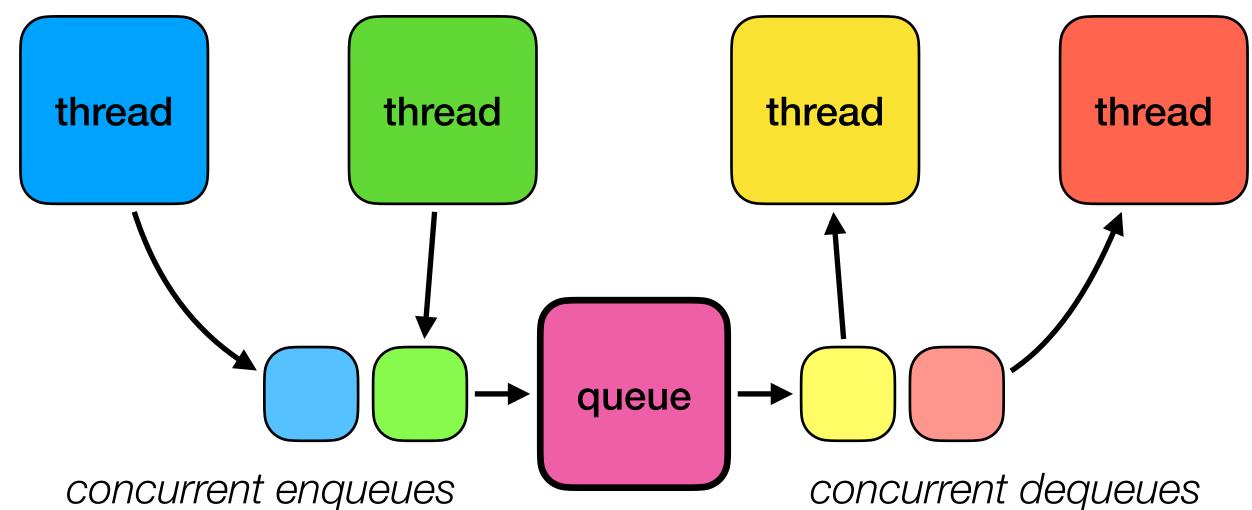
CHECKING LINEARIZABILITY: THEORETICAL LIMITS

Constantin Enea Ecole Polytechnique

Concurrent Objects

Multi-threaded programming



concurrent enqueues

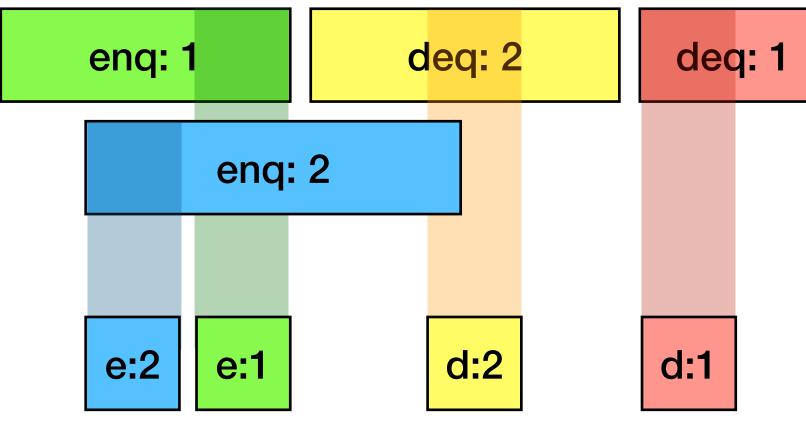
e.g. Java Development Kit SE

dozens of objects, including queues, maps, sets, lists, locks, atomic integers, ...

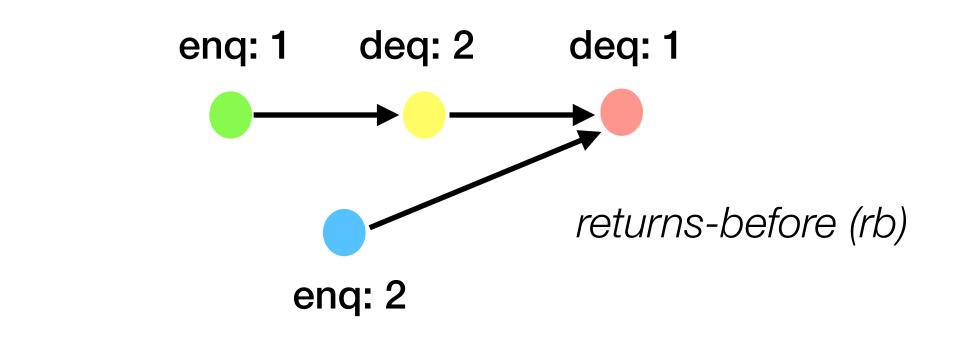
Linearizability [Herlihy&Wing 1990]

