Reducing Linearizability to Classic Verification Problems
Checking Lin. using “bad patterns”

- Reduce linearizability checking to reachability (EXPSPACE-complete):
 - Define (sequential) data-structure S using inductive rules
 - S is data independent and closed under projection
 - Characterize sequential executions of S using bad patterns
 - Characterize concurrent executions, linearizable w.r.t. S using bad patterns (one per rule)
 - Define a regular automaton A_i for each bad pattern
 - Reduce “L is linearizable w.r.t. S” to: for all i, $L \cap A_i = \emptyset$
Histories = Posets of events

Thread 1

push(1) → pop ⇒ 2

pop ⇒ 1 → push(2) → push(3) → pop ⇒ 3

Thread 2

happens-before partial order

push(1) → pop ⇒ 2

pop ⇒ 1 → push(2) → push(3) → pop ⇒ 3
Concurrent Queues [ICALP’15]

Linearizability \equiv Exclusion of bad patterns (assuming each value is enqueued at most once - sound under data independence)
Concurrent Queues

Linearizability ≡ Exclusion of bad patterns (assuming each value is enqueued at most once - sound under data independence)

“Value v dequeued without being enqueued”

deq: v
Concurrent Queues [ICALP’15]

\textbf{Linearizability} \equiv Exclusion of \textbf{bad patterns} (assuming each value is enqueued at most once - sound under data independence)

“Value \textit{v dequeued without being enqueued}”

```
\begin{align*}
\text{deq: } v \\
\end{align*}
```

“Value \textit{v dequeued before being enqueued}”

```
\begin{align*}
\text{deq: } v & \quad \text{enq: } v \\
\end{align*}
```
Concurrent Queues

Linearizability \equiv Exclusion of bad patterns (assuming each value is enqueued at most once - sound under data independence)

"Value v dequeued without being enqueued"

```
deq: v
```

"Value v dequeued before being enqueued"

```
deq: v     enq: v
```

"Value v dequeued twice"

```
deq: v     deq: v
```

[ICALP’15]
Concurrent Queues

Linearizability \equiv Exclusion of bad patterns (assuming each value is enqueued at most once - sound under data independence)

“Value v dequeued without being enqueued”

```
deq: v

```

“Value v dequeued before being enqueued”

```
deq: v  ---  enq: v

```

“Value v dequeued twice”

```
deq: v  ---  deq: v

```

“Values dequeued in the wrong order”

```
enq: v_1  ---  enq: v_2  ---  deq: v_2  ---  deq: v_1

```
Concurrent Queues

Linearizability \equiv Exclusion of bad patterns (assuming each value is enqueued at most once - sound under data independence)

“Value v dequeued without being enqueued”

“Value v dequeued before being enqueued”

“Value v dequeued twice”

“Values dequeued in the wrong order”

“Dequeue wrongfully returns empty”

[ICALP’15]
Concurrent Queues

Linearizability \(\equiv \) Exclusion of **bad patterns** (assuming each value is enqueued at most once - sound under data independence)

- "Value v dequeued without being enqueued"
- "Value v dequeued before being enqueued"
- "Value v dequeued twice"
- "Values dequeued in the wrong order"
- "Dequeue wrongfully returns empty"
Concurrent Queues

Linearizability ≡ Exclusion of **bad patterns** (assuming each value is enqueued at most once - sound under data independence)

"Value v dequeued without being enqueued"

```
  deq: v
```

"Value v dequeued before being enqueued"

```
  deq: v  enq: v
```

"Value v dequeued twice"

```
  deq: v  deq: v
```

"Values dequeued in the wrong order"

```
  enq: v₁  enq: v₂  deq: v₂  deq: v₁
```

"Dequeue wrongfully returns empty"

```
  deq: empty
```

[ICALP'15]
Concurrent Queues [ICALP’15]

Linearizability ≡ Exclusion of **bad patterns** (assuming each value is enqueued at most once - sound under data independence)

