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Complexity of Testing Linearizability
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Theorem |[Gibbons.et.al.’97]
Checking linearizability for a fixed execution is NP-hard



Checking Linearizability: Complexity
(finite-state implementations)

Bounded Nb. of Threads:
e EXSPACE-complete [Alur et al., 1996, Hamza 2015]

Unbounded Nb. of Threads:
e Undecidable [Bouajjani et al., 2013]

e Decidable with “fixed linearization points” [Bouajjani et al. 2013]
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Concurrent Languages

e Concurrent language = (2,D)
e 2 an alphabet
e DC2X2

(Mazurkiewicz traces - D is symmetric)

 aand b are called independent when (a,b) ¢ D

* =pa relation that permutes independent symbols:

e forall (a,b) ¢ D, cab ¢’ =p 0’ ba o (and trans. closure)

e clp(L) = all strings ¢’ such that 0 =po for some o € L

e Ex: 2 ={a,b}, L=(ab)*, D=2 and D={(b,a)}



Specifications,
Implementations

Specification = a language over an alphabet containing symbols p:m(a)=b

Example: bounded-value register, bounded size queue

Implementation = a language over an alphabet containing symbols p:call m(a) and
p:ret m(a)=b where returns “match” previous calls

* 2p=(2cal(p) U 2ret(p) )
. S =Uy%,

e the projection of every seqguence in the implementation over 2, must belong to a
language L(p) where there is a return between every two calls



Example: Treiber Stack

class Node {
Node tl1;
int val;

}

class NodePtr {
Node wval;
} TOP;

vold push(int e) {
Node vy, n;
y = new();
y—->val = e;
while (true) {
n = TOP->val;
yv—->tl = nj;
1f (cas(TOP->val, n,
break;

y))

What is the specification

int pop () {

J

Node v, z;
while (true) {
y = TOP->val;
1t (y==0)
z = y->tl;
1f (cas (TOP->val,
break;

}

return y->val;

Yr

return EMPTY;

Z))



Defining Linearizability

IN = Up(2pX 2p) U (2ret X 2call)

Spec* = replacing p:m(a)="b with call/ret actions
an execution o is linearizable iff o € clin(Spec*)
Impl is linearizable iff Impl ¢ clin(Spec™)

* this inclusion check is undecidable in general (for
regular languages)



Defining Linearizability

e Linearizabillity:

e an execution o is linearizable it there exists a
sequence T that contains o and linearization points
(symbols p:m(a)=b) such that:

e every projection over “actions” of the same
process Is “sequential”

e the projection over linearization point actions Is
included Iin the specitication



Defining Linearizability

IN = Up(2pX 2p) U (2ret X 2call)

Spec” = replacing p:m(a)=b with call/ret actions
an execution o is linearizable iff o € clin(Spec*)
Impl is linearizable iff Impl ¢ clin(Spec™)

 this inclusion check is undecidable in general (for
regular languages)

Cllin(SpeC*) = ( Hp Llin_points(p) H Spec ) ! ( 2 call U Zret)



EXPSPACE-hardness

Problem 2 (Letter Insertion). Input: A set of insertable letters A = {a1,...,q;}.
An NFA N over an alphabet I'Wd A.

Question: For all words w € I'™, does there exist a decomposition w =
wo - --wy, and a permutation p of {1,...,[}, such that woa,pmw ... appw; is
accepted by N7

Reducing Letter Insertion to Linearizabillity:

1. there exists a word w in I, such that there is no way to insert the letters

from A in order to obtain a word accepted by N
2. there exists an execution of Lib with k threads which is not linearizable

w.r.t. Sy /

K =I[+2



EXPSPACE-hardness

Define k, the number of threads, to be [ 4 2.
We will define a library Lib composed of

— methods My, ..., M;, one for each letter of A
— methods M., one for each letter of I'
— a method MTick-

read(Run) read(Begin) read(End) write( RU”) write(End)
qo q1 @ q1 Q Q1 q2

Fig. 4. Description of M., v € I Fig. 5. Description of Mj,..., M, Fig. 6. Description of MTic

The specification Sy is defined as the set of words w over the alphabet

{My,...,M;} U{MTi} U {M,|y € I'} such that one the following condition
holds:

— w contains 0 letter M, or more than 1, or

— for a letter M;, i € {1,...,l}, w contains 0 such letter, or more than 1, or

— when projecting over the letters M., v € I' and M;, ¢ € {1,...,l}, w is in
Nyr, where Nps i1s N where each letter v is replaced by the letter M., and
where each letter a; is replaced by the letter M;.



