
Constantin Enea

Ecole Polytechnique 

REDUCING LINEARIZABILITY TO CLASSIC 
VERIFICATION PROBLEMS



Checking Lin. using “bad 
patterns”

• Reduce linearizability checking to reachability (EXPSPACE-complete):


• Define (sequential) data-structure S using inductive rules  

• S is data independent and closed under projection  

• Characterize sequential executions of S using bad patterns  

• Characterize concurrent executions, linearizable w.r.t. S using bad patterns 
(one per rule)  

• Define a regular automaton Ai for each bad pattern  

• Reduce“L is linearizable w.r.t. S” to: for all i, L ∩ Ai =∅  



Histories = Posets of events

pop ⇒ 1 push(2) push(3)

push(1) pop ⇒ 2

happens-before

partial order

push(1)

pop ⇒ 1 push(2) push(3)

pop ⇒ 3

pop ⇒ 2

Thread 1

Thread 2
pop ⇒ 3



Concurrent Queues

deq: v enq: v

“Value v dequeued before being enqueued”

“Value v dequeued twice”
deq: v deq: v

“Values dequeued in the wrong order”

enq: v1 enq: v2 deq: v2 deq: v1

Linearizability ≡ Exclusion of bad patterns (assuming each value is enqueued at 
most once - sound under data independence)

“Value v dequeued without being enqueued”
deq: v

[ICALP’15]



Concurrent Queues

deq: v enq: v

“Value v dequeued before being enqueued”

“Value v dequeued twice”
deq: v deq: v

“Values dequeued in the wrong order”

enq: v1 enq: v2 deq: v2 deq: v1

Linearizability ≡ Exclusion of bad patterns (assuming each value is enqueued at 
most once - sound under data independence)

“Dequeue wrongfully returns empty”

deq: empty

enq: v1 deq: v1

“Value v dequeued without being enqueued”
deq: v

[ICALP’15]



Concurrent Queues

deq: v enq: v

“Value v dequeued before being enqueued”

“Value v dequeued twice”
deq: v deq: v

“Values dequeued in the wrong order”

enq: v1 enq: v2 deq: v2 deq: v1

Linearizability ≡ Exclusion of bad patterns (assuming each value is enqueued at 
most once - sound under data independence)

“Dequeue wrongfully returns empty”

deq: empty

enq: v1 deq: v1

“Value v dequeued without being enqueued”
deq: v

[ICALP’15]

enq: v2 deq: v2



Concurrent Queues
Linearizability ≡ Exclusion of bad patterns (assuming each value is enqueued at 
most once - sound under data independence)

deq: v enq: v

“Value v dequeued before being enqueued”

“Value v dequeued twice”
deq: v deq: v

“Values dequeued in the wrong order”

enq: v1 enq: v2 deq: v2 deq: v1

“Dequeue wrongfully returns empty”

deq: empty

enq: v1 deq: v1

enq: v2 deq: v2

enq: vn

deq: vn-1

deq: vn

“Value v dequeued without being enqueued”
deq: v

[ICALP’15]



Concurrent Stacks

“Value v popped without being pushed”

“Value v popped before being pushed”

“Value v popped twice”

“Pop wrongfully returns empty”

“Pop doesn’t return the top of the stack”

Linearizability ≡ Exclusion of bad patterns (assuming each value is enqueued at 
most once, which is sound under data independence)

pop: v

push: v1 pop: v1

push: v

[ICALP’15]



Concurrent Stacks

“Value v popped without being pushed”

“Value v popped before being pushed”

“Value v popped twice”

“Pop wrongfully returns empty”

“Pop doesn’t return the top of the stack”

Linearizability ≡ Exclusion of bad patterns (assuming each value is enqueued at 
most once, which is sound under data independence)

pop: v

push: v1 pop: v1

push: v2 pop: v2

push: v

[ICALP’15]



Concurrent Stacks

“Value v popped without being pushed”

“Value v popped before being pushed”

“Value v popped twice”

“Pop wrongfully returns empty”

“Pop doesn’t return the top of the stack”

Linearizability ≡ Exclusion of bad patterns (assuming each value is enqueued at 
most once, which is sound under data independence)

pop: v

push: v1 pop: v1

push: v2 pop: v2

push: vn

pop: vn-1

pop: vn

push: v

[ICALP’15]



Data Independence

Let h = (O,<, l) be a history and u a sequential execution of length n. We
say that h is linearizable with respect to u, denoted h � u, if there is a bijection
f ∶ O → {1, . . . , n} s.t.

• if o1 < o2 then f(o1) < f(o2),
• the method event at position f(o) in u is l(o).

Definition 5. A history h is linearizable with respect to a set S of sequential
executions, denoted h � S, if there exists u ∈ S such that h � u.

A set of histories H is linearizable with respect to S, denoted H � S if
h � S for all h ∈H. We extend these definitions to executions according to their
histories. In that context, the set S is called a specification.

A sequential execution u is said to be differentiated if, for all input methods
m ∈ Mi, and every x ∈ D, there is at most one method event m(x) in u. The
subset of differentiated sequential executions of a set S is denoted by S≠. The
definition extends to (sets of) executions and histories. For instance, an execu-
tion is differentiated if for all input methods m ∈ Mi and every x ∈ D, there is
at most one call action callo m(x).
Example 3. callo1 Enq(7)⋅callo2 Enq(7)⋅reto1 Enq(7)⋅reto2 Enq(7) is not
differentiated, as there are two call actions with the same input method (Enq)
and the same data value.

A renaming r is a function from D to D. Given a sequential execution
(resp., execution or history) u, we denote by r(u) the sequential execution
(resp., execution or history) obtained from u by replacing every data value
x by r(x).
Definition 6. The set of sequential executions (resp., executions or histories)
S is data independent if:

• for all u ∈ S, there exists u′ ∈ S≠, and a renaming r such that u = r(u′),
• for all u ∈ S and for all renaming r, r(u) ∈ S.

When checking that a data-independent implementation I is linearizable
with respect to a data-independent specification S, it is enough to do so for
differentiated executions [1]. Thus, in the remainder of the paper, we focus on
characterizing linearizability for differentiated executions, rather than arbitrary
ones.

Lemma 1 (Abdulla et al. [1]). A data-independent implementation I is lin-
earizable with respect to a data-independent specification S, if and only if I≠ is
linearizable with respect to S≠.
Proof. (⇒) Let e be a (differentiated) execution in I≠. By assumption, it is
linearizable with respect to a sequential execution u in S, and the bijection
between the operations of e and the method events of u, ensures that u is
differentiated and belongs to S≠.

5

• Input methods = methods taking an argument


• A sequential execution u is called differentiated if for all input methods m and every 
x, u contains at most one invocation m(x)


• S≠ is the set of differentiated executions in S 

Theorem: A data-independent implementation I is linearizable w.r.t. a data-
independent specification S iff I≠ is linearizable w.r.t. S≠



Characterization of 
concurrent executions

not possible, as projections over 1 data value contain only one Deq operation.
For cycles of size 2, if d1 and d2 are the two data values appearing in the cycle,
we have: h�{d1,d2} ��MS(REnqDeq), which is what we wanted to prove.

Having the small model property, we can build a finite automaton which
recognizes each of the small violations, to prove that indeed rule REnqDeq is
co-regular.

Lemma 12. The rule REnqDeq is co-regular.

Proof. We prove in Lemma 11 that if a differentiated history h is not linearizable
with respect to MS(REnqDeq), then it has a projection over 1 or 2 data values
which is not linearizable with respect to MS(REnqDeq) either. Violations of
histories with two values are: i) there is a value x such that Deq(x) happens
before Enq(x) (or Enq(x) doesn’t exist in the history) or ii) there are two
operations Deq(x) in h or, iii) there are two values x and y such that Enq(x)
happens before Enq(y), and Deq(y) happens before Deq(x) (Deq(x) doesn’t
exist in the history).

q0 q1 q2 q3 q4

EvQueue(3)

call Deq(2)

EvQueue(3) EvQueue(3) EvQueue(3) EvQueue(3)
call Enq(1) ret Enq(1) call Enq(2) ret Deq(2)

q8 q9

EvQueue(2) EvQueue(2)

call Deq(1)

ret Deq(1)
q5 q6 q7

EvQueue({1,2}) EvQueue({1,2}) EvQueue({1,2})

call Deq(1)

ret Deq(1) ret Deq(1)

Figure 2: A non-deterministic automaton recognizing REnqDeq violations. The top-left branch
recognizes executions which have a Deq with no corresponding Enq. The top-right branch
recognizes two Deq’s returning the same value, which is not supposed to happen in a differen-
tiated execution. The bottom branch recognizes FIFO violations. By the closure properties
of implementations, we can assume the call Deq(2) are at the beginning.

The automatonAREnqDeq in Fig 2 works on the finite alphabet EvQueue({1,2,3})
and recognizes all such small violations (top-left branch for i, top-right branch
for ii, bottom branch for iii).

Let I be any data-independent implementation. We show that

AREnqDeq ∩ I ≠ � ⇐⇒ ∃e ∈ I≠, e′ ∈ proj(e).
last(e′) = REnqDeq ∧ e′ ��MS(REnqDeq)

20



Characterization of 
concurrent executions

REMP

DeqEmpty(2)
Enq(1)

Enq(1)
Enq(1)

Enq(1)

Deq(1)
Deq(1)

Deq(1)
Deq(1)

Figure 3: A four-pair RDeqEmpty

violation. Lemma 15 demonstrates
that this pattern with arbitrarily-
many pairs is regular.

q0

q1 q2

q3

q4

EvQueue(3)

EvQueue(3) EvQueue(3)

EvQueue(3)

EvQueue(3)

call Enq(1)

ret Enq(1)
call DeqEmpty(2) ret DeqEmpty(2)

ret Enq(1)call Deq(1)
ret Deq(1)

Figure 4: An automaton recognizing RDeqEmpty vi-
olations, for which the queue is non-empty, with data
value 1, for the span of DeqEmpty. We assume all
call Enq(1) actions occur initially without loss of
generality due to implementations’ closure proper-
ties.

(⇒) Let e ∈ I be an execution which is accepted by ARDeqEmpty . By data
independence, let e≠ ∈ I and r a renaming such that e = r(e≠). Let d1, . . . , dt be
the data values which are mapped to value 1 by r.

Let d be the data value which is mapped to value 2 by r. Let o be the
DeqEmpty operation with data value d. By construction of the automaton
we can prove that o is covered by d1, . . . , dt, and using Lemma 14, conclude
that the history h of e has a projection such that last(h′) = RDeqEmpty and
h′ ��MS(RDeqEmpty).(⇐) Let e≠ ∈ I≠ such that there is a projection e′ such that last(e′) =
RDeqEmpty and e′ �� MS(RDeqEmpty). Let d1, . . . , dt be the data values given
by Lemma 13, and let d be the data value corresponding to the DeqEmpty
operation.

Let r be the renaming which maps d1, . . . , dt to 1, d to 2, and all other
values to 3. Let e = r(e≠). The execution e can be recognized by the automatonARDeqEmpty , and belongs to I by data independence.

6.3. Co-Regularity of the Stack rules
The Stack rule RPushPop is very similar to the RDeqEmpty rule of the Stack.

We use the notion of gap, which intuitively corresponds to a point in an execution
where the Stack could be empty.

Definition 11. Let h = (O,<, l) be a differentiated history. A gap is a partition
O = L �R satisfying:

• L has no unmatched Push operations, and

• no operation of R happens before an operation of L.

A gap is non-trivial if L ≠ � and R ≠ �.

24

we assume that all actions 
call Enq(1) occur at the 
beginning



Exercices

MPRI Year 2017-2018

read()=>1 write(2)

write(1) read()=>1 read()=>2

read()=>1

write(1) read()=>1 read()=>2

write(2) read()=>1

write(1)

write(2)

read()=>2

read()=>1

Figure 2 – Histories for Exercice 4

3. What about histories of the concurrent memory with two read invocations read(x) and

read(y) (for arbitrary x, y). Is the problem of checking linearizability still polynomial

time ? Provide a justification for your answer.

Exercice 6 : Checking Linearizability of an Implementation

We consider a sequential specification defined by the language S =(a())⇤(b())⇤ where all

the invocations of a() occur before invocations of b().

1. Describe a reduction of checking linearizability w.r.t. the specification S to a reacha-

bility problem. More precisely, describe a labeled transition system (monitor) that

accepts exactly all the histories of a given implementation (sequences of call and re-

turn actions) that are not linearizable w.r.t. S. The synchronized product between a

transition system representing an implementation and this monitor (where the syn-

chronization actions are call and returns) reaches an accepting state of the monitor iff

the implementation is not linearizable.

2. Describe an extension of this reduction to S =(a())⇤(b())⇤ + (b())⇤(a())⇤

3



Exercices
• What is the complexity of checking linearizability of a 

differentiated history of a concurrent queue?



Exercices
• What is the complexity of checking linearizability of a 

differentiated history of a concurrent queue?

deq: v enq: v

“Value v dequeued before being enqueued”

“Value v dequeued twice”
deq: v deq: v

“Values dequeued in the wrong order”

enq: v1 enq: v2 deq: v2 deq: v1

“Dequeue wrongfully returns empty”

deq: empty

enq: v1 deq: v1

enq: v2 deq: v2

enq: vn

deq: vn-1

deq: vn

“Value v dequeued without being enqueued”
deq: v



Observational Refinement

<=>


Linearizability/ Refinement



Observational Refinement
Efficient implementation

class TreiberStack {

  cell* top;


  void push (int v) {

    cell* t;

    cell* x = malloc(sizeof *x);

    x->data = v;

    do {

      t = top;

      x->next = top;

    } while (!CAS(&top,t,x));

  }


  int pop () {

    ...

  }

}

Reference implementation

class AtomicStack {

  cell* top;

  Lock l;


  void push (int v) {

    l.lock();

    top->next = malloc(sizeof *x);

    top = top->next;

    top->data = v;

    l.unlock();

  }


  int pop () {

    ...

  }

}

minimize

contention

For every Client, 

Client x Impl included in Client x Spec 



Formalizing Libraries/Programs

pu
sh
(1
)

re
t

po
p(
)

preemption before CAS

n=0xFF

Thread 2

po
p(
)

re
t(
1)

y
=
1

pu
sh
(2
)

re
t

pu
sh
(3
)

re
t

free(0xFF) n=0xFF

re
t(
3)

x
=
3

po
p(
)

re
t(
EM
P)

z
=
EM
P

Thread1

(a) An execution e of the program; it depicts calls, returns,
and assignments, and time progresses from left to right.

push(1)

pop ) 3

pop ) 1
push(2)

push(3)

pop ) EMPTY

(b) The history H(e) of execution e.

push(1)

push(2)

pop ) 1

push(3)

pop ) EMPTY

pop ) ?

pop ) ?

(c) A history weaker than H(e).

0 1 2 3 4 5 6 7 8 9 10 11 12 13

push(1) pop ) 3

pop ) 1 push(2) push(3) pop ) EMPTY

(d) The history H(e) as an interval order.

0 1 2 3 4

push(1) pop ) 3

pop ) 1 push(2) push(3) pop ) EMPTY

(e) The canonical representation of H(e).

Figure 2. An execution and its history.

using L2. This property clearly does not hold between the CAS-
based implementation of Figure 1 and a correct atomic lock-based
implementation, since y = 1; x = 3; z = EMPTY is observable
using the CAS-based implementation, yet not using the atomic one.

3. Observational Refinement
We formalize the criterion of observational refinement using a sim-
ple yet universal model of computation, namely labeled transition
systems (LTS). This model captures shared-memory programs with
an arbitrary number of threads, abstracting away the details of any
particular programming system irrelevant to our development.

A labeled transition system A = (Q,⌃, q0, �) over the possibly-
infinite alphabet ⌃ is a possibly-infinite set Q of states with initial
state q0 2 Q, and a transition relation � ✓ Q ⇥ ⌃ ⇥ Q. The ith
symbol of a sequence e 2 ⌃⇤ is denoted ei. An execution of A is a
sequence e 2 ⌃⇤ such that for some q1, q2, . . . , q|e| 2 Q, we have
�(qi, ei, qi+1) for each i such that 0  i < |e|. The projection e|�
is the maximum subsequence of e over alphabet �. E(A) denotes
the set of A’s executions, and E(A)|� their projections over � (note
that E(A) is prefix closed). The synchronous product A1 ⇥A2 of
two LTSs is defined as usual, respecting E(A1 ⇥A2)|(⌃1 \⌃2) =
E(A1)|⌃2 \ E(A2)|⌃1.

3.1 Libraries
Programs interact with libraries by calling named library methods,
which receive parameter values and yield return values upon
completion. We fix arbitrary sets M and V of method names and
parameter/return values.

Example 3.1. The method and value sets for the stack implementa-
tion in Figure 1 are M = {push, pop} and V = N [ {EMPTY}.

We fix an arbitrary set O of operation identifiers, and for given sets
M and V of methods and values, we fix the sets

C = {m(v)o : m 2 M, v 2 V, o 2 O}, and
R = {ret(v)o : v 2 V, o 2 O}

of call actions and return actions; each call action m(v)o combines
a method m 2 M and value v 2 V with an operation identifier
o 2 O. Operation identifiers are used to pair call and return actions.
We denote the operation identifier of a call/return action a by op(a).
Call and return actions c 2 C and r 2 R are matching, written
c 7� [ r, when op(c) = op(r). A word e 2 ⌃⇤ over alphabet ⌃, such
that (C [R) ✓ ⌃, is well formed when:
• Each return is preceded by a matching call:
ej 2 R implies ei 7� [ ej for some i < j.

• Each operation identifier is used in at most one call/return:
op(ei) = op(ej) and i < j implies ei 7� [ ej .

We say that the well-formed word e 2 ⌃⇤ is sequential when
• Operations do not overlap:
ei, ek 2 C and i < k implies ei 7� [ ej for some i < j < k.

Well-formed words represent executions. We assume every set
of well-formed words is closed under isomorphic renaming of
operation identifiers. For notational convenience, we often associate
O with N, e.g., writing m(u)1 and ret(v)2 in place of m(u)o1 and
ret(v)o2 . An operation o of an execution e is completed when both
call and return actions m(u)o and ret(v)o of o occur in e, and is
otherwise pending.
Example 3.2. The well-formed words
push(0)1 pop2 pop3 ret1 ret(0)3 ret(0)2, and push(0)1 pop2 pop3 ret1 ret(0)2

represent executions in which one call to the push(0) method
overlaps with two calls to pop. In the first execution both calls
to pop have matching return actions ret(0), i.e., the operations 2
and 3 are completed, while operation 3 is pending in the second, it
has no matching return.

Libraries dictate the execution of methods between their call
and return points. Accordingly, a library cannot prevent a method
from being called, though it can decide not to return. Furthermore,
any library action performed in the interval between call and return
points can also be performed should the call have been made earlier,
and/or the return made later. Our technical results rely on these
properties. A library thus allows any sequence of invocations to its
methods made by some program.

Definition 3.1. A library L is an LTS over alphabet C [ R such
that each execution e 2 E(L) is well formed, and

• Call actions c 2 C cannot be disabled:
e · e0 2 E(L) implies e · c · e0 2 E(L) if e · c · e0 is well formed.

• Call actions c 2 C cannot disable other actions:
e · a · c · e0 2 E(L) implies e · c · a · e0 2 E(L).

• Return actions r 2 R cannot enable other actions:
e · r · a · e0 2 E(L) implies e · a · r · e0 2 E(L).

We write e1 ; e2 when e2 can be derived from e1 by applying zero
or more of the above rules. The closure of a set E of executions
under ; is denoted E.

Note that even a library that implements atomic methods, e.g., by
guarding method bodies with a global-lock acquisition, admits
executions in which method calls and returns overlap. A library
which accesses the client’s thread identifiers can be modeled by
taking thread identifiers as method parameters.

A sequence in (C ∪ R)* is well-formed if every return is preceeded 
by a matching call, each identifier is used at most once


A sequence in (C ∪ R)* is sequential if there exists a return 
between every successive two calls 



pu
sh
(1
)

re
t

po
p(
)

preemption before CAS

n=0xFF

Thread 2

po
p(
)

re
t(
1)

y
=
1

pu
sh
(2
)

re
t

pu
sh
(3
)

re
t

free(0xFF) n=0xFF

re
t(
3)

x
=
3

po
p(
)

re
t(
EM
P)

z
=
EM
P

Thread1

(a) An execution e of the program; it depicts calls, returns,
and assignments, and time progresses from left to right.

push(1)

pop ) 3

pop ) 1
push(2)

push(3)

pop ) EMPTY

(b) The history H(e) of execution e.

push(1)

push(2)

pop ) 1

push(3)

pop ) EMPTY

pop ) ?

pop ) ?

(c) A history weaker than H(e).

0 1 2 3 4 5 6 7 8 9 10 11 12 13

push(1) pop ) 3

pop ) 1 push(2) push(3) pop ) EMPTY

(d) The history H(e) as an interval order.

0 1 2 3 4

push(1) pop ) 3

pop ) 1 push(2) push(3) pop ) EMPTY

(e) The canonical representation of H(e).

Figure 2. An execution and its history.

using L2. This property clearly does not hold between the CAS-
based implementation of Figure 1 and a correct atomic lock-based
implementation, since y = 1; x = 3; z = EMPTY is observable
using the CAS-based implementation, yet not using the atomic one.

