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Replicated objects
Distributed systems

Conflicting concurrent updates: how are they observed on different replicas ?


Adversarial environments: crashes, network partitions
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Pessimistic Replication
write(x,1)

write(x,2)

Using consensus algorithms to agree on an order between conflicting concurrent updates 


CAP theorem [Gilbert et al.’02]: strong cons. + availability + partition tolerance is impossible

strong consistency availability
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Optimistic Replication
write(x,1)

write(x,2)

Each update is applied on the local replica and propagated asynchronously to other replicas


Replicas may store different versions of data: weak consistency

strong consistency availability
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Optimistic replication: replicas are allowed to diverge  
– operations are applied immediately at the submission site
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Optimistic replication: replicas are allowed to diverge  
– operations are applied immediately at the submission site
– in the background, sites exchange and apply remote operations  
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Solving conflicts between concurrent operations
– speculate and roll-back, e.g., Google App Engine Datastore
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Solving conflicts between concurrent operations
– speculate and roll-back, e.g., Google App Engine Datastore



Concurrent operations
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communicate 
and roll-back

Solving conflicts between concurrent operations
– speculate and roll-back, e.g., Google App Engine Datastore



Concurrent operations
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Solving conflicts between concurrent operations
– speculate and eventually, roll-back, e.g., Google App Engine Datastore
– convergent conflict resolution, e.g., CRDTs [Shapiro et al.’11]
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Formal verification of Opt. Repl. Syst.

• Correct operations ? Allowed level of 
consistency between replicas ?
– by CAP theorem [Gilbert et al.’02], achieving 

strong consistency (linearizability) is impossible
– various correctness criteria: eventual consistency, 

causal consistency, etc



Example: Key-value map
72 Implementations

1 protocol EventualStoreÈKey,ValÍ {
2

3 struct Timestamp(number: nat ; rid: nat) ;
4 function lessthan(Timestamp(n1,rid1), Timestamp(n2,rid2)) : boolean {
5 return (n1 < n2) ‚ (n1 == n2 · rid1 < rid2) ;
6 }
7

8 message Update(key: Key, val: Val, ts: Timestamp) : reliable
9

10 role Replica(rid: nat) {
11 var localclock: nat ;
12 var store: pmapÈKey, pairÈVal,TimestampÍÍ ;
13

14 operation read(key: Key) {
15 match store[key] with
16 ‹æ { return undef ;}
17 (val,ts) æ { return val ; }
18 }
19 }
20 operation write(key: Key, val: Val) {
21 localclock++ ; // advance logical clock
22 store[key] := (val,ts) ;
23 send Update(key,val,Timestamp(localclock,rid)) ;
24 return ok ;
25 }
26 receive Update(key,val,ts) {
27 if (store[key] = ‹‚ store[key].second.lessthan(ts))
28 store[key] := (val, ts) ;
29 if (ts.number > localclock) // keep up with time
30 clock := ts.number ;
31 }
32 }
33 }

Figure 6.7: A broadcast-based eventually consistent key-value store with last-
writer-wins resolution Fkvs.



Example: OR-Set
An optimized conflict-free replicated set 5

payload set E, set T -- E: elements; T : tombstones
-- sets of pairs { (element e, unique-tag n), . . . }

initial ?,?
query contains (element e) : boolean b

let b = (÷n : (e, n) œ E)
query elements () : set S

let S = {e|÷n : (e, n) œ E}
update add (element e)

prepare (e)
let n = unique() -- unique() returns a unique tag

e�ect (e, n)
E := E fi {(e, n)} \ T -- e + unique tag

update remove (element e)
prepare (e) -- Collect pairs containing e

let R = {(e, n)|÷n : (e, n) œ E}
e�ect (R) -- Remove pairs observed at source

E := E \ R

T := T fi R

compare (A, B) : boolean b

let b = ((A.E fi A.T ) ™ (B.E fi B.T )) · (A.T ™ B.T )
merge (B)

E := (E \ B.T ) fi (B.E \ T )
T := T fi B.T

Figure 2: OR-Set: Add-wins replicated set

These CRDT specifications follow a new notation with mixed state- and operation-based
update propagation. Although the formalization of this mixed model, and the associated
proof obligations that check compliance to CRDT requisites, is out of the scope of this report
the notation is easy to infer from the standard CRDT model [9, 8, 10].

