REDUCING LINEARIZABILITY TO CLASSIC
VERIFICATION PROBLEMS

Constantin Enea
Ecole Polytechnique

Checking Lin. using “bad
patterns”

 Reduce linearizability checking to reachability (EXPSPACE-complete):

e Define (sequential) data-structure S using inductive rules
e S is data independent and closed under projection
e (Characterize sequential executions of S using bad patterns

e Characterize concurrent executions, linearizable w.r.t. S using bad patterns
(one per rule)

e Define a regular automaton Ai for each bad pattern

e Reduce“L is linearizable w.r.t. S” to: foralli, L n Aj =&

Histories = Posets of events

push(1) pop = 2
Thread 1 ® O——O O

pop = 1 push push(3) pop = 3
® O ® O

Thread 2

\ happens-before

partial order
pop = 2

push/ \pop - 3
—> O—> /

pop = 1 push(2) push(3

Concurrent Queues

Linearizability = Exclusion of bad patterns (assuming each value is enqueued at

Most once - sound under data independence)

“Value v dequeued without being enqueued”
deq: v

“Value v dequeued before being enqueued”
deq: v enq: v

o—©O

“Value v dequeued twice”

deq: v deq: v
@ @

“Values dequeued in the wrong order”

enq: V1 eng: vz deq: v2 deq: v+

o—©O o—©@

Concurrent Queues

Linearizability = Exclusion of bad patterns (assuming each value is enqueued at

Most once - sound under data independence)

“Value v dequeued without being enqueued” “Dequeue wrongfully returns empty”

deq: v
‘ deq: empty

“Value v dequeued before being enqueued” / ‘ \
‘ ' deq: v+

deq: v enq: v eng. vi
o—©O

“Value v dequeued twice”

deq: v deq: v
@ @

“Values dequeued in the wrong order”

enq: V1 eng: vz deq: v2 deq: v+

o—©O o—©@

Concurrent Queues

Linearizability = Exclusion of bad patterns (assuming each value is enqueued at

Most once - sound under data independence)

“Value v dequeued without being enqueued” “Dequeue wrongfully returns empty”

deq: v
‘ deq: empty
“Value v dequeued before being enqueued” /
deq: v eng: v ena: vi @ O deq: vy
o—o e

enq: Vo ‘ ‘ deq: v2

“Value v dequeued twice”

deq: v deq: v
@ @

“Values dequeued in the wrong order”

enq: V1 eng: vz deq: v2 deq: v+

o—©O o—©@

Concurrent Queues

Linearizability = Exclusion of bad patterns (assuming each value is enqueued at

Most once - sound under data independence)

“Value v dequeued without being enqueued” “Dequeue wrongfully returns empty”

deq: v
‘ deq: empty
“Value v dequeued before being enqueued”
deq: v enq: v
o—O
“Value v dequeued twice”
deq: v deq: v

“Values dequeued in the wrong order”

enq: V1 eng: vz deq: v2 deq: v+

o—©O o—©@

Concurrent Stacks

Linearizability = Exclusion of bad patterns (assuming each value is enqueued at

Most once, which is sound under data independence)

“Pop doesn’t return the top of the stack”

push: v pop: V

“Value v popped without being pushed”

“Value v popped before being pushed” oush: v ‘ ‘ 00D V1

“Value v popped twice”

“Pop wrongfully returns empty”

Concurrent Stacks

Linearizability = Exclusion of bad patterns (assuming each value is enqueued at

Most once, which is sound under data independence)

“Pop doesn’t return the top of the stack”

push: v pop: V
“Value v popped without being pushed” ‘ ‘
“Value v popped before being pushed” \ /
push: v1 ‘ ‘ pPOp: V1

“Value v popped twice” /
“Pop wrongfully returns empty” push: v2 @

‘ POp: V2

Concurrent Stacks

Linearizability = Exclusion of bad patterns (assuming each value is enqueued at

Most once, which is sound under data independence)

“Pop doesn’t return the top of the stack”

push: v pop: V

“Value v popped without being pushed”
“Value v popped before being pushed”
“Value v popped twice”

“Pop wrongfully returns empty”

Data Independence

* |nput methods = methods taking an argument

* A sequential execution u is called differentiated if for all input methods m and every
X, U contains at most one invocation m(x)

e S. is the set of differentiated executions in S

A renaming r is a function from D to ID. Given a sequential execution
(resp., execution or history) u, we denote by r(u) the sequential execution
(resp., execution or history) obtained from u by replacing every data value

x by r(x).

