WEAK CONSISTENCY

Constantin Enea
Ecole Polytechnigque

Replicated objects

Distributed systems

read(x) ?

write(x,1)

write(x,2)

O

x4

Conflicting concurrent updates: how are they observed on different replicas ?

Adversarial environments: crashes, network partitions

Pessimistic Replication

read(x) 1
8 read(x) 2

write(x,1)

write(x,2)

.

read(x) 1
read(x) 2

Using consensus algorithms to agree on an order between conflicting concurrent updates

/ strong consistency x availability

CAP theorem [Gilbert et al.’02]: strong cons. + availability + partition tolerance is impossible

Optimistic Replication
read(x) 1
Bread(x)z

write(x,1)

write(x,2)

.

read(x) 2
read(x) 1

Each update is applied on the local replica and propagated asynchronously to other replicas

xstrong consistency J availability

Replicas may store different versions of data: weak consistency

Optimistic data replication

Optimistic replication: replicas are allowed to diverge
— operations are applied immediately at the submission site

add 3 ‘%

-

G

Optimistic data replication

Optimistic replication: replicas are allowed to diverge
— operations are applied immediately at the submission site
— In the background, sites exchange and apply remote operations

Concurrent operations

Concurrent operations

Solving conflicts between concurrent operations
— speculate and roll-back, e.g., Google App Engine Datastore

add 3 ‘%

Concurrent operations

Solving conflicts between concurrent operations
— speculate and roll-back, e.g., Google App Engine Datastore

Concurrent operations

Solving conflicts between concurrent operations
— speculate and roll-back, e.g., Google App Engine Datastore

/

commuhnicate

and roll-back ”N

Concurrent operations

Solving conflicts between concurrent operations
— speculate and eventually, roll-back, e.g., Google App Engine Datastor:
— convergent conflict resolution, e.g., CRDTs [Shapiro et al.’11]

add 3 ’
add 3 : l‘
e__
rem 3
6—
130
| 7
“add wins” \ m/

Formal verification of Opt. Repl. Syst.

* Correct operations ? Allowed level of
consistency between replicas ?

— by CAP theorem [Gilbert et al.’02], achieving
strong consistency (linearizability) is impossible

— various correctness criteria: eventual consistency,
causal consistency, etc

Example: Key-value map

struct Timestamp(number: nat; rid: nat);
function lessthan(Timestamp(nl,rid1), Timestamp(n2,rid2)) : boolean {
return (nl < n2) V (nl == n2 A ridl < rid2);

}

message Update(key: Key, val: Val, ts: Timestamp) : reliable

role Replica(rid: nat) {
var localclock: nat;
var store: pmap(Key, pair(Val, Timestamp)) ;

operation read(key: Key) {
match store[key] with
1 — { return undef;}
(val,ts) — { return val; }

}
}

operation write(key: Key, val: Val) {
localclock++; // advance logical clock
store[key| := (val,ts);
send Update(key,val, Timestamp(localclock,rid)) ;
return ok;
}
receive Update(key,val,ts) {
if (store[key] = LV store[key].second.lessthan(ts))
store[key] := (val, ts);
if (ts.number > localclock) // keep up with time
clock := ts.number:

Example: OR-Set

payload set E, set T’

initial g, &
query contains (element e) : boolean b
let b = (In: (e,n) € F)
query elements () : set S
let S = {e|dn: (e,n) € E}
update add (element e)
prepare (e)
let n = unique()
effect (e, n)
E:=FU{(e,n)}\T

update remove (element e)
prepare (e)
let R = {(e,n)|3n: (e,n) € E}
effect (R)
E:=FE\R
T:=TUR

W o=

D P A

: Sn++

Example: ABD regiSter [Attiya, Bar-Noy, Dolev 1995]

local variables:

sn, initially 0 {for readers and writers, sequence number used to identify messages}

val, initially v {for servers, latest register value}

ts, initially (0, 0) {for servers, timestamp of current register value, (integer, process id) pair}

function queryPhase(): 18: when ("update”,v,u,s) is received from g:
sn++ 19: if u > ts then (val,ts) := (vu)
broadcast ("query",sn) 20: send ("ack",s) to q

wait for > ”TH reply msgs to this query msg

(v,u) := pair in reply msg with largest timestamp

. return (v,u) 21: Read():

22: (v,u) := queryPhase()

23: updatePhase(v,u) {write-back}
24: return v

: when ("query",s) is received from q:
. send ("reply”,valts,s) to q

: function updatePhase(v,u): 25: Write(v) for process with id i:

26: (—, (t,—)) := queryPhase() {just need integer in timestamp}

: broadcast ("update”,v, u, sn) 27: updatePhase(v,(t + 1, 1))

. wait for > "TH ack msgs for this update msg

. return

28: return

Formal Definitions

* Histories

e Abstract Executions

* QOperation Context

* Replicated Data Types

* Return-value Consistency

(Using the formal framework in “Principles of Eventual Consistency” by S. Burckhardt)

Histories

Definition 3.1 (History). A history is an event graph (FE, op, rval, rb, ss)
where

(h1) op: E — Operations describes the operation of an event.