EXPSPACE-hardness

read(Begin) read(End)
M | g . |
read(Begin) read(End)
Mo | ® ® |
read (Begin) | read (End)
M, | ® ® |
write(Run) write(End)
Mick | ® ® |
read(Run) read(Run)
| | x —e |
M'Yl M’Ym

Fig.7. Non-linearizable execution corresponding to a word ~;...7v, in which we
cannot insert the letters from A = {a1,...,a;} to make it accepted by N. The points
represent steps in the automata.
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Undecidabillity

Reduction from reachability in counter machines

Given a counter machine A, we construct a library La and a specification Sa such
that La is not linearizable w.r.t. Sa iff A reaches the target state

LA = transition methods T[t], increments I[ci], decrements D[ci] and zero-tests Z[ci]
La allows only valid sequences of transitions

Sa allows executions which don'’t reach the target state, or which erroneously pass

some zero-test

— it doesn’t contain M|q¢],
— it ends in M|gs] and it contains a prefix of the form

(M_inc[i] M_deci])*(M_inc[i] T 4+ M_dec[i]T)M_zero[i]
— it ends in M and it contains a subword of the form

M_zeroli](M_inc[i] M_dec[i])* (M_inc[i]| " + M_dec[i] " )M_zero[i].



Oy O W

Undecidabillity

. A sequence tity...t; of A-transitions is modeled by a pairwise-overlapping

sequence of T|t1] - T|to] - - - T|[t;] operations.

. Each T|[t]-operation has a corresponding I|c;], Dlc;|, or Z|ci] operation, de-

pending on whether ¢ is, resp., an increment, decrement, or zero-test transition
with counter c;.

Each I|c;| operation has a corresponding D|c;| operation.

For each counter ¢;, all I|¢;| and D|¢;] between Z|c;| operations overlap.

For each counter ¢;, no I|¢c;| nor D|¢;] operations overlap with a Z|c;| operation.
The number of I|¢;] operations between two Z[c;| operations matches the
number of D|¢;| operations.



Undecidabillity

a T/T signal between T[*] operations

for each counter ¢, a T/, T/D, T/Z between T[*]| operations and, resp., l[ci], D[ci]
and Z[ci] operations

an 1/D signal between l[ci] and D[ci] operations

a T/C signal between T[t] operations and I[ci], D[ci] operations, for zero-testing

transitions t



. : : - T/T: .
. T, T[inc cq] T /:T[decm] :

Undecidabillity

T[dec ci] Thzer ]

TT R oz T
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T/ T/D: T/D: T/C




Undecidabillity

1
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3
4
5
6
7
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11
12
13

14
15
16

17

18
19
20
21
22
23

24
25
26
27
28
29
30

var
var
var
var
var

// for each transition <q,n,q’>

qeQ: T
reqlU]: T
ack[U]l: T
dec[teN:1<d]: T
zero[t e N:7 < d]: B

method M[q, n, q'] )