3. Observational Refinement
We formalize the criterion of observational refinement using a sim-
ple yet universal model of computation, namely labeled transition
systems (LTS). This model captures shared-memory programs with
an arbitrary number of threads, abstracting away the details of any
particular programming system irrelevant to our development.

A labeled transition system A = (Q,⌃, q0, �) over the possibly-
infinite alphabet ⌃ is a possibly-infinite set Q of states with initial
state q0 2 Q, and a transition relation � ✓ Q ⇥ ⌃ ⇥ Q. The ith
symbol of a sequence e 2 ⌃⇤ is denoted ei. An execution of A is a
sequence e 2 ⌃⇤ such that for some q1, q2, . . . , q|e| 2 Q, we have
�(qi, ei, qi+1) for each i such that 0  i < |e|. The projection e|�
is the maximum subsequence of e over alphabet �. E(A) denotes
the set of A’s executions, and E(A)|� their projections over � (note
that E(A) is prefix closed). The synchronous product A1 ⇥A2 of
two LTSs is defined as usual, respecting E(A1 ⇥A2)|(⌃1 \⌃2) =
E(A1)|⌃2 \ E(A2)|⌃1.

3.1 Libraries
Programs interact with libraries by calling named library methods,
which receive parameter values and yield return values upon
completion. We fix arbitrary sets M and V of method names and
parameter/return values.

Example 3.1. The method and value sets for the stack implementa-
tion in Figure 1 are M = {push, pop} and V = N [ {EMPTY}.

We fix an arbitrary set O of operation identifiers, and for given sets
M and V of methods and values, we fix the sets

C = {m(v)o : m 2 M, v 2 V, o 2 O}, and
R = {ret(v)o : v 2 V, o 2 O}

of call actions and return actions; each call action m(v)o combines
a method m 2 M and value v 2 V with an operation identifier
o 2 O. Operation identifiers are used to pair call and return actions.
We denote the operation identifier of a call/return action a by op(a).
Call and return actions c 2 C and r 2 R are matching, written
c 7� [ r, when op(c) = op(r). A word e 2 ⌃⇤ over alphabet ⌃, such
that (C [R) ✓ ⌃, is well formed when:
• Each return is preceded by a matching call:
ej 2 R implies ei 7� [ ej for some i < j.

• Each operation identifier is used in at most one call/return:
op(ei) = op(ej) and i < j implies ei 7� [ ej .

We say that the well-formed word e 2 ⌃⇤ is sequential when
• Operations do not overlap:
ei, ek 2 C and i < k implies ei 7� [ ej for some i < j < k.

Well-formed words represent executions. We assume every set
of well-formed words is closed under isomorphic renaming of
operation identifiers. For notational convenience, we often associate
O with N, e.g., writing m(u)1 and ret(v)2 in place of m(u)o1 and
ret(v)o2 . An operation o of an execution e is completed when both
call and return actions m(u)o and ret(v)o of o occur in e, and is
otherwise pending.
Example 3.2. The well-formed words
push(0)1 pop2 pop3 ret1 ret(0)3 ret(0)2, and push(0)1 pop2 pop3 ret1 ret(0)2

represent executions in which one call to the push(0) method
overlaps with two calls to pop. In the first execution both calls
to pop have matching return actions ret(0), i.e., the operations 2
and 3 are completed, while operation 3 is pending in the second, it
has no matching return.

Libraries dictate the execution of methods between their call
and return points. Accordingly, a library cannot prevent a method
from being called, though it can decide not to return. Furthermore,
any library action performed in the interval between call and return
points can also be performed should the call have been made earlier,
and/or the return made later. Our technical results rely on these
properties. A library thus allows any sequence of invocations to its
methods made by some program.

Definition 3.1. A library L is an LTS over alphabet C [ R such
that each execution e 2 E(L) is well formed, and

• Call actions c 2 C cannot be disabled:
e · e0 2 E(L) implies e · c · e0 2 E(L) if e · c · e0 is well formed.

• Call actions c 2 C cannot disable other actions:
e · a · c · e0 2 E(L) implies e · c · a · e0 2 E(L).

• Return actions r 2 R cannot enable other actions:
e · r · a · e0 2 E(L) implies e · a · r · e0 2 E(L).

We write e1 ; e2 when e2 can be derived from e1 by applying zero
or more of the above rules. The closure of a set E of executions
under ; is denoted E.

Note that even a library that implements atomic methods, e.g., by
guarding method bodies with a global-lock acquisition, admits
executions in which method calls and returns overlap. A library
which accesses the client’s thread identifiers can be modeled by
taking thread identifiers as method parameters.

Example 3.3. Any library which admits the execution
push(0)1 ret1 pop2 ret(0)2

with sequential calls to push and pop must also admit
push(0)1 pop2 ret1 ret(0)2 and push(0)1 pop2 pop3 ret1 ret(0)2,

among others, yet need not admit an execution
push(0)1 pop2 pop3 ret1 ret(0)3 ret(0)2

with two completed pop operations returning 0.

A library L is called atomic if it is defined by the closure of
some set E of sequential executions, i.e., E(L) = E. When such
a set E exists, it is unique, and we call it the kernel of L, denoted
by kerL. Note that kerL contains only completed operations since
e1 · e2 ; e1 · c · e2, for any unmatched call c. Atomic libraries are
often considered as specifications for concurrent objects.

Example 3.4. The atomic stack is the library whose kernel is the
set of sequential executions for which the return value of each pop
operation is either
• the argument value v to the last unmatched push operation, or
• EMPTY if there are no unmatched push operations.

In practice, the atomic stack can be implemented by guarding the
methods of a “sequential” stack object by global-lock acquisition.

3.2 Refinement between Libraries
Refinement between libraries is defined with respect to the observ-
able actions of programs which invoke library methods. Complemen-
tary to libraries, programs control their execution outside of method
call and return points. Accordingly, any program action performed
in the interval between call and return points can also be performed
should the call have been made later, and/or the return made earlier.
A program thus allows any sequence of matching returns generated
by some implementation of the methods it invokes.

Definition 3.2. A program P over actions ⌃ is an LTS over alphabet
(⌃ ] C ]R) where each execution e 2 E(P ) is well formed, and
• Call actions c 2 C cannot enable other actions:
e · c · a · e0 2 E(P ) implies c 7� [ a or e · a · c · e0 2 E(P ).

• Return actions r 2 R cannot disable other actions:
e · a · r · e0 2 E(P ) implies a 7� [ r or e · r · a · e 2 E(P ).

• Return actions r 2 R cannot be disabled:
e · e0 2 E(P ) implies e · r · e0 2 E(L) if e · r · e0 is well formed.

Example 3.5. Any program which admits the execution
push(0)1 pop2 ret(0)2 pop3 ret1,

with two sequential pop calls concurrent with push, must also admit
push(0)1 ret1 pop2 ret(0)2 pop3 and
push(0)1 ret1 pop2 ret(0)2 pop3 ret(EMPTY)3,

among others, in which all three calls are sequential and the second
pop may return (with any value), yet need not admit an execution

push(0)1 ret1 pop3 pop2 ret(0)2,

in which the two calls to pop are concurrent. The set of executions
admitted by a program allows any possible implementation of
the methods. While programs cannot force methods to execute
concurrently, they can force methods to execute sequentially, e.g.,
by waiting for one to return before calling the next.

Refinement between libraries L1 and L2 means that any program
execution possible with L1 is also possible with L2.

Definition 3.3. The library L1 refines L2, written L1  L2, iff

E(P ⇥ L1)|⌃ ✓ E(P ⇥ L2)|⌃
for all programs P over actions ⌃.

Note that  is a preorder over libraries. As library and program
alphabets only intersect on call and return actions C [ R, our
formalization supposes that programs and libraries communicate
only through method calls and returns, and not, e.g., through shared
random-access memory.

Example 3.6. The incorrect Treiber’s stack implementation of Fig-
ure 1 does not refine an atomic lock-based reference implementation,
since the execution of Figure 2 is admitted by its composition with
the two-thread program of Figure 1.

4. History Inclusion
Though we seek to develop automated techniques to check obser-
vational refinement between libraries, the definition of Section 3
does not suggest any practical means; it only suggests enumerating
every possible execution of every possible program. In this section
we introduce an equivalent notion based on concise abstractions of
program executions called histories. Besides being independent of
programs, this equivalent notion helps expose the structure of the
refinement problem, and suggests practical means of automation
which we develop in Section 6.

4.1 Histories
For given sets M and V of methods and values, we fix a set
L = M⇥V⇥ (V [ {?}) of operation labels, and denote the label
hm,u, vi by m(u)) v. A history h = hO,<, fi is a partial order
< on a set O ✓ O of operation identifiers labeled by f : O!L for
which f(o) = m(u))? implies o is maximal in <. The history
H(e) of a well-formed execution e 2 ⌃⇤ labels each operation with
a method-call summary, and orders non-overlapping operations:

• O = {op(ei) : 0  i < |e| and ei 2 C},
• op(ei) < op(ej) iff i < j, ei 2 R, and ej 2 C.

• f(o) =

⇢
m(u)) v if m(u)o 2 e and ret(v)o 2 e
m(u))? if m(u)o 2 e and ret( )o 62 e

An operation of h labeled by ` 2 L is called an ` operation. The
histories admitted by L are H(L) = {H(e) : e 2 E(L)}.

Example 4.1. Figure 2(b) depicts the history of the execution in
Figure 2(a). Arrows depict the order relation modulo transitivity.
Operations o1 and o2 are ordered in h if o1’s return precedes o2’s
call. For example, push(1) precedes pop) 3. However, pop) 1
is incomparable to pop) 3 because pop) 1’s return comes after
pop) 3’s call, and pop) 3’s return comes after pop) 1’s call.
The order among operations’ call actions is irrelevant, as is the
order among their return actions.

While the general concept of histories allows arbitrary partial
orders of operations, any history H(e) arising from an LTS execu-
tion e falls into a restricted class called interval orders. Intuitively,
this is because our execution model assumes that operations share
a common notion of global time: the actions in an execution are
linearly ordered.

Definition 4.1. An interval order is a partial order hO,<i such that
o1 < o3 and o2 < o4 implies o1 < o4 or o2 < o3.

Lemma 4.1. The history H(e) = hO, f,<i of a well-formed
execution e forms an interval order hO,<i.

Proof. Suppose o1 < o3 and o2 < o4 in H(e), and fix i1, i2, i3, i4
such that ei1 and ei2 are the return actions of o1 and o2, and ei3
and ei4 are the call actions of o3 and o4; note that i1 < i3 and
i2 < i4. Since < linearly orders {i1, i2, i3, i4}, either i1 < i4, in
which case o1 < o4, or i4 < i1, in which case i2 < i4 < i1 < i3,
so o2 < o3.

Formalizing Libraries/Programs



Observational Refinement

Example 3.3. Any library which admits the execution
push(0)1 ret1 pop2 ret(0)2

with sequential calls to push and pop must also admit
push(0)1 pop2 ret1 ret(0)2 and push(0)1 pop2 pop3 ret1 ret(0)2,

among others, yet need not admit an execution
push(0)1 pop2 pop3 ret1 ret(0)3 ret(0)2

with two completed pop operations returning 0.

A library L is called atomic if it is defined by the closure of
some set E of sequential executions, i.e., E(L) = E. When such
a set E exists, it is unique, and we call it the kernel of L, denoted
by kerL. Note that kerL contains only completed operations since
e1 · e2 ; e1 · c · e2, for any unmatched call c. Atomic libraries are
often considered as specifications for concurrent objects.

Example 3.4. The atomic stack is the library whose kernel is the
set of sequential executions for which the return value of each pop
operation is either
• the argument value v to the last unmatched push operation, or
• EMPTY if there are no unmatched push operations.

In practice, the atomic stack can be implemented by guarding the
methods of a “sequential” stack object by global-lock acquisition.

3.2 Refinement between Libraries
Refinement between libraries is defined with respect to the observ-
able actions of programs which invoke library methods. Complemen-
tary to libraries, programs control their execution outside of method
call and return points. Accordingly, any program action performed
in the interval between call and return points can also be performed
should the call have been made later, and/or the return made earlier.
A program thus allows any sequence of matching returns generated
by some implementation of the methods it invokes.

Definition 3.2. A program P over actions ⌃ is an LTS over alphabet
(⌃ ] C ]R) where each execution e 2 E(P ) is well formed, and
• Call actions c 2 C cannot enable other actions:
e · c · a · e0 2 E(P ) implies c 7� [ a or e · a · c · e0 2 E(P ).

• Return actions r 2 R cannot disable other actions:
e · a · r · e0 2 E(P ) implies a 7� [ r or e · r · a · e 2 E(P ).

• Return actions r 2 R cannot be disabled:
e · e0 2 E(P ) implies e · r · e0 2 E(L) if e · r · e0 is well formed.

Example 3.5. Any program which admits the execution
push(0)1 pop2 ret(0)2 pop3 ret1,

with two sequential pop calls concurrent with push, must also admit
push(0)1 ret1 pop2 ret(0)2 pop3 and
push(0)1 ret1 pop2 ret(0)2 pop3 ret(EMPTY)3,

among others, in which all three calls are sequential and the second
pop may return (with any value), yet need not admit an execution

push(0)1 ret1 pop3 pop2 ret(0)2,

in which the two calls to pop are concurrent. The set of executions
admitted by a program allows any possible implementation of
the methods. While programs cannot force methods to execute
concurrently, they can force methods to execute sequentially, e.g.,
by waiting for one to return before calling the next.

Refinement between libraries L1 and L2 means that any program
execution possible with L1 is also possible with L2.

Definition 3.3. The library L1 refines L2, written L1  L2, iff

E(P ⇥ L1)|⌃ ✓ E(P ⇥ L2)|⌃
for all programs P over actions ⌃.

Note that  is a preorder over libraries. As library and program
alphabets only intersect on call and return actions C [ R, our
formalization supposes that programs and libraries communicate
only through method calls and returns, and not, e.g., through shared
random-access memory.

Example 3.6. The incorrect Treiber’s stack implementation of Fig-
ure 1 does not refine an atomic lock-based reference implementation,
since the execution of Figure 2 is admitted by its composition with
the two-thread program of Figure 1.

4. History Inclusion
Though we seek to develop automated techniques to check obser-
vational refinement between libraries, the definition of Section 3
does not suggest any practical means; it only suggests enumerating
every possible execution of every possible program. In this section
we introduce an equivalent notion based on concise abstractions of
program executions called histories. Besides being independent of
programs, this equivalent notion helps expose the structure of the
refinement problem, and suggests practical means of automation
which we develop in Section 6.

4.1 Histories
For given sets M and V of methods and values, we fix a set
L = M⇥V⇥ (V [ {?}) of operation labels, and denote the label
hm,u, vi by m(u)) v. A history h = hO,<, fi is a partial order
< on a set O ✓ O of operation identifiers labeled by f : O!L for
which f(o) = m(u))? implies o is maximal in <. The history
H(e) of a well-formed execution e 2 ⌃⇤ labels each operation with
a method-call summary, and orders non-overlapping operations:

• O = {op(ei) : 0  i < |e| and ei 2 C},
• op(ei) < op(ej) iff i < j, ei 2 R, and ej 2 C.

• f(o) =

⇢
m(u)) v if m(u)o 2 e and ret(v)o 2 e
m(u))? if m(u)o 2 e and ret( )o 62 e

An operation of h labeled by ` 2 L is called an ` operation. The
histories admitted by L are H(L) = {H(e) : e 2 E(L)}.

Example 4.1. Figure 2(b) depicts the history of the execution in
Figure 2(a). Arrows depict the order relation modulo transitivity.
Operations o1 and o2 are ordered in h if o1’s return precedes o2’s
call. For example, push(1) precedes pop) 3. However, pop) 1
is incomparable to pop) 3 because pop) 1’s return comes after
pop) 3’s call, and pop) 3’s return comes after pop) 1’s call.
The order among operations’ call actions is irrelevant, as is the
order among their return actions.

While the general concept of histories allows arbitrary partial
orders of operations, any history H(e) arising from an LTS execu-
tion e falls into a restricted class called interval orders. Intuitively,
this is because our execution model assumes that operations share
a common notion of global time: the actions in an execution are
linearly ordered.

Definition 4.1. An interval order is a partial order hO,<i such that
o1 < o3 and o2 < o4 implies o1 < o4 or o2 < o3.

Lemma 4.1. The history H(e) = hO, f,<i of a well-formed
execution e forms an interval order hO,<i.

Proof. Suppose o1 < o3 and o2 < o4 in H(e), and fix i1, i2, i3, i4
such that ei1 and ei2 are the return actions of o1 and o2, and ei3
and ei4 are the call actions of o3 and o4; note that i1 < i3 and
i2 < i4. Since < linearly orders {i1, i2, i3, i4}, either i1 < i4, in
which case o1 < o4, or i4 < i1, in which case i2 < i4 < i1 < i3,
so o2 < o3.



Histories

Example 3.3. Any library which admits the execution
push(0)1 ret1 pop2 ret(0)2

with sequential calls to push and pop must also admit
push(0)1 pop2 ret1 ret(0)2 and push(0)1 pop2 pop3 ret1 ret(0)2,

among others, yet need not admit an execution
push(0)1 pop2 pop3 ret1 ret(0)3 ret(0)2

with two completed pop operations returning 0.

A library L is called atomic if it is defined by the closure of
some set E of sequential executions, i.e., E(L) = E. When such
a set E exists, it is unique, and we call it the kernel of L, denoted
by kerL. Note that kerL contains only completed operations since
e1 · e2 ; e1 · c · e2, for any unmatched call c. Atomic libraries are
often considered as specifications for concurrent objects.

Example 3.4. The atomic stack is the library whose kernel is the
set of sequential executions for which the return value of each pop
operation is either
• the argument value v to the last unmatched push operation, or
• EMPTY if there are no unmatched push operations.

In practice, the atomic stack can be implemented by guarding the
methods of a “sequential” stack object by global-lock acquisition.

3.2 Refinement between Libraries
Refinement between libraries is defined with respect to the observ-
able actions of programs which invoke library methods. Complemen-
tary to libraries, programs control their execution outside of method
call and return points. Accordingly, any program action performed
in the interval between call and return points can also be performed
should the call have been made later, and/or the return made earlier.
A program thus allows any sequence of matching returns generated
by some implementation of the methods it invokes.

Definition 3.2. A program P over actions ⌃ is an LTS over alphabet
(⌃ ] C ]R) where each execution e 2 E(P ) is well formed, and
• Call actions c 2 C cannot enable other actions:
e · c · a · e0 2 E(P ) implies c 7� [ a or e · a · c · e0 2 E(P ).

• Return actions r 2 R cannot disable other actions:
e · a · r · e0 2 E(P ) implies a 7� [ r or e · r · a · e 2 E(P ).

• Return actions r 2 R cannot be disabled:
e · e0 2 E(P ) implies e · r · e0 2 E(L) if e · r · e0 is well formed.

Example 3.5. Any program which admits the execution
push(0)1 pop2 ret(0)2 pop3 ret1,

with two sequential pop calls concurrent with push, must also admit
push(0)1 ret1 pop2 ret(0)2 pop3 and
push(0)1 ret1 pop2 ret(0)2 pop3 ret(EMPTY)3,

among others, in which all three calls are sequential and the second
pop may return (with any value), yet need not admit an execution

push(0)1 ret1 pop3 pop2 ret(0)2,

in which the two calls to pop are concurrent. The set of executions
admitted by a program allows any possible implementation of
the methods. While programs cannot force methods to execute
concurrently, they can force methods to execute sequentially, e.g.,
by waiting for one to return before calling the next.

Refinement between libraries L1 and L2 means that any program
execution possible with L1 is also possible with L2.

Definition 3.3. The library L1 refines L2, written L1  L2, iff

E(P ⇥ L1)|⌃ ✓ E(P ⇥ L2)|⌃
for all programs P over actions ⌃.

Note that  is a preorder over libraries. As library and program
alphabets only intersect on call and return actions C [ R, our
formalization supposes that programs and libraries communicate
only through method calls and returns, and not, e.g., through shared
random-access memory.

Example 3.6. The incorrect Treiber’s stack implementation of Fig-
ure 1 does not refine an atomic lock-based reference implementation,
since the execution of Figure 2 is admitted by its composition with
the two-thread program of Figure 1.

4. History Inclusion
Though we seek to develop automated techniques to check obser-
vational refinement between libraries, the definition of Section 3
does not suggest any practical means; it only suggests enumerating
every possible execution of every possible program. In this section
we introduce an equivalent notion based on concise abstractions of
program executions called histories. Besides being independent of
programs, this equivalent notion helps expose the structure of the
refinement problem, and suggests practical means of automation
which we develop in Section 6.

4.1 Histories
For given sets M and V of methods and values, we fix a set
L = M⇥V⇥ (V [ {?}) of operation labels, and denote the label
hm,u, vi by m(u)) v. A history h = hO,<, fi is a partial order
< on a set O ✓ O of operation identifiers labeled by f : O!L for
which f(o) = m(u))? implies o is maximal in <. The history
H(e) of a well-formed execution e 2 ⌃⇤ labels each operation with
a method-call summary, and orders non-overlapping operations:

• O = {op(ei) : 0  i < |e| and ei 2 C},
• op(ei) < op(ej) iff i < j, ei 2 R, and ej 2 C.

• f(o) =

⇢
m(u)) v if m(u)o 2 e and ret(v)o 2 e
m(u))? if m(u)o 2 e and ret( )o 62 e

An operation of h labeled by ` 2 L is called an ` operation. The
histories admitted by L are H(L) = {H(e) : e 2 E(L)}.