Effects of each invocation appear to occur instantaneously

Execution history

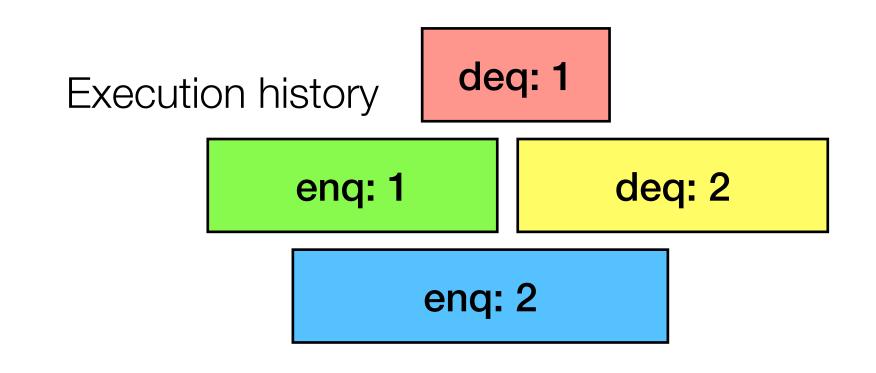


Linearization admitted by Queue ADT

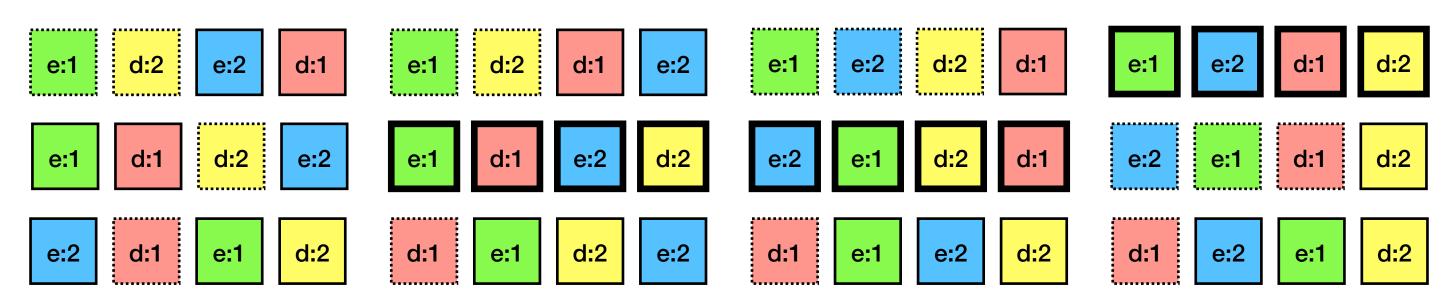


∃ lin. rb ⊆ lin \land lin ∈ Queue ADT

Complexity of Testing Linearizability



Exponentially many linearizations to consider



Theorem [Gibbons.et.al.'97]

Checking linearizability for a fixed execution is NP-hard

Bounded Nb. of Threads:

• EXSPACE-complete [Alur et al., 1996, Hamza 2015]

Unbounded Nb. of Threads:

- Undecidable [Bouajjani et al., 2013]

Alur et al. 1996: Rajeev Alur, Kenneth L. McMillan, Doron A. Peled: Model-Checking of Correctness Conditions for Concurrent Objects. LICS 1996

Bouajjani et al., 2013: Ahmed Bouajjani, Michael Emmi, Constantin Enea, Jad Hamza: Verifying Concurrent Programs against Sequential Specifications. ESOP 2013

Hamza 2015: Jad Hamza: On the Complexity of Linearizability. NETYS 2015

Checking Linearizability: Complexity (finite-state implementations)

Decidable with "fixed linearization points" [Bouajjani et al. 2013]

Bounded Nb. of Threads:

• EXSPACE-complete [Alur et al., 1996, Hamza 2015]

Unbounded Nb. of Threads:

- Undecidable [Bouajjani et al., 2013]

Checking Linearizability: Complexity (finite-state implementations)

Decidable with "fixed linearization points" [Bouajjani et al. 2013]

Concurrent Languages

- Concurrent language = (Σ ,D), where Σ is an alphabet, D $\subseteq \Sigma \times \Sigma$ (Mazurkiewicz traces - D is symmetric)
- a and b are called independent when $(a,b) \notin D$
- \Rightarrow_D a relation that permutes independent symbols: for all (a,b) \notin D, σ ab $\sigma' \Rightarrow_D \sigma'$ ba σ (and trans. closure)
- $cI_D(L) = all strings \sigma' such that \sigma' \Rightarrow_D \sigma$ for some $\sigma \in L$
- Ex: Σ = {a,b}, L=(ab)*, D=Ø and D={(b,a)}

Specifications, Implementations

- $p:m(a) \Rightarrow b$
 - Example: bounded-value register, bounded size queue
- $\Sigma_p = (\Sigma_{call}(p) \cup \Sigma_{ret}(p))$ and $\Sigma = U_p \Sigma_p$

• **Specification** = a language over an alphabet containing symbols

• Implementation = a language over an alphabet containing symbols p:call m(a) and p:ret m(a) \Rightarrow b where returns "match" previous calls

- $\text{lin} = U_p (\Sigma_p X \Sigma_p) \cup (\Sigma_{\text{ret}} X \Sigma_{\text{call}})$
- Spec^{*} = replacing $p:m(a) \rightarrow b$ with call/ret actions
- an execution σ is **linearizable** iff $\sigma \in cl_{lin}(Spec^*)$
- Impl is linearizable iff Impl \subseteq cl_{lin}(Spec*)
 - this inclusion check is undecidable in general (for regular languages)