// for each transition <q,i,q/>

atomic
wait (q) ;
signal(req[n]) ;
atomic
wait (ack[n]);
signal(q’) ;
return ()

method M|q,i,q'] O

// for each final state gy

atomic
wait (q) ;
zero[i] := true;
atomic
if 'zero[7] then
signal(q’);
return ()

method M[gr] O

wait (qr);
return

31
32
33
34
35

36
37
38
39
40
41
42
43
44
45
46
a7
48
49
50
51
52
53

54

method M_inc[i] ()
atomic
if !zero[:] then
wait (req[u;]);
signal (ack[w;]) ;

signal (dec[z])
assume zerolz];
return ()

method M_dec[i] O

atomic

if 'zero[7] then

wait (dec[7]);

atomic

wait (req[—u;]);

signal(ack[—u;]1);
assume zerol[i];
return ()

method M_zero[i] ()
atomic
if zero[:] then
zero[7] := false;

return ()
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L Ibraries

A method is a finite automaton M = (Q, X, I, F,—) with labeled transitions
(mi1,v1) <%y (msg,vs) between method-local states mi,ms € ) paired with
finite-domain shared-state valuations vi,vs € V. The initial and final states
I, F' C () represent the method-local states passed to, and returned from, M.

A client of a library L is a finite automaton C = (Q, X, £y, —) with initial
state ¢y € ) and transitions <— C () x X x ) labeled by the alphabet )} =
IM(mg,m¢) : M € L,mg,m¢ € Qs of library method calls

most general client C* = (Q, X, £y, —) of a library L nondeterministically calls
L’s methods in any order: QQ = {{y} and — =@ x X x Q.



Example

class Node { class NodePtr {

Node tl; Node val;
int val; l TOP;

vold push(int e) {

int pop ()
Node vy, n;

Node v, z;

y = new(); while (true) {
yv—->val = e; y = TOP->val;
while (true) { 1f (y==0) return EMPTY;
n = TOP->val; z = y->tl;
yv—>tl = n; 1f (cas (TOP->val, vy, z))
if (cas (TOP->val, n, Vy)) break;
break; }

} return y->val;

J J



L Ibraries

A configuration ¢ = (v,u) of L|C] is a shared memory valuation v € V,
along with a map u mapping each thread ¢t € N to a tuple u(t) = (¢, mg, m),
composed of a client-local state £ € (Q¢, along with initial and current method
states mg, m € Qr U{L}; mg =m = L when thread ¢ is not executing a library

CALL RETURN

ul(t) — <€7 m07m1> ul(t) — <€17 J"J_> ul(t) — <€1am07mf>
a M(mg,m ) M(mg,m¢)
<m17v1> ? <m2,/02> mo & [M 61 <—O>é 62 mf - FM 61 c—o>é 62

U2 = U1 (tl—> <€,m0,m2>) U2 = U1 (tl—> <€1,m0,m0>) U2 = U1 (tl—> <€2,J_,J_>)
)

INTERNAL

(a,t) call(M,mq,t) ret(M,m ¢ ,t)
— > s
(v1, U1 = (v2, u2) (v, u1) o (v,uz2)  (v,u1) o (v, usz)

Fig. 1. The transition relation — -, for the library-client composition L[C].



VASS model

We associate to each concurrent system L[C] a canonical VASS,? denoted
Ar[c), whose states are the set of shared-memory valuations, and whose vector
components count the number of threads in each thread-local state; a transition
of Aricy from (v1,m1) to (v2, o) updates the shared-memory valuation from v,
to v and the local state of some thread ¢ from wq(t) to ua(t) by decrementing
the w1 (t)-component of nq, and incrementing the us(t)-component, to derive ns.



Specifications

A specification S of a library L is a language over the specification alphabet

def

Ysg =A{M|mo,m¢|: M € Lymg,my € Qpr}-

Definition 2 (Linearizability [20]). A trace 7 is S-linearizable when there
exists a completion® m of a strict, serial permutation of T such that (m | S) € S.



Specifications

The pending closure of a specification S, denoted S is the set of S-images of
serial sequences which have completions whose S-images are in S’

S={(c]|S)eXg:30" € X5 (6']S) € S and o is a completion of o}
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automaton, whose operation alphabet indi- Fig.3. The pending closure of the stack
cates both the argument and return values. specification from Figure 2.
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Lemma 1. The pending closure S of a reqular specification S is reqular.

Lemma 2. A trace T is S-linearizable if and only if there exists a strict, serial
permutation ™ of T such that (| S) € S.