Example 4.1. Figure 2(b) depicts the history of the execution in
Figure 2(a). Arrows depict the order relation modulo transitivity.
Operations o1 and o2 are ordered in h if o1’s return precedes o2’s
call. For example, push(1) precedes pop) 3. However, pop) 1
is incomparable to pop) 3 because pop) 1’s return comes after
pop) 3’s call, and pop) 3’s return comes after pop) 1’s call.
The order among operations’ call actions is irrelevant, as is the
order among their return actions.

While the general concept of histories allows arbitrary partial
orders of operations, any history H(e) arising from an LTS execu-
tion e falls into a restricted class called interval orders. Intuitively,
this is because our execution model assumes that operations share
a common notion of global time: the actions in an execution are
linearly ordered.

Definition 4.1. An interval order is a partial order hO,<i such that
o1 < o3 and o2 < o4 implies o1 < o4 or o2 < o3.

Lemma 4.1. The history H(e) = hO, f,<i of a well-formed
execution e forms an interval order hO,<i.

Proof. Suppose o1 < o3 and o2 < o4 in H(e), and fix i1, i2, i3, i4
such that ei1 and ei2 are the return actions of o1 and o2, and ei3
and ei4 are the call actions of o3 and o4; note that i1 < i3 and
i2 < i4. Since < linearly orders {i1, i2, i3, i4}, either i1 < i4, in
which case o1 < o4, or i4 < i1, in which case i2 < i4 < i1 < i3,
so o2 < o3.

The histories admitted by a library L are H(L) = { H(e): e ∈ E(L) }



Histories

pop ⇒ 1 push(2) push(3) pop ⇒ EMPTY

push(1) pop ⇒ 3

happens-before

partial order

push(1)

pop ⇒ 1 push(2) push(3)

pop ⇒ EMPTY

pop ⇒ 3



Histories

Example 4.2. Figure 2(d) pictures the history in Figure 2(b) as an
interval order. Each operation is represented by an integer-bounded
interval on the real number line such that o1 < o2 iff the interval
associated to o1 finishes before the interval associated to o2.

In this work we consider only histories of well-formed executions,
i.e., those forming interval orders, without explicit qualification.

This notion of histories gives rise to a natural order relating his-
tories by their operation ordering. Basically, a history h1 is weaker
than another history h2 if h2 contains all completed operations of
h1, and preserves the order between h1’s operations. The pending
operations of h1 can be either omitted or completed in h2.

Definition 4.2. Let h1 = hO1, <1, f1i and h2 = hO2, <2, f2i. We
say h1 is weaker than h2, written h1 � h2, when there exists an
injection g : O2 !O1 such that
• o 2 range(g) when f1(o) = m(u)) v and v 6= ?,
• g(o1) <1 g(o2) implies o1 <2 o2 for each o1, o2 2 O2,
• f1(g(o)) ⌧ f2(o) for each o 2 O2.

where (m1(u1)) v1) ⌧ (m2(u2)) v2) iff m1 = m2, u1 = u2,
and v1 2 {v2,?}. We say h1 and h2 are equivalent when h1 � h2

and h2 � h1.

Example 4.3. Figure 2(c) pictures a history h0 weaker than the
history h in Figure 2(b). Note that h0 contains two pending pop)?
operations, one of them is completed in h (it corresponds to the
pop) 3 operation) and one of them is omitted in h.

Throughout this work we do not distinguish between equivalent
histories, and we assume every set H of histories is closed under
inclusion of equivalent histories, i.e., if h1 and h2 are equivalent
and h1 2 H , then h2 2 H as well.

4.2 History Inclusion is Equivalent to Refinement
Our notion of histories has two important properties which makes
refinement between libraries equivalent to inclusion between their
history sets. The first property is that libraries are closed under the
weakening relation �. Essentially when L admits the history H(e)
of an execution e, then it also admits the history H(e0) of any e0

which is ;-derivable from e. Our definitions of ; and � coincide
to imply H(e0) � H(e).

Lemma 4.2. If h1 2 H(L) and h2 � h1 then h2 2 H(L).

A history h is essentially an abstraction of the set {e : H(e) = h}
of executions which preserve an order between returns preceding
calls. The closure properties of Definition 3.1 ensure that a library
L admits all executions e with H(e) 2 H(L).

Lemma 4.3. E(L) = {e 2 (C [R)⇤ : H(e) 2 H(L)}.

Lemmas 4.2 and 4.3 ultimately imply the equivalence between
refinement and history inclusion. Essentially, any given history h of
a library L1 can be captured by a program Ph whose observations
witness the ordering among h’s operations. However, its observa-
tions cannot forbid additional orderings between h’s operations (this
is due to the closure properties in Definition 3.2). The refinement
L1  L2 implies that L2 also admits those observations, through
one or more possibly-stronger histories h0. It then follows from
Lemma 4.2 that L2 also admits h � h0. For the reverse direction, it
follows from Lemma 4.3 that history inclusion implies inclusion of
executions, and ultimately observations.

Theorem 1. L1  L2 iff H(L1) ✓ H(L2).

Proof. ()) Let h = hO,<, fi 2 H(L1); we show h 2 H(L2)
by constructing a program Ph over actions ⌃ which only admits
executions with histories stronger than h:

8e 2 E(Ph). |(e|⌃)| = n =) h � H(e),

where n = |{o 2 O : f(o) = m(u)) v 6= ?}| is the number of
completed operations in h. Given such a program Ph, taking any
execution e1 2 E(Ph ⇥ L1) with |(e1|⌃)| = n, we must also have
an execution e2 2 E(Ph ⇥ L2) such that (e2|⌃) = (e1|⌃) by
definition of L1  L2. Since |(e2|⌃)| = n and e2 2 E(Ph), we
also know that h � H(e2), and since (e2|C [ R) 2 E(L2), we
have H(e2) 2 H(L2), along with any history weaker than H(e2)
by Lemma 4.2, namely h.

We construct Ph = hQ,⌃, q0, �i over alphabet ⌃ = C[R[{a}
whose states Q : O ! B

2 track operations called/completed status.
The initial state is q0 = {o 7! h?,?i : o 2 O}. Transitions are
given by,

for each q 2 Q, o 2 O,m 2 M, v 2 V

if f(o) = m(v)) and q(o0) for all o0 < o then

q[o 7! ?,?]
m(v)o����! q[o 7! >,?]

if f(o) = m( )) v then

q[o 7! >,?]
ret(v)o����! · a�! q[o 7! >,>]

if f(o) = m( ))? then

q[o 7! >,?]
ret(v)o����! q[o 7! >,>]

It is routine to verify that Ph is a program according to Definition 3.2.
Moreover, in any execution e 2 E(Ph), the call m(u)o of any
operation o must come after the return ret(v)o0 of each o0 < o.
Furthermore, all completed operations of h are completed in e if and
only if (e|⌃) = an. Note that e may contain more completed
operations than h (because of the last transition rule) but less
pending operations (because the transition rule corresponding to
the call of a pending operation may not have been applied in e). It
follows that |(e|⌃)| = n =) h � H(e).

(() Let P be a program over actions ⌃, and e 2 E(P ⇥ L1);
we show that e 2 E(P ⇥L2). Since (e|C [R) 2 E(L1), we know
H(e) 2 H(L1) by definition of H(L1), and then H(e) 2 H(L2)
by hypothesis. By Lemma 4.3 we deduce (e|C [R) 2 E(L2), and
thus by definition of LTS composition, e 2 E(P ⇥ L2).

5. Comparison with Linearizability
The linearizability criterion [11] provides an alternative charac-
terization of library conformance which implies observational re-
finement [6]. In this section we demonstrate that linearizability is
generally stricter than observational refinement, yet the two criteria
coincide when the reference implementation is atomic.

Linearizability [11] is defined by an execution order: e1 v e2
iff there exists a well-formed execution e01 obtained from e1 by
appending return actions, and deleting call actions, such that:

e2 is a permutation of e01 that preserves the order between
return and call actions, i.e., a given return action occurs
before a given call action in e01 iff the same holds in e2.

For example, the second and the third executions in Example 3.3
are v-smaller than the first (with sequential calls to push and pop).
An execution e1 is linearizable w.r.t. a library L2

1 iff there exists a
sequential execution e2 2 E(L2), with only completed operations,
such that e1 v e2. A library L1 is linearizable w.r.t. L2, written
L1 v L2, iff each execution e1 2 E(L1) is linearizable w.r.t. L2.

Since linearizability compares executions of L1, which may
contain pending operations, with executions of L2, in which every
operation is completed, observational refinement need not imply lin-

1 The original definition of Herlihy and Wing [11] assumes that L2 is a set
of sequential executions. Here we consider a slight extension adapted to
concurrent executions, faithful to the original intention, where kerL2 may
be a set of sequential executions.

Examples ?

Equivalent histories need not be distinguished



Histories

Example 4.2. Figure 2(d) pictures the history in Figure 2(b) as an
interval order. Each operation is represented by an integer-bounded
interval on the real number line such that o1 < o2 iff the interval
associated to o1 finishes before the interval associated to o2.

In this work we consider only histories of well-formed executions,
i.e., those forming interval orders, without explicit qualification.

This notion of histories gives rise to a natural order relating his-
tories by their operation ordering. Basically, a history h1 is weaker
than another history h2 if h2 contains all completed operations of
h1, and preserves the order between h1’s operations. The pending
operations of h1 can be either omitted or completed in h2.

Definition 4.2. Let h1 = hO1, <1, f1i and h2 = hO2, <2, f2i. We
say h1 is weaker than h2, written h1 � h2, when there exists an
injection g : O2 !O1 such that
• o 2 range(g) when f1(o) = m(u)) v and v 6= ?,
• g(o1) <1 g(o2) implies o1 <2 o2 for each o1, o2 2 O2,
• f1(g(o)) ⌧ f2(o) for each o 2 O2.

where (m1(u1)) v1) ⌧ (m2(u2)) v2) iff m1 = m2, u1 = u2,
and v1 2 {v2,?}. We say h1 and h2 are equivalent when h1 � h2

and h2 � h1.

Example 4.3. Figure 2(c) pictures a history h0 weaker than the
history h in Figure 2(b). Note that h0 contains two pending pop)?
operations, one of them is completed in h (it corresponds to the
pop) 3 operation) and one of them is omitted in h.

Throughout this work we do not distinguish between equivalent
histories, and we assume every set H of histories is closed under
inclusion of equivalent histories, i.e., if h1 and h2 are equivalent
and h1 2 H , then h2 2 H as well.

4.2 History Inclusion is Equivalent to Refinement
Our notion of histories has two important properties which makes
refinement between libraries equivalent to inclusion between their
history sets. The first property is that libraries are closed under the
weakening relation �. Essentially when L admits the history H(e)
of an execution e, then it also admits the history H(e0) of any e0

which is ;-derivable from e. Our definitions of ; and � coincide
to imply H(e0) � H(e).

Lemma 4.2. If h1 2 H(L) and h2 � h1 then h2 2 H(L).

A history h is essentially an abstraction of the set {e : H(e) = h}
of executions which preserve an order between returns preceding
calls. The closure properties of Definition 3.1 ensure that a library
L admits all executions e with H(e) 2 H(L).

Lemma 4.3. E(L) = {e 2 (C [R)⇤ : H(e) 2 H(L)}.

Lemmas 4.2 and 4.3 ultimately imply the equivalence between
refinement and history inclusion. Essentially, any given history h of
a library L1 can be captured by a program Ph whose observations
witness the ordering among h’s operations. However, its observa-
tions cannot forbid additional orderings between h’s operations (this
is due to the closure properties in Definition 3.2). The refinement
L1  L2 implies that L2 also admits those observations, through
one or more possibly-stronger histories h0. It then follows from
Lemma 4.2 that L2 also admits h � h0. For the reverse direction, it
follows from Lemma 4.3 that history inclusion implies inclusion of
executions, and ultimately observations.

Theorem 1. L1  L2 iff H(L1) ✓ H(L2).

Proof. ()) Let h = hO,<, fi 2 H(L1); we show h 2 H(L2)
by constructing a program Ph over actions ⌃ which only admits
executions with histories stronger than h:

8e 2 E(Ph). |(e|⌃)| = n =) h � H(e),

where n = |{o 2 O : f(o) = m(u)) v 6= ?}| is the number of
completed operations in h. Given such a program Ph, taking any
execution e1 2 E(Ph ⇥ L1) with |(e1|⌃)| = n, we must also have
an execution e2 2 E(Ph ⇥ L2) such that (e2|⌃) = (e1|⌃) by
definition of L1  L2. Since |(e2|⌃)| = n and e2 2 E(Ph), we
also know that h � H(e2), and since (e2|C [ R) 2 E(L2), we
have H(e2) 2 H(L2), along with any history weaker than H(e2)
by Lemma 4.2, namely h.

We construct Ph = hQ,⌃, q0, �i over alphabet ⌃ = C[R[{a}
whose states Q : O ! B

2 track operations called/completed status.
The initial state is q0 = {o 7! h?,?i : o 2 O}. Transitions are
given by,

for each q 2 Q, o 2 O,m 2 M, v 2 V

if f(o) = m(v)) and q(o0) for all o0 < o then

q[o 7! ?,?]
m(v)o����! q[o 7! >,?]

if f(o) = m( )) v then

q[o 7! >,?]
ret(v)o����! · a�! q[o 7! >,>]

if f(o) = m( ))? then

q[o 7! >,?]
ret(v)o����! q[o 7! >,>]

It is routine to verify that Ph is a program according to Definition 3.2.
Moreover, in any execution e 2 E(Ph), the call m(u)o of any
operation o must come after the return ret(v)o0 of each o0 < o.
Furthermore, all completed operations of h are completed in e if and
only if (e|⌃) = an. Note that e may contain more completed
operations than h (because of the last transition rule) but less
pending operations (because the transition rule corresponding to
the call of a pending operation may not have been applied in e). It
follows that |(e|⌃)| = n =) h � H(e).

(() Let P be a program over actions ⌃, and e 2 E(P ⇥ L1);
we show that e 2 E(P ⇥L2). Since (e|C [R) 2 E(L1), we know
H(e) 2 H(L1) by definition of H(L1), and then H(e) 2 H(L2)
by hypothesis. By Lemma 4.3 we deduce (e|C [R) 2 E(L2), and
thus by definition of LTS composition, e 2 E(P ⇥ L2).

5. Comparison with Linearizability
The linearizability criterion [11] provides an alternative charac-
terization of library conformance which implies observational re-
finement [6]. In this section we demonstrate that linearizability is
generally stricter than observational refinement, yet the two criteria
coincide when the reference implementation is atomic.

Linearizability [11] is defined by an execution order: e1 v e2
iff there exists a well-formed execution e01 obtained from e1 by
appending return actions, and deleting call actions, such that:

e2 is a permutation of e01 that preserves the order between
return and call actions, i.e., a given return action occurs
before a given call action in e01 iff the same holds in e2.

For example, the second and the third executions in Example 3.3
are v-smaller than the first (with sequential calls to push and pop).
An execution e1 is linearizable w.r.t. a library L2

1 iff there exists a
sequential execution e2 2 E(L2), with only completed operations,
such that e1 v e2. A library L1 is linearizable w.r.t. L2, written
L1 v L2, iff each execution e1 2 E(L1) is linearizable w.r.t. L2.

Since linearizability compares executions of L1, which may
contain pending operations, with executions of L2, in which every
operation is completed, observational refinement need not imply lin-

1 The original definition of Herlihy and Wing [11] assumes that L2 is a set
of sequential executions. Here we consider a slight extension adapted to
concurrent executions, faithful to the original intention, where kerL2 may
be a set of sequential executions.

Example 4.2. Figure 2(d) pictures the history in Figure 2(b) as an
interval order. Each operation is represented by an integer-bounded
interval on the real number line such that o1 < o2 iff the interval
associated to o1 finishes before the interval associated to o2.

In this work we consider only histories of well-formed executions,
i.e., those forming interval orders, without explicit qualification.

This notion of histories gives rise to a natural order relating his-
tories by their operation ordering. Basically, a history h1 is weaker
than another history h2 if h2 contains all completed operations of
h1, and preserves the order between h1’s operations. The pending
operations of h1 can be either omitted or completed in h2.

Definition 4.2. Let h1 = hO1, <1, f1i and h2 = hO2, <2, f2i. We
say h1 is weaker than h2, written h1 � h2, when there exists an
injection g : O2 !O1 such that
• o 2 range(g) when f1(o) = m(u)) v and v 6= ?,
• g(o1) <1 g(o2) implies o1 <2 o2 for each o1, o2 2 O2,
• f1(g(o)) ⌧ f2(o) for each o 2 O2.

where (m1(u1)) v1) ⌧ (m2(u2)) v2) iff m1 = m2, u1 = u2,
and v1 2 {v2,?}. We say h1 and h2 are equivalent when h1 � h2

and h2 � h1.

Example 4.3. Figure 2(c) pictures a history h0 weaker than the
history h in Figure 2(b). Note that h0 contains two pending pop)?
operations, one of them is completed in h (it corresponds to the
pop) 3 operation) and one of them is omitted in h.

Throughout this work we do not distinguish between equivalent
histories, and we assume every set H of histories is closed under
inclusion of equivalent histories, i.e., if h1 and h2 are equivalent
and h1 2 H , then h2 2 H as well.

4.2 History Inclusion is Equivalent to Refinement
Our notion of histories has two important properties which makes
refinement between libraries equivalent to inclusion between their
history sets. The first property is that libraries are closed under the
weakening relation �. Essentially when L admits the history H(e)
of an execution e, then it also admits the history H(e0) of any e0

which is ;-derivable from e. Our definitions of ; and � coincide
to imply H(e0) � H(e).

Lemma 4.2. If h1 2 H(L) and h2 � h1 then h2 2 H(L).

A history h is essentially an abstraction of the set {e : H(e) = h}
of executions which preserve an order between returns preceding
calls. The closure properties of Definition 3.1 ensure that a library
L admits all executions e with H(e) 2 H(L).

Lemma 4.3. E(L) = {e 2 (C [R)⇤ : H(e) 2 H(L)}.

Lemmas 4.2 and 4.3 ultimately imply the equivalence between
refinement and history inclusion. Essentially, any given history h of
a library L1 can be captured by a program Ph whose observations
witness the ordering among h’s operations. However, its observa-
tions cannot forbid additional orderings between h’s operations (this
is due to the closure properties in Definition 3.2). The refinement
L1  L2 implies that L2 also admits those observations, through
one or more possibly-stronger histories h0. It then follows from
Lemma 4.2 that L2 also admits h � h0. For the reverse direction, it
follows from Lemma 4.3 that history inclusion implies inclusion of
executions, and ultimately observations.

Theorem 1. L1  L2 iff H(L1) ✓ H(L2).

Proof. ()) Let h = hO,<, fi 2 H(L1); we show h 2 H(L2)
by constructing a program Ph over actions ⌃ which only admits
executions with histories stronger than h:

8e 2 E(Ph). |(e|⌃)| = n =) h � H(e),

where n = |{o 2 O : f(o) = m(u)) v 6= ?}| is the number of
completed operations in h. Given such a program Ph, taking any
execution e1 2 E(Ph ⇥ L1) with |(e1|⌃)| = n, we must also have
an execution e2 2 E(Ph ⇥ L2) such that (e2|⌃) = (e1|⌃) by
definition of L1  L2. Since |(e2|⌃)| = n and e2 2 E(Ph), we
also know that h � H(e2), and since (e2|C [ R) 2 E(L2), we
have H(e2) 2 H(L2), along with any history weaker than H(e2)
by Lemma 4.2, namely h.

We construct Ph = hQ,⌃, q0, �i over alphabet ⌃ = C[R[{a}
whose states Q : O ! B

2 track operations called/completed status.
The initial state is q0 = {o 7! h?,?i : o 2 O}. Transitions are
given by,

for each q 2 Q, o 2 O,m 2 M, v 2 V

if f(o) = m(v)) and q(o0) for all o0 < o then

q[o 7! ?,?]
m(v)o����! q[o 7! >,?]

if f(o) = m( )) v then

q[o 7! >,?]
ret(v)o����! · a�! q[o 7! >,>]

if f(o) = m( ))? then

q[o 7! >,?]
ret(v)o����! q[o 7! >,>]

It is routine to verify that Ph is a program according to Definition 3.2.
Moreover, in any execution e 2 E(Ph), the call m(u)o of any
operation o must come after the return ret(v)o0 of each o0 < o.
Furthermore, all completed operations of h are completed in e if and
only if (e|⌃) = an. Note that e may contain more completed
operations than h (because of the last transition rule) but less
pending operations (because the transition rule corresponding to
the call of a pending operation may not have been applied in e). It
follows that |(e|⌃)| = n =) h � H(e).

(() Let P be a program over actions ⌃, and e 2 E(P ⇥ L1);
we show that e 2 E(P ⇥L2). Since (e|C [R) 2 E(L1), we know
H(e) 2 H(L1) by definition of H(L1), and then H(e) 2 H(L2)
by hypothesis. By Lemma 4.3 we deduce (e|C [R) 2 E(L2), and
thus by definition of LTS composition, e 2 E(P ⇥ L2).

5. Comparison with Linearizability
The linearizability criterion [11] provides an alternative charac-
terization of library conformance which implies observational re-
finement [6]. In this section we demonstrate that linearizability is
generally stricter than observational refinement, yet the two criteria
coincide when the reference implementation is atomic.

