show that this problem reduces to the special case where
S=S rw, the language of read�write objects.

The proof for the general case is in two steps:

v Effectively reduce the n-counter halting problem (which we will denote
n-ZN, for ``n counters with test for zero and test for nonzero'') to n-counter halting
without test for nonzero (which will be denoted n-Z).

v Effectively reduce n-Z to I�clsc(S), for suitable I and S.

Counter Machines

The control of a counter machine is a finite automaton M, whose alphabet is
made up of increment, decrement and test operations. For the case of an n-counter
machine with both test for zero and non-zero, let 7n-ZN be the union
�n

i=1 [Ii , Di , Z i , Ni]. The symbols Ii , D i , Zi , Ni stand respectively for increment,
decrement, test for zero, and test for non-zero on counter i.

We let c_, j denote the value of counter j after the string _ of operations of the
finite control (i.e., c_, j is the difference |_ A Ij |& |_ A Dj | between the number of
increments and decrements). We say that a string _ of the finite control is admitted
iff

(1) for all prefixes ?Zj of _, c?, j=0, and

(2) for all prefixes ?Nj of _, c?, j {0.

That is, a string is admitted if whenever counter i is tested for zero it is zero, and
whenever it is tested for nonzero it is nonzero. The decision problem n-ZN is to
determine, for a given finite automaton M on alphabet 7n-ZN , whether some
_ # L(M ) is admitted.

Lemma 4. n-ZN is undecidable, for n�2.

We now reduce this problem to the case without test for nonzero. Let 7n-Z be the
union �n

i=1 [I i , Di , Z i]. The decision problem n-Z is to determine, for a given finite
automaton M on alphabet 7n-Z whether some _ # L(M ) is admitted.

Theorem 1. n-Z is undecidable, for n�3.

Proof. By reducing n-ZN to (n+1)-Z. Replace every occurrence of Ni by the
following

(Di (Di In+1)* Z i (I i Dn+1)* Zn+1 Ii)

(Ii (I i Dn+1)* Z i (Di In+1)* Zn+1Di).

Note that after executing the above, the values of the counters remain unchanged
(since counters i and n+1 are incremented and decremented an equal number of
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times) and counter i must be nonzero (that is, a positive value is decremented until
zero and then restored, and similarly a negative value is incremented to zero and
then restored). If counter i is zero at the beginning of this sequence, then the given
string cannot be admitted. K

This result might be of some independent interest for undecidability proofs in
general, since it demonstrates a slightly weaker class of machines that are Turing
complete (albeit with one additional counter).

Undecidability of the General Case

We now observe that a string is admitted when the number of Ii 's and Di 's
between any two Zi 's is equal. When we allow I i and Di to commute with each
other, but not with Z i , then the number of increments and decrements is equal
exactly when they commute to some string in (Ii Di)*. This allows us to reduce the
existence of an admitted string to the problem of containment in the closure of a
regular language.

Lemma 5. Let S and I be regular languages, over some alphabet 7, and let
D�72. The proposition I�clD(S ) is undecidable.

Proof. By reduction from n-Z. Let I be the language of the finite control,
and let

S= .
n

j=1

((Ij+Dj)* Z j)* (I j D j)* (I+
j +D+

j ) Z j 7*n-Z

and let D be such that Ii and Di do not commute with Zi , but all other pairs com-
mute. The language S is constructed so that its closure is all of the strings that are
not admitted. Thus, I contains an admitted string exactly when I�3 clD(S ). K

Theorem 2. The problem of checking sequential consistency, for implementation
and specification given by regular languages, is undecidable.