Definition 6. The set of sequential executions (resp., executions or histories)
S is data independent if:

o for allue S, there exists u' € S., and a renaming r such that u =r(u'),

o for all ue S and for all renaming r, r(u) € S.

Theorem: A data-independent implementation | is linearizable w.r.t. a data-
independent specification S iff |- is linearizable w.r.t. S.

Characterization of
concurrent executions

EVQueue(Q) EVQUGUG(Q) EVQueue({la 2}) EVQueue({la 2}) EVQueue({lv 2})
—éret Deqg(1) _éret Deq(1) %ret Deq(1)
gs . d5 >\q—6/ >
call Deqg(1) call Deqg(1)
EVQueue(g) EVQueue(g) EVQueue(g) EVQueue(S) EVQueue(S)

call Enq(l)g ret Enqg(1l) Acall Enq(Q)R ret Deq(2)
40 N 41 A G2 43 >
_/ _/ N

call Deq(2)

Characterization of
concurrent executions

Rewmp
EVQueue(S) EVQueue(g) EVQueue(S)

we assume that all actions
call DeqEmpty(2) ret DegqEmpty(2) call Enq(1) occur at the
ChJ A g2 > beginning
x call Deq(1)

ret FEnqg(1l) _/jret Eng(1)
qo Evouene(3) et Deq(1)
EVQueue(S)

call Enq(1)

Exercices

We consider a sequential specification defined by the language S =(a ())*(b())* where all
the invocations of a() occur before invocations of b().

1. Describe a reduction of checking linearizability w.r.t. the specification .S to a reacha-
bility problem. More precisely, describe a labeled transition system (monitor) that
accepts exactly all the histories of a given implementation (sequences of call and re-
turn actions) that are not linearizable w.r.t. S. The synchronized product between a
transition system representing an implementation and this monitor (where the syn-
chronization actions are call and returns) reaches an accepting state of the monitor iff
the implementation is not linearizable.

Exercices

e What is the complexity of checking linearizability of a
differentiated history of a concurrent queue?

Exercices

e What is the complexity of checking linearizability of a
differentiated history of a concurrent queue?

“Value v dequeued without being enqueued”
deq: v

“Value v dequeued before being enqueued”
deq: v enq: v

o—©O

“Value v dequeued twice”

deq: v deq: v
@ @

“Values dequeued in the wrong order”

enq: V1 eng: vz deq: v2 deq: v+

o—©O o—©@

“Dequeue wrongfully returns empty”

deq: empty

Observational Refinement
<=>
|_inearizability/ Refinement

Observational Refinement

Reference implementation —fficient implementation
. class TreiberStack {
clz:ilitggéfStack { cellx top:
void push (int v) {
: : cellx t;
void push (int v) 1 cellx x = malloc(sizeof xx):
x—>data = v
do {
T = top;
Xx—=>next = top;
) } while (!) ;
¥
1nf.?op () { int pop () {
¥ } ;
¥

For every Client,
Client x Impl included in Client x Spec

Formalizing Libraries/Programs

We fix an arbitrary set () of operation identifiers, and for given sets
M and V of methods and values, we fix the sets

C={m(v), :meM,veV, oec O}, and

R = {ret(v), : v € V,0 € O}

of call actions and return actions; each call action m(v), combines
a method m € M and value v € V with an operation identifier
o € 0. Operation 1dentifiers are used to pair call and return actions.

A seqguence in (C u

R)* is well-formed if every retur

by a matching call, each identifier is used at most o

A sequence in (C u

ﬁ

'S preceeded

NCE

R)”* I1s sequential if there exists a return
between every successive two calls

Formalizing Libraries/Programs

Definition 3.1. A library L is an LTS over alphabet C U R such
that each execution e € E(L) is well formed, and

e Call actions c € C cannot be disabled:

e-e¢ € E(L)impliese-c-¢e € E(L)ife-c-e iswell formed.
e Call actions c € C cannot disable other actions:

e-a-c-e¢ € E(L)impliese-c-a-e € E(L).
® Return actions r € R cannot enable other actions:

e-r-a-e € E(L)impliese-a-r-e € E(L).