Defining Linearizability

- - specification

Defining Linearizability

• **Linearizability**: an execution σ is linearizable iff there is a sequence τ that contains σ and linearization points (symbols p:m(a) \Rightarrow b) s.t.:

 every projection over "actions" of the same process is "sequential" the projection over linearization point actions is included in the

- $\lim_{x \to \infty} U_p(\Sigma_p X \Sigma_p) \cup (\Sigma_{ret} X \Sigma_{call})$
- Spec^{*} = replacing $p:m(a) \rightarrow b$ with call/ret actions
- an execution σ is **linearizable** iff $\sigma \in cl_{lin}(Spec^*)$
- Impl is linearizable iff Impl \subseteq cl_{lin}(Spec*)
 - this inclusion check is undecidable in general (for regular languages)
- $Cl_{lin}(Spec^*) = (\|pL_{lin_points}(p)\| Spec) \downarrow (\Sigma_{call} \cup \Sigma_{ret})$

Defining Linearizability

EXPSPACE-hardness

An NFA N over an alphabet $\Gamma \uplus A$. accepted by N?

Reducing Letter Insertion to Linearizability:

- from A in order to obtain a word accepted by N
- w.r.t. S_N

Problem 2 (Letter Insertion). Input: A set of insertable letters $A = \{a_1, \ldots, a_l\}$. Question: For all words $w \in \Gamma^*$, does there exist a decomposition w = $w_0 \cdots w_l$, and a permutation p of $\{1, \ldots, l\}$, such that $w_0 a_{p[1]} w_1 \ldots a_{p[l]} w_l$ is

1. there exists a word w in Γ^* , such that there is no way to insert the letters 2. there exists an execution of Lib with k threads which is not linearizable

$$k = l+2$$

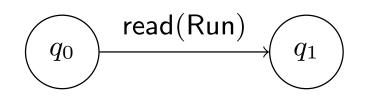
FXPSPACE-hardness

Define k, the number of threads, to be l + 2. We will define a library *Lib* composed of

- methods M_1, \ldots, M_l , one for each letter of A
- methods M_{γ} , one for each letter of Γ
- a method M_{Tick} .

The specification S_N is defined as the set of words w over the alphabet $\{M_1,\ldots,M_l\} \cup \{M_{\mathsf{Tick}}\} \cup \{M_{\gamma} | \gamma \in \Gamma\}$ such that one the following condition holds:

- -w contains 0 letter M_{Tick} , or more than 1, or
- where each letter a_i is replaced by the letter M_i .



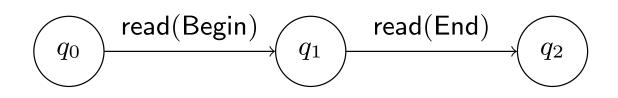


Fig. 4. Description of $M_{\gamma}, \gamma \in \Gamma$

Fig. 5. Description of M_1, \ldots, M_l

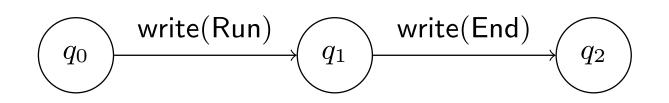


Fig. 6. Description of M_{Tick}

- for a letter $M_i, i \in \{1, \ldots, l\}, w$ contains 0 such letter, or more than 1, or - when projecting over the letters $M_{\gamma}, \gamma \in \Gamma$ and $M_i, i \in \{1, \ldots, l\}, w$ is in N_M , where N_M is N where each letter γ is replaced by the letter M_{γ} , and