(h2) rval : E — Values U {V} describes the value returned by the
operation, or the special symbol V (V ¢ Values) to indicate that
the operation never returns.

(h3) rb is a natural partial order on E, the returns-before order.

(h4) ss is an equivalence relation on E, the same-session relation.

Definition 3.2 (Well-formed History). A history (FE,op,rval,rb,ss) is
well-formed if

(h5) « LN y implies rval(x) # V for all z,y € F.
(h6) for all a,b,c,d € E: (agb A cgd)é(agd V cgb).

(h7) For each session |e] € E/~s, the restriction rb|) is an enumera-
tion.

Abstract Executions

Definition 3.3 (Abstract Executions). An abstract execution is an event
graph (E, op,rval, rb,ss, vis, ar) such that

(al) (E,op,rval,rb,ss) is a history.
(a2) vis is an acyclic and natural relation.

(a3) ar is a total order.

Definition 4.4 (Operation Context). An operation context is a finite
event graph C' = (F,op,vis,ar) where op : E — Operations describes
the operation of each event, vis is an acyclic relation representing vis-
ibility among the elements of E, and ar is a total order representing
arbitration of the elements in /. We let C be the set of all operation

contexts.

Replicated Data Types

Definition 4.5 (Replicated Data Type). A replicated data type F is a
function Operations x C — Values that, given an operation o and
an operation context C| specifies the expected return value F(o,C) to
be used when performing o in context C, and which does not depend
on the events, i.e. is the same for isomorphic (as in Definition 2.2)
contexts: C ~ C’" = F(o,C) = F(o,C") for all o,C,C".

Replicated Counter: a read returns the number of increment operations in the context

Fetr(rd, (E, 0p,vis,ar)) = |{e’ € E|op(e) = inc}\

Last-Writer-Wins Register: a read returns the value of the last write in the context
(w.r.t. arbitration order), or “undef”, if there is no write

_ | undef if writes(E) = ()
Freg(rd, (£, 0p, Vis, ar)) = { v if op(max, writes(E)) = wr(0)

Multi-Value Register: a read returns a set of values, one for each write in the context
that has not been overwritten by some other write

Fmvr(rda (Ea op, Vi57 ar)) —
{v]|Je € E :op(e) =wr(v) and Ve’ € writes(E) : e VN e'}

OR-Set ?

payload set E, set T’

initial g, &
query contains (element e) : boolean b
let b = (In: (e,n) € F)
query elements () : set S
let S = {e|dn: (e,n) € E}
update add (element e)
prepare (e)
let n = unique()
effect (e, n)
E:=FU{(e,n)}\T

update remove (element e)
prepare (e)
let R = {(e,n)|3n: (e,n) € E}
effect (R)
E:=FE\R
T:=TUR

Return-Value Consistency

Definition 4.8. For a replicated data type F, we define the return value
consistency guarantee as

RVAL(F) ¥ vVeec E: mal(e) = Flop(e), context(4, e))

where context is defined as follows:

Definition 4.9. Let A = (F,op, rval,rb, ss, vis, ar) be an abstract execu-

tion containing an event e € /. Then

def
context(A,e) = A|vis—1(e),op,vis,ar

Formal Definitions

def .
READMYWRITES = (so C vis)

def . .
MONOTONICREADS = (vis;so) C vis

def . .
CONSISTENTPREFIX = (ar;(visN —ss)) C vis

NOCIRCULARCAUSALITY & acyclic(hb)

def .
CAUSALVISIBILITY = (hb C vis) def

dof hb = (soUvis)™
CAUSALARBITRATION = (hb Car)

def
CAUSALITY = CAUSALVISIBILITY A CAUSALARBITRATION

SINGLEORDER = 3B’ C rval (V) :vis = ar \ (E' x E)
def
REALTIME = rb Car

LINEARIZABILITY (F) I SINGLEORDER A REALTIME A RVAL(F)