System model synopsis: We consider a single object, replicated at a given set of
processes/replicas. A client of the object may invoke an operation at some replica of its
choice, which is called the source of the operation. A query executes entirely at the source.
An update applies its side e�ects first to the source replica, then (eventually) at all replicas,
in the downstream for that update. To this e�ect, an update is modeled as an update pair

(p, u) that includes two operations such that p is a side-e�ect free prepare(-update) operation
and u is an e�ect(-update) operation; the source executes the prepare and e�ect atomically;
downstream replicas execute only the e�ect u. In the mixed state- and operation-based
modelling, replica state can both be changed by applying an e�ect operation or by merging
state from another replica of the same object. The monotonic evolution of replica states is
described by a compare operation, supplied with each CRDT specification.

4.1 Observed Remove Set

Figure 2 shows our specification for an add-wins replicated set CRDT. Its concurrent spec-
ification {P}u0 Î . . . Î un≠1{Q} is for each element e defined as follows:

RR n° 8083



Example: ABD register [Attiya, Bar-Noy, Dolev 1995]

Algorithm 2 ABD simulation of a multi-writer register in a message-passing system.

1: local variables:
2: sn, initially 0 {for readers and writers, sequence number used to identify messages}
3: val, initially E0 {for servers, latest register value}
4: ts, initially (0, 0) {for servers, timestamp of current register value, (integer, process id) pair}

5: function queryPhase():
6: sn++
7: broadcast h"query",sni
8: wait for � =+1

2 reply msgs to this query msg
9: (v,u) := pair in reply msg with largest timestamp
10: return (v,u)

11: when h"query",si is received from @:
12: send h"reply",val,ts,si to @

13: function updatePhase(v,u):
14: sn++
15: broadcast h"update",v, u, sni
16: wait for � =+1

2 ack msgs for this update msg
17: return

18: when h"update",v,u,si is received from @:
19: if D > CB then (val,ts) := (v,u)
20: send h"ack",si to @

21: Read():
22: (v,u) := queryPhase()
23: updatePhase(v,u) {write-back}
24: return v

25: Write(v) for process with id 8:
26: (�, (C,�)) := queryPhase() {just need integer in timestamp}
27: updatePhase(v,(C + 1, 8))
28: return

2 PRELIMINARIES
Randomized programs consist of a number of processes that invoke
methods of some set of shared objects, perform local computation,
or sample values uniformly at random from a given set of values.
We are interested in reasoning about the probability that a strong
adversary [2] can cause a program to reach a certain set of program
outcomes, de�ned as sets of values returned by method invocations
i.e., operations.

2.1 Objects
An object is de�ned by a set of method names and an implemen-
tation that de�nes the behavior of each method. Methods can be
invoked in parallel at di�erent processes. In message-passing im-
plementations, processes communicate by sending and receiving
messages, while in shared-memory implementations, they commu-
nicate by invoking methods of a set of shared objects (e.g., some
class of registers) that execute instantaneously (in a single indivisi-
ble step), called base objects. The pseudo-code we will use to de�ne
such implementations can be translated in a straightforward man-
ner to executions seen as sequences of labeled transitions between
global states that track the local states of all the participating pro-
cesses, the states of the shared base objects or the set of messages
in transit, depending on the communication model, and the control
point of each method invocation in a process. Certain transitions
of an execution correspond to initiating a new method invocation,
called call transitions, or returning from an invocation, called return
transitions. Such transitions are labeled by call and return actions,
respectively. A call action call " (G)8 labels a transition correspond-
ing to invoking a method" with argument G ; 8 is an identi�er of
this invocation. A return action ret ~8 labels a transition correspond-
ing to invocation 8 returning value~. For simplicity, we assume that
each method has at most one parameter and at most one return
value. We assume that each label of a transition corresponding to a

step of an invocation 8 includes the invocation identi�er 8 and the
control point (line number) ✓ of that step. In particular, each call
transition includes an initial control point ✓0. Such a transition is
called a step of 8 at ✓ .