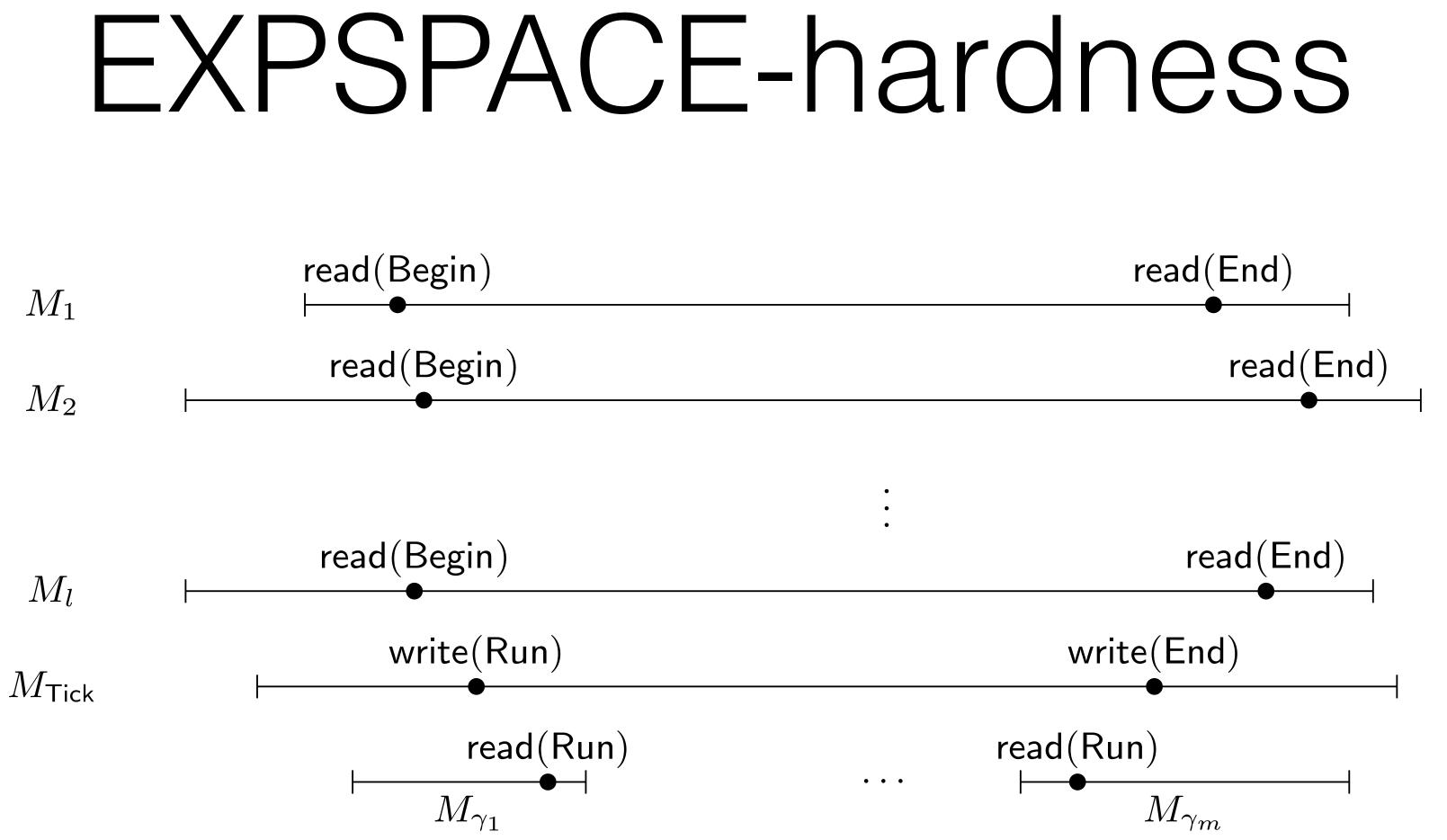


Fig.7. Non-linearizable execution corresponding to a word $\gamma_1 \ldots \gamma_m$ in which we cannot insert the letters from $A = \{a_1, \ldots, a_l\}$ to make it accepted by N. The points represent steps in the automata.

Bounded Nb. of Threads:

• EXSPACE-complete [Alur et al., 1996, Hamza 2015]

Unbounded Nb. of Threads:

- Undecidable [Bouajjani et al., 2013]

Checking Linearizability: Complexity (finite-state implementations)

Decidable with "fixed linearization points" [Bouajjani et al. 2013]

- Reduction from reachability in counter machines
- Given a counter machine A, we construct a library L_A and a specification S_A such that L_A is **not** linearizable w.r.t. S_A iff A reaches the target state
- $L_A = \text{transition methods T[t], increments I[c_i], decrements D[c_i] and zero-tests Z[c_i]$ • L_A allows only valid sequences of transitions
- S_A allows executions which don't reach the target state, or which erroneously pass - it doesn't contain $\mathbb{M}|q_f|$, some zero-test - it ends in $M[q_f]$ and it contains a prefix of the form

- it ends in M_f and it contains a subword of the form

- $(M_{inc}[i] M_{dec}[i])^* (M_{inc}[i]^+ + M_{dec}[i]^+) M_{zero}[i]$
- $M_zero[i](M_inc[i]M_dec[i])^*(M_inc[i]^+ + M_dec[i]^+)M_zero[i].$