Proof. By reduction from n-Z. Let A be a concurrent object, with one operation
o, having no input, and outputs in the set 7n-Z . We use the same languages I and
S as in the previous proof,4 except that we make the following substitutions:

Ii � o( p2i , A, Ii)

Di � o( p2i+1 , A, Di)

Zi � o( p2i , A, Zi) o( p2i+1 , A, Z i).
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In this way, we obtain the desired dependence relation between the encodings of Ii ,
Di , and Zi . Now the finite control contains an admitted string exactly when
I�3 clD(S ). K

Special Case of Read�Write Registers

We now consider the problem when the operations on the concurrent objects are
restricted to reads and writes. That is, for any object A, let 7 rw

A be the set of all
operations read( p, A, v) and write( p, A, v) for some process p and value v. Let the
specification S rw

A be the set of strings _ # 7 rw
A where each value read matches the

most recent write; that is, if ? } read( p, A, v) is a prefix of _, then

? # (7 rw
A )* write(A, v) read*

Let S rw=&A S rw
A .

Theorem 3. The problem of checking I�clsc(S rw), where I is a regular language,
is undecidable.

Proof. This theorem can be proved by a reduction from the previous problem,
namely, deciding whether I�clD(S ). Since this reduction is fairly complex, it will
help to introduce some notation in order to describe it more succinctly. When a
sequence of operations is in S rw, we will say that it is totally consistent. We will first
of all need to be able to define sequences of operations that are atomic, in the sense
that atomic sequences can never be interleaved in a totally consistent string. To
accomplish an atomic sequence of operations, a process first writes its own
identifier into a designated memory location Ab , then performs the sequence of
operations, then reads its own identifier from Ab . If any other process has begun
an atomic sequence in the interim, then the final read of Ab will be inconsistent. We
will use the following notation for such a ``bracketed'' sequence of operations,

[?]p=w( p, Ab , p) ? r( p, Ab , p),

where ? is a sequence of operations of process p. In effect, a bracketed sequence of
this form acts like an atomic operation of process p and commutes with atomic
operations of other processes. As an additional convenience, for any object drawn
from some finite set (e.g., a state of an automaton) we will use square brackets to
denote a unique integer encoding that object. The symbol = will stand for some
otherwise unused integer.

Now, the basic idea of the proof is as follows: we start with a problem I�clsc(S ),
where I and S are languages defined by finite automata. We can assume without
loss of generality that the automaton for S has a unique final state (if not, we can
append to all strings in I and S a special terminal symbol that takes the corre-
sponding automata to a unique final state and commutes with all other symbols).
Given the automaton for S, we will define a function , that maps every string _ to
a string _$ such that _ # clsc(S ) exactly when _$ # clsc(S rw).
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The intuition behind , is as follows. Let S be the automaton accepting S. The
map , takes each symbol : in a string _ and maps it to a string of operations
encoding : itself and all possible transitions of S on :. The resulting string _$ can
be shuffled to a totally consistent string only by constructing, as a prefix, an accept-
ing run of S on some shuffle of _ and shuffling all the unused transitions to the
end of the string. Thus _$ is sequentially consistent w.r.t. S rw exactly when _ is
sequentially consistent w.r.t. S.

Now we define the precise encoding of alphabet symbols and transitions in ,(_).
We represent a transition (s, :, s$) of S by a sequence of reads and writes as
follows:

\((s, :, s$) )=[r(As , [s]) r(A l , [:]) w(As , [s$]) w(A l , [=])][s, :, 0] .

The two read operations act as a guard, guaranteeing that the current state is s
(stored in location As) and the current tape symbol is : (stored in location Al)
before the transition starts. After the transition, the current state is s$ and the tape
symbol is ``used up'' by setting it to =.

Each alphabet symbol :, an operation of process p, is represented by a sequence

#(:)=[r(Al , =) r(Ae , 0) w(Al , [:])][ p] .