Definition 3.2. A program P over actions . is an LTS over alphabet
(X W C'W R) where each execution e € E(P) is well formed, and

e Call actions c € C cannot enable other actions:
e-c-a-¢e € E(P)impliesc—aore-a-c-¢e € E(P).
® Return actions r € R cannot disable other actions:
e-a-r-€e € E(P)impliesa—rore-r-a-e€ E(P).
® Return actions r € R cannot be disabled.:
e-e € E(P)impliese-r-e¢' € E(L) ife-r-e iswell formed.

Observational Refinement

Definition 3.3. The library L, refines Lo, written L1 < Lo, iff
E(PxI11)X C E(P X L)X

for all programs P over actions 3.

HiStories

For given sets Ml and V of methods and values, we fix a set
L=MxV x (VU{L}) of operation labels, and denote the label
(m,u,v) by m(u) = v. A history h = (O, <, f) is a partial order
< onaset O C Q of operation identifiers labeled by f : O — IL for
which f(0o) = m(u) = L implies o is maximal in <. The history
H (e) of a well-formed execution e € 2™ labels each operation with
a method-call summary, and orders non-overlapping operations:

e O ={op(e;):0< i< |e|land e; € C'},
® op(e;) <op(e;)iffi < j,e; € R,ande; € C.

o £(o) — m(u) =v ifm(u), € eandret(v), € e
f(o) = { m(u) = L1 ifm(u), € eandret(_), € e

The histories admitted by a library L are H(L) = { H(e): e € E(L) }

HiStories

push(1) pop = 3
® O—O O O
pop = 1 push(2) push(3) pop = EMPTY
® O——O0—O O—O O ® O——O

happens-before
partial order

Push(/ N ~ EMPTY
ﬁ

——

pop = 1 push(2) push(3)

pop =3

HiStories

Definition 4.2. Let h1 = <01, <1, f1> and ho = <02, <2, f2> We
say hi is weaker than ho, written h1 < ho, when there exists an
injection g : O2 — O1 such that

e 0 € range(g) when fi(o) = m(u) = vandv # 1,
e g(01) <1 g(02) implies 01 <2 02 for each 01,02 € Oy,
* f1(g(0)) < fa(o) for each o € Oa.

where (m1(u1) = v1) < (ma(u2) = v2) iff m1 = ma, u1 = ue,
and v1 € {va, L}. We say hy and hs are equivalent when h, < ho
and hz j hl.

—xamples ?

—quivalent histories need not be distinguished

HiStories

If h1 € H(L) and ha = hj then ha € H(L).

F(L)={ee (CUR)": H(e) € H(L)}.

History Inclusion

Lirefinesly, < H(L7) € H(L2) & E(L7) € E(L2)

* (=>) Given hin Hist(L1), construct a program Ps that imposes
all the happen-before constraints of h.

 (<=) Clients cannot distinguish executions with the same
history. History inclusion implies Execution Inclusion

History Inclusion (=>)

We construct P, = (Q, X2, qo, 6) over alphabet ¥ = CURU{a}
whose states Q) : O — B* track operations called/completed status.
The initial state is go = {0+ (L, L) : 0 € O}. Transitions are
given by,

foreachg e Q,0€e O,m e M,v €V
if f(0) = m(v) = _and q(0’) forall o’ < o then
glo— L, 1] m(v)o, glo— T,1] preserving happens-before
if f(o) =m(_) = v then

ret(v)o\ a

glo— T, 1] > - — qlo— T, T] counting ops completed in h
1t = _ 1 th
if f(o) =m() = - ops that are pending in h (an execution

glo— T, 1] etv)o, glo— T, T] may have more completed ops and less
pending - no call for pending)

(??) Ve € E(Py). |(e|X)| =n = h <X H(e)
— ar

nb of completed ops in h

(77) Ye € BE(Py). |(e|S)| = n

For every execution e1 e

History Inclusion (=>)

there must exist an execution e» €

(by observational refinement)

Therefore, h < H(ez).