Linearizability [11] is defined by an execution order: e1 v e2
iff there exists a well-formed execution e01 obtained from e1 by
appending return actions, and deleting call actions, such that:

e2 is a permutation of e01 that preserves the order between
return and call actions, i.e., a given return action occurs
before a given call action in e01 iff the same holds in e2.

For example, the second and the third executions in Example 3.3
are v-smaller than the first (with sequential calls to push and pop).
An execution e1 is linearizable w.r.t. a library L2

1 iff there exists a
sequential execution e2 2 E(L2), with only completed operations,
such that e1 v e2. A library L1 is linearizable w.r.t. L2, written
L1 v L2, iff each execution e1 2 E(L1) is linearizable w.r.t. L2.

Since linearizability compares executions of L1, which may
contain pending operations, with executions of L2, in which every
operation is completed, observational refinement need not imply lin-

1 The original definition of Herlihy and Wing [11] assumes that L2 is a set
of sequential executions. Here we consider a slight extension adapted to
concurrent executions, faithful to the original intention, where kerL2 may
be a set of sequential executions.



History Inclusion

THEOREM 
L1 refines L2 	 ⇔	H(L1) ⊆ H(L2) ⇔	 E(L1) ⊆ E(L2)

• (=>) Given h in Hist(L1), construct a program Ph that imposes 
all the happen-before constraints of h.


• (<=) Clients cannot distinguish executions with the same 
history. History inclusion implies Execution Inclusion



History Inclusion (=>)

Example 4.2. Figure 2(d) pictures the history in Figure 2(b) as an
interval order. Each operation is represented by an integer-bounded
interval on the real number line such that o1 < o2 iff the interval
associated to o1 finishes before the interval associated to o2.

In this work we consider only histories of well-formed executions,
i.e., those forming interval orders, without explicit qualification.

This notion of histories gives rise to a natural order relating his-
tories by their operation ordering. Basically, a history h1 is weaker
than another history h2 if h2 contains all completed operations of
h1, and preserves the order between h1’s operations. The pending
operations of h1 can be either omitted or completed in h2.

Definition 4.2. Let h1 = hO1, <1, f1i and h2 = hO2, <2, f2i. We
say h1 is weaker than h2, written h1 � h2, when there exists an
injection g : O2 !O1 such that
• o 2 range(g) when f1(o) = m(u)) v and v 6= ?,
• g(o1) <1 g(o2) implies o1 <2 o2 for each o1, o2 2 O2,
• f1(g(o)) ⌧ f2(o) for each o 2 O2.

where (m1(u1)) v1) ⌧ (m2(u2)) v2) iff m1 = m2, u1 = u2,
and v1 2 {v2,?}. We say h1 and h2 are equivalent when h1 � h2

and h2 � h1.

Example 4.3. Figure 2(c) pictures a history h0 weaker than the
history h in Figure 2(b). Note that h0 contains two pending pop)?
operations, one of them is completed in h (it corresponds to the
pop) 3 operation) and one of them is omitted in h.

Throughout this work we do not distinguish between equivalent
histories, and we assume every set H of histories is closed under
inclusion of equivalent histories, i.e., if h1 and h2 are equivalent
and h1 2 H , then h2 2 H as well.

4.2 History Inclusion is Equivalent to Refinement
Our notion of histories has two important properties which makes
refinement between libraries equivalent to inclusion between their
history sets. The first property is that libraries are closed under the
weakening relation �. Essentially when L admits the history H(e)
of an execution e, then it also admits the history H(e0) of any e0

which is ;-derivable from e. Our definitions of ; and � coincide
to imply H(e0) � H(e).

Lemma 4.2. If h1 2 H(L) and h2 � h1 then h2 2 H(L).

A history h is essentially an abstraction of the set {e : H(e) = h}
of executions which preserve an order between returns preceding
calls. The closure properties of Definition 3.1 ensure that a library
L admits all executions e with H(e) 2 H(L).

Lemma 4.3. E(L) = {e 2 (C [R)⇤ : H(e) 2 H(L)}.

Lemmas 4.2 and 4.3 ultimately imply the equivalence between
refinement and history inclusion. Essentially, any given history h of
a library L1 can be captured by a program Ph whose observations
witness the ordering among h’s operations. However, its observa-
tions cannot forbid additional orderings between h’s operations (this
is due to the closure properties in Definition 3.2). The refinement
L1  L2 implies that L2 also admits those observations, through
one or more possibly-stronger histories h0. It then follows from
Lemma 4.2 that L2 also admits h � h0. For the reverse direction, it
follows from Lemma 4.3 that history inclusion implies inclusion of
executions, and ultimately observations.

Theorem 1. L1  L2 iff H(L1) ✓ H(L2).

Proof. ()) Let h = hO,<, fi 2 H(L1); we show h 2 H(L2)
by constructing a program Ph over actions ⌃ which only admits
executions with histories stronger than h:

8e 2 E(Ph). |(e|⌃)| = n =) h � H(e),

where n = |{o 2 O : f(o) = m(u)) v 6= ?}| is the number of
completed operations in h. Given such a program Ph, taking any
execution e1 2 E(Ph ⇥ L1) with |(e1|⌃)| = n, we must also have
an execution e2 2 E(Ph ⇥ L2) such that (e2|⌃) = (e1|⌃) by
definition of L1  L2. Since |(e2|⌃)| = n and e2 2 E(Ph), we
also know that h � H(e2), and since (e2|C [ R) 2 E(L2), we
have H(e2) 2 H(L2), along with any history weaker than H(e2)
by Lemma 4.2, namely h.

We construct Ph = hQ,⌃, q0, �i over alphabet ⌃ = C[R[{a}
whose states Q : O ! B

2 track operations called/completed status.
The initial state is q0 = {o 7! h?,?i : o 2 O}. Transitions are
given by,

for each q 2 Q, o 2 O,m 2 M, v 2 V

if f(o) = m(v)) and q(o0) for all o0 < o then

q[o 7! ?,?]
m(v)o����! q[o 7! >,?]

if f(o) = m( )) v then

q[o 7! >,?]
ret(v)o����! · a�! q[o 7! >,>]

if f(o) = m( ))? then

q[o 7! >,?]
ret(v)o����! q[o 7! >,>]

It is routine to verify that Ph is a program according to Definition 3.2.
Moreover, in any execution e 2 E(Ph), the call m(u)o of any
operation o must come after the return ret(v)o0 of each o0 < o.
Furthermore, all completed operations of h are completed in e if and
only if (e|⌃) = an. Note that e may contain more completed
operations than h (because of the last transition rule) but less
pending operations (because the transition rule corresponding to
the call of a pending operation may not have been applied in e). It
follows that |(e|⌃)| = n =) h � H(e).

(() Let P be a program over actions ⌃, and e 2 E(P ⇥ L1);
we show that e 2 E(P ⇥L2). Since (e|C [R) 2 E(L1), we know
H(e) 2 H(L1) by definition of H(L1), and then H(e) 2 H(L2)
by hypothesis. By Lemma 4.3 we deduce (e|C [R) 2 E(L2), and
thus by definition of LTS composition, e 2 E(P ⇥ L2).

5. Comparison with Linearizability
The linearizability criterion [11] provides an alternative charac-
terization of library conformance which implies observational re-
finement [6]. In this section we demonstrate that linearizability is
generally stricter than observational refinement, yet the two criteria
coincide when the reference implementation is atomic.

Linearizability [11] is defined by an execution order: e1 v e2
iff there exists a well-formed execution e01 obtained from e1 by
appending return actions, and deleting call actions, such that:

e2 is a permutation of e01 that preserves the order between
return and call actions, i.e., a given return action occurs
before a given call action in e01 iff the same holds in e2.

For example, the second and the third executions in Example 3.3
are v-smaller than the first (with sequential calls to push and pop).
An execution e1 is linearizable w.r.t. a library L2

1 iff there exists a
sequential execution e2 2 E(L2), with only completed operations,
such that e1 v e2. A library L1 is linearizable w.r.t. L2, written
L1 v L2, iff each execution e1 2 E(L1) is linearizable w.r.t. L2.

Since linearizability compares executions of L1, which may
contain pending operations, with executions of L2, in which every
operation is completed, observational refinement need not imply lin-

1 The original definition of Herlihy and Wing [11] assumes that L2 is a set
of sequential executions. Here we consider a slight extension adapted to
concurrent executions, faithful to the original intention, where kerL2 may
be a set of sequential executions.

(??)

Example 4.2. Figure 2(d) pictures the history in Figure 2(b) as an
interval order. Each operation is represented by an integer-bounded
interval on the real number line such that o1 < o2 iff the interval
associated to o1 finishes before the interval associated to o2.

In this work we consider only histories of well-formed executions,
i.e., those forming interval orders, without explicit qualification.

This notion of histories gives rise to a natural order relating his-
tories by their operation ordering. Basically, a history h1 is weaker
than another history h2 if h2 contains all completed operations of
h1, and preserves the order between h1’s operations. The pending
operations of h1 can be either omitted or completed in h2.

Definition 4.2. Let h1 = hO1, <1, f1i and h2 = hO2, <2, f2i. We
say h1 is weaker than h2, written h1 � h2, when there exists an
injection g : O2 !O1 such that
• o 2 range(g) when f1(o) = m(u)) v and v 6= ?,
• g(o1) <1 g(o2) implies o1 <2 o2 for each o1, o2 2 O2,
• f1(g(o)) ⌧ f2(o) for each o 2 O2.

where (m1(u1)) v1) ⌧ (m2(u2)) v2) iff m1 = m2, u1 = u2,
and v1 2 {v2,?}. We say h1 and h2 are equivalent when h1 � h2

and h2 � h1.

Example 4.3. Figure 2(c) pictures a history h0 weaker than the
history h in Figure 2(b). Note that h0 contains two pending pop)?
operations, one of them is completed in h (it corresponds to the
pop) 3 operation) and one of them is omitted in h.

Throughout this work we do not distinguish between equivalent
histories, and we assume every set H of histories is closed under
inclusion of equivalent histories, i.e., if h1 and h2 are equivalent
and h1 2 H , then h2 2 H as well.

4.2 History Inclusion is Equivalent to Refinement
Our notion of histories has two important properties which makes
refinement between libraries equivalent to inclusion between their
history sets. The first property is that libraries are closed under the
weakening relation �. Essentially when L admits the history H(e)
of an execution e, then it also admits the history H(e0) of any e0

which is ;-derivable from e. Our definitions of ; and � coincide
to imply H(e0) � H(e).

Lemma 4.2. If h1 2 H(L) and h2 � h1 then h2 2 H(L).

A history h is essentially an abstraction of the set {e : H(e) = h}
of executions which preserve an order between returns preceding
calls. The closure properties of Definition 3.1 ensure that a library
L admits all executions e with H(e) 2 H(L).

Lemma 4.3. E(L) = {e 2 (C [R)⇤ : H(e) 2 H(L)}.

Lemmas 4.2 and 4.3 ultimately imply the equivalence between
refinement and history inclusion. Essentially, any given history h of
a library L1 can be captured by a program Ph whose observations
witness the ordering among h’s operations. However, its observa-
tions cannot forbid additional orderings between h’s operations (this
is due to the closure properties in Definition 3.2). The refinement
L1  L2 implies that L2 also admits those observations, through
one or more possibly-stronger histories h0. It then follows from
Lemma 4.2 that L2 also admits h � h0. For the reverse direction, it
follows from Lemma 4.3 that history inclusion implies inclusion of
executions, and ultimately observations.

Theorem 1. L1  L2 iff H(L1) ✓ H(L2).

Proof. ()) Let h = hO,<, fi 2 H(L1); we show h 2 H(L2)
by constructing a program Ph over actions ⌃ which only admits
executions with histories stronger than h:

8e 2 E(Ph). |(e|⌃)| = n =) h � H(e),

where n = |{o 2 O : f(o) = m(u)) v 6= ?}| is the number of
completed operations in h. Given such a program Ph, taking any
execution e1 2 E(Ph ⇥ L1) with |(e1|⌃)| = n, we must also have
an execution e2 2 E(Ph ⇥ L2) such that (e2|⌃) = (e1|⌃) by
definition of L1  L2. Since |(e2|⌃)| = n and e2 2 E(Ph), we
also know that h � H(e2), and since (e2|C [ R) 2 E(L2), we
have H(e2) 2 H(L2), along with any history weaker than H(e2)
by Lemma 4.2, namely h.

We construct Ph = hQ,⌃, q0, �i over alphabet ⌃ = C[R[{a}
whose states Q : O ! B

2 track operations called/completed status.
The initial state is q0 = {o 7! h?,?i : o 2 O}. Transitions are
given by,

for each q 2 Q, o 2 O,m 2 M, v 2 V

if f(o) = m(v)) and q(o0) for all o0 < o then

q[o 7! ?,?]
m(v)o����! q[o 7! >,?]

if f(o) = m( )) v then

q[o 7! >,?]
ret(v)o����! · a�! q[o 7! >,>]

if f(o) = m( ))? then

q[o 7! >,?]
ret(v)o����! q[o 7! >,>]

It is routine to verify that Ph is a program according to Definition 3.2.
Moreover, in any execution e 2 E(Ph), the call m(u)o of any
operation o must come after the return ret(v)o0 of each o0 < o.
Furthermore, all completed operations of h are completed in e if and
only if (e|⌃) = an. Note that e may contain more completed
operations than h (because of the last transition rule) but less
pending operations (because the transition rule corresponding to
the call of a pending operation may not have been applied in e). It
follows that |(e|⌃)| = n =) h � H(e).

(() Let P be a program over actions ⌃, and e 2 E(P ⇥ L1);
we show that e 2 E(P ⇥L2). Since (e|C [R) 2 E(L1), we know
H(e) 2 H(L1) by definition of H(L1), and then H(e) 2 H(L2)
by hypothesis. By Lemma 4.3 we deduce (e|C [R) 2 E(L2), and
thus by definition of LTS composition, e 2 E(P ⇥ L2).

5. Comparison with Linearizability
The linearizability criterion [11] provides an alternative charac-
terization of library conformance which implies observational re-
finement [6]. In this section we demonstrate that linearizability is
generally stricter than observational refinement, yet the two criteria
coincide when the reference implementation is atomic.

Linearizability [11] is defined by an execution order: e1 v e2
iff there exists a well-formed execution e01 obtained from e1 by
appending return actions, and deleting call actions, such that:

e2 is a permutation of e01 that preserves the order between
return and call actions, i.e., a given return action occurs
before a given call action in e01 iff the same holds in e2.

For example, the second and the third executions in Example 3.3
are v-smaller than the first (with sequential calls to push and pop).
An execution e1 is linearizable w.r.t. a library L2

1 iff there exists a
sequential execution e2 2 E(L2), with only completed operations,
such that e1 v e2. A library L1 is linearizable w.r.t. L2, written
L1 v L2, iff each execution e1 2 E(L1) is linearizable w.r.t. L2.

Since linearizability compares executions of L1, which may
contain pending operations, with executions of L2, in which every
operation is completed, observational refinement need not imply lin-

1 The original definition of Herlihy and Wing [11] assumes that L2 is a set
of sequential executions. Here we consider a slight extension adapted to
concurrent executions, faithful to the original intention, where kerL2 may
be a set of sequential executions.

nb of completed ops in h

preserving happens-before

counting ops completed in h

ops that are pending in h (an execution 
may have more completed ops and less 
pending - no call for pending)

= an



History Inclusion (=>)

(??)

Example 4.2. Figure 2(d) pictures the history in Figure 2(b) as an
interval order. Each operation is represented by an integer-bounded
interval on the real number line such that o1 < o2 iff the interval
associated to o1 finishes before the interval associated to o2.

In this work we consider only histories of well-formed executions,
i.e., those forming interval orders, without explicit qualification.

This notion of histories gives rise to a natural order relating his-
tories by their operation ordering. Basically, a history h1 is weaker
than another history h2 if h2 contains all completed operations of
h1, and preserves the order between h1’s operations. The pending
operations of h1 can be either omitted or completed in h2.

Definition 4.2. Let h1 = hO1, <1, f1i and h2 = hO2, <2, f2i. We
say h1 is weaker than h2, written h1 � h2, when there exists an
injection g : O2 !O1 such that
• o 2 range(g) when f1(o) = m(u)) v and v 6= ?,
• g(o1) <1 g(o2) implies o1 <2 o2 for each o1, o2 2 O2,
• f1(g(o)) ⌧ f2(o) for each o 2 O2.

where (m1(u1)) v1) ⌧ (m2(u2)) v2) iff m1 = m2, u1 = u2,
and v1 2 {v2,?}. We say h1 and h2 are equivalent when h1 � h2

and h2 � h1.

Example 4.3. Figure 2(c) pictures a history h0 weaker than the
history h in Figure 2(b). Note that h0 contains two pending pop)?
operations, one of them is completed in h (it corresponds to the
pop) 3 operation) and one of them is omitted in h.

Throughout this work we do not distinguish between equivalent
histories, and we assume every set H of histories is closed under
inclusion of equivalent histories, i.e., if h1 and h2 are equivalent
and h1 2 H , then h2 2 H as well.

4.2 History Inclusion is Equivalent to Refinement
Our notion of histories has two important properties which makes
refinement between libraries equivalent to inclusion between their
history sets. The first property is that libraries are closed under the
weakening relation �. Essentially when L admits the history H(e)
of an execution e, then it also admits the history H(e0) of any e0

which is ;-derivable from e. Our definitions of ; and � coincide
to imply H(e0) � H(e).

Lemma 4.2. If h1 2 H(L) and h2 � h1 then h2 2 H(L).

A history h is essentially an abstraction of the set {e : H(e) = h}
of executions which preserve an order between returns preceding
calls. The closure properties of Definition 3.1 ensure that a library
L admits all executions e with H(e) 2 H(L).

Lemma 4.3. E(L) = {e 2 (C [R)⇤ : H(e) 2 H(L)}.

Lemmas 4.2 and 4.3 ultimately imply the equivalence between
refinement and history inclusion. Essentially, any given history h of
a library L1 can be captured by a program Ph whose observations
witness the ordering among h’s operations. However, its observa-
tions cannot forbid additional orderings between h’s operations (this
is due to the closure properties in Definition 3.2). The refinement
L1  L2 implies that L2 also admits those observations, through
one or more possibly-stronger histories h0. It then follows from
Lemma 4.2 that L2 also admits h � h0. For the reverse direction, it
follows from Lemma 4.3 that history inclusion implies inclusion of
executions, and ultimately observations.

Theorem 1. L1  L2 iff H(L1) ✓ H(L2).

Proof. ()) Let h = hO,<, fi 2 H(L1); we show h 2 H(L2)
by constructing a program Ph over actions ⌃ which only admits
executions with histories stronger than h:

8e 2 E(Ph). |(e|⌃)| = n =) h � H(e),

where n = |{o 2 O : f(o) = m(u)) v 6= ?}| is the number of
completed operations in h. Given such a program Ph, taking any
execution e1 2 E(Ph ⇥ L1) with |(e1|⌃)| = n, we must also have
an execution e2 2 E(Ph ⇥ L2) such that (e2|⌃) = (e1|⌃) by
definition of L1  L2. Since |(e2|⌃)| = n and e2 2 E(Ph), we
also know that h � H(e2), and since (e2|C [ R) 2 E(L2), we
have H(e2) 2 H(L2), along with any history weaker than H(e2)
by Lemma 4.2, namely h.

We construct Ph = hQ,⌃, q0, �i over alphabet ⌃ = C[R[{a}
whose states Q : O ! B

2 track operations called/completed status.
The initial state is q0 = {o 7! h?,?i : o 2 O}. Transitions are
given by,

for each q 2 Q, o 2 O,m 2 M, v 2 V

if f(o) = m(v)) and q(o0) for all o0 < o then

q[o 7! ?,?]
m(v)o����! q[o 7! >,?]

if f(o) = m( )) v then

q[o 7! >,?]
ret(v)o����! · a�! q[o 7! >,>]

if f(o) = m( ))? then

q[o 7! >,?]
ret(v)o����! q[o 7! >,>]

It is routine to verify that Ph is a program according to Definition 3.2.
Moreover, in any execution e 2 E(Ph), the call m(u)o of any
operation o must come after the return ret(v)o0 of each o0 < o.
Furthermore, all completed operations of h are completed in e if and
only if (e|⌃) = an. Note that e may contain more completed
operations than h (because of the last transition rule) but less
pending operations (because the transition rule corresponding to
the call of a pending operation may not have been applied in e). It
follows that |(e|⌃)| = n =) h � H(e).

(() Let P be a program over actions ⌃, and e 2 E(P ⇥ L1);
we show that e 2 E(P ⇥L2). Since (e|C [R) 2 E(L1), we know
H(e) 2 H(L1) by definition of H(L1), and then H(e) 2 H(L2)
by hypothesis. By Lemma 4.3 we deduce (e|C [R) 2 E(L2), and
thus by definition of LTS composition, e 2 E(P ⇥ L2).

5. Comparison with Linearizability
The linearizability criterion [11] provides an alternative charac-
terization of library conformance which implies observational re-
finement [6]. In this section we demonstrate that linearizability is
generally stricter than observational refinement, yet the two criteria
coincide when the reference implementation is atomic.

Linearizability [11] is defined by an execution order: e1 v e2
iff there exists a well-formed execution e01 obtained from e1 by
appending return actions, and deleting call actions, such that:

e2 is a permutation of e01 that preserves the order between
return and call actions, i.e., a given return action occurs
before a given call action in e01 iff the same holds in e2.