The set of executions of an object $ is denoted by ⇢ ($). An
execution of an object $ satis�es standard well-formedness con-
ditions, e.g., each transition corresponding to returning from an
invocation 8 (labeled by ret ~8 for some~) is preceded by a transition
corresponding to invoking 8 (labeled by call " (G)8 , for some" and
G), and for every 8 there is at most one transition labeled by a call
action containing 8 , and at most one transition labeled by a return
action containing 8 .

An object where every invocation returns immediately is called
atomic. Formally, we say that an object $ is atomic when every
transition labeled by call " (G)8 , for some" and G , in an execution
(from ⇢ ($)) is immediately followed by a transition labeled by ret ~8
for some ~.

Correctness criteria like linearizability characterize sequences of
call and return actions in an execution, called histories. The history
of an execution 4 , denoted by hist (4), is de�ned as the projection of
4 on the call and return actions labeling its transitions. The set of
histories of all the executions of an object$ is denoted by� ($). Call
and return actions call " (G)8 and ret ~8 are called matching when
they contain the same invocation identi�er 8 . A call action is called
unmatched in a history ⌘ when ⌘ does not contain the matching
return. A history ⌘ is called sequential if every call call " (G)8 is
immediately followed by the matching return ret ~8 . Otherwise, it
is called concurrent. Note that every history of an atomic object is
sequential.

2.2 (Strong) Linearizability
Linearizability [20] de�nes a relationship between histories of an
object and a given set of sequential histories, called a sequential



Formal Definitions

• Histories

• Abstract Executions

• Operation Context

• Replicated Data Types

• Return-value Consistency

(Using the formal framework in “Principles of Eventual Consistency” by S. Burckhardt)



Histories32 Consistency Specifications

Definition 3.1 (History). A history is an event graph (E, op, rval, rb, ss)
where

(h1) op : E æ Operations describes the operation of an event.

(h2) rval : E æ Values fi {Ò} describes the value returned by the
operation, or the special symbol Ò (Ò /œ Values) to indicate that
the operation never returns.

(h3) rb is a natural partial order on E, the returns-before order.

(h4) ss is an equivalence relation on E, the same-session relation.

The relation rb captures the ordering of non-overlapping operations.
To represent session information, we use a single relation ss, which
we call the same-session relation. It is an equivalence relation that
indicates that two operations have been issued as part of the same
session. Not surprisingly, we call the equivalence classes of ss (i.e. the
sets [e]ss = {eÕ

œ E | eÕ
¥ss e}) sessions.

To ensure that histories are meaningful, we need a few additional
conditions, as captured in the following definition.

Definition 3.2 (Well-formed History). A history (E, op, rval, rb, ss) is
well-formed if

(h5) x
rb
≠æ y implies rval(x) ”= Ò for all x, y œ E.

(h6) for all a, b, c, d œ E: (a rb
≠æ b · c

rb
≠æ d) ∆ (a rb

≠æ d ‚ c
rb
≠æ b).

(h7) For each session [e] œ E/¥ss, the restriction rb|[e] is an enumera-
tion.

Condition (h5) says that an operation that does not return at all
cannot return before any operation. Condition (h6) ensures that rb is
an interval order [Greenough, 1976], i.e. consistent with a timeline in-
terpretation where operations correspond to segments. Condition (h7)
ensures that sessions are indeed sequential — it implies that any two
operations in the same session are ordered by the returns-before rela-
tion, thus they cannot overlap.
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tion, thus they cannot overlap.



Abstract Executions
3.3. Consistency Guarantees 35

Definition 3.3 (Abstract Executions). An abstract execution is an event
graph (E, op, rval, rb, ss, vis, ar) such that

(a1) (E, op, rval, rb, ss) is a history.

(a2) vis is an acyclic and natural relation.

(a3) ar is a total order.

We let A be the set of all abstract executions. For some abstract exe-
cution A = (E, op, rval, rb, ss, vis, ar), we get the corresponding history
by removing visibility and arbitration: H(A) = (E, op, rval, rb, ss).

Example. Fig. 2.2(c) shows an example of an event graph that is an
abstract execution.