- "Value v dequeued without being enqueued"
 - `deq: v`

- "Value v dequeued before being enqueued"
 - `deq: v` → `enq: v`

- "Value v dequeued twice"
 - `deq: v` → `deq: v`

- "Values dequeued in the wrong order"
 - `enq: v_1` → `enq: v_2` → `deq: v_2` → `deq: v_1`

- "Dequeue wrongfully returns empty"
 - `enq: v_1` → `enq: v_2` → `deq: empty`

- "Values dequeued in the wrong order"
 - `enq: v_n` → `deq: v_{n-1}` → `deq: v_n`
Concurrent Stacks

Linearizability \equiv Exclusion of bad patterns (assuming each value is enqueued at most once, which is sound under data independence)

“We Value v popped without being pushed”
“We Value v popped before being pushed”
“We Value v popped twice”
“We Pop wrongfully returns empty”

“Pop doesn’t return the top of the stack”
Concurrent Stacks

Linearizability \equiv Exclusion of bad patterns (assuming each value is enqueued at most once, which is sound under data independence)

“Value v popped without being pushed”
“Value v popped before being pushed”
“Value v popped twice”
“Pop wrongfully returns empty”

“Pop doesn’t return the top of the stack”
Concurrent Stacks

Linearizability ≡ Exclusion of **bad patterns** (assuming each value is enqueued at most once, which is sound under data independence)

“Value v popped without being pushed”
“Value v popped before being pushed”
“Value v popped twice”
“Pop wrongfully returns empty”

“Pop doesn’t return the top of the stack”
Checking Lin. using "bad patterns"

- Reduce linearizability checking to reachability (EXPSPACE-complete):
 - Define (sequential) data-structure S using inductive rules
 - S is data independent and closed under projection
 - Characterize sequential executions of S using bad patterns
 - Characterize concurrent executions, linearizable w.r.t. S using bad patterns (one per rule)
 - Define a regular automaton A_i for each bad pattern
 - Reduce “L is linearizable w.r.t. S” to: for all i, $L \cap A_i = \emptyset$
Inductive definition of the Register

\[R_{wr} : u \in R \implies \text{Write}_x \cdot (\text{Read}_x)^* \cdot u \in R \]

- including the empty sequence
Inductive definition of the Queue

Two rules to build the sequences belonging to the Queue such as

\[Enq_4 Enq_3 Deq_4 Deq_3 EMP Enq_2 Enq_1 Deq_2 Deq_1 \in Q \]

\[R_{Enq} : u \in Q \land u \in Enq^* \Rightarrow u \cdot Enq_x \in Q \]
\[R_{EnqDeq} : u \cdot v \in Q \land u \in Enq^* \Rightarrow Enq_x \cdot u \cdot Deq_x \cdot v \in Q \]
\[R_{EMP} : u \cdot v \in Q \land \text{no unmatched } Enq \text{ in } u \Rightarrow u \cdot EMP \cdot v \in Q \]

Derivation:

\[\varepsilon \in Q \]
\[\rightarrow Enq_1 Deq_1 \in Q \]
\[\rightarrow Enq_2 Enq_1 Deq_2 Deq_1 \in Q \]
\[\rightarrow Enq_3 Deq_3 Enq_2 Enq_1 Deq_2 Deq_1 \in Q \]
\[\rightarrow Enq_4 Enq_3 Deq_4 Deq_3 Enq_2 Enq_1 Deq_2 Deq_1 \in Q \]
\[\rightarrow Enq_4 Enq_3 Deq_4 Deq_3 EMP Enq_2 Enq_1 Deq_2 Deq_1 \in Q \]
Inductive definition of the Stack

\[R_{PushPop} : \, u \cdot v \in S \land \text{no unmatched} \, Push \, \text{in} \, u, v \Rightarrow Push_x \cdot u \cdot Pop_x \cdot v \in S \]

\[R_{Push} : \, u \cdot v \in S \land \text{no unmatched} \, Push \, \text{in} \, u \Rightarrow u \cdot Push_x \cdot v \in S \]

\[R_{EMP} : \, u \cdot v \in S \land \text{no unmatched} \, Push \, \text{in} \, u \Rightarrow u \cdot EMP \cdot v \in S \]