For example, the second and the third executions in Example 3.3
are v-smaller than the first (with sequential calls to push and pop).
An execution e1 is linearizable w.r.t. a library L2

1 iff there exists a
sequential execution e2 2 E(L2), with only completed operations,
such that e1 v e2. A library L1 is linearizable w.r.t. L2, written
L1 v L2, iff each execution e1 2 E(L1) is linearizable w.r.t. L2.

Since linearizability compares executions of L1, which may
contain pending operations, with executions of L2, in which every
operation is completed, observational refinement need not imply lin-

1 The original definition of Herlihy and Wing [11] assumes that L2 is a set
of sequential executions. Here we consider a slight extension adapted to
concurrent executions, faithful to the original intention, where kerL2 may
be a set of sequential executions.

nb of completed ops in h

For every execution e1 ∈  E (Ph X L1) with e1 | 𝛴 = n, 

there must exist an execution e2 ∈  E (Ph X L2) such that e2 | 𝛴 = e1 | 𝛴 
(by observational refinement)


Therefore, h ≼ H(e2).

Since e2 | (C ∪ R) ∈  E(L2), we have that H(e2) ∈ H(L2)

By closure under weakening, h ∈ H(L2)

 



History Inclusion (<=)

Let e ∈  E (P X L1)


e | (C ∪ R) ∈  E(L1) implies H(e) ∈ H(L1) implies H(e) ∈ H(L2)


Therefore, e | (C ∪ R) ∈  E(L2) which by definition of the product P X L2, 

implies e ∈  E (P X L2)

THEOREM 
L1 refines L2 	 ⇔	H(L1) ⊆ H(L2) ⇔	 E(L1) ⊆ E(L2)



Linearizability [Herlihy&Wing 1990]

Effects of each invocation appear to occur instantaneously

Execution history

Linearization admitted by Queue ADT

enq: 1 deq: 2 deq: 1

enq: 2

d:1d:2e:2 e:1 ∃ lin. rb ⊆ lin ∧ lin ∈ Queue ADT

returns-before (rb)

enq: 1 deq: 2 deq: 1

enq: 2



About Linearizability
History inclusion H(L1) ⊆ H(L2) equiv. to linearizability when L2 is atomic

pu
sh
(1
)

re
t

po
p(
)

preemption before CAS

n=0xFF

Thread 2

po
p(
)

re
t(
1)

y
=
1

pu
sh
(2
)

re
t

pu
sh
(3
)

re
t

free(0xFF) n=0xFF

re
t(
3)

x
=
3

po
p(
)

re
t(
EM
P)

z
=
EM
P

Thread1

(a) An execution e of the program; it depicts calls, returns,
and assignments, and time progresses from left to right.

push(1)

pop ) 3

pop ) 1
push(2)

push(3)

pop ) EMPTY

(b) The history H(e) of execution e.

push(1)

push(2)

pop ) 1

push(3)

pop ) EMPTY

pop ) ?

pop ) ?

(c) A history weaker than H(e).

0 1 2 3 4 5 6 7 8 9 10 11 12 13

push(1) pop ) 3

pop ) 1 push(2) push(3) pop ) EMPTY

(d) The history H(e) as an interval order.

0 1 2 3 4

push(1) pop ) 3

pop ) 1 push(2) push(3) pop ) EMPTY

(e) The canonical representation of H(e).

Figure 2. An execution and its history.

using L2. This property clearly does not hold between the CAS-
based implementation of Figure 1 and a correct atomic lock-based
implementation, since y = 1; x = 3; z = EMPTY is observable
using the CAS-based implementation, yet not using the atomic one.

3. Observational Refinement
We formalize the criterion of observational refinement using a sim-
ple yet universal model of computation, namely labeled transition
systems (LTS). This model captures shared-memory programs with
an arbitrary number of threads, abstracting away the details of any
particular programming system irrelevant to our development.

A labeled transition system A = (Q,⌃, q0, �) over the possibly-
infinite alphabet ⌃ is a possibly-infinite set Q of states with initial
state q0 2 Q, and a transition relation � ✓ Q ⇥ ⌃ ⇥ Q. The ith
symbol of a sequence e 2 ⌃⇤ is denoted ei. An execution of A is a
sequence e 2 ⌃⇤ such that for some q1, q2, . . . , q|e| 2 Q, we have
�(qi, ei, qi+1) for each i such that 0  i < |e|. The projection e|�
is the maximum subsequence of e over alphabet �. E(A) denotes
the set of A’s executions, and E(A)|� their projections over � (note
that E(A) is prefix closed). The synchronous product A1 ⇥A2 of
two LTSs is defined as usual, respecting E(A1 ⇥A2)|(⌃1 \⌃2) =
E(A1)|⌃2 \ E(A2)|⌃1.

3.1 Libraries
Programs interact with libraries by calling named library methods,
which receive parameter values and yield return values upon
completion. We fix arbitrary sets M and V of method names and
parameter/return values.

Example 3.1. The method and value sets for the stack implementa-
tion in Figure 1 are M = {push, pop} and V = N [ {EMPTY}.

We fix an arbitrary set O of operation identifiers, and for given sets
M and V of methods and values, we fix the sets

C = {m(v)o : m 2 M, v 2 V, o 2 O}, and
R = {ret(v)o : v 2 V, o 2 O}

of call actions and return actions; each call action m(v)o combines
a method m 2 M and value v 2 V with an operation identifier
o 2 O. Operation identifiers are used to pair call and return actions.
We denote the operation identifier of a call/return action a by op(a).
Call and return actions c 2 C and r 2 R are matching, written
c 7� [ r, when op(c) = op(r). A word e 2 ⌃⇤ over alphabet ⌃, such
that (C [R) ✓ ⌃, is well formed when:
• Each return is preceded by a matching call:
ej 2 R implies ei 7� [ ej for some i < j.

• Each operation identifier is used in at most one call/return:
op(ei) = op(ej) and i < j implies ei 7� [ ej .

We say that the well-formed word e 2 ⌃⇤ is sequential when
• Operations do not overlap:
ei, ek 2 C and i < k implies ei 7� [ ej for some i < j < k.

Well-formed words represent executions. We assume every set
of well-formed words is closed under isomorphic renaming of
operation identifiers. For notational convenience, we often associate
O with N, e.g., writing m(u)1 and ret(v)2 in place of m(u)o1 and
ret(v)o2 . An operation o of an execution e is completed when both
call and return actions m(u)o and ret(v)o of o occur in e, and is
otherwise pending.
Example 3.2. The well-formed words
push(0)1 pop2 pop3 ret1 ret(0)3 ret(0)2, and push(0)1 pop2 pop3 ret1 ret(0)2

represent executions in which one call to the push(0) method
overlaps with two calls to pop. In the first execution both calls
to pop have matching return actions ret(0), i.e., the operations 2
and 3 are completed, while operation 3 is pending in the second, it
has no matching return.

Libraries dictate the execution of methods between their call
and return points. Accordingly, a library cannot prevent a method
from being called, though it can decide not to return. Furthermore,
any library action performed in the interval between call and return
points can also be performed should the call have been made earlier,
and/or the return made later. Our technical results rely on these
properties. A library thus allows any sequence of invocations to its
methods made by some program.

Definition 3.1. A library L is an LTS over alphabet C [ R such
that each execution e 2 E(L) is well formed, and

• Call actions c 2 C cannot be disabled:
e · e0 2 E(L) implies e · c · e0 2 E(L) if e · c · e0 is well formed.

• Call actions c 2 C cannot disable other actions:
e · a · c · e0 2 E(L) implies e · c · a · e0 2 E(L).

• Return actions r 2 R cannot enable other actions:
e · r · a · e0 2 E(L) implies e · a · r · e0 2 E(L).

We write e1 ; e2 when e2 can be derived from e1 by applying zero
or more of the above rules. The closure of a set E of executions
under ; is denoted E.

Note that even a library that implements atomic methods, e.g., by
guarding method bodies with a global-lock acquisition, admits
executions in which method calls and returns overlap. A library
which accesses the client’s thread identifiers can be modeled by
taking thread identifiers as method parameters.

pu
sh
(1
)

re
t

po
p(
)

preemption before CAS

n=0xFF

Thread 2

po
p(
)

re
t(
1)

y
=
1

pu
sh
(2
)

re
t

pu
sh
(3
)

re
t

free(0xFF) n=0xFF

re
t(
3)

x
=
3

po
p(
)

re
t(
EM
P)

z
=
EM
P

Thread1

(a) An execution e of the program; it depicts calls, returns,
and assignments, and time progresses from left to right.

push(1)

pop ) 3

pop ) 1
push(2)

push(3)

pop ) EMPTY

(b) The history H(e) of execution e.

push(1)

push(2)

pop ) 1

push(3)

pop ) EMPTY

pop ) ?

pop ) ?

(c) A history weaker than H(e).

0 1 2 3 4 5 6 7 8 9 10 11 12 13

push(1) pop ) 3

pop ) 1 push(2) push(3) pop ) EMPTY

(d) The history H(e) as an interval order.

0 1 2 3 4

push(1) pop ) 3

pop ) 1 push(2) push(3) pop ) EMPTY

(e) The canonical representation of H(e).

Figure 2. An execution and its history.

using L2. This property clearly does not hold between the CAS-
based implementation of Figure 1 and a correct atomic lock-based
implementation, since y = 1; x = 3; z = EMPTY is observable
using the CAS-based implementation, yet not using the atomic one.

3. Observational Refinement
We formalize the criterion of observational refinement using a sim-
ple yet universal model of computation, namely labeled transition
systems (LTS). This model captures shared-memory programs with
an arbitrary number of threads, abstracting away the details of any
particular programming system irrelevant to our development.

A labeled transition system A = (Q,⌃, q0, �) over the possibly-
infinite alphabet ⌃ is a possibly-infinite set Q of states with initial
state q0 2 Q, and a transition relation � ✓ Q ⇥ ⌃ ⇥ Q. The ith
symbol of a sequence e 2 ⌃⇤ is denoted ei. An execution of A is a
sequence e 2 ⌃⇤ such that for some q1, q2, . . . , q|e| 2 Q, we have
�(qi, ei, qi+1) for each i such that 0  i < |e|. The projection e|�
is the maximum subsequence of e over alphabet �. E(A) denotes
the set of A’s executions, and E(A)|� their projections over � (note
that E(A) is prefix closed). The synchronous product A1 ⇥A2 of
two LTSs is defined as usual, respecting E(A1 ⇥A2)|(⌃1 \⌃2) =
E(A1)|⌃2 \ E(A2)|⌃1.

3.1 Libraries
Programs interact with libraries by calling named library methods,
which receive parameter values and yield return values upon
completion. We fix arbitrary sets M and V of method names and
parameter/return values.

Example 3.1. The method and value sets for the stack implementa-
tion in Figure 1 are M = {push, pop} and V = N [ {EMPTY}.

We fix an arbitrary set O of operation identifiers, and for given sets
M and V of methods and values, we fix the sets

C = {m(v)o : m 2 M, v 2 V, o 2 O}, and
R = {ret(v)o : v 2 V, o 2 O}

of call actions and return actions; each call action m(v)o combines
a method m 2 M and value v 2 V with an operation identifier
o 2 O. Operation identifiers are used to pair call and return actions.
We denote the operation identifier of a call/return action a by op(a).
Call and return actions c 2 C and r 2 R are matching, written
c 7� [ r, when op(c) = op(r). A word e 2 ⌃⇤ over alphabet ⌃, such
that (C [R) ✓ ⌃, is well formed when:
• Each return is preceded by a matching call:
ej 2 R implies ei 7� [ ej for some i < j.

• Each operation identifier is used in at most one call/return:
op(ei) = op(ej) and i < j implies ei 7� [ ej .

We say that the well-formed word e 2 ⌃⇤ is sequential when
• Operations do not overlap:
ei, ek 2 C and i < k implies ei 7� [ ej for some i < j < k.

Well-formed words represent executions. We assume every set
of well-formed words is closed under isomorphic renaming of
operation identifiers. For notational convenience, we often associate
O with N, e.g., writing m(u)1 and ret(v)2 in place of m(u)o1 and
ret(v)o2 . An operation o of an execution e is completed when both
call and return actions m(u)o and ret(v)o of o occur in e, and is
otherwise pending.
Example 3.2. The well-formed words
push(0)1 pop2 pop3 ret1 ret(0)3 ret(0)2, and push(0)1 pop2 pop3 ret1 ret(0)2

represent executions in which one call to the push(0) method
overlaps with two calls to pop. In the first execution both calls
to pop have matching return actions ret(0), i.e., the operations 2
and 3 are completed, while operation 3 is pending in the second, it
has no matching return.

Libraries dictate the execution of methods between their call
and return points. Accordingly, a library cannot prevent a method
from being called, though it can decide not to return. Furthermore,
any library action performed in the interval between call and return
points can also be performed should the call have been made earlier,
and/or the return made later. Our technical results rely on these
properties. A library thus allows any sequence of invocations to its
methods made by some program.

Definition 3.1. A library L is an LTS over alphabet C [ R such
that each execution e 2 E(L) is well formed, and

• Call actions c 2 C cannot be disabled:
e · e0 2 E(L) implies e · c · e0 2 E(L) if e · c · e0 is well formed.

• Call actions c 2 C cannot disable other actions:
e · a · c · e0 2 E(L) implies e · c · a · e0 2 E(L).

• Return actions r 2 R cannot enable other actions:
e · r · a · e0 2 E(L) implies e · a · r · e0 2 E(L).

We write e1 ; e2 when e2 can be derived from e1 by applying zero
or more of the above rules. The closure of a set E of executions
under ; is denoted E.

Note that even a library that implements atomic methods, e.g., by
guarding method bodies with a global-lock acquisition, admits
executions in which method calls and returns overlap. A library
which accesses the client’s thread identifiers can be modeled by
taking thread identifiers as method parameters.

Example 3.3. Any library which admits the execution
push(0)1 ret1 pop2 ret(0)2

with sequential calls to push and pop must also admit
push(0)1 pop2 ret1 ret(0)2 and push(0)1 pop2 pop3 ret1 ret(0)2,

among others, yet need not admit an execution
push(0)1 pop2 pop3 ret1 ret(0)3 ret(0)2

with two completed pop operations returning 0.

A library L is called atomic if it is defined by the closure of
some set E of sequential executions, i.e., E(L) = E. When such
a set E exists, it is unique, and we call it the kernel of L, denoted
by kerL. Note that kerL contains only completed operations since
e1 · e2 ; e1 · c · e2, for any unmatched call c. Atomic libraries are
often considered as specifications for concurrent objects.

Example 3.4. The atomic stack is the library whose kernel is the
set of sequential executions for which the return value of each pop
operation is either
• the argument value v to the last unmatched push operation, or
• EMPTY if there are no unmatched push operations.

In practice, the atomic stack can be implemented by guarding the
methods of a “sequential” stack object by global-lock acquisition.

3.2 Refinement between Libraries
Refinement between libraries is defined with respect to the observ-
able actions of programs which invoke library methods. Complemen-
tary to libraries, programs control their execution outside of method
call and return points. Accordingly, any program action performed
in the interval between call and return points can also be performed
should the call have been made later, and/or the return made earlier.
A program thus allows any sequence of matching returns generated
by some implementation of the methods it invokes.

Definition 3.2. A program P over actions ⌃ is an LTS over alphabet
(⌃ ] C ]R) where each execution e 2 E(P ) is well formed, and
• Call actions c 2 C cannot enable other actions:
e · c · a · e0 2 E(P ) implies c 7� [ a or e · a · c · e0 2 E(P ).

• Return actions r 2 R cannot disable other actions:
e · a · r · e0 2 E(P ) implies a 7� [ r or e · r · a · e 2 E(P ).

• Return actions r 2 R cannot be disabled:
e · e0 2 E(P ) implies e · r · e0 2 E(L) if e · r · e0 is well formed.

Example 3.5. Any program which admits the execution
push(0)1 pop2 ret(0)2 pop3 ret1,

with two sequential pop calls concurrent with push, must also admit
push(0)1 ret1 pop2 ret(0)2 pop3 and
push(0)1 ret1 pop2 ret(0)2 pop3 ret(EMPTY)3,

among others, in which all three calls are sequential and the second
pop may return (with any value), yet need not admit an execution

push(0)1 ret1 pop3 pop2 ret(0)2,

in which the two calls to pop are concurrent. The set of executions
admitted by a program allows any possible implementation of
the methods. While programs cannot force methods to execute
concurrently, they can force methods to execute sequentially, e.g.,
by waiting for one to return before calling the next.

Refinement between libraries L1 and L2 means that any program
execution possible with L1 is also possible with L2.

Definition 3.3. The library L1 refines L2, written L1  L2, iff

E(P ⇥ L1)|⌃ ✓ E(P ⇥ L2)|⌃
for all programs P over actions ⌃.

Note that  is a preorder over libraries. As library and program
alphabets only intersect on call and return actions C [ R, our
formalization supposes that programs and libraries communicate
only through method calls and returns, and not, e.g., through shared
random-access memory.

Example 3.6. The incorrect Treiber’s stack implementation of Fig-
ure 1 does not refine an atomic lock-based reference implementation,
since the execution of Figure 2 is admitted by its composition with
the two-thread program of Figure 1.

4. History Inclusion
Though we seek to develop automated techniques to check obser-
vational refinement between libraries, the definition of Section 3
does not suggest any practical means; it only suggests enumerating
every possible execution of every possible program. In this section
we introduce an equivalent notion based on concise abstractions of
program executions called histories. Besides being independent of
programs, this equivalent notion helps expose the structure of the
refinement problem, and suggests practical means of automation
which we develop in Section 6.

4.1 Histories
For given sets M and V of methods and values, we fix a set
L = M⇥V⇥ (V [ {?}) of operation labels, and denote the label
hm,u, vi by m(u)) v. A history h = hO,<, fi is a partial order
< on a set O ✓ O of operation identifiers labeled by f : O!L for
which f(o) = m(u))? implies o is maximal in <. The history
H(e) of a well-formed execution e 2 ⌃⇤ labels each operation with
a method-call summary, and orders non-overlapping operations:

• O = {op(ei) : 0  i < |e| and ei 2 C},
• op(ei) < op(ej) iff i < j, ei 2 R, and ej 2 C.

• f(o) =

⇢
m(u)) v if m(u)o 2 e and ret(v)o 2 e
m(u))? if m(u)o 2 e and ret( )o 62 e

An operation of h labeled by ` 2 L is called an ` operation. The
histories admitted by L are H(L) = {H(e) : e 2 E(L)}.

Example 4.1. Figure 2(b) depicts the history of the execution in
Figure 2(a). Arrows depict the order relation modulo transitivity.
Operations o1 and o2 are ordered in h if o1’s return precedes o2’s
call. For example, push(1) precedes pop) 3. However, pop) 1
is incomparable to pop) 3 because pop) 1’s return comes after
pop) 3’s call, and pop) 3’s return comes after pop) 1’s call.
The order among operations’ call actions is irrelevant, as is the
order among their return actions.

While the general concept of histories allows arbitrary partial
orders of operations, any history H(e) arising from an LTS execu-
tion e falls into a restricted class called interval orders. Intuitively,
this is because our execution model assumes that operations share
a common notion of global time: the actions in an execution are
linearly ordered.

Definition 4.1. An interval order is a partial order hO,<i such that
o1 < o3 and o2 < o4 implies o1 < o4 or o2 < o3.

Lemma 4.1. The history H(e) = hO, f,<i of a well-formed
execution e forms an interval order hO,<i.

Proof. Suppose o1 < o3 and o2 < o4 in H(e), and fix i1, i2, i3, i4
such that ei1 and ei2 are the return actions of o1 and o2, and ei3
and ei4 are the call actions of o3 and o4; note that i1 < i3 and
i2 < i4. Since < linearly orders {i1, i2, i3, i4}, either i1 < i4, in
which case o1 < o4, or i4 < i1, in which case i2 < i4 < i1 < i3,
so o2 < o3.



About Linearizability
History inclusion H(L1) ⊆ H(L2) equiv. to linearizability when L2 is atomic

Example 4.2. Figure 2(d) pictures the history in Figure 2(b) as an
interval order. Each operation is represented by an integer-bounded
interval on the real number line such that o1 < o2 iff the interval
associated to o1 finishes before the interval associated to o2.

In this work we consider only histories of well-formed executions,
i.e., those forming interval orders, without explicit qualification.

This notion of histories gives rise to a natural order relating his-
tories by their operation ordering. Basically, a history h1 is weaker
than another history h2 if h2 contains all completed operations of
h1, and preserves the order between h1’s operations. The pending
operations of h1 can be either omitted or completed in h2.

Definition 4.2. Let h1 = hO1, <1, f1i and h2 = hO2, <2, f2i. We
say h1 is weaker than h2, written h1 � h2, when there exists an
injection g : O2 !O1 such that
• o 2 range(g) when f1(o) = m(u)) v and v 6= ?,
• g(o1) <1 g(o2) implies o1 <2 o2 for each o1, o2 2 O2,
• f1(g(o)) ⌧ f2(o) for each o 2 O2.

where (m1(u1)) v1) ⌧ (m2(u2)) v2) iff m1 = m2, u1 = u2,
and v1 2 {v2,?}. We say h1 and h2 are equivalent when h1 � h2

and h2 � h1.