3.3 Consistency Guarantees

We can define a large variety of consistency guarantees simply by for-
mulating conditions on the various attributes and relations appearing
in the abstract executions.

Definition 3.4 (Consistency Guarantee). A Consistency Guarantee P is
a predicate or property of an abstract execution A, i.e. a statement that
is true or false, depending on the particulars of A up to isomorphism.
We write A |= P if P is true for A.

To define a consistency model, we simply collect all the guaran-
tees needed, and then specify that histories must be justifiable by an
abstract execution that satisfies them all:

Definition 3.5 (Correct History). Let H œ H be a history, and let
P1, . . . Pn be a collection of consistency guarantees. We say that H
satisfies the guarantees if it can be extended (by adding visibility and
arbitration) to an abstract execution that satisfies them:

H |= P1 · · · · · Pn
def

≈∆ ÷A œ A :
H(A) = H · A |= P1 · · · · · Pn.

4.3. Replicated Data Types 45

Definition 4.4 (Operation Context). An operation context is a finite
event graph C = (E, op, vis, ar) where op : E æ Operations describes
the operation of each event, vis is an acyclic relation representing vis-
ibility among the elements of E, and ar is a total order representing
arbitration of the elements in E. We let C be the set of all operation
contexts.

We now specify a replicated data type by a function F· (o, C), which
takes as a parameter the operation o and an operation context C. This
generalizes the specification of a sequential data type using a function
”(o, ‡) that takes as a parameter the operation o and the current state
‡ (Definition 4.1).

Definition 4.5 (Replicated Data Type). A replicated data type F is a
function Operations ◊ C æ Values that, given an operation o and
an operation context C, specifies the expected return value F(o, C) to
be used when performing o in context C, and which does not depend
on the events, i.e. is the same for isomorphic (as in Definition 2.2)
contexts: C ƒ C Õ

∆ F(o, C) = F(o, C Õ) for all o, C, C Õ.

The events in E capture what prior operations are visible to the
operation that is about to be performed. E is always finite because
no operation can happen after an infinite number of other operations.
The total order ar is called the arbitration order ; it is used to resolve
conflicts between prior operations in a deterministic way. The visibility
order vis represents the mutual visibility of the operations in E, and is
needed if the e�ect of an operation in E depends on it. To clarify how
these all work together, we discuss examples in the next few sections.

Determinism. Note that F is deterministic: two events that perform
the same operation in the same context produce the same return values.
This is necessary to ensure convergence, as we will see when proving
quiescent consistency in §5.4. Of course, a call to a replicated data type
is still highly nondeterministic due to unpredictable scheduling and
timing of message delivery. Working with a deterministic specification
F simply means that all the non-determinism arising due to scheduling
and message delivery is already captured by vis and ar that are passed
as arguments to F .
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Replicated Counter: a read returns the number of increment operations in the context

46 Replicated Data Types

4.3.1 Replicated Counter

To generalize the sequential counter Sctr (Figure 4.1, top) to a repli-
cated counter Fctr, we specify that the number returned by a read
operation is exactly the number of increment operations in the con-
text:

Fctr(rd, (E, op, vis, ar)) =
--{eÕ

œ E | op(eÕ) = inc}
--

This is a simple example: all operations commute, and no conflict res-
olution is needed. Thus, the value returned by Fctr depends only on E
and op, but not on vis or ar.

4.3.2 Replicated Registers

To generalize the sequential register Sreg, we need to decide how to
resolve conflicts between concurrent write operations, because write
operations do not commute. There are multiple options.

Last-Writer-Wins Register. The simplest and most common solution
is to use some sort of timestamp to determine the order of the writes. In
our formalization, this order is called the arbitration order. To specify
the last-writer-wins register, we say that a read sees the last write in
the visible context (where last means last in terms of arbitration order),
or undef if there is no write. We use the notation writes(E) def= {e œ E |

op(e) = wr(v) for some v}, and specify:

Freg(rd, (E, op, vis, ar)) =
I

undef if writes(E) = ÿ

v if op(maxar writes(E)) = wr(v)

Since ar is always a total order and E is finite, a maximal write
maxar writes(E) is uniquely determined if there is any write at all, i.e.
writes(E) ”= ÿ. This is an example of arbitration-based conflict resolu-
tion — operations do not commute, but we use the arbitration order
to order them consistently.