Derivation for \(Push_1 \, Push_2 \, Pop_2 \, Pop_1 \, EMP \, Push_3 \, Pop_3 \in S \)

\[\epsilon \in S \]
\[\Rightarrow \, Push_3 \, Pop_3 \in S \]
\[\Rightarrow \, Push_2 \, Pop_2 \, Push_3 \, Pop_3 \in S \]
\[\Rightarrow \, Push_1 \, Push_2 \, Pop_2 \, Pop_1 \, Push_3 \, Pop_3 \in S \]
\[\Rightarrow \, Push_1 \, Push_2 \, Pop_2 \, Pop_1 \, EMP \, Push_3 \, Pop_3 \in S \]
Data Independence

- Input methods = methods taking an argument
- A sequential execution u is called differentiated if for all input methods m and every x, u contains at most one invocation $m(x)$
- S_\neq is the set of differentiated executions in S
Data Independence

- Input methods = methods taking an argument
- A sequential execution \(u \) is called *differentiated* if for all input methods \(m \) and every \(x \), \(u \) contains at most one invocation \(m(x) \)
- \(S_\neq \) is the set of differentiated executions in \(S \)

A *renaming* \(r \) is a function from \(\mathbb{D} \) to \(\mathbb{D} \). Given a sequential execution (resp., execution or history) \(u \), we denote by \(r(u) \) the sequential execution (resp., execution or history) obtained from \(u \) by replacing every data value \(x \) by \(r(x) \).

Definition 6. The set of sequential executions (resp., executions or histories) \(S \) is data independent if:

- for all \(u \in S \), there exists \(u' \in S_\neq \), and a renaming \(r \) such that \(u = r(u') \),
- for all \(u \in S \) and for all renaming \(r \), \(r(u) \in S \).
Data Independence

- Input methods = methods taking an argument
- A sequential execution u is called differentiated if for all input methods m and every x, u contains at most one invocation $m(x)$
- S_\neq is the set of differentiated executions in S

A renaming r is a function from \mathbb{D} to \mathbb{D}. Given a sequential execution (resp., execution or history) u, we denote by $r(u)$ the sequential execution (resp., execution or history) obtained from u by replacing every data value x by $r(x)$.

Definition 6. The set of sequential executions (resp., executions or histories) S is data independent if:

- for all $u \in S$, there exists $u' \in S_\neq$, and a renaming r such that $u = r(u')$,
- for all $u \in S$ and for all renaming r, $r(u) \in S$.

Theorem: A data-independent implementation I is linearizable w.r.t. a data-independent specification S iff I_\neq is linearizable w.r.t. S_\neq
Closure under projection

Projection: Subsequence consistent with the values

If

\[Enq_4 Enq_3 Deq_4 Deq_3 Enq_2 Enq_1 Deq_2 Deq_1 \in Q \]

Then

\[Enq_4 Deq_4 Enq_2 Enq_1 Deq_2 Deq_1 \in Q \]

Lemma

Any **data structure** defined in our framework is **closed under projection**

Proof.

The **predicates** used (\(u \in Enq^* \) and “no unmatched \(Enq \) in \(u \)”) are closed under projection
Characterization of sequential executions

We assume that the rules defining a data-structure are well-formed, that is:

- for all $u \in [S]$, there exists a unique rule, denoted by $\text{last}(u)$, that can be used as the last step to derive u, i.e., for every sequence of rules R_{i_1}, \ldots, R_{i_n} leading to u, $R_{i_n} = \text{last}(u)$. For $u \notin [S]$, $\text{last}(u)$ is also defined but can be arbitrary, as there is no derivation for u.

- if $\text{last}(u) = R_i$, then for every permutation $u' \in [S]$ of a projection of u, $\text{last}(u') = R_j$ with $j \leq i$. If u' is a permutation of u, then $\text{last}(u') = R_i$.
Characterization of sequential executions

We assume that the rules defining a data-structure are well-formed, that is:

1. For all \(u \in \left[S \right] \), there exists a unique rule, denoted by \(\text{last}(u) \), that can be used as the last step to derive \(u \), i.e., for every sequence of rules \(R_{i_1}, \ldots, R_{i_n} \) leading to \(u \), \(R_{i_n} = \text{last}(u) \). For \(u \notin \left[S \right] \), \(\text{last}(u) \) is also defined but can be arbitrary, as there is no derivation for \(u \).