Example 4.3. Figure 2(c) pictures a history h0 weaker than the
history h in Figure 2(b). Note that h0 contains two pending pop)?
operations, one of them is completed in h (it corresponds to the
pop) 3 operation) and one of them is omitted in h.

Throughout this work we do not distinguish between equivalent
histories, and we assume every set H of histories is closed under
inclusion of equivalent histories, i.e., if h1 and h2 are equivalent
and h1 2 H , then h2 2 H as well.

4.2 History Inclusion is Equivalent to Refinement
Our notion of histories has two important properties which makes
refinement between libraries equivalent to inclusion between their
history sets. The first property is that libraries are closed under the
weakening relation �. Essentially when L admits the history H(e)
of an execution e, then it also admits the history H(e0) of any e0

which is ;-derivable from e. Our definitions of ; and � coincide
to imply H(e0) � H(e).

Lemma 4.2. If h1 2 H(L) and h2 � h1 then h2 2 H(L).

A history h is essentially an abstraction of the set {e : H(e) = h}
of executions which preserve an order between returns preceding
calls. The closure properties of Definition 3.1 ensure that a library
L admits all executions e with H(e) 2 H(L).

Lemma 4.3. E(L) = {e 2 (C [R)⇤ : H(e) 2 H(L)}.

Lemmas 4.2 and 4.3 ultimately imply the equivalence between
refinement and history inclusion. Essentially, any given history h of
a library L1 can be captured by a program Ph whose observations
witness the ordering among h’s operations. However, its observa-
tions cannot forbid additional orderings between h’s operations (this
is due to the closure properties in Definition 3.2). The refinement
L1  L2 implies that L2 also admits those observations, through
one or more possibly-stronger histories h0. It then follows from
Lemma 4.2 that L2 also admits h � h0. For the reverse direction, it
follows from Lemma 4.3 that history inclusion implies inclusion of
executions, and ultimately observations.

Theorem 1. L1  L2 iff H(L1) ✓ H(L2).

Proof. ()) Let h = hO,<, fi 2 H(L1); we show h 2 H(L2)
by constructing a program Ph over actions ⌃ which only admits
executions with histories stronger than h:

8e 2 E(Ph). |(e|⌃)| = n =) h � H(e),

where n = |{o 2 O : f(o) = m(u)) v 6= ?}| is the number of
completed operations in h. Given such a program Ph, taking any
execution e1 2 E(Ph ⇥ L1) with |(e1|⌃)| = n, we must also have
an execution e2 2 E(Ph ⇥ L2) such that (e2|⌃) = (e1|⌃) by
definition of L1  L2. Since |(e2|⌃)| = n and e2 2 E(Ph), we
also know that h � H(e2), and since (e2|C [ R) 2 E(L2), we
have H(e2) 2 H(L2), along with any history weaker than H(e2)
by Lemma 4.2, namely h.

We construct Ph = hQ,⌃, q0, �i over alphabet ⌃ = C[R[{a}
whose states Q : O ! B

2 track operations called/completed status.
The initial state is q0 = {o 7! h?,?i : o 2 O}. Transitions are
given by,

for each q 2 Q, o 2 O,m 2 M, v 2 V

if f(o) = m(v)) and q(o0) for all o0 < o then

q[o 7! ?,?]
m(v)o����! q[o 7! >,?]

if f(o) = m( )) v then

q[o 7! >,?]
ret(v)o����! · a�! q[o 7! >,>]

if f(o) = m( ))? then

q[o 7! >,?]
ret(v)o����! q[o 7! >,>]

It is routine to verify that Ph is a program according to Definition 3.2.
Moreover, in any execution e 2 E(Ph), the call m(u)o of any
operation o must come after the return ret(v)o0 of each o0 < o.
Furthermore, all completed operations of h are completed in e if and
only if (e|⌃) = an. Note that e may contain more completed
operations than h (because of the last transition rule) but less
pending operations (because the transition rule corresponding to
the call of a pending operation may not have been applied in e). It
follows that |(e|⌃)| = n =) h � H(e).

(() Let P be a program over actions ⌃, and e 2 E(P ⇥ L1);
we show that e 2 E(P ⇥L2). Since (e|C [R) 2 E(L1), we know
H(e) 2 H(L1) by definition of H(L1), and then H(e) 2 H(L2)
by hypothesis. By Lemma 4.3 we deduce (e|C [R) 2 E(L2), and
thus by definition of LTS composition, e 2 E(P ⇥ L2).

5. Comparison with Linearizability
The linearizability criterion [11] provides an alternative charac-
terization of library conformance which implies observational re-
finement [6]. In this section we demonstrate that linearizability is
generally stricter than observational refinement, yet the two criteria
coincide when the reference implementation is atomic.

Linearizability [11] is defined by an execution order: e1 v e2
iff there exists a well-formed execution e01 obtained from e1 by
appending return actions, and deleting call actions, such that:

e2 is a permutation of e01 that preserves the order between
return and call actions, i.e., a given return action occurs
before a given call action in e01 iff the same holds in e2.

For example, the second and the third executions in Example 3.3
are v-smaller than the first (with sequential calls to push and pop).
An execution e1 is linearizable w.r.t. a library L2

1 iff there exists a
sequential execution e2 2 E(L2), with only completed operations,
such that e1 v e2. A library L1 is linearizable w.r.t. L2, written
L1 v L2, iff each execution e1 2 E(L1) is linearizable w.r.t. L2.

Since linearizability compares executions of L1, which may
contain pending operations, with executions of L2, in which every
operation is completed, observational refinement need not imply lin-

1 The original definition of Herlihy and Wing [11] assumes that L2 is a set
of sequential executions. Here we consider a slight extension adapted to
concurrent executions, faithful to the original intention, where kerL2 may
be a set of sequential executions.

Example 4.2. Figure 2(d) pictures the history in Figure 2(b) as an
interval order. Each operation is represented by an integer-bounded
interval on the real number line such that o1 < o2 iff the interval
associated to o1 finishes before the interval associated to o2.

In this work we consider only histories of well-formed executions,
i.e., those forming interval orders, without explicit qualification.

This notion of histories gives rise to a natural order relating his-
tories by their operation ordering. Basically, a history h1 is weaker
than another history h2 if h2 contains all completed operations of
h1, and preserves the order between h1’s operations. The pending
operations of h1 can be either omitted or completed in h2.

Definition 4.2. Let h1 = hO1, <1, f1i and h2 = hO2, <2, f2i. We
say h1 is weaker than h2, written h1 � h2, when there exists an
injection g : O2 !O1 such that
• o 2 range(g) when f1(o) = m(u)) v and v 6= ?,
• g(o1) <1 g(o2) implies o1 <2 o2 for each o1, o2 2 O2,
• f1(g(o)) ⌧ f2(o) for each o 2 O2.

where (m1(u1)) v1) ⌧ (m2(u2)) v2) iff m1 = m2, u1 = u2,
and v1 2 {v2,?}. We say h1 and h2 are equivalent when h1 � h2

and h2 � h1.

Example 4.3. Figure 2(c) pictures a history h0 weaker than the
history h in Figure 2(b). Note that h0 contains two pending pop)?
operations, one of them is completed in h (it corresponds to the
pop) 3 operation) and one of them is omitted in h.

Throughout this work we do not distinguish between equivalent
histories, and we assume every set H of histories is closed under
inclusion of equivalent histories, i.e., if h1 and h2 are equivalent
and h1 2 H , then h2 2 H as well.

4.2 History Inclusion is Equivalent to Refinement
Our notion of histories has two important properties which makes
refinement between libraries equivalent to inclusion between their
history sets. The first property is that libraries are closed under the
weakening relation �. Essentially when L admits the history H(e)
of an execution e, then it also admits the history H(e0) of any e0

which is ;-derivable from e. Our definitions of ; and � coincide
to imply H(e0) � H(e).

Lemma 4.2. If h1 2 H(L) and h2 � h1 then h2 2 H(L).

A history h is essentially an abstraction of the set {e : H(e) = h}
of executions which preserve an order between returns preceding
calls. The closure properties of Definition 3.1 ensure that a library
L admits all executions e with H(e) 2 H(L).

Lemma 4.3. E(L) = {e 2 (C [R)⇤ : H(e) 2 H(L)}.

Lemmas 4.2 and 4.3 ultimately imply the equivalence between
refinement and history inclusion. Essentially, any given history h of
a library L1 can be captured by a program Ph whose observations
witness the ordering among h’s operations. However, its observa-
tions cannot forbid additional orderings between h’s operations (this
is due to the closure properties in Definition 3.2). The refinement
L1  L2 implies that L2 also admits those observations, through
one or more possibly-stronger histories h0. It then follows from
Lemma 4.2 that L2 also admits h � h0. For the reverse direction, it
follows from Lemma 4.3 that history inclusion implies inclusion of
executions, and ultimately observations.

Theorem 1. L1  L2 iff H(L1) ✓ H(L2).

Proof. ()) Let h = hO,<, fi 2 H(L1); we show h 2 H(L2)
by constructing a program Ph over actions ⌃ which only admits
executions with histories stronger than h:

8e 2 E(Ph). |(e|⌃)| = n =) h � H(e),

where n = |{o 2 O : f(o) = m(u)) v 6= ?}| is the number of
completed operations in h. Given such a program Ph, taking any
execution e1 2 E(Ph ⇥ L1) with |(e1|⌃)| = n, we must also have
an execution e2 2 E(Ph ⇥ L2) such that (e2|⌃) = (e1|⌃) by
definition of L1  L2. Since |(e2|⌃)| = n and e2 2 E(Ph), we
also know that h � H(e2), and since (e2|C [ R) 2 E(L2), we
have H(e2) 2 H(L2), along with any history weaker than H(e2)
by Lemma 4.2, namely h.

We construct Ph = hQ,⌃, q0, �i over alphabet ⌃ = C[R[{a}
whose states Q : O ! B

2 track operations called/completed status.
The initial state is q0 = {o 7! h?,?i : o 2 O}. Transitions are
given by,

for each q 2 Q, o 2 O,m 2 M, v 2 V

if f(o) = m(v)) and q(o0) for all o0 < o then

q[o 7! ?,?]
m(v)o����! q[o 7! >,?]

if f(o) = m( )) v then

q[o 7! >,?]
ret(v)o����! · a�! q[o 7! >,>]

if f(o) = m( ))? then

q[o 7! >,?]
ret(v)o����! q[o 7! >,>]

It is routine to verify that Ph is a program according to Definition 3.2.
Moreover, in any execution e 2 E(Ph), the call m(u)o of any
operation o must come after the return ret(v)o0 of each o0 < o.
Furthermore, all completed operations of h are completed in e if and
only if (e|⌃) = an. Note that e may contain more completed
operations than h (because of the last transition rule) but less
pending operations (because the transition rule corresponding to
the call of a pending operation may not have been applied in e). It
follows that |(e|⌃)| = n =) h � H(e).

(() Let P be a program over actions ⌃, and e 2 E(P ⇥ L1);
we show that e 2 E(P ⇥L2). Since (e|C [R) 2 E(L1), we know
H(e) 2 H(L1) by definition of H(L1), and then H(e) 2 H(L2)
by hypothesis. By Lemma 4.3 we deduce (e|C [R) 2 E(L2), and
thus by definition of LTS composition, e 2 E(P ⇥ L2).

5. Comparison with Linearizability
The linearizability criterion [11] provides an alternative charac-
terization of library conformance which implies observational re-
finement [6]. In this section we demonstrate that linearizability is
generally stricter than observational refinement, yet the two criteria
coincide when the reference implementation is atomic.

Linearizability [11] is defined by an execution order: e1 v e2
iff there exists a well-formed execution e01 obtained from e1 by
appending return actions, and deleting call actions, such that:

e2 is a permutation of e01 that preserves the order between
return and call actions, i.e., a given return action occurs
before a given call action in e01 iff the same holds in e2.

For example, the second and the third executions in Example 3.3
are v-smaller than the first (with sequential calls to push and pop).
An execution e1 is linearizable w.r.t. a library L2

1 iff there exists a
sequential execution e2 2 E(L2), with only completed operations,
such that e1 v e2. A library L1 is linearizable w.r.t. L2, written
L1 v L2, iff each execution e1 2 E(L1) is linearizable w.r.t. L2.

Since linearizability compares executions of L1, which may
contain pending operations, with executions of L2, in which every
operation is completed, observational refinement need not imply lin-

1 The original definition of Herlihy and Wing [11] assumes that L2 is a set
of sequential executions. Here we consider a slight extension adapted to
concurrent executions, faithful to the original intention, where kerL2 may
be a set of sequential executions.



About Linearizability
History inclusion H(L1) ⊆ H(L2) equiv. to linearizability when L2 is atomic

Linearizability compares execs of L1 with pending ops. with execs of L2 with 
only completed ops => problematic when L2 contains non-terminating 
methods

earizability when L2 contains non-terminating methods, i.e., where
the calls to these methods are pending in all executions.

Example 5.1. Let L be the library whose kernel contains the single
execution e = m(u)1 m0(u)2 ret(v)1, in which the call to m0 is
pending. Although L refines itself, since refinement is reflexive, L is
not linearizable w.r.t. itself, since e could only be linearizable w.r.t.
L if E(L) were to contain one of the following executions:

m(u)1 ret(v)1 m(u)1 m0(u)2 ret(v)1 ret( )2

m(u)1 ret(v)1 m0(u)2 ret( )2 m0(u)2 ret( )2m(u)1 ret(v)1.

Yet E(L) = {e} clearly contains none of them.

A typical correctness criterion for concurrent objects is lineariz-
ability with respect to atomic versions of themselves. Despite the
negative general result of Example 5.1, when restricted to atomic
libraries, linearizability and history inclusion, and thus observational
refinement, coincide. This relationship essentially follows from the
relationship between the order relations v and �.

Lemma 5.1. e1 v e2 iff H(e1) � H(e2).

Proof. By definition e1 v e2 means that there exists e01 such that
e2 is a permutation of e01 preserving the order between return and
call actions, thus e2 ; e01, and thus H(e01) � H(e2). Furthermore,
since e01 is obtained from e1 by appending returns and deleting
calls, H(e1) � H(e01). By transitivity, H(e1) � H(e2). The other
direction is equally straightforward.

Theorem 2. L1 v L2 iff H(L1) ✓ H(L2), if L2 is atomic.

Proof. ()) Let h 2 H(L1). By hypothesis, any execution e1 with
H(e1) = h is linearizable w.r.t. L2, i.e., there exists an execution
e2 2 L2 with only completed operations such that e1 v e2. By
Lemma 5.1, this implies H(e1) � H(e2). By the closure property
in Lemma 4.2, if H(e2) 2 H(L2) then h = H(e1) 2 H(L2).

(() Let e1 be an execution of L1. By hypothesis, H(e1) 2
H(L2), which by Lemma 4.3, implies e1 2 E(L2). Since L2 is an
atomic library, there exists a sequential execution e2 2 kerE(L2)
with only completed operations such that e1 v e2. Thus, e1 is
linearizable w.r.t. L2.

6. Approximating History Inclusion
By the equivalences of Section 5, checking whether a given history
H(e) is included in a set H(L) of library histories is equivalent
to checking whether H(e) is linearizable with respect to L, for a
atomic library L. It follows that deciding H(e) 2 H(L) is NP-hard
for an arbitrary library L, since it is NP-hard for the atomic register
object [8]. Generally speaking, the only known algorithms to decide
H(e) 2 H(L) must check whether each possible linearization of
the partially-ordered history H(e) is equivalent to some sequential
execution of operations according to L, backtracking to try alternate
linearizations on each failed attempt. Recent work implies that the
more general problem of checking whether all histories H(L1) of
a given library L1 are included in the set of histories H(L2) of a
fixed library L2 is undecidable, since it is equivalent to checking
whether L1 is linearizable w.r.t. L2 when L2 is atomic [4].

These complexity obstacles suggest investigating approximations
to the history inclusion problems — i.e., both h 2 H(L) and its
more general variation H(L1) ✓ H(L2) — in order to devise
tractable algorithms.

In this work, we focus on parameterized under approximations
for detecting violations to observational refinement, achieving
increasing accuracy with decreasing efficiency. For this, we design a
notion of parameterized history-weakening approximation functions

Ak which map any history h to a weaker history Ak(h) � h, and
which have the following properties:

Strength-increasing: A0(h) � A1(h) � . . . � Ak(h) � h.
Completeness: there exists k 2 N such that h � Ak(h).
Tractable inclusion: Ak(h) 2 H(L) is decidable in polynomial

time when k is fixed.

This weakening-based approximation is convenient since whenever
Ak(h) is not included in H(L), then neither is h, since H(L) is
closed under weakening; if h were to belong to H(L), then any
weakening, and in particular Ak(h), would also belong to H(L).
While completeness means that increasing k increases the ability
to detect observational refinement violations, this must incur a
decrease in efficiency since the inclusion problem Ak(h) 2 H(L)
is NP-hard when k is not fixed. By design, the approximation
function Ak allows us to solve the approximate history inclusion
problem Ak(h) 2 H(L) in polynomial time for fixed k. For
the more general problem of refinement between libraries L1

and L2, our approximation asks whether Ak(h) 2 H(L1) \
H(L2), and becomes decidable for fixed k, so long as the set
{Ak(h) : h 2 H(L1)} is computable. Completeness of Ak ensures
overall completeness, i.e., that for any h 2 H(L1) \H(L2) there
is some k 2 N such that Ak(h) 2 H(L1) \H(L2).

Our key challenge is to develop approximation functions Ak for
which history inclusion can be computed in polynomial time for
fixed k, and for which observational refinement violations surface
with small k. We demonstrate the latter in Section 7–9.

In this section we develop a schema of approximation functions
for which the approximate history inclusion problem is polynomial-
time computable. Our development exploits structural aspects of
the history inclusion problem; in particular, we exploit the fact that
histories are interval orders, with a natural measure of complexity,
i.e., the interval order length [9]. Leveraging this notion of length,
we abstract each history h to a weaker history Ak(h) whose length
is bounded by k, and represent the set H(L) of histories, restricted
to interval length k, by a formula against which Ak(h) can be
evaluated in polynomial time (§6.1). Finally, we exhibit a program
monitoring scheme which can be used to decide our approximate
observational refinement problem 9h. Ak(h) 2 H(L1) \H(L2),
or as a general-purpose runtime-execution monitor (§6.2).

6.1 Bounded-Interval-Length History Inclusion
The past of an element o 2 O of a poset hO,<i is the set

past(o) = {o0 2 O : o0 < o}
of elements ordered before o.

Example 6.1. In the history h from Figure 2(b), the pop) 3 and
pop ) 1 operations have the same past, namely the operation
push(1), while the past of the push(3) operation consists of the
push(1), pop) 1, and push(2) operations.

This notion of operations’ pasts induces a linear notion of time
into execution histories due to the following fact.

Lemma 6.1 (Rabinovitch [23]). The set {past(o) : o 2 O} of pasts
of an interval order hO,<i is linearly ordered by set inclusion.

Furthermore, this linear notion of time has an associated notion
of length, which corresponds to the length of the linear order on
operation’s pasts.

Definition 6.1 (Greenough [9]). The length of an interval order
hO,<i is one less than the number of its distinct pasts.

We denote the length of the interval order hO,<i underlying a
history h = hO, f,<i as lenh.



About Linearizability
History inclusion H(L1) ⊆ H(L2) equiv. to linearizability when L2 is atomic

earizability when L2 contains non-terminating methods, i.e., where
the calls to these methods are pending in all executions.

Example 5.1. Let L be the library whose kernel contains the single
execution e = m(u)1 m0(u)2 ret(v)1, in which the call to m0 is
pending. Although L refines itself, since refinement is reflexive, L is
not linearizable w.r.t. itself, since e could only be linearizable w.r.t.
L if E(L) were to contain one of the following executions:

m(u)1 ret(v)1 m(u)1 m0(u)2 ret(v)1 ret( )2

m(u)1 ret(v)1 m0(u)2 ret( )2 m0(u)2 ret( )2m(u)1 ret(v)1.

Yet E(L) = {e} clearly contains none of them.

A typical correctness criterion for concurrent objects is lineariz-
ability with respect to atomic versions of themselves. Despite the
negative general result of Example 5.1, when restricted to atomic
libraries, linearizability and history inclusion, and thus observational
refinement, coincide. This relationship essentially follows from the
relationship between the order relations v and �.

Lemma 5.1. e1 v e2 iff H(e1) � H(e2).

Proof. By definition e1 v e2 means that there exists e01 such that
e2 is a permutation of e01 preserving the order between return and
call actions, thus e2 ; e01, and thus H(e01) � H(e2). Furthermore,
since e01 is obtained from e1 by appending returns and deleting
calls, H(e1) � H(e01). By transitivity, H(e1) � H(e2). The other
direction is equally straightforward.

Theorem 2. L1 v L2 iff H(L1) ✓ H(L2), if L2 is atomic.

Proof. ()) Let h 2 H(L1). By hypothesis, any execution e1 with
H(e1) = h is linearizable w.r.t. L2, i.e., there exists an execution
e2 2 L2 with only completed operations such that e1 v e2. By
Lemma 5.1, this implies H(e1) � H(e2). By the closure property
in Lemma 4.2, if H(e2) 2 H(L2) then h = H(e1) 2 H(L2).

(() Let e1 be an execution of L1. By hypothesis, H(e1) 2
H(L2), which by Lemma 4.3, implies e1 2 E(L2). Since L2 is an
atomic library, there exists a sequential execution e2 2 kerE(L2)
with only completed operations such that e1 v e2. Thus, e1 is
linearizable w.r.t. L2.