Multi-Value Register. Another conflict resolution strategy is to report
conflicting writes to the user, and rely on some application-dependent
resolution. We can define a multi-value-register [G. DeCandia et al.,
2007] where read operations do not return an individual value, but a

Last-Writer-Wins Register: a read returns the value of the last write in the context 
(w.r.t. arbitration order), or “undef”, if there is no write
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Multi-Value Register: a read returns a set of values, one for each write in the context 
that has not been overwritten by some other write

4.3. Replicated Data Types 47

set of values, one for each write preceding the read that has not been
overwritten by some other write:

Fmvr(rd, (E, op, vis, ar)) =

{v | ÷e œ E : op(e) = wr(v) and ’eÕ
œ writes(E) : e ”

vis
≠æ eÕ

}

Note that to determine which writes are overwritten by a write, we use
the visibility relation between writes.

4.3.3 Standard Conflict Resolution

For any sequential data type S without blocking operations, we can
define a corresponding replicated data type F by specifying that the
e�ect of the updates in the context is determined by applying them
sequentially to the initial state, in the order specified by the arbitration
order. We call this the standard conflict resolution.

Definition 4.6 (Standard Conflict Resolution). Let S· = (�, ‡0, ”) be a
sequential data type without blocking operations. Let ”rval and ”� be
the two components of ” (meaning that ”(o, ‡) = (”rval(o, ‡), ”�(o, ‡))
for all o, ‡). Then we define the replicated data type FÈS· Í as

FÈS· Í(o, (E, op, vis, ar)) def= ”rval(foldr(‡0, ”�, E.sort(ar)))

where sort and foldr are the operators we defined in §2.1.1 on p. 20.

In fact, the replicated data type for the counter and the last-writer-
wins register defined above is equivalent to the standard conflict reso-
lution: Fctr = FÈSctrÍ and Freg = FÈSregÍ.

For the key-value store, the set, and the wall data types (Fig. 4.1) we
define replicated data types using standard conflict resolution: Fkvs =
FÈSkvsÍ, Fset = FÈSsetÍ, and Fwall = FÈSwallÍ.

4.3.4 Replicated Sets

For sets, the interesting question is how to handle conflicts between a
concurrent add and remove of the same element [Bieniusa et al., 2012b].
Using standard conflict resolution FÈSsetÍ means the last operation



OR-Set ?
An optimized conflict-free replicated set 5

payload set E, set T -- E: elements; T : tombstones
-- sets of pairs { (element e, unique-tag n), . . . }

initial ?,?
query contains (element e) : boolean b

let b = (÷n : (e, n) œ E)
query elements () : set S

let S = {e|÷n : (e, n) œ E}
update add (element e)

prepare (e)
let n = unique() -- unique() returns a unique tag

e�ect (e, n)
E := E fi {(e, n)} \ T -- e + unique tag

update remove (element e)
prepare (e) -- Collect pairs containing e

let R = {(e, n)|÷n : (e, n) œ E}
e�ect (R) -- Remove pairs observed at source

E := E \ R

T := T fi R

compare (A, B) : boolean b

let b = ((A.E fi A.T ) ™ (B.E fi B.T )) · (A.T ™ B.T )
merge (B)

E := (E \ B.T ) fi (B.E \ T )
T := T fi B.T

Figure 2: OR-Set: Add-wins replicated set

These CRDT specifications follow a new notation with mixed state- and operation-based
update propagation. Although the formalization of this mixed model, and the associated
proof obligations that check compliance to CRDT requisites, is out of the scope of this report
the notation is easy to infer from the standard CRDT model [9, 8, 10].

System model synopsis: We consider a single object, replicated at a given set of
processes/replicas. A client of the object may invoke an operation at some replica of its
choice, which is called the source of the operation. A query executes entirely at the source.
An update applies its side e�ects first to the source replica, then (eventually) at all replicas,
in the downstream for that update. To this e�ect, an update is modeled as an update pair

(p, u) that includes two operations such that p is a side-e�ect free prepare(-update) operation
and u is an e�ect(-update) operation; the source executes the prepare and e�ect atomically;
downstream replicas execute only the e�ect u. In the mixed state- and operation-based
modelling, replica state can both be changed by applying an e�ect operation or by merging
state from another replica of the same object. The monotonic evolution of replica states is
described by a compare operation, supplied with each CRDT specification.