2. If \(\text{last}(u) = R_i \), then for every permutation \(u' \in \left[S \right] \) of a projection of \(u \), \(\text{last}(u') = R_j \) with \(j \leq i \). If \(u' \) is a permutation of \(u \), then \(\text{last}(u') = R_i \).

Example 6. For Queue, we define \(\text{last} \) for a sequential execution \(u \) as follows:

- If \(u \) contains a \(\text{DeqEmpty} \) operation, \(\text{last}(u) = R_{\text{DeqEmpty}} \),
- Else if \(u \) contains a \(\text{Deq} \) operation, \(\text{last}(u) = R_{\text{EnqDeq}} \),
- Else if \(u \) contains only \(\text{Enq} \)'s, \(\text{last}(u) = R_{\text{Enq}} \),
- Else (if \(u \) is empty), \(\text{last}(u) = R_0 \).

Since the conditions we use to define \(\text{last} \) are closed under permutations, we get that for any permutation \(u_2 \) of \(u \), \(\text{last}(u) = \text{last}(u_2) \), and \(\text{last} \) can be extended to histories. Therefore, the rules \(R_0, R_{\text{EnqDeq}}, R_{\text{DeqEmpty}} \) are well-formed.
Characterization of sequential executions

• MS(R) = the set of sequences “matching” a rule R

Lemma 3. Let $S = R_1, \ldots, R_n$ be a data-structure and u be a differentiated sequential execution. Then,

$$u \in S \iff \text{proj}(u) \subseteq \bigcup_{i \in \{1, \ldots, n\}} \text{MS}(R_i)$$

Lemma (Characterization of Queue Sequential Executions)

$w \in Q$ iff every projection w' of w is either of the form

$\text{Enq}_x \cdot u \cdot \text{Deq}_x \cdot v$ (with $u \in \text{Enq}^*$) or
$u \cdot \text{EMP} \cdot v$ (with no unmatched Enq in u)
Characterization of concurrent executions

Definition 7. A data-structure \(S = R_1, \ldots, R_n \) is said to be step-by-step linearizable if for any differentiated execution \(e \), any \(i \in \{1, \ldots, n\} \) and \(x \in \mathbb{D} \), if \(e \) is linearizable with respect to \(\text{MS}(R_i) \) with witness \(x \), we have:

\[
e \setminus x \subseteq [R_1, \ldots, R_i] \implies e \subseteq [R_1, \ldots, R_i]
\]
Characterization of concurrent executions

Definition 7. A data-structure $S = R_1, \ldots, R_n$ is said to be step-by-step linearizable if for any differentiated execution e, any $i \in \{1, \ldots, n\}$ and $x \in \mathbb{D}$, if e is linearizable with respect to $\text{MS}(R_i)$ with witness x, we have:

$$e \setminus x \subseteq [R_1, \ldots, R_i] \implies e \subseteq [R_1, \ldots, R_i]$$

The notion of step-by-step linearizability ensures that the history is linearizable w.r.t. a queue.

- The history linearizable $\text{MS}(R_{\text{EnqDeq}})$ with witness d_1
 - $\text{Enq}(d_1)$ is minimal among all operations and $\text{Deq}(d_1)$ minimal among all deques
- Excluding the operations on d_1, the history is linearizable w.r.t. $[R_{\text{Enq}}, R_{\text{EnqDeq}}]$, i.e., $\text{Enq}(d_2)$ $\text{Enq}(d_3)$ $\text{Deq}(d_2)$ $\text{Deq}(d_3)$
- The notion of step-by-step linearizable ensures that the history is linearizable w.r.t. Queue
Lemma 9. Register is step-by-step linearizable.