Read-only operations

Given a method M of a library L and mg, m¢ € Qpr, an M|[mg, m s|]-operation
0 is read-only for a specification S if and only if for all w;, we, ws € X%,

1. If wy - M[mg,my¢] - we € S then wy - M[mg, m¢]* - wy € S for all k > 0, and
2. If wy - Mmoo, m¢]-wy € S and wy - wg € S then wy - M|mg, my¢| - ws € 5.

pop|-, false]

push|a, truel

pop[-, true] pop[-, true]

push|a, true]




L Iinearization points

The control graph Gy = (Qum, E) is the quotient of a method M’s transition
system by shared-state valuations V: (mq,a,ms) € E iff (mq,v1) =% (me, v2)

for some vy,v9 € V. A function LP : L — o(X'}) is called a linearization-point
mapping when for each M € L:

1. each symbol a € LP(M) labels at most one transition of M,
2. any directed path in Gj; contains at most one symbol of LP(M), and
3. all directed paths in GGj; containing a € LP(M) reach the same m, € Fiy;.

An action (a, ¢) of an M-operation is called a linearization point when a € LP(M),
and operations containing linearization points are said to be effectuated; LP(6)
denotes the unique linearization point of an effectuated operation 6. A read-points

mapping RP : ©® — N for an action sequence o with operations ©@ maps each
read-only operation 6 to the index RP(f) of an internal #-action in o.



Fixed Linearization Points

* Fixed linearization points: the linearization point is fixed to a particular
statement in the code

class Node { class NodePtr {
Node tl1; Node wval;
int wval; } TOP

}

vold push (int e) {

int pop () {
Node vy, n; Node vy, z;
y = new(); while (true) {
y—>val = e; y = TOP->val;
while (true) { 1f (y==0) return EMPTY;
v->tl = ny; z = y->tl;
if (cas (TOP->val, n, Vv)) if (cas (TOP->val, vy, z))
break; break;

} }
return y->val;

}



Exercices (1)

* Does the Herliny & Wing queue admit fixed linearization
points ?

void eng (int x)

1 = back++; 1tems[1] = x;
}
int deqg ()
while (1) {
range = back - 1;
for (int 1 = 0; 1 <= range; 1++) {
X = swap(items[1],null);

1f (x !'= null) return x;



Static linearizability

An action sequence ¢ is called effectuated when every completed operation
of o is either effectuated or read-only, and an effectuated completion ¢’ of o is
effect preserving when each effectuated operation of o also appears in o’. Given
a linearization-point mapping LP, and a read-points mapping RP of an action
sequence o, we say a permutation m of ¢ is point preserving when every two
operations of 7 are ordered by their linearization /read points in o.

Definition 4. A trace 7 is (S, LP)-linearizable when 7 is effectuated, and there
exists a read-points mapping RP of 7, along with an effect-preserving completion
7 of a strict, point-preserving, and serial permutation of T such that (m | S) € S.

Definition 5 (Static Linearizability). The system L|C] is S-static lineariz-
able when L|C| is (S, LP)-linearizable for some mapping LP.



Checking Static Linerizability

 As = a deterministic automaton recognizing the Specification
 we define a monitor to be composed with L[C] that simulates the Specification
 methods have a new local variable RO which is initially @ (records return

values of read-only operations)
e if mfe RO in an invocation of M, then M[mO,mf] is read-only and a state of

Asin which M[mo,ms] is enabled has been observed

 L[C] executes a linearization point => the state of the Specification is
advanced to the M[mo,ms] successor (mois the initial state of the current
operation and ms is the unique final state reachable from this lin. point)

 L[C] executes an internal action from an M[mo,*] operation => RO is enriched
with every ms such that M[mgo,ms] is read-only and enabled in the current
specification state

« L[C] executes the return of an M[mo,m¢] read-only operation => if ms ¢ RO

then the monitor goes to an error state



EXPSPACE-hardness

* Reduce control state reachability in VASS (which is EXPSPACE-complete) to
static linearizability
 Use the library from the undecidability proof without the zero-test method (the
specification excludes only executions not reaching the target state)
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Reducing Linearizability
to Reachability