The first read operation ensures that the previous tape symbol has been used up,
the second read ensures that symbols cannot commute past the ``end marker,'' and
the write sets the current symbol (in location Al) to :. Note that transitions and
tape symbols commute because they are operations of different processes, but they
cannot interleave because they are bracketed. Note also that tape symbols and
transitions must alternate in any totally consistent string. For each tape symbol :
in _, we will insert into _$ a copy of : and of every transition (s, :, s$) in S. In
a totally consistent shuffle of _$, we want one transition to follow each tape symbol
and the remainder to shuffle to the end of the string. To allow this, we also insert
a collection of placeholders, one per transition, that must also shuffle to the end of
the string. The placeholder for a transition (s, :, s$) is

\$((s, :, s$) )=[r(Ae , 1) w(As , [s]) w(Al , [:])][s, :, 1] .

The read operation ensures that placeholders must commute past the end marker.
Thus, each : in _ translates to

�(:)=#(:) \(t1) \$(t1) } } } \(tk) \$(tk),

where [t1 , ..., tk] is the set of transitions of S on :. Finally, we need the ``begin
marker'' ?0 , which sets up the initial state of S, and the end marker ?f , which
checks the final state. Let

?0=[r(As , =) r(Al , =) r(Ae , 0) w(As , [s0])]&

?f =[r(As , sf) w(Ae , 1)]& ,
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where s0 and sf are the initial and final states of S, respectively, and & is some
otherwise unused process number. Note that a value 1 in memory location Ae is
used to indicate that the end marker has passed. All the ``placeholders'' for unused
transitions must shuffle to a point after the end marker, since they read a value 1
from this location. We can now define our map , on strings as follows:

,(_)=?0 �(_1) �(_2) } } } �(_n) ?f .

If ,(_) has a totally consistent shuffle, then clearly _ # clsc(S ), since the transitions
used in the shuffle define an accepting run of S. Conversely, if _ shuffles to a string
with an accepting run in S, we can construct a totally consistent shuffle of ,(_) by
shifting the transitions not used in the run to the end of the string, each after its
corresponding placeholder.

From an automaton for a given regular language I, we can effectively construct
an automaton for I$=[,(_) | _ # I]. This involves only concatenation of the begin
and end markers, and substitution of the string �(:) for each symbol : (if this is
not obvious, imagine performing the same operation on regular expressions
instead). Thus, the undecidable problem I�clsc(S ) can be effectively reduced to the
problem I$�clsc(S rw), which is therefore also undecidable. K

Note that the above reduction uses a total of four read�write objects. This is the
simplest reduction that we are aware of, leaving open the possibility that sequential
consistency may be decidable for a fixed number of read�write objects up to three.

4. DECIDING LINEARIZABILITY

In this section, we consider the problem of verifying that a concurrent implemen-
tation I is linearizable with respect to the specification S, that is, checking the
inclusion I�cllin(S ir).

Computing the Closure

Lemma 3 suggests an equivalent formulation of the language cllin(S ). Define C(S )
to be the language consisting of strings over 7oir satisfying the requirements C2 and
C3 of Lemma 3. Then, Lemma 3 can be reformulated as

cllin(S ir)=C(S ) A 7 ir.

The next lemma shows that the language C(S ) can be expressed conveniently as an
asynchronous product:

Lemma 6. C(S ) equals (&p Loir ( p)) & S.

Proof. Follows from the definition of the asynchronous product &. K

Thus, for a string to be in C(S ), the projection on operations of a single process
consists of alternation of invocation, commit, and response, and the possible
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interleaving of the operations of different processes is constrained by the fact that
the specification S allows only certain sequences of commits. It follows that

Theorem 4. If 7 ir is finite and S is regular then the set cllin(S ir) of linearizable
strings is a regular language.

Proof. Suppose 7 ir is finite. Then, for each process p, the language Loir ( p) is
regular. The asynchronous product preserves regularity, and hence, C(S ) is regular.
The projection operation also preserves regularity, and hence, C(S ) A 7 ir is
regular. K

Complexity

Linearizability can be checked separately for each object. Suppose A is a finite-
state object with size k.