SEQUENTIALCONSISTENCY (F) aet
SINGLEORDER A READMYWRITES A RVAL(F)

def
CAUSALCONSISTENCY(F) =

EVENTUALVISIBILITY A CAUSALITY A RVAL(F)
def

BASICEVENTUALCONSISTENCY (F) =
EVENTUALVISIBILITY A NOCIRCULARCAUSALITY A RVAL(F)

EventualVisibility: the nb. of operations not “seeing” an operation is finite

Causal Consistency (CC)

[Lamport’ 78]
If an update is visible, then all the updates is dependent on should be also visible

e write(x,1) and write(y,1) are causally dependent:

write(x,1)
write(y,1) \

read(y): 1
read(x): 1.9

Causal Consistency (CC)

[Lamport’ 78]
If an update is visible, then all the updates is dependent on should be also visible

e write(x,1) and write(y,1) are causally dependent:

8 read(x): 1
_ write(y,1)
write(x,1) 8)
wrltex1 g
8/
read(y): 1

read(x): 1.9

Causal Consistency (CC)

[Lamport’ 78]
If an update is visible, then all the updates is dependent on should be also visible

e write(x,1) and write(y,1) are concurrent:

8 write(y,1)

write(x,1) 8

J

\ =

= =

) %
=N = A
/4% 8 read(x): 1
8 read(y): O
read(y): 1

read(x): O

Formalization: Visibility

[Burckhardt et al.”14]

A is visible to operation B at replica R if the effect of A had been included in R
at the time when B was executed

_—

write(x,1) > read(x) 1 read(y) 1

wrlte(y,) > read(x) 1

3 vis. vis 2 po A vis transitive
A V read. return value is consistent with the set of visible ops”

Formalization: Visibility

[Burckhardt et al.”14]

A is visible to operation B at replica R if the effect of A had been included in R
at the time when B was executed

write(x,1) + read(x): 1 read(y): 1
-k
write(y,1) read(x): O

Visibility is not transitive

3 vis. vis 2 po A vis transitive
A V read. return value is consistent with the set of visible ops”

Formalization: Arbitration

[Burckhardt et al.”14]

Arbitration: conflict resolution between concurrent writes using timestamps

write(x,1) — write(x): 2

lpo lpo

read(x): 2 read(x): 2

3 vis, arb. arb 2 vis 2 po A vis transitive A arb total order
A V read. return value = value of the last visible write in arbitration order”

Formalization: Arbitration

[Burckhardt et al.”14]

Arbitration: conflict resolution between concurrent writes using timestamps

write(x,1) =========- write(x): 2
PNl
read(x): 2 read(x): 1

No valid arbitration

3 vis, arb. arb 2 vis 2 po A vis transitive A arb total order
A V read. return value = value of the last visible write in arbitration order”

Checking CC

[POPL17]

Checking CC for a single execution is NP-complete (proof on whiteboard)

Checking CC for a finite-state implementation (given as a regular language)
and a regular specification is undecidable

Characterizing CC

[POPL’17]
3 vis, arb. arb 2 vis 2 po A vis transitive A arb total order

A VY read. return value = value of the last visible write in arbitration order”
IS equivalent to

3 rf. po U rf U rb is acyclic and po U rf U cf is acyclic

rf (read-from): relating each read to a write with the same variable/value
rb (read-before): relating each read to a write that overwrites the read value

cf (conflict): a necessary subset of arb derived from po and rf

read(x): JERCCIUILIILLED > Write(x,_) Write(x,_) > Write(x,_)

NN

write(x,) read(x): _

Characterizing CC

[POPL17]
erte(X) > erte(X)

CC = 3 rf. po U rf U rb is acyclic and
po U rf U cfis acyclic po u\

read(x): _

: cf :
Example: write(x,1) = > write(x): 2

T4t

read(x): 2 read(x): 1

Characterizing CC

[POPL17]
erte(X) > erte(X)

CC = 3 rf. po U rf U rb is acyclic and
po U rf U cfis acyclic po u\

read(x): _

f
Example: write(x,1) DI write(x): 2

T4

read(x): 2 read(x): 1

Checking CC

[POPL17]

CC = 3 rf. po U rf U rb is acyclic and
po U rf U cf is acyclic

Each value is written once (data independence) => fixed read-from
Testing: acyclicity can be checked in polynomial time

Verification: using finite-state automata to represent “cyclic” executions