6. Approximating History Inclusion
By the equivalences of Section 5, checking whether a given history
H(e) is included in a set H(L) of library histories is equivalent
to checking whether H(e) is linearizable with respect to L, for a
atomic library L. It follows that deciding H(e) 2 H(L) is NP-hard
for an arbitrary library L, since it is NP-hard for the atomic register
object [8]. Generally speaking, the only known algorithms to decide
H(e) 2 H(L) must check whether each possible linearization of
the partially-ordered history H(e) is equivalent to some sequential
execution of operations according to L, backtracking to try alternate
linearizations on each failed attempt. Recent work implies that the
more general problem of checking whether all histories H(L1) of
a given library L1 are included in the set of histories H(L2) of a
fixed library L2 is undecidable, since it is equivalent to checking
whether L1 is linearizable w.r.t. L2 when L2 is atomic [4].

These complexity obstacles suggest investigating approximations
to the history inclusion problems — i.e., both h 2 H(L) and its
more general variation H(L1) ✓ H(L2) — in order to devise
tractable algorithms.

In this work, we focus on parameterized under approximations
for detecting violations to observational refinement, achieving
increasing accuracy with decreasing efficiency. For this, we design a
notion of parameterized history-weakening approximation functions

Ak which map any history h to a weaker history Ak(h) � h, and
which have the following properties:

Strength-increasing: A0(h) � A1(h) � . . . � Ak(h) � h.
Completeness: there exists k 2 N such that h � Ak(h).
Tractable inclusion: Ak(h) 2 H(L) is decidable in polynomial

time when k is fixed.

This weakening-based approximation is convenient since whenever
Ak(h) is not included in H(L), then neither is h, since H(L) is
closed under weakening; if h were to belong to H(L), then any
weakening, and in particular Ak(h), would also belong to H(L).
While completeness means that increasing k increases the ability
to detect observational refinement violations, this must incur a
decrease in efficiency since the inclusion problem Ak(h) 2 H(L)
is NP-hard when k is not fixed. By design, the approximation
function Ak allows us to solve the approximate history inclusion
problem Ak(h) 2 H(L) in polynomial time for fixed k. For
the more general problem of refinement between libraries L1

and L2, our approximation asks whether Ak(h) 2 H(L1) \
H(L2), and becomes decidable for fixed k, so long as the set
{Ak(h) : h 2 H(L1)} is computable. Completeness of Ak ensures
overall completeness, i.e., that for any h 2 H(L1) \H(L2) there
is some k 2 N such that Ak(h) 2 H(L1) \H(L2).

Our key challenge is to develop approximation functions Ak for
which history inclusion can be computed in polynomial time for
fixed k, and for which observational refinement violations surface
with small k. We demonstrate the latter in Section 7–9.

In this section we develop a schema of approximation functions
for which the approximate history inclusion problem is polynomial-
time computable. Our development exploits structural aspects of
the history inclusion problem; in particular, we exploit the fact that
histories are interval orders, with a natural measure of complexity,
i.e., the interval order length [9]. Leveraging this notion of length,
we abstract each history h to a weaker history Ak(h) whose length
is bounded by k, and represent the set H(L) of histories, restricted
to interval length k, by a formula against which Ak(h) can be
evaluated in polynomial time (§6.1). Finally, we exhibit a program
monitoring scheme which can be used to decide our approximate
observational refinement problem 9h. Ak(h) 2 H(L1) \H(L2),
or as a general-purpose runtime-execution monitor (§6.2).

6.1 Bounded-Interval-Length History Inclusion
The past of an element o 2 O of a poset hO,<i is the set

past(o) = {o0 2 O : o0 < o}
of elements ordered before o.

Example 6.1. In the history h from Figure 2(b), the pop) 3 and
pop ) 1 operations have the same past, namely the operation
push(1), while the past of the push(3) operation consists of the
push(1), pop) 1, and push(2) operations.

This notion of operations’ pasts induces a linear notion of time
into execution histories due to the following fact.

Lemma 6.1 (Rabinovitch [23]). The set {past(o) : o 2 O} of pasts
of an interval order hO,<i is linearly ordered by set inclusion.

Furthermore, this linear notion of time has an associated notion
of length, which corresponds to the length of the linear order on
operation’s pasts.

Definition 6.1 (Greenough [9]). The length of an interval order
hO,<i is one less than the number of its distinct pasts.

We denote the length of the interval order hO,<i underlying a
history h = hO, f,<i as lenh.

earizability when L2 contains non-terminating methods, i.e., where
the calls to these methods are pending in all executions.

Example 5.1. Let L be the library whose kernel contains the single
execution e = m(u)1 m0(u)2 ret(v)1, in which the call to m0 is
pending. Although L refines itself, since refinement is reflexive, L is
not linearizable w.r.t. itself, since e could only be linearizable w.r.t.
L if E(L) were to contain one of the following executions:

m(u)1 ret(v)1 m(u)1 m0(u)2 ret(v)1 ret( )2

m(u)1 ret(v)1 m0(u)2 ret( )2 m0(u)2 ret( )2m(u)1 ret(v)1.

Yet E(L) = {e} clearly contains none of them.

A typical correctness criterion for concurrent objects is lineariz-
ability with respect to atomic versions of themselves. Despite the
negative general result of Example 5.1, when restricted to atomic
libraries, linearizability and history inclusion, and thus observational
refinement, coincide. This relationship essentially follows from the
relationship between the order relations v and �.

Lemma 5.1. e1 v e2 iff H(e1) � H(e2).

Proof. By definition e1 v e2 means that there exists e01 such that
e2 is a permutation of e01 preserving the order between return and
call actions, thus e2 ; e01, and thus H(e01) � H(e2). Furthermore,
since e01 is obtained from e1 by appending returns and deleting
calls, H(e1) � H(e01). By transitivity, H(e1) � H(e2). The other
direction is equally straightforward.

Theorem 2. L1 v L2 iff H(L1) ✓ H(L2), if L2 is atomic.

Proof. ()) Let h 2 H(L1). By hypothesis, any execution e1 with
H(e1) = h is linearizable w.r.t. L2, i.e., there exists an execution
e2 2 L2 with only completed operations such that e1 v e2. By
Lemma 5.1, this implies H(e1) � H(e2). By the closure property
in Lemma 4.2, if H(e2) 2 H(L2) then h = H(e1) 2 H(L2).

(() Let e1 be an execution of L1. By hypothesis, H(e1) 2
H(L2), which by Lemma 4.3, implies e1 2 E(L2). Since L2 is an
atomic library, there exists a sequential execution e2 2 kerE(L2)
with only completed operations such that e1 v e2. Thus, e1 is
linearizable w.r.t. L2.

6. Approximating History Inclusion
By the equivalences of Section 5, checking whether a given history
H(e) is included in a set H(L) of library histories is equivalent
to checking whether H(e) is linearizable with respect to L, for a
atomic library L. It follows that deciding H(e) 2 H(L) is NP-hard
for an arbitrary library L, since it is NP-hard for the atomic register
object [8]. Generally speaking, the only known algorithms to decide
H(e) 2 H(L) must check whether each possible linearization of
the partially-ordered history H(e) is equivalent to some sequential
execution of operations according to L, backtracking to try alternate
linearizations on each failed attempt. Recent work implies that the
more general problem of checking whether all histories H(L1) of
a given library L1 are included in the set of histories H(L2) of a
fixed library L2 is undecidable, since it is equivalent to checking
whether L1 is linearizable w.r.t. L2 when L2 is atomic [4].

These complexity obstacles suggest investigating approximations
to the history inclusion problems — i.e., both h 2 H(L) and its
more general variation H(L1) ✓ H(L2) — in order to devise
tractable algorithms.

In this work, we focus on parameterized under approximations
for detecting violations to observational refinement, achieving
increasing accuracy with decreasing efficiency. For this, we design a
notion of parameterized history-weakening approximation functions

Ak which map any history h to a weaker history Ak(h) � h, and
which have the following properties:

Strength-increasing: A0(h) � A1(h) � . . . � Ak(h) � h.
Completeness: there exists k 2 N such that h � Ak(h).
Tractable inclusion: Ak(h) 2 H(L) is decidable in polynomial

time when k is fixed.

This weakening-based approximation is convenient since whenever
Ak(h) is not included in H(L), then neither is h, since H(L) is
closed under weakening; if h were to belong to H(L), then any
weakening, and in particular Ak(h), would also belong to H(L).
While completeness means that increasing k increases the ability
to detect observational refinement violations, this must incur a
decrease in efficiency since the inclusion problem Ak(h) 2 H(L)
is NP-hard when k is not fixed. By design, the approximation
function Ak allows us to solve the approximate history inclusion
problem Ak(h) 2 H(L) in polynomial time for fixed k. For
the more general problem of refinement between libraries L1

and L2, our approximation asks whether Ak(h) 2 H(L1) \
H(L2), and becomes decidable for fixed k, so long as the set
{Ak(h) : h 2 H(L1)} is computable. Completeness of Ak ensures
overall completeness, i.e., that for any h 2 H(L1) \H(L2) there
is some k 2 N such that Ak(h) 2 H(L1) \H(L2).

Our key challenge is to develop approximation functions Ak for
which history inclusion can be computed in polynomial time for
fixed k, and for which observational refinement violations surface
with small k. We demonstrate the latter in Section 7–9.

In this section we develop a schema of approximation functions
for which the approximate history inclusion problem is polynomial-
time computable. Our development exploits structural aspects of
the history inclusion problem; in particular, we exploit the fact that
histories are interval orders, with a natural measure of complexity,
i.e., the interval order length [9]. Leveraging this notion of length,
we abstract each history h to a weaker history Ak(h) whose length
is bounded by k, and represent the set H(L) of histories, restricted
to interval length k, by a formula against which Ak(h) can be
evaluated in polynomial time (§6.1). Finally, we exhibit a program
monitoring scheme which can be used to decide our approximate
observational refinement problem 9h. Ak(h) 2 H(L1) \H(L2),
or as a general-purpose runtime-execution monitor (§6.2).

6.1 Bounded-Interval-Length History Inclusion
The past of an element o 2 O of a poset hO,<i is the set

past(o) = {o0 2 O : o0 < o}
of elements ordered before o.

Example 6.1. In the history h from Figure 2(b), the pop) 3 and
pop ) 1 operations have the same past, namely the operation
push(1), while the past of the push(3) operation consists of the
push(1), pop) 1, and push(2) operations.

This notion of operations’ pasts induces a linear notion of time
into execution histories due to the following fact.

Lemma 6.1 (Rabinovitch [23]). The set {past(o) : o 2 O} of pasts
of an interval order hO,<i is linearly ordered by set inclusion.

Furthermore, this linear notion of time has an associated notion
of length, which corresponds to the length of the linear order on
operation’s pasts.

Definition 6.1 (Greenough [9]). The length of an interval order
hO,<i is one less than the number of its distinct pasts.

We denote the length of the interval order hO,<i underlying a
history h = hO, f,<i as lenh.

Proof. (=>) Let h ∈ H(L1). Then, every execution e1 with H(e1) = h is 
linearizable w.r.t. some execution e2 ∈ L2 


By the lemma above, H(e1) ≼ H(e2). By closure under weakening, if H(e2) ∈ 
H(L2) then any weakening, h in particular, belongs to H(L2).

(<=) Let e1 ∈ E(L1). By hypothesis, H(e1) ∈ H(L2), which implies e1 ∈ E(L2). 
Since L2 is atomic, there exists a sequential e2 ∈ E(L2) with only completed 
ops such that H(e1) ∈ H(L2) such that e1 is lin. w.r.t. e2.




Linearizability Proofs based on 
Forward Simulations



Linearizability vs 
Refinement

• Modelling concurrent objects with Labeled Transition Systems (LTSs)


• Linearizability is a property of sequences of call/return actions


• Given an ADT A, define a reference implementation Spec(A) which admits all 
histories linearizable w.r.t. A

• standard reference implementations (atomic method bodies): call, return, and 

linearization point actions 


• Linearizability = inclusion of traces with call/return actions (these are the only 
common actions) between Impl and Spec(A)

• the actions included in traces are called observable

[a,b,…] [a,b,…,v]
lin enq(v)

[v,a,b,…] [a,b,…]
lin deq() => v



Proving Refinement
Inductive reasoning for proving refinement: forward/backward simulations


Simulations: relations between states of the impl. and spec., relating initial states 
and 

as2∃a

Sim

Implementation: 

Specification: 

is1

as1

is2
a

Sim

Forward

as1∃

is1 is2

as2

a

Sim

Backward

Sim

a



Proving Refinement
• Given two LTSs A and B such that A refines B [Abadi et al.’91, Lynch et al.’95] 


• Forward simulations are easier to derive and establish (standard invariant 
checking)

Challenges

Proofs: Finding a relation btw states of the Implementation and
Specification.
Basics: Forward (FS) or backward (BS) simulations

s

t

s1

t1

s2

t2

fs

fs
ߙ ∗ߙ ∗ߙ

Concrete Abstract

Figure: Forward Simulations

s

t

s1

t1

s2

t2

bs

bs
ߙ ∗ߙ ∗ߙ

Concrete Abstract

Figure: Backward Simulations

Properties: [Lynch et al., 1995] Given two LTSs A and B such
that A refines B,

Frw Sim (FS) Bckw Sim (BS)
exists if B deterministic A forest

exists if we add Prophecy vars to A History vars to A
Prefer FS over BS.

Constantin Enea (KU) Linearizability and Forward Simulations 7 / 24



Proving Linearizability
• Impl is linearizable w.r.t. A iff Impl refines Spec(A) 


• refinement = inclusion of traces with call/return actions (observable actions)


• Spec(A) is not deterministic when projected on observable actions => 
backward simulations are unavoidable in general


• Classes of implementations for which forward simulations are sufficient - 
associate linearization points with statements of the implementation 


• the linearization point actions become observable 


• Spec(A) is deterministic assuming that A is deterministic

[a,b,…]

call enq(v) [a,b,…]
lin enq(v)

[a,b,…,v]
call enq(v’)

[a,b,…,v]

[a,b,…]
call enq(v’)



Fixed Linearization Points
• Fixed linearization points: the linearization point is fixed to a particular 

statement in the code 


class Node {

  Node tl;

  int val; 

}

class NodePtr {

  Node val;

} TOP

void push(int e){

  Node y, n;

  y = new();

  y->val = e;

  while(true) {

    y->tl = n;

    if (cas(TOP->val, n, y))

      break; 

  }

}

int pop(){

  Node y,z;

  while(true) {

    y = TOP->val;

    if (y==0) return EMPTY;

    z = y->tl;

    if (cas(TOP->val, y, z))

      break; 

  }

  return y->val;

}

Treiber Stack



Herlihy & Wing Queue

void enq(int x) {

i = back++; items[i] = x;

}

int deq() {

while (1) {

range = back - 1;

for (int i = 0; i <= range; i++) {

x = swap(items[i],null);

if (x != null) return x;

} } }

Fig. 1. The Herlihy & Wing Queue [18].

inv(enq, y, 2)

ret(enq, 1)

ret(enq, 2)
inv(deq, 3) ret(deq, y, 3)

inv(enq, x, 1)

2

(y, PEND)

1

(x, PEND)

1

(x, PEND)

2

1

(x, PEND)

2

1

(x, COMP)

2

1

(x, COMP)

(y, COMP) (y, COMP) (y, COMP)

lin(deq, y, 3)

1

(x, COMP)

1

(x, COMP)

inv(enq, y, 2)

ret(enq, 1)

ret(enq, 2)

inv(deq, 3)
inv(enq, x, 1)

1

(x, PEND)
1

2

1

2

1

(x, COMP)

2

1

(x, COMP)

(y, COMP) (y, COMP)

(x, COMP) (x, COMP)

(y, PEND)

2

(y, COMP)

2

(y, COMP)

lin(deq, x, 3) ret(deq, x, 3)

Fig. 2. Forward simulation with AbsQ. Lines depict
operations, and circles depict call, return, and lin-
earization point actions.

function loc: O ! {inv,lin,ret,?}
function arg, ret: O ! V

function present , pending: O ! B

function before: O⇥O ! B

rule inv(enq,v,k):

arg(k) := v

present(k) := true
pending(k) := true
forall k1 with present(k1):

if ¬pending(k1):

before(k1,k) := true

rule ret(enq,k):

pending(k) := false

rule inv(deq,k):

pass

rule lin(deq,v,k):

ret(k) := v

if v = EMPTY:

forall k’ with present(k’):

assert pending(k’)

else:
let k1 = arg

�1
(v)

assert present(k1)

forall k2 with present(k2):

assert ¬before(k2,k1)

present(k1) := false

rule ret(deq,v,k):

assert ret(k) = v

Fig. 3. The AbsQ implementation;
each rule a(_,k) implicitly begins
with assert loc(k)=a and ends with
the appropriate loc(k):=b.

linearization points, or EMPTY. Some implementations, like the queue of Herlihy and
Wing [18], denoted HWQ and listed in Figure 1, are not forward-simulated by AbsQ0,
even though they refine AbsQ0, since the order in which their enqueues are linearized
to form AbsQ0s sequence is not determined until later, when their values are dequeued.

In this section we develop an abstract queue implementation, denoted AbsQ, which
maintains a partial order of enqueues, rather than a linear sequence. Since AbsQ does not
force refining implementations to eagerly pick among linearizations of their enqueues, it
forward-simulates many more queue implementations. In fact, AbsQ forward-simulates
all queue implementations of which we are aware that are not forward-simulated by
AbsQ0, including HWQ, The Baskets Queue [19], The Linked Concurrent Ring Queue
(LCRQ) [22], and The Time-Stamped Queue [10].

4.1 Enqueue Methods With Non-Fixed Linearization Points

We describe HWQ where the linearization points of the enqueue methods are not fixed.
The shared state consists of an array items storing the values in the queue and a counter
back storing the index of the first unused position in items. Initially, all the positions in



Non-fixed Linearization Points

back

back

i(e,x)

back

i(e,x)

e: i = back++ e: items[i] = x

items
݅(݁, ݅ index :(ݔ of enqueue with id ݁ that will insert item ݔ

NULL

NULL

NULL

NULL

back

NULL

݅(݁ଵ, (ݔ

݅(݁ଶ, (ݕ
NULL

NULL

NULL

NULL

back

NULL

݅(݁ଵ, (ݔ

݅(݁ଶ, (ݕ

(݀)݁݃݊ܽݎ

NULL

NULL

ݖ

NULL
back

NULL

݅(݁ଵ, (ݔ

݅(݁ଶ, (ݕ

(݀)݁݃݊ܽݎ ݅(݁ଷ, (ݖ

݅(݀)
NULL

?

ݖ

NULL

NULL
݀: ,݁݃݊ܽݎ ݅ =  … ݀: …)ܵܣܥ ) ݀: ݅ + +

(݀)݁݃݊ܽݎ

݅(݀)

back

݅(݁ଵ, (ݔ

݅(݁ଶ, (ݕ

݅(݁ଷ, (ݖ

݅(݀)

Herlihy & Wing 
QueueEnqueue

Dequeue



NULL

NULL

NULL

NULL

NULL

NULL

NULL

NULL

NULL

back

NULL

𝑖(𝑒1, 𝑥) NULL

𝑦

NULL

NULL

back

NULL

𝑖(𝑒1, 𝑥)

𝑖(𝑒2, 𝑦)
𝑥

𝑦

NULL

NULL

back

NULL

𝑖(𝑒1, 𝑥)

𝑖(𝑒2, 𝑦)
NULL

𝑦

NULL

NULL

back

NULL

𝑖(𝑒1, 𝑥)

𝑖(𝑒2, 𝑦)
NULL

NULL

NULL

NULL

back

NULL

𝑖(𝑒1, 𝑥)

𝑖(𝑒2, 𝑦)

𝑑1: 𝑑𝑒𝑞(𝑥)

𝑒1: 𝑟𝑒𝑡

𝑒2: 𝑖𝑛𝑣(𝑦) 𝑒2: 𝑟𝑒𝑡

𝑑2: 𝑑𝑒𝑞(𝑦)

back

𝑖(𝑒1, 𝑥)

𝑖(𝑒2, 𝑦)

𝑒1: 𝑖𝑛𝑣(𝑥) 𝑒1:i=back++ 𝑒1:items[i]=x

𝑒2:i=back++ 𝑒2:items[i]=y

Non-fixed Linearization Points



Non-fixed Linearization Points

NULL

NULL

NULL

NULL

NULL

NULL

NULL

NULL

NULL

back

NULL

𝑖(𝑒1, 𝑥) NULL

𝑦

NULL

NULL

back

NULL

𝑖(𝑒1, 𝑥)

𝑖(𝑒2, 𝑦)
NULL

NULL

NULL

NULL

back

NULL

𝑖(𝑒1, 𝑥)

𝑖(𝑒2, 𝑦)
𝑥

NULL

NULL

NULL

back

NULL

𝑖(𝑒1, 𝑥)

𝑖(𝑒2, 𝑦)
NULL

NULL

NULL

NULL

back

NULL

𝑖(𝑒1, 𝑥)

𝑖(𝑒2, 𝑦)

𝑑1: 𝑑𝑒𝑞(𝑥)

𝑒1: 𝑟𝑒𝑡

𝑒2: 𝑖𝑛𝑣(𝑦) 𝑒2: 𝑟𝑒𝑡

𝑑2: 𝑑𝑒𝑞(𝑦)

back

𝑖(𝑒1, 𝑥)

𝑖(𝑒2, 𝑦)

𝑒1: 𝑖𝑛𝑣(𝑥) 𝑒1:i=back++ 𝑒1:items[i]=x

𝑒2:i=back++ 𝑒2:items[i]=y



Snapshot 
1 procedure update(i,data)

2 mem[i] = data;

4 procedure scan()

5 for i = 1 to n do r1[i] = mem[i];

6 repeat
7 r2 = r1;

8 for i = 1 to n do r1[i] = mem[i];

9 until r1 == r2

10 return r1;

1 procedure update(i,data)

2 mem[i] = data;

4 procedure scan()

5 while ( nondet )

6 r = atomic_snapshot();

7 snaps = snaps ⋅ r;
8 return r1 ∈ snaps;

Figure 3: A snapshot object (on the left), and a concurrent specification (on the right). The shared state of
both is an array mem of size n. The local variables r1, r2, and r are arrays of size n (initialized to the
same value as mem). The local variable snaps is a sequence of arrays of size n (⋅ denotes the concatenation
operator), initially containing a single array which equals the initial value of mem. The use of nondet
means that the loop is executed for an arbitrary number of times. The procedure atomic_snapshot
returns a snapshot of mem in a single step executed in isolation.

that (1) for any trace ⌧ ∈ T (O1), hist(⌧) � f(⌧), and (2) f is prefix-preserving, i.e., for any two traces
⌧1, ⌧2 ∈ T (O1) such that ⌧1 is a prefix of ⌧2, f(⌧1) is a prefix of f(⌧2). It can be shown that the function f
induces a forward simulation and vice-versa (the proof is given in Appendix C).
Theorem 5.7. If O2 is atomic, then O1 �s O2 iff there exists a (C ∪R)-forward simulation from O1 to O2.