Proof. Let \(h \) be a differentiated history, and \(u \) a sequential execution such that \(h \subseteq u \) and such that \(u \) matches the rule \(R_{WR} \) with witness \(x \). Let \(a \) and \(b_1, \ldots, b_s \) be respectively the Write and Read’s operations of \(h \) corresponding to the witness.

Let \(h' = h \setminus x \) and assume \(h' \subseteq [R_0, R_{WR}] \). Let \(u' \in [R_0, R_{WR}] \) such that \(h' \subseteq u' \). Let \(u_2 = a \cdot b_1 \cdot b_2 \ldots b_s \cdot u' \). By using rule \(R_{WR} \) on \(u' \), we have \(u_2 \in [R_0, R_{WR}] \). Moreover, we prove that \(h \subseteq u_2 \) by contradiction. Assume that the total order imposed by \(u_2 \) doesn’t respect the happens-before relation of \(h \). All three cases are not possible:

- the violation is between two \(u' \) operations, contradicting \(h' \subseteq u' \),

- the violation is between \(a \) and another operation, i.e. there is an operation \(o \) which happens before \(a \) in \(h \), contradicting \(h \subseteq u \),

- the violation is between some \(b_i \) and a \(u' \) operation, i.e. there is an operation \(o \) which happens before \(b_i \) in \(h \), contradicting \(h \subseteq u \).

Thus, we have \(h \subseteq u_2 \) and \(h \subseteq [R_0, R_{WR}] \), which ends the proof. \(\square \)
Lemma 4. Let S be a data-structure with rules R_1, \ldots, R_n. Let e be a differentiated execution. If S is step-by-step linearizable, we have (for any j):

\[e \in [R_1, \ldots, R_j] \iff \text{proj}(e) \subseteq \bigcup_{i \leq j} MS(R_i) \]

Proof (\(\iff\)) By induction on the size of e. We know $e \in \text{proj}(e)$ so it can be linearized with respect to a sequential execution u matching some rule R_k ($k \leq j$) with some witness x. Let $e' = e \setminus x$.

Since S is well-formed, we know that no projection of e can be linearized to a matching set $MS(R_i)$ with $i > k$, and in particular no projection of e'. Thus, we deduce that $\text{proj}(e') \subseteq \bigcup_{i \leq k} MS(R_i)$, and conclude by induction that $e' \subseteq [R_1, \ldots, R_k]$.

We finally use the fact that S is step-by-step linearizable to deduce that $e \subseteq [R_1, \ldots, R_k]$ and $e \subseteq [R_1, \ldots, R_j]$ because $k \leq j$. \(\square\)
Characterization of concurrent executions

Lemma 4. Let S be a data-structure with rules R_1, \ldots, R_n. Let e be a differentiated execution. If S is step-by-step linearizable, we have (for any j):

$$e \subseteq [R_1, \ldots, R_j] \iff \text{proj}(e) \subseteq \bigcup_{i \leq j} \text{MS}(R_i)$$

Proof (\(\Leftarrow\)) By induction on the size of e. We know $e \in \text{proj}(e)$ so it can be linearized with respect to a sequential execution u matching some rule R_k ($k \leq j$) with some witness x. Let $e' = e \setminus x$.

Since S is well-formed, we know that no projection of e can be linearized to a matching set $\text{MS}(R_i)$ with $i > k$, and in particular no projection of e'. Thus, we deduce that $\text{proj}(e') \subseteq \bigcup_{i \leq k} \text{MS}(R_i)$, and conclude by induction that $e' \subseteq [R_1, \ldots, R_k]$.

We finally use the fact that S is step-by-step linearizable to deduce that $e \subseteq [R_1, \ldots, R_k]$ and $e \subseteq [R_1, \ldots, R_j]$ because $k \leq j$. \(\square\)

Lemma

E is linearizable to Q iff every projection E' of E is linearizable to the form $\text{Enq}_x \cdot u \cdot \text{Deq}_x \cdot v$ (with $u \in \text{Enq}^*$) or to the form $u \cdot \text{EMP} \cdot v$ (with no unmatched Enq in u).
Characterization of concurrent executions

Lemma 5. Let S be a data-structure with rules R_1, \ldots, R_n. Let e be a differentiated execution. If S is step-by-step linearizable, we have:

\[e \subseteq S \iff \forall e' \in \text{proj}(e). e' \subseteq MS(R) \text{ where } R = \text{last}(e') \]

\[e \nsubseteq S \iff \exists e' \in \text{proj}(e). e' \nsubseteq MS(R) \text{ (where } R = \text{last}(e')) \]

E is non-linearizable wrt Queue iff it has a projection E' of the form bad pattern 1, or bad pattern 2.