Checking Lin. using “bad
patterns”

* Reduce linearizability checking to reachability (EXPSPACE-complete):

* Define (sequential) data-structure S using inductive rules
e S is data independent and closed under projection
» Characterize sequential executions of S using bad patterns

» Characterize concurrent executions, linearizable w.r.t. S using bad patterns
(one per rule)

* Define a regular automaton A; for each bad pattern

e Reduce“L is linearizable w.r.t. S” to: foralli, L n Aj =2



Histories = Posets of events

push(1) pop = 2
Thread 1 o O—0 5
Thread 2 pop = 1 push(2) push(3) pop = 3
rea ® O—O0—=0 O—0 O O O——

\ happens-before

partial order
pop = 2

DUShV \pop = 3

# #
pop = 1 push(2) push(3)



Concurrent Queues .-

Linearizability = Exclusion of bad patterns (assuming each value is enqueued
at most once - sound under data independence)

“Value v dequeued without being enqueued”

deq: v
“Value v dequeued before being enqueued”
deq: v enqg: v
O <

“Value v dequeued twice”

deq: v deq: v
O O

“Values dequeued in the wrong order”

enq: Vi enq: vz deq: v deq: v1

O > O >®




Concurrent Queues .-

Linearizability = Exclusion of bad patterns (assuming each value is enqueued
at most once - sound under data independence)

“Value v dequeued without being enqueued” “Dequeue wrongfully returns empty”
deq: v
‘ deq: empty
“Value v dequeued before being enqueued” / ‘ \
deq: v enqg: v enqg: vi ‘ ‘ deq: v1
O >0

“Value v dequeued twice”

deq: v deq: v
O O

“Values dequeued in the wrong order”

enq: Vi enq: vz deq: v deq: v1

O ~® O >®




Concurrent Queues .-

Linearizability = Exclusion of bad patterns (assuming each value is enqueued
at most once - sound under data independence)

“Value v dequeued without being enqueued” “Dequeue wrongfully returns empty”
deq: v
‘ deq: empty
“Value v dequeued before being enqueued” /‘
deq: v eng: v ena: vi @ @ dea: v;

0 o °
, enq: v deq: v2
“Value v dequeued twice”
deq: v deq: v

“Values dequeued in the wrong order”

enq: Vi enq: vz deq: v deq: v1

O ~® O >®




Concurrent Queues .-

Linearizability = Exclusion of bad patterns (assuming each value is enqueued
at most once - sound under data independence)

“Value v dequeued without being enqueued” “Dequeue wrongfully returns empty”
deq: v
‘ deq: empty
“Value v dequeued before being enqueued” /‘
deq: v eng: v ena: vi @ @ dea: v;

O »® /
eng: vz ‘ ‘ deq: v2

“Value v dequeued twice” /
deq: v deq:v
“Values dequeued in the wrong order” /
eng: vo @ o
enq: Vi enq: vz deq: v deq: v1

O ~® O >®



Concurrent Stacks s

Linearizability = Exclusion of bad patterns (assuming each value is enqueued
at most once, which is sound under data independence)

“Pop doesn’t return the top of the stack”

push vV pop: '}
“Value v popped without being pushed”
“Value v popped before being pushed” \ / \
push: vi . pop: V1

“Value v popped twice”

“Pop wrongfully returns empty”



Concurrent Stacks s

Linearizability = Exclusion of bad patterns (assuming each value is enqueued
at most once, which is sound under data independence)

“Pop doesn'’t return the top of the stack”

push: v pop: Vv

0\ /0
push: v1 ‘ ‘ pop: V1

“Value v popped twice” /’
“Pop wrongfully returns empty” push: vz ‘ ‘ Pop: V2

“Value v popped without being pushed”
“Value v popped before being pushed”



Concurrent Stacks s

Linearizability = Exclusion of bad patterns (assuming each value is enqueued
at most once, which is sound under data independence)

“Pop doesn'’t return the top of the stack”
push: v pop: v

0\ /0
push: v1 ‘ ‘ pop: V1

“Value v popped without being pushed”