6 Strong Observational Refinements of Non-Atomic Specifications

We demonstrate that many concurrent objects defined in the literature are strong observational refinements
of much simpler abstract objects, even though not necessarily atomic. We focus on objects which are not
strongly linearizable, since by Theorem 5.7, the latter are strong refinements of atomic objects.

Figure 3 lists an implementation of a snapshot object with two methods update(i,data) for writing
the value data to a location i of a shared array mem, and scan() for returning a snapshot of the array
mem.9 While the implementation of update is obvious, a scan operation performs several “collect”
phases, where it reads successively all the cells of mem, until two consecutive phases return the same array.

This object does not admit a forward simulation towards the standard atomic specification where the
method scan takes a single instantaneous snapshot of the entire array which is subsequently returned (it
is not a strong refinement of such a specification). Intuitively, this holds because the linearization point of
scan depends on future steps in the execution, e.g., a read in the second for loop is a linearization point
only if it is not followed by updates on array cells before and after the current loop index. This is exactly
the scenario in which backward simulations are necessary, intuitively, reading an execution backwards it is
possible to identify precisely the linearization points of scan invocations. The impossibility of defining
such a forward simulation is also a consequence of the fact that this object is not strongly linearizable [14].

However, this object is a strong refinement of the simpler “concurrent” specification given on the right
of Figure 3 (see Appendix D). The implementation of update remains the same, while a scan operation
performs a sequence of instantaneous snapshots of the entire array mem and returns any snapshot in this
sequence. Compared to the implementation on the left, it is simpler because it does not allow that reading
the array mem is interleaved with other operations. However, it is not atomic since an execution of scan
contains more than one step. In comparison with the atomic specification, the sequence of snapshots in scan
allows that an adversary (scheduler) decides on the return value “lazily” after observing other invocations,
e.g., updates, exactly as in the concrete implementation. Therefore, the abstract specification in Figure 3 can
be used while reasoning about hyperproperties of clients, which is not the case for the atomic specification.

9This is a simplified version of the snapshot object defined by Afek et al. [1].

9

Fixed linearization points ?



Snapshot 
1 procedure update(i,data)

2 mem[i] = data;

4 procedure scan()

5 for i = 1 to n do r1[i] = mem[i];

6 repeat
7 r2 = r1;

8 for i = 1 to n do r1[i] = mem[i];

9 until r1 == r2

10 return r1;

1 procedure update(i,data)

2 mem[i] = data;

4 procedure scan()

5 while ( nondet )

6 r = atomic_snapshot();

7 snaps = snaps ⋅ r;
8 return r1 ∈ snaps;

Figure 3: A snapshot object (on the left), and a concurrent specification (on the right). The shared state of
both is an array mem of size n. The local variables r1, r2, and r are arrays of size n (initialized to the
same value as mem). The local variable snaps is a sequence of arrays of size n (⋅ denotes the concatenation
operator), initially containing a single array which equals the initial value of mem. The use of nondet
means that the loop is executed for an arbitrary number of times. The procedure atomic_snapshot
returns a snapshot of mem in a single step executed in isolation.

that (1) for any trace ⌧ ∈ T (O1), hist(⌧) � f(⌧), and (2) f is prefix-preserving, i.e., for any two traces
⌧1, ⌧2 ∈ T (O1) such that ⌧1 is a prefix of ⌧2, f(⌧1) is a prefix of f(⌧2). It can be shown that the function f
induces a forward simulation and vice-versa (the proof is given in Appendix C).
Theorem 5.7. If O2 is atomic, then O1 �s O2 iff there exists a (C ∪R)-forward simulation from O1 to O2.

6 Strong Observational Refinements of Non-Atomic Specifications

We demonstrate that many concurrent objects defined in the literature are strong observational refinements
of much simpler abstract objects, even though not necessarily atomic. We focus on objects which are not
strongly linearizable, since by Theorem 5.7, the latter are strong refinements of atomic objects.

Figure 3 lists an implementation of a snapshot object with two methods update(i,data) for writing
the value data to a location i of a shared array mem, and scan() for returning a snapshot of the array
mem.9 While the implementation of update is obvious, a scan operation performs several “collect”
phases, where it reads successively all the cells of mem, until two consecutive phases return the same array.

This object does not admit a forward simulation towards the standard atomic specification where the
method scan takes a single instantaneous snapshot of the entire array which is subsequently returned (it
is not a strong refinement of such a specification). Intuitively, this holds because the linearization point of
scan depends on future steps in the execution, e.g., a read in the second for loop is a linearization point
only if it is not followed by updates on array cells before and after the current loop index. This is exactly
the scenario in which backward simulations are necessary, intuitively, reading an execution backwards it is
possible to identify precisely the linearization points of scan invocations. The impossibility of defining
such a forward simulation is also a consequence of the fact that this object is not strongly linearizable [14].

However, this object is a strong refinement of the simpler “concurrent” specification given on the right
of Figure 3 (see Appendix D). The implementation of update remains the same, while a scan operation
performs a sequence of instantaneous snapshots of the entire array mem and returns any snapshot in this
sequence. Compared to the implementation on the left, it is simpler because it does not allow that reading
the array mem is interleaved with other operations. However, it is not atomic since an execution of scan
contains more than one step. In comparison with the atomic specification, the sequence of snapshots in scan
allows that an adversary (scheduler) decides on the return value “lazily” after observing other invocations,
e.g., updates, exactly as in the concrete implementation. Therefore, the abstract specification in Figure 3 can
be used while reasoning about hyperproperties of clients, which is not the case for the atomic specification.

9This is a simplified version of the snapshot object defined by Afek et al. [1].

9

1 procedure update(i,data)

2 mem[i] = data;

4 procedure scan()

5 for i = 1 to n do r1[i] = mem[i];

6 repeat
7 r2 = r1;

8 for i = 1 to n do r1[i] = mem[i];

9 until r1 == r2

10 return r1;

1 procedure update(i,data)

2 mem[i] = data;

4 procedure scan()

5 while ( nondet )

6 r = atomic_snapshot();

7 snaps = snaps ⋅ r;
8 return r1 ∈ snaps;

Figure 3: A snapshot object (on the left), and a concurrent specification (on the right). The shared state of
both is an array mem of size n. The local variables r1, r2, and r are arrays of size n (initialized to the
same value as mem). The local variable snaps is a sequence of arrays of size n (⋅ denotes the concatenation
operator), initially containing a single array which equals the initial value of mem. The use of nondet
means that the loop is executed for an arbitrary number of times. The procedure atomic_snapshot
returns a snapshot of mem in a single step executed in isolation.

that (1) for any trace ⌧ ∈ T (O1), hist(⌧) � f(⌧), and (2) f is prefix-preserving, i.e., for any two traces
⌧1, ⌧2 ∈ T (O1) such that ⌧1 is a prefix of ⌧2, f(⌧1) is a prefix of f(⌧2). It can be shown that the function f
induces a forward simulation and vice-versa (the proof is given in Appendix C).
Theorem 5.7. If O2 is atomic, then O1 �s O2 iff there exists a (C ∪R)-forward simulation from O1 to O2.

6 Strong Observational Refinements of Non-Atomic Specifications

We demonstrate that many concurrent objects defined in the literature are strong observational refinements
of much simpler abstract objects, even though not necessarily atomic. We focus on objects which are not
strongly linearizable, since by Theorem 5.7, the latter are strong refinements of atomic objects.

Figure 3 lists an implementation of a snapshot object with two methods update(i,data) for writing
the value data to a location i of a shared array mem, and scan() for returning a snapshot of the array
mem.9 While the implementation of update is obvious, a scan operation performs several “collect”
phases, where it reads successively all the cells of mem, until two consecutive phases return the same array.

This object does not admit a forward simulation towards the standard atomic specification where the
method scan takes a single instantaneous snapshot of the entire array which is subsequently returned (it
is not a strong refinement of such a specification). Intuitively, this holds because the linearization point of
scan depends on future steps in the execution, e.g., a read in the second for loop is a linearization point
only if it is not followed by updates on array cells before and after the current loop index. This is exactly
the scenario in which backward simulations are necessary, intuitively, reading an execution backwards it is
possible to identify precisely the linearization points of scan invocations. The impossibility of defining
such a forward simulation is also a consequence of the fact that this object is not strongly linearizable [14].

However, this object is a strong refinement of the simpler “concurrent” specification given on the right
of Figure 3 (see Appendix D). The implementation of update remains the same, while a scan operation
performs a sequence of instantaneous snapshots of the entire array mem and returns any snapshot in this
sequence. Compared to the implementation on the left, it is simpler because it does not allow that reading
the array mem is interleaved with other operations. However, it is not atomic since an execution of scan
contains more than one step. In comparison with the atomic specification, the sequence of snapshots in scan
allows that an adversary (scheduler) decides on the return value “lazily” after observing other invocations,
e.g., updates, exactly as in the concrete implementation. Therefore, the abstract specification in Figure 3 can
be used while reasoning about hyperproperties of clients, which is not the case for the atomic specification.

9This is a simplified version of the snapshot object defined by Afek et al. [1].

9

Specification

(s,s’) ∈ F iff they contain the same mem and for each invocation k, its local state s[k] (valuation of r1, r2, and prog. counter 
pc) is related to s’[k] (a valuation of snaps) as follows:

By the definition of O2, we have that s2
lin(k)⋅a����→O2 (hist(⌧) ⋅ a, f(⌧ ⋅ a)) which concludes the proof

of this case.

• if a �∈ C∪R, then f(⌧ ⋅a) is obtained from f(⌧) by appending some sequence of operations with iden-

tifiers k1, . . ., kn (this follows from the fact that f is prefix-preserving). Then, s2
lin(k1)⋅...⋅lin(kn)���������→O2(hist(⌧), f(⌧ ⋅ a)) and (s′1, (hist(⌧), f(⌧ ⋅ a))) ∈ F (because in this case, hist(⌧ ⋅ a) = hist(⌧)).

Lemma C.2. Let O1 be an object and O2 an atomic object. If there exists a (C ∪R)-forward simulation
from O1 to O2, then O1 is strongly linearizable w.r.t. O2.

Proof. Let F be a (C ∪R)-forward simulation from O1 to O2. We define a function f ∶ T (O1) → Seq by
f(⌧) = hs where hs satisfies (state(⌧), (h,hs)) ∈ F . The fact that hist(⌧) � f(⌧) for every trace ⌧ follows
from the definition since (h,hs) is a valid state of O2 and h = hist(⌧) (because F preserves call and return
actions). The fact that f is prefix-preserving follows from the fact that F is a forward simulation.

D Snapshot Object

We show that the “concrete” implementation of the snapshot is a strong refinement of this specification
using our characterization in terms of forward simulations. The pseudo-code descriptions in Figure 3 define
LTSs whose states are formed of an array mem and for each active method invocation, a valuation of its local
variables including the current program location. The local variable valuation of an invocation k in a state s
is denoted by s[k]. We define a forward simulation F from the LTS of the “concrete” snapshot object to the
LTS of its specification. Thus, (s, s′) ∈ F iff the mem arrays in s and s′ are the same, the two states contain
the same set of active method invocations (matched using their identifiers), and for each scan invocation k,
the local state s[k] in the concrete object, i.e., a valuation of r1 and r2, and the current program location
pc, is related to the local state s′[k] in the specification, i.e., a valuation of snaps, if the following holds:

�
r∈{r1,r2} valid(r,pc) ∧ fst(r2,n) ≤ fst(r1,0) ∧ last(snaps) = mem ∧ (pc = 10 �⇒ r1 ∈ snaps) (1)

The predicate valid says that r1 and r2 are obtained by reading from a sequence of snapshots in snaps
such that the value at position j > i comes from a snapshot which is at least as recent as the one from which
the value at position i is taken (with a slight deviation for r1). Thus, let fst(v, i) be the smallest index of
a snapshot s ∈ snaps which contains the value v on the i-th position. We define fst(r1, i) as∞ when the
invocation k is “inside” a for loop and not yet set the i-th position of r1 (which can be derived from the
current program location pc), or fst(r1[i], i), otherwise. Also, fst(r2, i) is simply fst(r2[i], i) for every
i. Then, valid(r,pc) ∶∶= ∀i, j. i < j �⇒ fst(r, i) ≤ fst(r, j). Besides the valid predicates, (1) states that
r1 reads from more recent snapshots than r2, that the last element of snaps is the current value of mem,
and that r1 is a member of snaps when the invocation reaches line 10 (right after the equality test).

We show that indeed the specification can mimic every step of the concrete implementation w.r.t. the
simulation relation F described above. The most interesting part concerns internal steps (every call/return
action of the concrete implementation is mimicked by exactly the same action in the specification).

The internal step of update is simulated by the same step of update in the specification followed by
a sequence of steps in which every scan takes an instantaneous snapshot of mem and appends it to its own
snaps variable. This ensures the last element of every snaps variable is the value of mem after the update.

The internal steps of scan are all simulated by stuttering steps in the specification, i.e., if (s1, s2) ∈ F
and s′1 is a successor of s1 by such a step, then (s′1, s2) ∈ F . Thus, for a step of scan reading a new position

14

fst(v,i) = smallest index of a snapshot in snaps which contains v at index i 

By the definition of O2, we have that s2
lin(k)⋅a����→O2 (hist(⌧) ⋅ a, f(⌧ ⋅ a)) which concludes the proof

of this case.

• if a �∈ C∪R, then f(⌧ ⋅a) is obtained from f(⌧) by appending some sequence of operations with iden-

tifiers k1, . . ., kn (this follows from the fact that f is prefix-preserving). Then, s2
lin(k1)⋅...⋅lin(kn)���������→O2(hist(⌧), f(⌧ ⋅ a)) and (s′1, (hist(⌧), f(⌧ ⋅ a))) ∈ F (because in this case, hist(⌧ ⋅ a) = hist(⌧)).

Lemma C.2. Let O1 be an object and O2 an atomic object. If there exists a (C ∪R)-forward simulation
from O1 to O2, then O1 is strongly linearizable w.r.t. O2.

Proof. Let F be a (C ∪R)-forward simulation from O1 to O2. We define a function f ∶ T (O1) → Seq by
f(⌧) = hs where hs satisfies (state(⌧), (h,hs)) ∈ F . The fact that hist(⌧) � f(⌧) for every trace ⌧ follows
from the definition since (h,hs) is a valid state of O2 and h = hist(⌧) (because F preserves call and return
actions). The fact that f is prefix-preserving follows from the fact that F is a forward simulation.

D Snapshot Object

We show that the “concrete” implementation of the snapshot is a strong refinement of this specification
using our characterization in terms of forward simulations. The pseudo-code descriptions in Figure 3 define
LTSs whose states are formed of an array mem and for each active method invocation, a valuation of its local
variables including the current program location. The local variable valuation of an invocation k in a state s
is denoted by s[k]. We define a forward simulation F from the LTS of the “concrete” snapshot object to the
LTS of its specification. Thus, (s, s′) ∈ F iff the mem arrays in s and s′ are the same, the two states contain
the same set of active method invocations (matched using their identifiers), and for each scan invocation k,
the local state s[k] in the concrete object, i.e., a valuation of r1 and r2, and the current program location
pc, is related to the local state s′[k] in the specification, i.e., a valuation of snaps, if the following holds:

�
r∈{r1,r2} valid(r,pc) ∧ fst(r2,n) ≤ fst(r1,0) ∧ last(snaps) = mem ∧ (pc = 10 �⇒ r1 ∈ snaps) (1)

The predicate valid says that r1 and r2 are obtained by reading from a sequence of snapshots in snaps
such that the value at position j > i comes from a snapshot which is at least as recent as the one from which
the value at position i is taken (with a slight deviation for r1). Thus, let fst(v, i) be the smallest index of
a snapshot s ∈ snaps which contains the value v on the i-th position. We define fst(r1, i) as∞ when the
invocation k is “inside” a for loop and not yet set the i-th position of r1 (which can be derived from the
current program location pc), or fst(r1[i], i), otherwise. Also, fst(r2, i) is simply fst(r2[i], i) for every
i. Then, valid(r,pc) ∶∶= ∀i, j. i < j �⇒ fst(r, i) ≤ fst(r, j). Besides the valid predicates, (1) states that
r1 reads from more recent snapshots than r2, that the last element of snaps is the current value of mem,
and that r1 is a member of snaps when the invocation reaches line 10 (right after the equality test).

We show that indeed the specification can mimic every step of the concrete implementation w.r.t. the
simulation relation F described above. The most interesting part concerns internal steps (every call/return
action of the concrete implementation is mimicked by exactly the same action in the specification).

The internal step of update is simulated by the same step of update in the specification followed by
a sequence of steps in which every scan takes an instantaneous snapshot of mem and appends it to its own
snaps variable. This ensures the last element of every snaps variable is the value of mem after the update.

The internal steps of scan are all simulated by stuttering steps in the specification, i.e., if (s1, s2) ∈ F
and s′1 is a successor of s1 by such a step, then (s′1, s2) ∈ F . Thus, for a step of scan reading a new position

14

fst(r1,i) = ∞ if index i not set, or fst(r1[i],i) otherwise

fst(r2,i) = -∞ if index i not set, or fst(r2[i],i) otherwise              

update in impl. => update in spec. + 

           every pending scan takes a snapshot

scan steps in impl. => “epsilon” steps




Non-fixed linearization points => proofs based on forward simulations are 
impossible in general


Possible for certain ADTs, queues and stacks [BEEM-CAV’17]

• assuming fixed linearization points only for dequeue/pop

• reference implementations whose states are partial orders of enq/push

enq(v1):compl

enq(v2):compl

…
enq(v3):pend

happens-before of 
enqueues

call enq(v)

enq(v1):compl

enq(v2):compl

…
enq(v3):pend

enq(v):pend

Non-fixed Linearization Points



Non-fixed linearization points => proofs based on forward simulations are 
impossible in general


Possible for certain ADTs, queues and stacks [BEEM-CAV’17]

• assuming fixed linearization points only for dequeue/pop

• reference implementations whose states are partial orders of enq/push

Non-fixed Linearization Points

…

enq(v1):compl

enq(v2):compl

enq(v3):pend

enq(v):pend

happens-before of 
enqueues

ret enq(v)
enq(v1):compl

enq(v2):compl

…
enq(v3):pend

enq(v):compl



Non-fixed linearization points => proofs based on forward simulations are 
impossible in general


Possible for certain ADTs, queues and stacks [BEEM-CAV’17]

• assuming fixed linearization points only for dequeue/pop

• reference implementations whose states are partial orders of enq/push

Non-fixed Linearization Points

lin deq(v0)
…

enq(v1):compl

enq(v2):compl

enq(v3):pendenq(v0):-

minimal element

…

enq(v1):compl

enq(v2):compl

enq(v3):pendenq(v0):-



Forward Sim. for H&W QueueA Correctness Argument For HWQ

FS f between HWQ and AbsQ. Given a HWQ state s and an AbsQ state t , (s, t) 2 f
iff:

Pending enqueues in s are pending and maximal in t .
Order in t is consistent with the positions reserved in items of s.
For two enqueues e1, e2 and dequeue d , if e1 reserves a position before e2, d is visiting
an index in between and d can remove e2 in s, then e1 cannot be ordered before e2 in t .

NULL

ݕ

NULL

ݖ
back

NULL

݅ሺ݁ଶǡ ሻݕ

݅ሺ݁ଷǡ ሻݖ

݅ሺ݁ଵǡ ሻݔ

݅ሺ݀ሻ

݁ଵ

݁ଶ

ሺݔǡ ǡݕሻሺܲܯܱܥ ሻܲܯܱܥ
݁ଷ

ሺݖǡ ሻܦܰܧܲ

Suha Mutluergil (KU) Linearizability and Forward Simulations October 30, 2017 12 / 19