4.1 Observed Remove Set

Figure 2 shows our specification for an add-wins replicated set CRDT. Its concurrent spec-
ification {P}u0 Î . . . Î un≠1{Q} is for each element e defined as follows:

RR n° 8083
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The object composition we defined here is an independent compo-
sition: there is no interaction between the replicated objects. Compo-
sitions are not always independent in practice. For example, if the chat
object supports a delete operation del, then invoking chat.del should
delete chat.wall and chat.access as well, thus a subsequent chat.posts.rd
operation should return an empty sequence or some error message.

4.3.6 Quiescent Consistency

We now generalize operation categories and quiescent consistency
(§4.2.1) from a sequential data type S to a replicated data type F .
Update-only and blocking operations are easy to generalize. However,
determining read-only operations is a bit more tricky: all operations
change the context, thus we need to determine whether they do so in
a non-observable way. To this end, we define an operation o to be a
read-only operation if for all observer operations oÕ the return value
does not change when we remove o from the context:

o œ readonlyops(F) def
≈∆ ’oÕ

œ Operations : ’C = (E, . . . ) œ C : ’e œ E :
op(e) = o ∆ F(oÕ, C) = F(oÕ, C|E\{e},op,vis,ar)

We can straightforwardly generalize quiescent consistency now:

QuiescentConsistency(F) def
≈∆

! --{e œ E | op(e) /œ readonlyops(F)}
-- < Œ =∆ ÷C œ C :

’[f ] œ E/¥ss:
--{e œ [f ] | F(op(e), C) ”= rval(e) }

-- < Œ
"

4.4 Return Value Consistency

Finally, we define consistency of return values, as a predicate on ab-
stract executions, for a given replicated data type F .

Definition 4.8. For a replicated data type F , we define the return value
consistency guarantee as

RVal(F) def= ’e œ E : rval(e) = F(op(e), context(A, e))

where context is defined as follows:50 Replicated Data Types

Definition 4.9. Let A = (E, op, rval, rb, ss, vis, ar) be an abstract execu-
tion containing an event e œ E. Then

context(A, e) def= A|vis≠1(e),op,vis,ar

Note that context(A, e) is always an operation context: vis≠1(e) is finite
because vis is natural (condition (a2) on p. 35), and the restrictions of
vis and ar are acyclic and total, respectively, because acyclicity and
totality are preserved under restrictions (Lemma 2.3).
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Consistency Models

Linearizability(F) def= SingleOrder · Realtime · RVal(F)

SequentialConsistency(F) def=
SingleOrder · ReadMyWrites · RVal(F)

CausalConsistency(F) def=
EventualVisibility · Causality · RVal(F)

BasicEventualConsistency(F) def=
EventualVisibility · NoCircularCausality · RVal(F)

QuiescentConsistency(F) def= (see page 49)

Ordering Guarantees

ReadMyWrites
def= (so ™ vis)

MonotonicReads
def= (vis ; so) ™ vis

ConsistentPrefix
def= (ar ; (vis fl ¬ss)) ™ vis

NoCircularCausality
def= acyclic(hb)

CausalVisibility
def= (hb ™ vis)

CausalArbitration
def= (hb ™ ar)

Causality
def= CausalVisibility · CausalArbitration

SingleOrder
def= ÷EÕ

™ rval≠1(Ò) : vis = ar \ (EÕ
◊ E)

Realtime
def= rb ™ ar

Figure 5.1: Overview of the definitions for commonly used consistency models and
ordering guarantees. All the formulas shown above are predicates over an abstract
execution A = (E, op, rval, rb, ss, vis, ar), with session order so def= rbflss and happens-
before order hb def= (so fi vis)+.
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EventualVisibility: the nb. of operations not “seeing” an operation is finite
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Causal Consistency (CC)

write(x,1)

write(y,1)

read(y): 1

read(x): 1 0

If an update is visible, then all the updates is dependent on should be also visible