Since e»

By closu

(C u

'€ UNncC

R) €

—(L2), we

er weakening,

nave t

N e H(

> h < H(e)
/
no

of completed ops in h

= (Pn X L) wither|Z =n,

= (P X Lo)suchthatex | 2 =e1| 2

nat H(ez) € H(L2)

o)

History Inclusion (<=)

[1refines Lo

letee E(PXLy)

& H(L7) € H(L2) & E(L1) € E(LY)

e| (C uR)e E(L1)implies H(e) € H(L+) implies H(e) € H(L2)

Therefore, e| (CuR) €

implies e € E (P X L)

=(L2) which by definition of the product P X Lo,

Linearizability [Herlihy&Wing 1990]

Effects of each invocation appear to occur instantaneously

Execution history

enqg: 1 deq: 2
. enq: 2
e:2 || e:l d:2

£33

d:1

Linearization admitted by Queue ADT

enq: 1 deq: 2 deq: 1
—_— —)

/:eturns—before (rb)

enq: 2

3 lin. rb € lin A lin € Queue ADT

About Linearizanility

History inclusion H(L1) € H(L2) equiv. to linearizability when L> is atomic

Definition 3.1. A library L is an LTS over alphabet C U R such
that each execution e € E (L) is well formed, and

e Call actions ¢ € C cannot be disabled:

e-e¢ € E(L)impliese-c-e € E(L)ife-c-e iswell formed.
e Call actions ¢ € C cannot disable other actions:

e-a-c-€¢ € E(L)impliese-c-a-e € E(L).
® Return actions r € R cannot enable other actions:

e-r-a-e € E(L)impliese-a-r-e € E(L).

We write e; ~ e2 when ez can be derived from e; by applying zero
or more of the above rules. The closure of a set £ of executions
under ~ 1s denoted FE .

A library L 1s called atomic 1t 1t 1s defined by the closure of
some set F of sequential executions, i.e., F/(L) = F.

About Linearizanility

History inclusion H(L1) € H(L2) equiv. to linearizability when L> is atomic

Linearizability 1s defined by an execution order: e; L e2
iff there exists a well-formed execution e’ obtained from e; by
appending return actions, and deleting call actions, such that:

e2 is a permutation of e} that preserves the order between
return and call actions, 1.e., a given return action occurs
before a given call action in e] iff the same holds in es.

An execution e 1s linearizable w.r.t. a library Lo 1ff there exists a
sequential execution es € /(L2), with only completed operations,
such that e; T es. A library Ly 1s linearizable w.r.t. L2, written
L, C Lo, iff each execution e; € E/(L1) is linearizable w.r.t. Lo.

About Linearizanility

History inclusion H(L1) € H(L2) equiv. to linearizability when Lo is atomic

Linearizability compares execs of L1 with pending ops. with execs of L2 with
only completed ops => problematic when L2 contains non-terminating
methods

Example 5.1. Let L be the library whose kernel contains the single
execution ¢ = m(u)1 m'(u)z2 ret(v)1, in which the call to m' is
pending. Although L refines itself, since refinement is reflexive, L is
not linearizable w.r.t. itself, since e could only be linearizable w.r.t.
L if E(L) were to contain one of the following executions:

m(u)1 ret(v)r m(u)r m' (u)2 ret(v); ret()s
m(u)1 ret(v)r m' (u)z2 ret()2 m'(u)2 ret(Z)om(u)1 ret(v)s.

Yet E(L) = {e} clearly contains none of them.

About Linearizanility

History inclusion H(L1) € H(L2) equiv. to linearizability when Lo is atomic

Lemma 5.1. €1 ; €9 iﬁCH(Bl) j H(GQ).

Theorem 2. 14 [Lo lﬁcH(Ll) C H(LQ), lfLQ 1S atomic.

Proof. (=>) Let h € H(L+). Then, every execution e1 with H(e1) = h is
inearizable w.r.t. some execution ez e Lo

By the lemma above, H(e1) < H(e2). By closure under weakening, it H(e2) &
H(L2) then any weakening, h in particular, belongs to H(L>).

(<=) Let e1 € E(L+). By hypothesis, H(e1) € H(L2), which implies e1 € E(L>).
Since L2 is atomic, there exists a sequential e2 € E(L2) with only completed
ops such that H(e+1) € H(L2) such that e+ is lin. w.r.t. ez

|_inearizability Proofs based on
Forward Simulations

Linearizability vs
Refinement

* Modelling concurrent objects with Labeled Transition Systems (LTSs)

e Linearizability is a property of sequences of call/return actions
e Given an ADT A, define a reference implementation Spec(A) which admits all
histories linearizable w.r.t. A

e standard reference implementations (atomic method bodies): call, return, and
linearization point actions

in eng(v)
[a,b,...] > | [a,b,...,V]

in deq() => v

[v,a,b,...] [a,b,...]