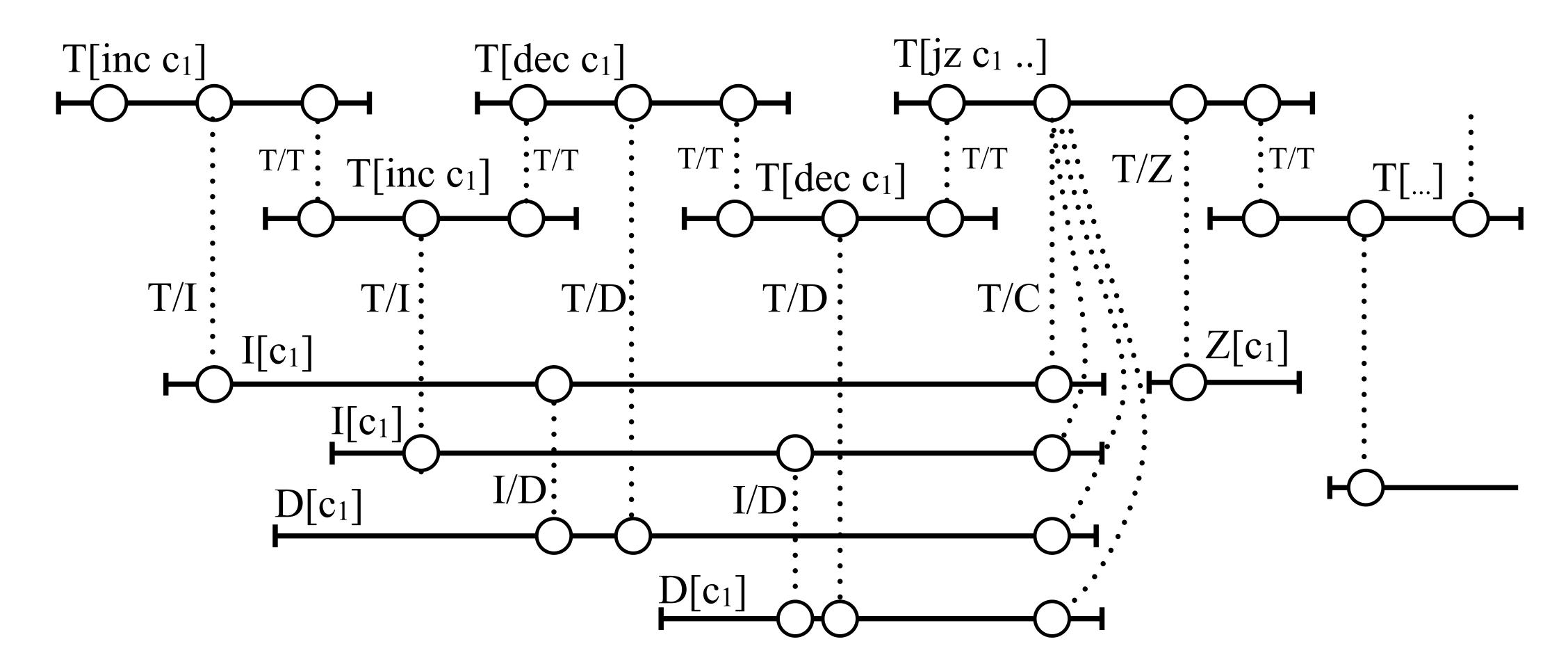
- 1. A sequence $t_1 t_2 \dots t_i$ of \mathcal{A} -transitions is modeled by a pairwise-overlapping sequence of $T[t_1] \cdot T[t_2] \cdots T[t_i]$ operations.
- 2. Each T[t]-operation has a corresponding I[c_i], D[c_i], or Z[c_i] operation, depending on whether t is, resp., an increment, decrement, or zero-test transition with counter c_i .

- 3. Each $I[c_i]$ operation has a corresponding $D[c_i]$ operation. 4. For each counter c_i , all $I[c_i]$ and $D[c_i]$ between $Z[c_i]$ operations overlap. 5. For each counter c_i , no $I[c_i]$ nor $D[c_i]$ operations overlap with a $Z[c_i]$ operation. 6. The number of $I[c_i]$ operations between two $Z[c_i]$ operations matches the
- number of $D[c_i]$ operations.

- a T/T signal between T[*] operations
- $I[c_i]$, $D[c_i]$ and $Z[c_i]$ operations
- an I/D signal between $I[c_i]$ and $D[c_i]$ operations
- zero-testing transitions t

• for each counter c, a T/I, T/D, T/Z between T[*] operations and, resp.,

• a T/C signal between T[t] operations and I[c_i], D[c_i] operations, for



```
1 var q \in Q: T
2 var req[U]: T
3 var ack[U]: T
4 var dec[i \in \mathbb{N} : i < d]: T
5 var zero[i \in \mathbb{N} : i < d]: \mathbb{B}
6
7 // for each transition \left< q, oldsymbol{n}, q' \right>
8 method M[q, \boldsymbol{n}, q']()
       atomic
 9
           wait(q);
10
           signal(req[n]);
11
       atomic
12
           wait(ack[n]);
13
           signal(q');
14
       return ()
15
16
17 // for each transition \langle q,i,q'
angle
18 method M[q, i, q'] ()
       atomic
19
           wait(q);
20
           zero[i] := true;
21
       atomic
22
           if !zero[i] then
23
               signal(q');
24
       return ()
25
26
27 // for each final state q_f
28 method M[q_f] ()
       wait(q_f);
29
       return
30
```

31 method $M_{inc}[i]$ () atomic 32 if !zero[i] then 33 wait(req[u_i]); 34 $signal(ack[u_i]);$ 35 signal(dec[i]) 36 assume zero[i]; 37 return () 38 39 40 method $M_dec[i]$ () atomic 41 if !zero[i] then 42 wait(dec[i]); 43 atomic 44 wait(req[$-u_i$]); 45 signal(ack $[-u_i]$); 46 assume zero[i]; 47 return () 48 49 50 method M_zero[i] () 51 \mathbf{atomic} if zero[i] then 52 zero[i] := false; 53 return () 54

Bounded Nb. of Threads:

• EXSPACE-complete [Alur et al., 1996, Hamza 2015]

Unbounded Nb. of Threads:

- Undecidable [Bouajjani et al., 2013]

Checking Linearizability: Complexity (finite-state implementations)

• Decidable with "fixed linearization points" [Bouajjani et al. 2013]