“Value v popped before being pushed”

“Value v popped twice” /’
“‘Pop wrongfully returns empty” push: v> @ ® vop: vz
------------ ‘ POP: Vn-1
push: vn ‘ ‘



Checking Lin. using “bad
patterns”

* Reduce linearizability checking to reachability (EXPSPACE-complete):

* Define (sequential) data-structure S using inductive rules
e S is data independent and closed under projection
» Characterize sequential executions of S using bad patterns

» Characterize concurrent executions, linearizable w.r.t. S using bad patterns
(one per rule)

* Define a regular automaton A; for each bad pattern

e Reduce“L is linearizable w.r.t. S” to: [?]for all i, L n Ai =@




Inductive definition of the
Register

Ryr: ue€ R = Write, - (Read;)* -u € R

- Including the empty sequence



Inductive definition of the
Queue

Two rules to build the sequences belonging to the Queue such as
EnqsEngs Deqs DegsEMP Eng, Engy Degr Degi € Q

Reng: u€ QAu€Eng"= u-EngxeQ
REngDeq: U-vE QAu€E Eng” = Enqgy-u-Deqgx:-veQ
Repyp @ u-v € QAnounmatched Eng in u= u-EMP -v € Q

Derivation:

e € Q

EnqiDeq; € @

EngxEng;DeqaDeq; € Q
EnqgszDeq3Eng, Eng; Degr, Degr € Q

Enqs EngsDeqq Deqs Engs Engy Dego Degr € @

A

Enqs Engsz Degs DegsEMP Eng, Eng1 Dego Degy € Q



Inductive definition of the
Stack

RpushPop : U - Vv € S A no unmatched Push in u,v = Pushy - u-Popx-v e S
Rpysh : u-v €S Anounmatched Pushin u= u-Pushy-veS
Reyp: u-v €S Anounmatched Pushin u= u-EMP-v €S5S

Derivation for Pushi Push, Pops Pop1 EMP Pushs Pops € S

ceeS

Push3Pop3 € §

Push, Popy Pushs Pops € S

Pushq Pushs Pop, Popy Pushs Pops € S
Pushy Push> Pops Pop1 EMP Pushs Pops € S

Ll



Data Independence

* |Input methods = methods taking an argument

* A sequential execution u is called differentiated if for all input methods m and
every X, u contains at most one invocation m(x)

e S. is the set of differentiated executions in S

A renaming r is a function from D to D. Given a sequential execution
(resp., execution or history) u, we denote by r(u) the sequential execution
(resp., execution or history) obtained from w by replacing every data value

x by r(x).

Definition 6. The set of sequential executions (resp., executions or histories)
S is data independent if:

o for all ue S, there exists u' € Sy, and a renaming r such that u =r(u'),

o for all u e S and for all renaming r, r(u) € S.

Theorem: A data-independent implementation | is linearizable w.r.t. a data-
independent specification S iff I is linearizable w.r.t. S.



Closure under projection

Projection: Subsequence consistent with the values

If
Enqs Engs Deqy Deqgs Eng> Eng1 Deg, Degi € @
Then
EnqgsDeqsEng> Engy Degr Degr € @
Lemma

Any data structure defined in our framework is closed under
projection

Proof.

The predicates used (v € Eng* and “no unmatched Eng in u")
are closed under projection




Characterization of
sequential executions

We assume that the rules defining a data-structure are well-formed, that is:

e for all u € [[S], there exists a unique rule, denoted by last(u), that can
be used as the last step to derive u, i.e., for every sequence of rules
R;, ,...,R; leading to u, R; = last(u). For u ¢ [S], last(u) is also
defined but can be arbitrary, as there is no derivation for w.

e if last(u) = R;, then for every permutation u’ € [S] of a projection of u,
last(u') = R; with j <. If v’ is a permutation of u, then last(u') = R;.

Example 6. For Queue, we define last for a sequential execution u as follows:
e if u contains a DeqEmpty operation, last(u) = Rpeqempty
o else if u contains a Deq operation, last(u) = RgngDeq;
o else if u contains only Eng’s, last(u) = Rgng,
o clse (if u is empty), last(u) = Rp.