Bad Pattern 1 (rule $R_{\text{Enq}Deq}$):

\[
\begin{array}{ccc}
\text{Enq}_1 & \text{Deq}_2 \\
\hline
\text{Enq}_1 \prec \text{Enq}_2 \\
\text{Deq}_2 \prec \text{Deq}_1
\end{array}
\]

or Deq_1 before Enq_1
Characterization of concurrent executions

Lemma 5. Let S be a data-structure with rules R_1, \ldots, R_n. Let e be a differentiated execution. If S is step-by-step linearizable, we have:

$$e \in S \iff \forall e' \in \text{proj}(e). \ e' \in \text{MS}(R) \ \text{where} \ R = \text{last}(e')$$

$$e \notin S \iff \exists e' \in \text{proj}(e). \ e' \notin \text{MS}(R) \ (\text{where} \ R = \text{last}(e'))$$

\textit{E is non-linearizable wrt Queue iff it has a projection E' of the form bad pattern 1, or bad pattern 2.}
Characterization of concurrent executions

- define for each R, a finite state automaton A which recognizes (a subset of) the executions e which have a projection not linearizable w.r.t. MS(R)

Definition 8. A rule R is said to be co-regular if we can build an automaton A such that, for any data-independent implementation I, we have:

\[I \cap A \neq \emptyset \iff \exists e \in I, e' \in \text{proj}(e). \text{last}(e') = R \land e' \notin MS(R) \]
Characterization of concurrent executions

- define for each R, a finite state automaton A which recognizes (a subset of) the executions e which have a projection not linearizable w.r.t. MS(R)

Definition 8. A rule R is said to be co-regular if we can build an automaton A such that, for any data-independent implementation I, we have:

\[I \cap A \neq \emptyset \iff \exists e \in I, e' \in \text{proj}(e). \text{last}(e') = R \land e' \notin MS(R) \]

R \text{EMP}
Exercice

• What is the complexity of checking linearizability of a differentiated history of a concurrent queue?
Exercises (3)

- What is the complexity of checking linearizability of a differentiated history of a concurrent queue?

"Value v dequeued without being enqueued"

deq: v

"Value v dequeued before being enqueued"

deq: v enq: v

"Value v dequeued twice"

deq: v deq: v

"Values dequeued in the wrong order"

enq: v₁ enq: v₂ deq: v₂ deq: v₁

"Dequeue wrongfully returns empty"

deq: empty

enq: v₁ deq: v₁

enq: v₂ deq: v₂ deq: v₁

enq: vₙ deq: vₙ⁻¹...

enq: vₙ deq: vₙ

deq: v₁
Linearizability vs Refinement

[enq(v)]

[a,b,...] => [a,b,...,v]

[deq()]

[v,a,b,...] => [a,b,...]
Linearizability vs Refinement

- Modelling concurrent objects with Labeled Transition Systems (LTSs)
- Linearizability is a property of sequences of call/return actions
- Given an ADT A, define a reference implementation \(\text{Spec}(A) \) which admits all histories linearizable w.r.t. A
 - standard reference implementations (atomic method bodies): call, return, and linearization point actions
 - Linearizability = inclusion of traces with call/return actions (these are the only common actions) between \(\text{Impl} \) and \(\text{Spec}(A) \)
 - the actions included in traces are called observable
Proving Refinement

Inductive reasoning for proving refinement: forward/backward simulations

Simulations: relations between states of the impl. and spec., relating initial states and
Proving Refinement

Inductive reasoning for proving refinement: forward/backward simulations

Simulations: relations between states of the impl. and spec., relating initial states and