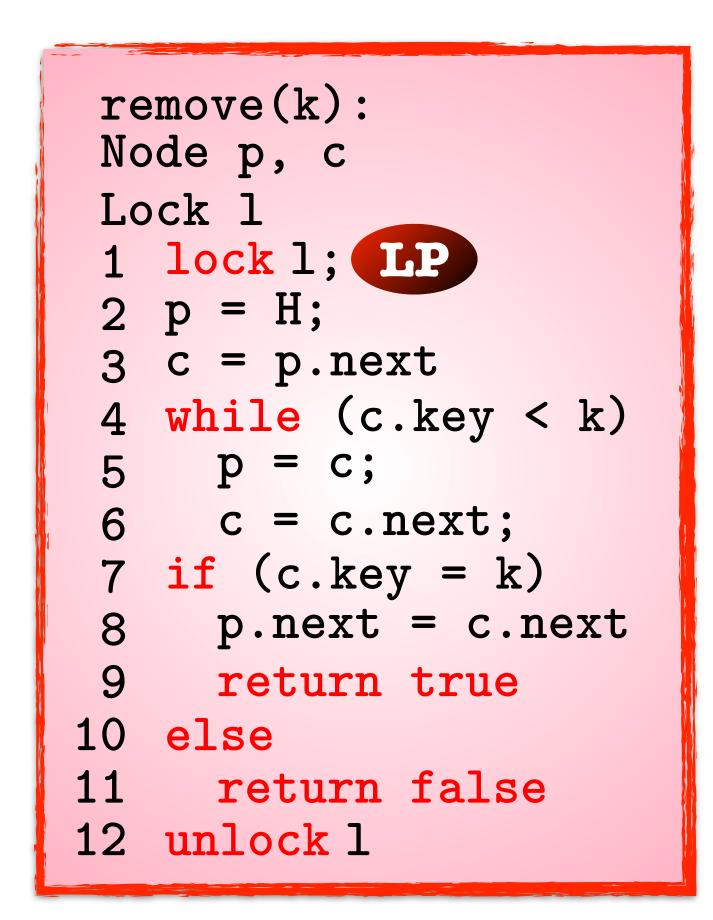
A method is a finite automaton $M = \langle Q, \Sigma, I, F, \hookrightarrow \rangle$ with labeled transitions $\langle m_1, v_1 \rangle \stackrel{a}{\longrightarrow} \langle m_2, v_2 \rangle$ between method-local states $m_1, m_2 \in Q$ paired with finite-domain shared-state valuations $v_1, v_2 \in V$. The initial and final states $I, F \subseteq Q$ represent the method-local states passed to, and returned from, M.

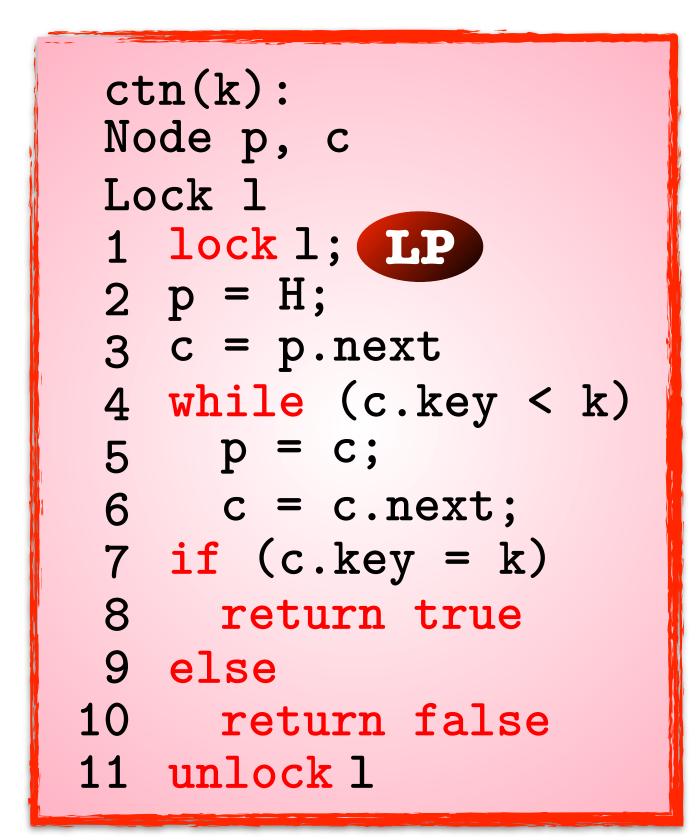
A *client* of a library L is a finite automaton $C = \langle Q, \Sigma, \ell_0, \hookrightarrow \rangle$ with initial state $\ell_0 \in Q$ and transitions $\hookrightarrow \subseteq Q \times \Sigma \times Q$ labeled by the alphabet $\Sigma =$ $\{M(m_0, m_f): M \in L, m_0, m_f \in Q_M\}$ of library method calls

most general client $C^* = \langle Q, \Sigma, \ell_0, \hookrightarrow \rangle$ of a library L nondeterministically calls L's methods in any order: $Q = \{\ell_0\}$ and $\hookrightarrow = Q \times \Sigma \times Q$.