• write(x,1) and write(y,1) are causally dependent:

[Lamport’78]



Causal Consistency (CC)

write(x,1)

read(x): 1

write(y,1)

read(y): 1

read(x): 1 0

write(x,1)

If an update is visible, then all the updates is dependent on should be also visible


• write(x,1) and write(y,1) are causally dependent:

[Lamport’78]



Causal Consistency (CC)

write(y,1)

read(y): 1

read(x): 0

read(x): 1

read(y): 0

If an update is visible, then all the updates is dependent on should be also visible


• write(x,1) and write(y,1) are concurrent:

write(x,1)

[Lamport’78]



Formalization: Visibility

∃ vis. vis ⊇ po ∧ vis transitive 

          ∧ ∀ read. ``return value is consistent with the set of visible ops”

write(x,1) read(x): 1 read(y): 1

write(y,1) read(x): 1

po po

[Burckhardt et al.’14]

A is visible to operation B at replica R if the effect of A had been included in R 
at the time when B was executed



Formalization: Visibility

write(x,1) read(x): 1 read(y): 1

write(y,1) read(x): 0

po po

[Burckhardt et al.’14]

A is visible to operation B at replica R if the effect of A had been included in R 
at the time when B was executed

Visibility is not transitive

∃ vis. vis ⊇ po ∧ vis transitive 

          ∧ ∀ read. ``return value is consistent with the set of visible ops”



∃ vis, arb. arb ⊇ vis ⊇ po ∧ vis transitive ∧ arb total order

                 ∧ ∀ read. ``return value = value of the last visible write in arbitration order”

Formalization: Arbitration

write(x,1) write(x): 2

read(x): 2

po

read(x): 2

po

[Burckhardt et al.’14]

Arbitration: conflict resolution between concurrent writes using timestamps



Formalization: Arbitration

write(x,1) write(x): 2

read(x): 1

po

read(x): 2

po

[Burckhardt et al.’14]

Arbitration: conflict resolution between concurrent writes using timestamps

No valid arbitration

∃ vis, arb. arb ⊇ vis ⊇ po ∧ vis transitive ∧ arb total order

                 ∧ ∀ read. ``return value = value of the last visible write in arbitration order”



Checking CC

Checking CC for a single execution is NP-complete (proof on whiteboard)


Checking CC for a finite-state implementation (given as a regular language) 
and a regular specification is undecidable

[POPL’17]



Characterizing CC

is equivalent to

∃ rf. po ∪ rf ∪ rb is acyclic and po ∪ rf ∪ cf is acyclic

rf (read-from): relating each read to a write with the same variable/value


rb (read-before): relating each read to a write that overwrites the read value


cf (conflict): a necessary subset of arb derived from po and rf

write(x,_) write(x,_)

read(x): _

rf

cf

po ∪ rf

cf

[POPL’17]
∃ vis, arb. arb ⊇ vis ⊇ po ∧ vis transitive ∧ arb total order

                 ∧ ∀ read. ``return value = value of the last visible write in arbitration order”

read(x): _ write(x,_)

write(x, _)

rb

rf po ∪ rf



CC ≡ ∃ rf. po ∪ rf ∪ rb is acyclic and  
                 po ∪ rf ∪ cf is acyclic

write(x,1) write(x): 2

read(x): 1

po

read(x): 2

po

cf

rfrf

Example:

[POPL’17]

write(x,_) write(x,_)

read(x): _

rf

cf

po ∪ rf

cf

Characterizing CC



write(x,1) write(x): 2

read(x): 1

po

read(x): 2

po

cf

rfrf

Example:

[POPL’17]

Characterizing CC

CC ≡ ∃ rf. po ∪ rf ∪ rb is acyclic and  
                 po ∪ rf ∪ cf is acyclic

write(x,_) write(x,_)

read(x): _

rf

cf

po ∪ rf

cf



Each value is written once (data independence) => fixed read-from 


Testing: acyclicity can be checked in polynomial time


Verification: using finite-state automata to represent “cyclic” executions

[POPL’17]

Checking CC

CC ≡ ∃ rf. po ∪ rf ∪ rb is acyclic and  
                 po ∪ rf ∪ cf is acyclic