Lemma 7. For each process p, the alphabet 7oir ( p) contains at most 2k2+k3

symbols. The language Loir ( p) is regular and can be generated by a DFA with at most
2k2+1 states.

Proof. Assume that there are at most k possible operations; each operation can
have at most k possible arguments and can return at most k possible responses.
Define a DFA M as follows. There is a single initial state s. For each event
o( p, w, v), (1) there is a state to, w and a state uo, v , and (2) there is an edge from
s to to, w labeled with the invoke operation oi ( p, w), an edge from to, w to uo, v

labeled with o( p, w, v), and an edge from uo, v to the initial state s labeled with the
response or ( p, v). The only accepting state is s. The automaton M accepts the
language Loir ( p) (see Fig. 3 for the automaton corresponding to the test-and-set
bit). The number of invoke operations is at most k2, the number of commit
operations is at most k3, and the number of response operations is at most k2. The
number of states of M is at most 2k2+1. K

If a language L1 is generated by an NFA with m1 states and L2 is generated by
an NFA with m2 states, then there is an algorithm to construct an NFA, with at
most m1 } m2 states, that accepts the asynchronous product L1 & L2 . If a language
L over 7 is generated by an NFA with m states, and 7$ is a subset of 7, then there
is an algorithm to construct an NFA, also with m states, that accepts the projection
L A 7$. Putting these together, we get:

Lemma 8. If the object A has size k with n processes, then the size of the alphabet
7oir is bounded by 2nk2+nk3, and the language cllin(S ir) is generated by an NFA
with at most k } 2n } k2n states.

To check the language-inclusion I�cllin(S ir), we construct the NFA accepting
cllin(S ir), complement it, and test if the intersection of the complement with I is
empty. Complementing an NFA involves an exponential subset-construction. This
gives a doubly exponential upper bound for checking linearizability:

184 ALUR, MCMILLAN, AND PELED



Theorem 5. Let A be an object of size k with n processes, and let I be a con-
current implementation of A given by an NFA with m states. Then the problem of
checking whether I is linearizable can be solved in time O(m } 2k } 2n } k2n

).

The space complexity of the above linearizability test is Expspace. This is because
the emptiness of the product of I and the complement of the NFA accepting
cllin(S ir) can be checked on-the-fly, without explicitly constructing the complement.
It is easy to show that the problem is Pspace-hard; but we do not have a matching
Expspace lower bound.

5. DECIDING SERIALIZABILITY

We consider now the algorithm and the complexity of checking serializability. As
in the definition, T is the set of transactions, 7 is the set of events, and se is a
symmetric dependency relation, and let SP=+T (begin(T)(7$T)* end(T )).

In order to check whether I�clse(SP*) we can generate an automaton M for the
complement of clse(SP*) and check whether I & L(M ) is empty. The algorithm
for checking whether a fixed string is serializable constructs a graph over the
transaction instances and checks for conflict-cycles. This suggests the following con-
struction for M. The automaton M remembers in its finite control the dependency
order between active transactions (a transaction is active if it has started but has
not yet ended). It also remembers which operations have occurred in the active
transactions. When an operation : occurs in some active transaction, it is checked
against the operations that occurred in other active transactions. Then an ordering
edge is added from any transaction in which an operation ; has occurred such that
(;, :) # se to the transaction which includes :. Then edges are added to form a
transitively closed relation. A cycle in this order means that the string is not
serializable.