e Linearizability = inclusion of traces with call/return actions (these are the only
common actions) between Impl and Spec(A)

e the actions included in traces are called observable

Proving Refinement

Inductive reasoning for proving refinement: forward/backward simulations

Simulations: relations between states of the impl. and , relating initial states
and
Forward Backward
. a , a ,
Implementation: > >
Sim Sim Sim Sim

g0 180

Proving Refinement

e Given two LTSs A and B such that A refines B [Abadi et al.’91, Lynch et al.’995]

Frw Sim (FS) Bckw Sim (BS)
exists if B deterministic A forest
exists if we add | Prophecy vars to A | History vars to A

 Forward simulations are easier to derive and establish (standard invariant
checking)

Proving Linearizability

 Impl is linearizable w.r.t. A iff Impl refines Spec(A)

e refinement = inclusion of traces with call/return actions (observable actions)

e Spec(A) is not deterministic when projected on observable actions =>
backward simulations are unavoidable in general

in eng(v) call enq(V’)
Callwv [a,b,...] > | [a,b,...,V] > | [a,b,...,V]
[a,b,...] \
call enq(V’)
[a,b,...]

e Classes of implementations for which forward simulations are sufficient -
associate linearization points with statements of the implementation

* the linearization point actions become observable

e Spec(A) is deterministic assuming that A is deterministic

Fixed Linearization Points

* Fixed linearization points: the linearization point is fixed to a particular
statement in the code

class Node { class NodePtr {
Node t1l1; Node wval;
int val; } TOP

J

vold push (int e) {

int pop () |
Node vy, n; Node v, z;
y = newl(); while (true)
y->val = ¢e; y = TOP->val;
while (true) { 1f (y==0) return EMPTY;
v—->tl = n; z = y—>tl;
1f (cas (TOP->val, n, Vv)) i1f (cas (TOP->val, vy, z))
break; break;

J J

return y->val;

Herlihy & Wing Queue

vold eng (int x)

1 = back++; 1tems[1] = x;
}
int deqg () {
while (1) {
range = back - 1;
for (int 1 = 0; 1 <= range; 1i++) {

swap (1tems[1],null);
1f (x !'= null) return x;

Non-fixed Linearization Points

Queue
back i(ex) i(e,x)
NULL DE— — NULL — X
back back
NULL NULL D E— NULL —
NULL NULL NULL
NULL e:i= béé.le-l--l- NULL e: item%[i] =X NULL
NULL ——— NULL —— NULL
items | |
i(e,x): index i of enqueue with id e that will insert item x
Dequeue
- S - i - i -
oL | Seer) KD gy | e 9, Myor | e | NULL | <)
i(e,, i(e,, | i(e,, | i(d i(e,,
NULL (e2,¥) : NULL (e2,¥) i NULL (e2,¥) i (d) ; (e2,¥)
NULL | Q3K rangeldyy | pack) range(T T ieas) o range(d) T T i(es2)
i back i back
NULL i NULL i NULL | «— NULL | «——
d:range,i = .. d:CAS(...) d:i+ +
NULL ' NULL ' NULL ' NULL

Non-fixed Linearization Points

e1:inv(x) ej:i=back++ . eqiitems[i]=x ej:ret
@ & @ —@
e,: inv(y) ey:i=back++ | eylitems[i]=y e,:ret '
O & O O
di:deq(x) d,:deq(y)
—©O —©
i(ey,x) i(ey,x) | (e1,x) | (e1,%) | (e1,%) (e1,x) |
NuLL | <4 [npn | et g | <o [] e b Py | S [y | e
i i(ez2,y) | i(ez,y) | i(e2,y) | i(e2,y) ! i(e2,y)
NULL | 2K 0 I NuLL | <2 |y 220y 20y 227 I NULL | <
| back back | back | back i back
NULL " |NULL | «—— | |NULL| «—— | |NULL| «—— | |NULL| «—— | | NULL | «—
NULL - | NULL - | NULL - | NULL - | NULL - | NULL

NULL - | NULL | NULL | NULL | NULL . | NULL

Non-fixed Linearization Points

e1:inv(x) e;:i=back++ eqritems [1]=x ei:ret
@ @ —Q —@
ey: inv(y) ' eyii=back++ | epiitems[i]=y : ey:ret '
O O & O
d,:deq(y) d,:deq(x)
ie,xi ie,xi i(eq,x (e, (eq, (eq, X
NuLL | e o | 49 g | <) NuLL | <) [e gy | e
i(e2,y) | i(e2,¥) i(e2,y) | i(e2,y) i(e2,y) |
NULL | 2K 0 I NULL | <227 0 |y 2 NULL | «<=>27 | | NULL | <277 | | NULL | <227 |
back back back back back
NULL NULL | «—— NULL | «— NULL | «— NULL | «——— NULL | «———
NULL NULL NULL NULL NULL NULL
NULL NULL NULL NULL NULL NULL