Forward

Implementation: $i_s_1 \xrightarrow{a} i_s_2$

Specification: a_s_1
Proving Refinement

Inductive reasoning for proving refinement: forward/backward simulations

Simulations: relations between states of the impl. and spec., relating initial states and

Forward

Implementation: \(i_s_1 \rightarrow a \rightarrow i_s_2 \)

Specification: \(a s_1 \rightarrow a s_2 \)
Proving Refinement

Inductive reasoning for proving refinement: forward/backward simulations

Simulations: relations between states of the impl. and spec., relating initial states and

Forward

Implementation:

Specification:
Proving Refinement

Inductive reasoning for proving refinement: forward/backward simulations

Simulations: relations between states of the impl. and spec., relating initial states and

- **Forward**
 - Implementation: $i_{s1} \xrightarrow{a} i_{s2}$
 - Specification: $a_{s1} \xrightarrow{a} \exists a_{s2}$

- **Backward**
 - Implementation: $i_{s1} \xrightarrow{a} i_{s2}$
 - Specification: i_{s2}
Proving Refinement

Inductive reasoning for proving refinement: forward/backward simulations

Simulations: relations between states of the impl. and spec., relating initial states and
Proving Refinement

Inductive reasoning for proving refinement: forward/backward simulations

Simulations: relations between states of the impl. and spec., relating initial states and

Implementation:

Specification:
Proving Refinement

<table>
<thead>
<tr>
<th></th>
<th>Frw Sim (FS)</th>
<th>Bckw Sim (BS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>exists if</td>
<td>B deterministic</td>
<td>A forest</td>
</tr>
<tr>
<td>exists if we add</td>
<td>Prophecy vars to A</td>
<td>History vars to A</td>
</tr>
</tbody>
</table>

Properties:

- [Lynch et al., 1995] Given two LTSs A and B such that A refines B, Frw Sim (FS) exists if B deterministic and Bckw Sim (BS) exists if A forest.

Constantin Enea (KU)
Proving Refinement

- Given two LTSs A and B such that A refines B [Abadi et al.’91, Lynch et al.’95]

<table>
<thead>
<tr>
<th>Frw Sim (FS)</th>
<th>Bckw Sim (BS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>exists if</td>
<td>B deterministic</td>
</tr>
<tr>
<td>exists if we add</td>
<td>Prophecy vars to A</td>
</tr>
<tr>
<td></td>
<td>History vars to A</td>
</tr>
</tbody>
</table>

- Forward simulations are easier to derive and establish (standard invariant checking)
Proving Linearizability

[Diagram showing the sequence of calls and linearization points]

- Call `enq(v)`
- Linearize `enq(v)`
- Call `enq(v')`
Proving Linearizability

- **Impl** is linearizable w.r.t. **A** iff **Impl** refines **Spec(A)**
 - refinement = inclusion of traces with call/return actions (observable actions)
- **Spec(A)** is **not deterministic** when projected on observable actions =>
 backward simulations are unavoidable in general
- Classes of implementations for which forward simulations are sufficient -
 associate linearization points with statements of the implementation
 - the linearization point actions become **observable**
 - **Spec(A)** is deterministic assuming that **A** is **deterministic**
Fixed Linearization Points

- **Fixed** linearization points: the linearization point is fixed to a particular statement in the code

```java
class Node {
    Node tl;
    int val;
}
class NodePtr {
    Node val;
} TOP

void push(int e){
    Node y, n;
    y = new();
    y->val = e;
    while(true) {
        y->tl = n;
        if (cas(TOP->val, n, y))
            break;
    }
}

int pop(){
    Node y,z;
    while(true) {
        y = TOP->val;
        if (y==0) return EMPTY;
        z = y->tl;
        if (cas(TOP->val, y, z))
            break;
    }
    return y->val;
}
```