Assume that there are n transactions T1 . . .Tn . The serializability automaton M
has the following components:

v State-space is 2(1 . .n)_(1. .n)_27T1_ } } } _27Tn. The first component of each
state s, denoted PO(s), consists of a transitive relation on elements labeled 1. . .n (it
denotes the conflict dependencies among the active transactions). If the string _
being read is serializable, then there must be a trace equivalent string {#se _ in
which the occurrences of transactions that have started but not yet ended are
ordered according to PO(s). For each transaction Ti , there is a component,
denoted 7i (s), that is a subset of 7Ti

. These are the operations which occurred in
the current active execution of the transaction Ti .

v The initial state is s0 with PO(s0) the empty relation and 7i (s0) the empty
set for 1�i�n.

v The transition function $ maps each state s and operation : to the next state
s$ according to the following cases: If PO(s) contains a cycle then s$=s. Otherwise,
let : be an operation of transaction Ti , and consider the following two cases:
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�� : does not end a transaction: Set 7i (s$) to 7i (s) _ [:], and PO(s$) to the
transitive closure of the relation

PO(s) _ [( j, i ) | _;(; # 7j (s) 7 (;, :) # se)].

That is, add : to the operations of transaction Ti , and add all edges induced by the
occurrence of :. Note that the application of the transitive closure is crucial to the
construction.

�� : is the end-transaction event endTi
: Set PO(s$) to PO(s)"[( j, k) | j=i 6

k=i], and 7i (s$) to empty set. That is, since there is no active occurrence of Ti any
more, we remove all the edges between i and other nodes and remove the opera-
tions that appeared in Ti .

v The accepting states are those states s in which PO(s) is acyclic, i.e., a partial
order, and 7i (s) is empty set, for 1�i�n.

Theorem 6. The automaton M accepts exactly the language clse(SP*). K

This gives:

Theorem 7. Suppose I is given by an NFA with m states, there are n transactions,
and for each transaction T, 7T contains at most k operations. Then, the problem of
checking whether I is serializable can be solved in time O(m } 2n2+nk). K

The space complexity of the above test for serializability is Pspace. Checking
serializability is Pspace-complete in the number of processes, i.e., the totality of
transactions and objects. The hardness follows from the hardness of reachability.
Notice that the construction of the automaton M works also in the case that se is
not symmetric.

6. CONCLUSION

We have considered three problems in the verification of systems of concurrent
objects that can be stated in the form I�clD(S), for appropriate regular languages
I and S and appropriate dependency relations D. This formalization provides some
perspective on the similarities and differences between the three notions of correct-
ness. All are based on the idea of serializing a string, which means shuffling its
operations so that transactions appear to be sequential. Sequential consistency and
linearizability require that a string be serialized so that it meets a given specifica-
tion. The difference is in which operations are allowed to commute. For
serializability, on the other hand, we require only that the string can be serialized
at all. In this case the dependency relation is instance specific.

In two cases, linearizability and serializability, the closure clD(S) was found to be
regular. The reasons for this are different in each case. In the case of linearizability,
the inability to commute nonoverlapping operations means that any given transac-
tion can commute over only a finite number of other transactions (those it overlaps
with). Thus, the closure under commutation can be recognized with finite memory.
In the case of serializability, it is only necessary to commute each transaction over
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a finite number of other transactions (again, those it overlaps with) in order to
reach the ``nearest'' string in S. Commutation of nonoverlapping transactions is not
needed because the language S permits the transactions to occur in any order. This
also explains why, in the case of serializability, the closure is of size that is only
singly exponential, instead of doubly exponential. The language S is such that there
is no need to guess the order of commit points��all orders are allowable.
The automaton obtained for the closure is therefore deterministic and easily
complementable.

There are some implications of these results for automatic verification of systems
of concurrent objects. First, it is clearly preferable to check linearizability rather
than the weaker condition of serializability when both are applicable. When checking
linearizability, the exponential space complexity might be avoided by requiring the
user to provide a deterministic automaton that fixes the commit point for each
operation. There are some applications (such as cache coherence) where
linearizability is not applicable because commit points for operations cannot be
found in the range of time over which those operations are pending. In this case,
we know that any finite state implementation must satisfy some property that is
stronger than sequential consistency, since the language of sequentially consistent
strings is nonregular. In this case, one might consider specifying some stronger, but
regular property to allow for more efficient verification.

Left open by this work are the questions of lower bounds for model checking
serializability and linearizability.
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