Snhapshot

1 procedure update (i, data)
2 mem|[1] = data;

4 procedure scan ()

5 for 1 =1 ton do rl[i] = mem[i];
6 repeat

7 r2 = rl;

8 for 1 = 1 to n do rl[i] = mem[i];
o until r1 == r2

10 return rl;

Fixed linearization points 7

Snhapshot

Specification

1 procedure update (i, data) 1 procedure update (i, data)
2 mem[1] = data; L. .
2 mem|[1] = data;

4 procedure scan ()

5 for i =1 ton do ri[i] = mem[i]; 4 procedure scan ()

6 repeat 5 while (nondet)

7 r2 = rl; 6 r = atomic_snapshot () ;
8 for 1 = 1 to n do rl[i] = mem[i]; - snaps = snaps - r;

o until rl == r2 8 return rl € snaps;

10 return rl;

(s,s’) € F iff they contain the same mem and for each invocation kK, its local state s[k] (valuation of r1, r2, and prog. counter
pcC) is related to s’[k] (a valuation of snaps) as follows:

A valid(r,pc) Afst(r2,n) <fst(r1,0) Alast(snaps) =memA (pc =10 = rl € snaps)
re{rl,r2}

valid(r,pc) == V1i,j.i < j = fst(r,7) < fst(r,j) update in impl. => update in spec. +

‘ , , , , , every pending scan takes a snapshot
fst(v,i) = smallest index of a snapshot in snaps which contains v at index | y p J | :
| . | . | scan steps in iImpl. => “epsilon” steps
fst(r1,1) = oo if Index 1 not set, or fst(r1[i],i) otherwise

fst(r2,1) = -co if index i not set, or fst(r2[i],i) otherwise

Non-fixed Linearization Points

Non-fixed linearization points => proofs based on forward simulations are
impossible in general

Possible for certain ADTs, queues and stacks [BEEM-CAV'1/]
e assuming fixed linearization points only for dequeue/pop
* reference implementations whose states are partial orders of eng/push

enq(vi):compl

//////' enqg(vs) : pend
\¥ /

eng(vi) :compl

/ eng(vs):pend call enq(V)

3 —_—
~

enq(vz2):compl

enq(v) :pend

enqg(vz2):compl

happens-before of
enqueues

Non-fixed Linearization Points

Non-fixed linearization points => proofs based on forward simulations are
impossible in general

Possible for certain ADTs, queues and stacks [BEEM-CAV'1/]
e assuming fixed linearization points only for dequeue/pop
* reference implementations whose states are partial orders of eng/push

eng(vi):compl

//////' eng(vs) :pend
\\\\\\‘ 4”///////1enq(v):comp1

eng(vi):compl

/' enqg(vs) :m‘ ret enq(v)

—

\\\\\\‘ 4"’//////)Enq(v):pend

enqg(vz2):compl

eng(v2):compl

happens-before of
enqueues

Non-fixed Linearization Points

Non-fixed linearization points => proofs based on forward simulations are
impossible in general

Possible for certain ADTs, queues and stacks [BEEM-CAV'1/]
e assuming fixed linearization points only for dequeue/pop
* reference implementations whose states are partial orders of eng/push

enq(vi):compl enq(vi):compl

enqg(ve) : - / eng(vs):pend |in deq(vo) W - / enqg(vs) : pend

——
enqg(v2) :compl

[3

enqg(v2) :compl

minimal element

Forward Sim. for H&W Queue

FS f between HWQ and AbsQ. Given a HWQ state s and an AbsQ state t, (s, t) € f
Iff:
e Pending enqueues in s are pending and maximal in t.
@ Order in t is consistent with the positions reserved in items of s.
e For two engqueues eq, &> and dequeue d, if e; reserves a position before eo, d Is visiting
an index in between and d can remove es In s, then e; cannot be ordered before e5 In t.

NuLL | <t . (x,COMP) (y, COMP)
e
i(d)

back
NULL | «—— (z, PEND)