Since the conditions we use to define last are closed under permutations, we get
that for any permutation us of u, last(u) = last(us), and last can be extended
to histories. Therefore, the rules Ry, REngDeqs RDeqEmpty are well-formed.



Characterization of
sequential executions

* MS(R) = the set of sequences “matching” a rule R

Lemma 3. Let S = Rq,..., R, be a data-structure and u be a differentiated
sequential execution. Then,

ueS < proj(u)c  |J MS(R;)
ie{1,....,n}

Lemma (Characterization of Queue Sequential Executions)

w € Q iff every projection w’ of w is either of the form
Enqy - u-Deqy - v (with u € Eng*) or
u-EMP - v (with no unmatched Enq in u)



Characterization of
concurrent executions

Definition 7. A data-structure S = Rq,...,R,, s said to be step-by-step lin-

earizable if for any differentiated execution e, any i € {1,...,n} and x €D, ife
is linearizable with respect to MS(R;) with witness x, we have:

e\xC Hl{l, ...,_Z%iﬂ —> e C ﬂf%l, ...,.]{iﬂ

Deq(ds)

Enqg(dy)

Enqg(ds) | | Deq(dy)

Enqg(ds) | | Deq(ds)

e the history linearizable MS(Renqgpeq) With witness dj
e Eng(d1) is minimal among all operations and Deq(d1) minimal among all dequeues

e Excluding the operations on d1, the history is linearizable w.r.t. [Reng,Renqpeq], i-€., ENQg(d2)
Enq(ds) Deq(dz) Deq(ds)

e The notion of step-by-step linearizable ensures that the history is linearizable w.r.t. Queue



Step-by-Step Lin. of
Register

Lemma 9. Register is step-by-step linearizable.

Proof. Let h be a differentiated history, and u a sequential execution such that
h € u and such that u matches the rule Ry r with witness x. Let a and b4, ..., b
be respectively the Write and Read’s operations of h corresponding to the
witness.

Let h’' = h~x and assume h' € [Ro,Rwr]. Let v’ € [Ro,Rw r] such that h' c
u'. Let ug =a-by-by--bs-u'. By using rule Ry g on v, we have us € [Ro, Rw r].
Moreover, we prove that h € us by contradiction. Assume that the total order
imposed by us doesn’t respect the happens-before relation of h. All three cases
are not possible:

e the violation is between two u’ operations, contradicting h' c v/,

e the violation is between a and another operation, i.e. there is an operation
o which happens before a in A, contradicting h E u,

e the violation is between some b; and a u’ operation, i.e. there is an oper-
ation o which happens before b; in h, contradicting A E w.

Thus, we have h € uy and h € [Rgy,Rw r], which ends the proof. ]



Characterization of
concurrent executions

Lemma 4. Let S be a data-structure with rules Rq,...,R,. Let e be a differ-
entiated execution. If S is step-by-step linearizable, we have (for any j):

ec [Ry,...,R;] < proj(e) c | JMS(R;)
i<j
Proof (<) By induction on the size of e. We know e € proj(e) so it can be linearized
with respect to a sequential execution v matching some rule Ry (k < j) with
some witness x. Let ¢’ = e\ x.
Since S is well-formed, we know that no projection of e can be linearized

to a matching set MS(R;) with ¢ > k, and in particular no projection of e'.
Thus, we deduce that proj(e’) € U;<;, MS(R;), and conclude by induction that

e’ [[Rl,...,Rk]].
We finally use the fact that S is step-by-step linearizable to deduce that
ec [Ri,...,Ri] and ec [Ry,...,R;] because k < j. ]
Lemma

E is linearizable to @ iff every projection E’ of E is linearizable
to the form Enqy - u - Deqy - v (with u € Eng*) or
to the form u - EMP - v (with no unmatched Enq in u)



Characterization of
concurrent executions

Lemma 5. Let S be a data-structure with rules Rq,. .., R,,. Let e be a differ-
entiated execution. If S is step-by-step linearizable, we have:

ec S < Ve eproj(e). e € MS(R) where R = last(e')

et S < e’ eproj(e). ¢ £ MS(R) (where R = last(e’))

E is non-linearizable wrt Queue iff it has a projection E' of the
form bad pattern 1, or bad pattern 2.