Treiber Stack
void enq(int x) {
 i = back++; items[i] = x;
}
int deq() {
 while (1) {
 range = back - 1;
 for (int i = 0; i <= range; i++) {
 x = swap(items[i],null);
 if (x != null) return x;
 }
 }
}
Non-fixed Linearization Points

enqueue

Dequeue

Herlihy & Wing Queue

$i(e,x)$: index i of enqueue with id e that will insert item x
Non-fixed Linearization Points
Non-fixed Linearization Points

\[e_1: \text{inv}(x) \quad e_1: \text{back++} \]

\[e_2: \text{inv}(y) \quad e_2: \text{back++} \]

\[e_2: \text{items}[i] = y \]

\[d_2: \text{deq}(y) \]

\[d_1: \text{deq}(x) \]

\[e_1: \text{items}[i] = x \quad e_1: \text{ret} \]

i = back++

\[i(e_1, x) \]

\[i(e_2, x) \]

\[i(e_2, y) \]
Non-fixed Linearization Points
Non-fixed Linearization Points

Non-fixed linearization points => proofs based on forward simulations are impossible in general

Possible for certain ADTs, queues and stacks [BEEM-CAV'17]
 • assuming fixed linearization points only for dequeue/pop
 • reference implementations whose states are partial orders of enq/push
Non-fixed Linearization Points

Non-fixed linearization points => proofs based on forward simulations are impossible in general

Possible for certain ADTs, queues and stacks [BEEM-CAV’17]

• assuming fixed linearization points only for dequeue/pop
• reference implementations whose states are partial orders of enq/push
Non-fixed Linearization Points

... enq(v₁):compl

happens-before of enqueues

... enq(v₂):compl

... enq(v₃):pend

ret enq(v)

... enq(v):pend

... ret enq(v)

... enq(v):compl

... enq(v₂):compl

... enq(v₃):pend

... enq(v₁):compl
Non-fixed Linearization Points

Non-fixed linearization points => proofs based on forward simulations are impossible in general

Possible for certain ADTs, queues and stacks [BEEM-CAV'17]

• assuming fixed linearization points only for dequeue/pop
• reference implementations whose states are partial orders of enq/push

happens-before of enqueues

\[
\begin{align*}
\text{enq}(v_1):\text{compl} & \quad \text{enq}(v_3):\text{pend} \\
\text{enq}(v_2):\text{compl} & \quad \text{enq}(v):\text{pend} \\
\text{...} & \\
\end{align*}
\]

\[\text{ret enq}(v)\]

\[
\begin{align*}
\text{enq}(v_1):\text{compl} & \quad \text{enq}(v_3):\text{pend} \\
\text{enq}(v_2):\text{compl} & \quad \text{enq}(v):\text{compl} \\
\text{...} & \\
\end{align*}
\]
Non-fixed Linearization Points

\[\text{enq}(v_0) : - \]
\[\text{enq}(v_1) : \text{compl} \]
\[\text{enq}(v_2) : \text{compl} \]
\[\text{enq}(v_3) : \text{pend} \]

\[\text{lin deq}(v_0) \]

\[\text{enq}(v_0) : - \]
\[\text{enq}(v_1) : \text{compl} \]
\[\text{enq}(v_2) : \text{compl} \]
\[\text{enq}(v_3) : \text{pend} \]

minimal element
Non-fixed Linearization Points

Non-fixed linearization points => proofs based on forward simulations are impossible in general

Possible for certain ADTs, queues and stacks [BEEM-CAV'17]

- assuming fixed linearization points only for dequeue/pop
- reference implementations whose states are partial orders of enq/push

[Diagram showing enq(v0):-, enq(v1):compl, enq(v2):compl, enq(v3):pend, lin deq(v0), minimal element]
Forward Sim. for H&W Queue

FS \(f \) between HWQ and \(AbsQ \). Given a HWQ state \(s \) and an \(AbsQ \) state \(t \), \((s, t) \in f\) iff:

- Pending enqueues in \(s \) are pending and maximal in \(t \).
- Order in \(t \) is consistent with the positions reserved in items of \(s \).
- For two enqueues \(e_1 \), \(e_2 \) and dequeue \(d \), if \(e_1 \) reserves a position before \(e_2 \), \(d \) is visiting an index in between and \(d \) can remove \(e_2 \) in \(s \), then \(e_1 \) cannot be ordered before \(e_2 \) in \(t \).