Libraries

Example: Coarse-Grain Sets



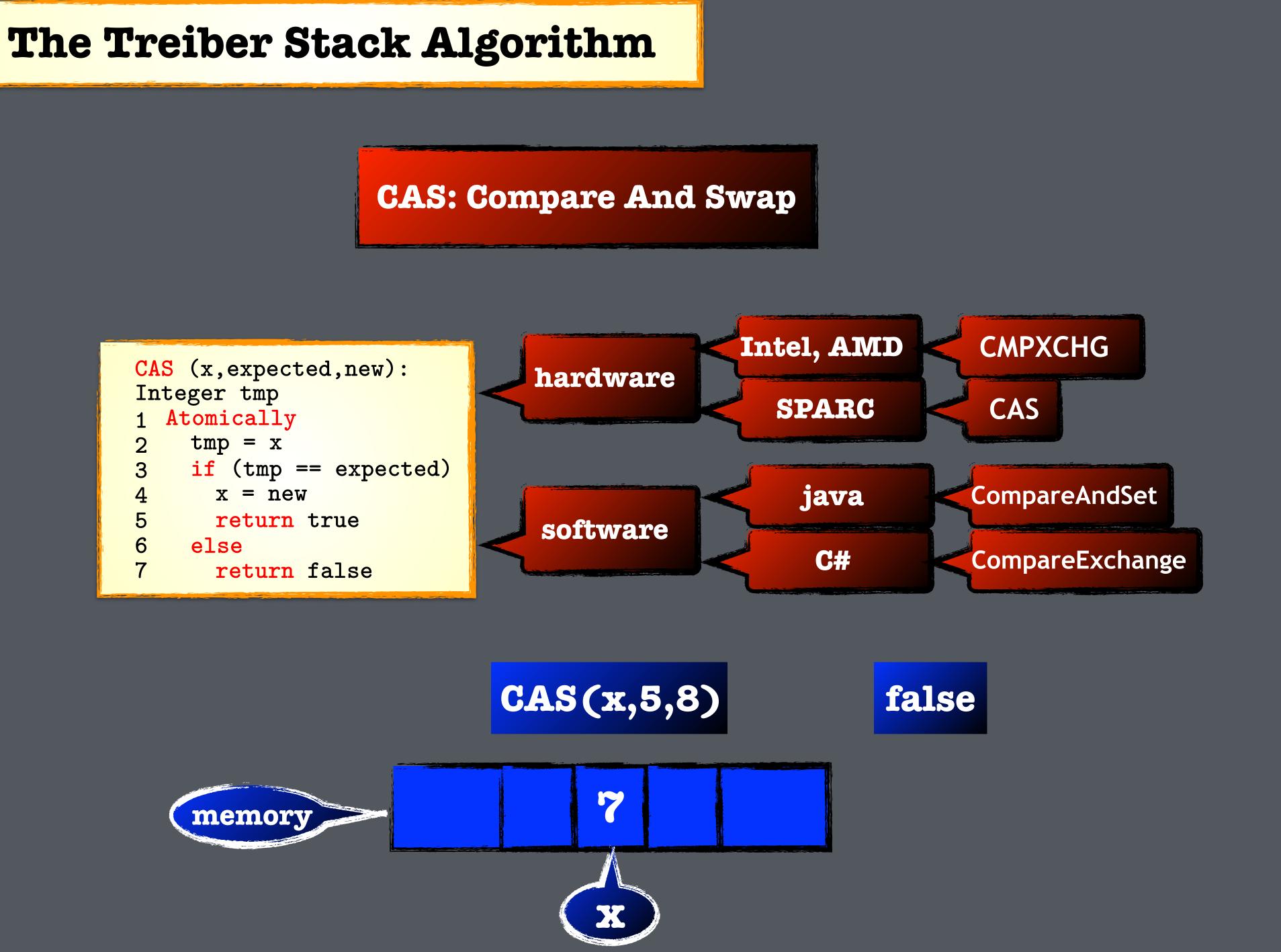


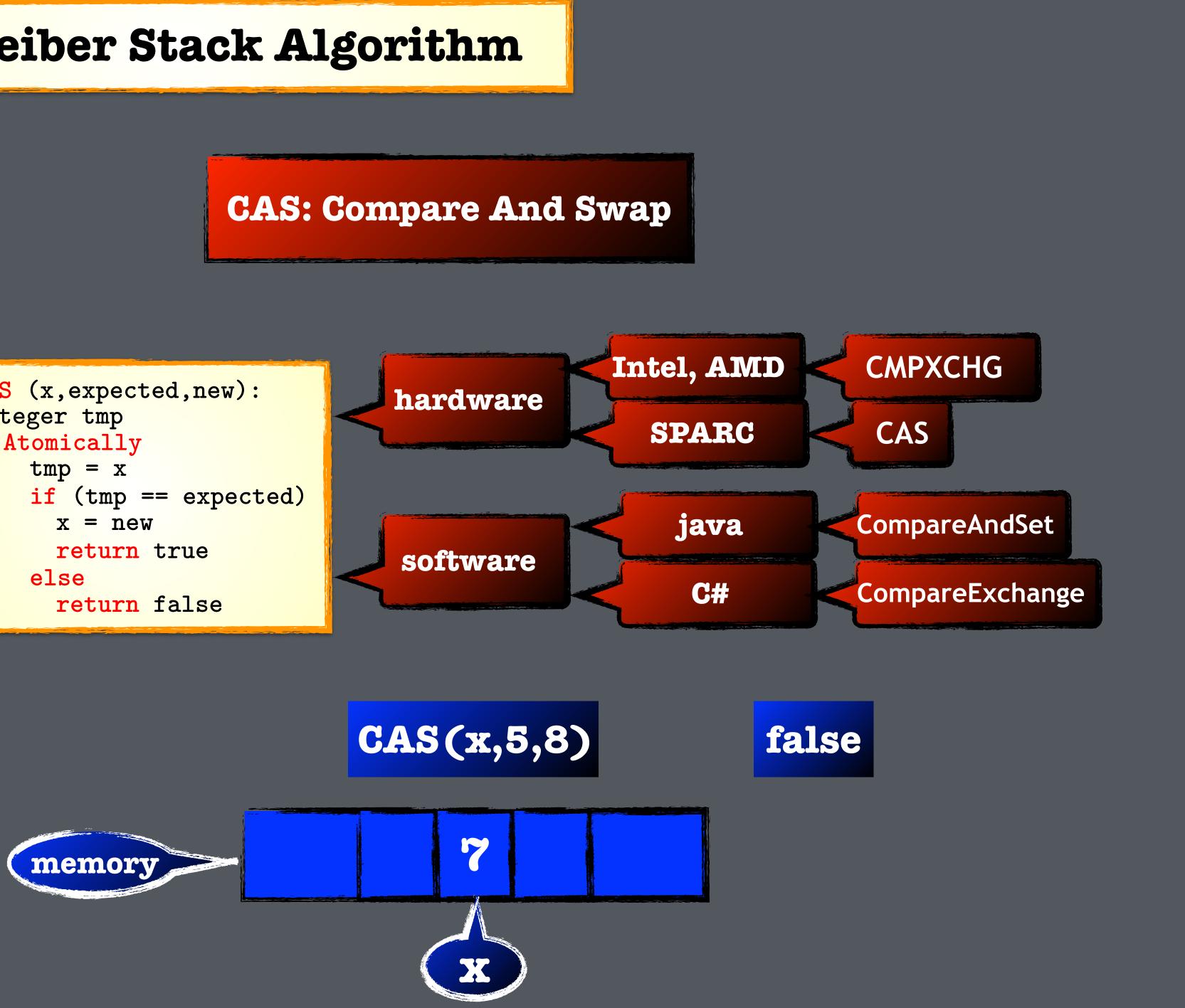
Example: Fine-Grain Sets

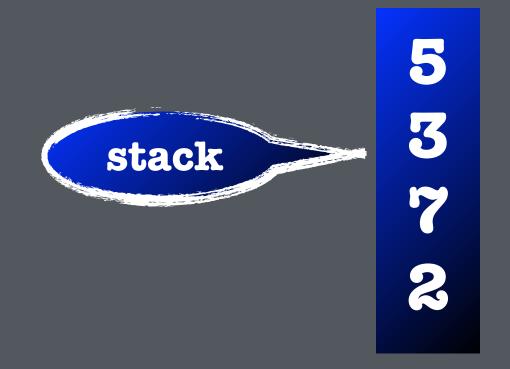
```
add(k):
Node p, c
 1 lock(H)
  p = H
 2
  c = p.next;
 3
4 lock(c);
5 while (c.key < k)
   unlock(p);
 6
 7