Bad Pattern 1 (rule Repgpeq): Eng Deq,

| | ]
Enq; < Eng, Eng, Deq,
Deq, < Deq, | | —

or Deqg1 before Engs



Characterization of
concurrent executions

Lemma 5. Let S be a data-structure with rules Rq,..., R,,. Let e be a differ-
entiated execution. If S is step-by-step linearizable, we have:

ec S < Ve eproj(e). e € MS(R) where R = last(e')

et S < e’ eproj(e). ¢ £ MS(R) (where R = last(e’))

E is non-linearizable wrt Queue iff it has a projection E' of the
form bad pattern 1, or bad pattern 2.

EMP
Eng, | Deq, |

Bad Pattern 2:

Enq | Deq
(ruIe REMP) r | !

Engq | | Deq, |

Engq | | De'ql
| —




Characterization of
concurrent executions

» define for each R, a finite state automaton A which recognizes (a subset of) the
executions e which have a projection not linearizable w.r.t. MS(R)

Definition 8. A rule R is said to be co-regular if we can build an automaton
A such that, for any data-independent implementation I, we have:

INnA+@ < Jeel, e eproj(e). last(e') = Rre & MS(R)

REnq Deq EVQueue(2) EVQueue(2) EVQueue({la 2}) EVQueue({la 2}) EVQueue({l’ 2})
‘@ ret Deq(l) ‘@ ret Deq(1) % ret Deq(1)
gs 5 6
()
call Degq(1) call Deq(1)
EVQueue(?’) EVQueue(?’) EVQueue(B) EVQueue(B) EVQueue(S)

. call Enq(l)% ret Eng(1l) %call Enq(Q)% ret Deq(2)
0 1 2 3
N N \_/

call Deq(2)



Characterization of
concurrent executions

» define for each R, a finite state automaton A which recognizes (a subset of) the
executions e which have a projection not linearizable w.r.t. MS(R)

Definition 8. A rule R is said to be co-regular if we can build an automaton
A such that, for any data-independent implementation I, we have:

INnA+@ < Jeel, e eproj(e). last(e') = Rre & MS(R)

REMP EVQueue(g) EVQueue(g) EVQUGUG(S)

o Dqumpty(?iq%r“ Dqumpty(?’; we assume that all actions

call Deq(1 call Eng(1) occur at the
ret Eng(l) 1) . ret Enqg(1l) q( )

beginning
ety s
EVQueue(S)

call Eng(1)



Exercices (2)

We consider a sequential specification defined by the language S =(a())*(b())* where all
the invocations of a() occur before invocations of b().

1. Describe a reduction of checking linearizability w.r.t. the specification S to a reacha-
bility problem. More precisely, describe a labeled transition system (monitor) that
accepts exactly all the histories of a given implementation (sequences of call and re-
turn actions) that are not linearizable w.r.t. S. The synchronized product between a
transition system representing an implementation and this monitor (where the syn-
chronization actions are call and returns) reaches an accepting state of the monitor iff
the implementation is not linearizable.



Exercices (3)

 What is the complexity of checking linearizability of a
differentiated history of a concurrent queue?



Exercices (3)

 What is the complexity of checking linearizability of a
differentiated history of a concurrent queue?

“Value v dequeued without being enqueued” “Dequeue wrongfully returns empty”
deq: v
‘ deq: empty
“Value v dequeued before being enqueued” /‘
deq: v eng: v ena: vi @ @ dea: v;

O »® /
eng: vz ‘ ‘ deq: v2

“Value v dequeued twice” /
deq: v deq:v
“Values dequeued in the wrong order” /
eng: vo @ o
enq: Vi enq: vz deq: v deq: v1

O ~® O >®