   p = c;
8 c = c.next;
9
   lock(c);
  if (c.key = k)
10
    return false
11
12 else
13 n = new Node(k, -)
14 \quad n.next = c
15 \quad p.next = n
16
     return true
17
     unlock(c)
     unlock(p)
18
```

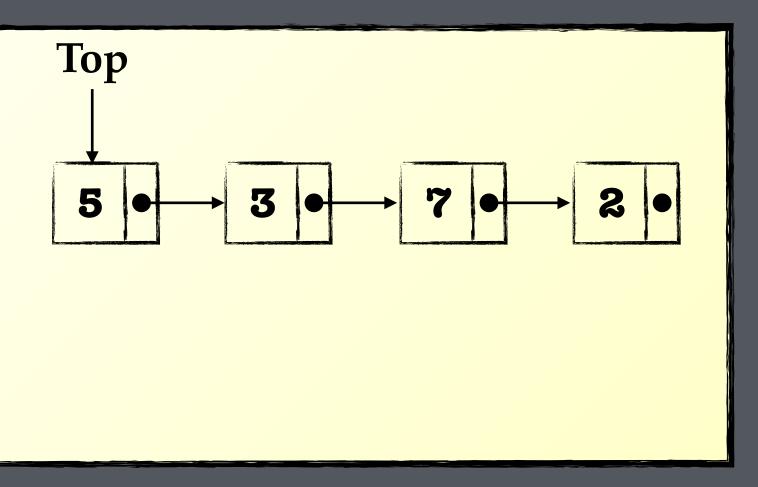
LP

"time point at which I find a key \geq input key"

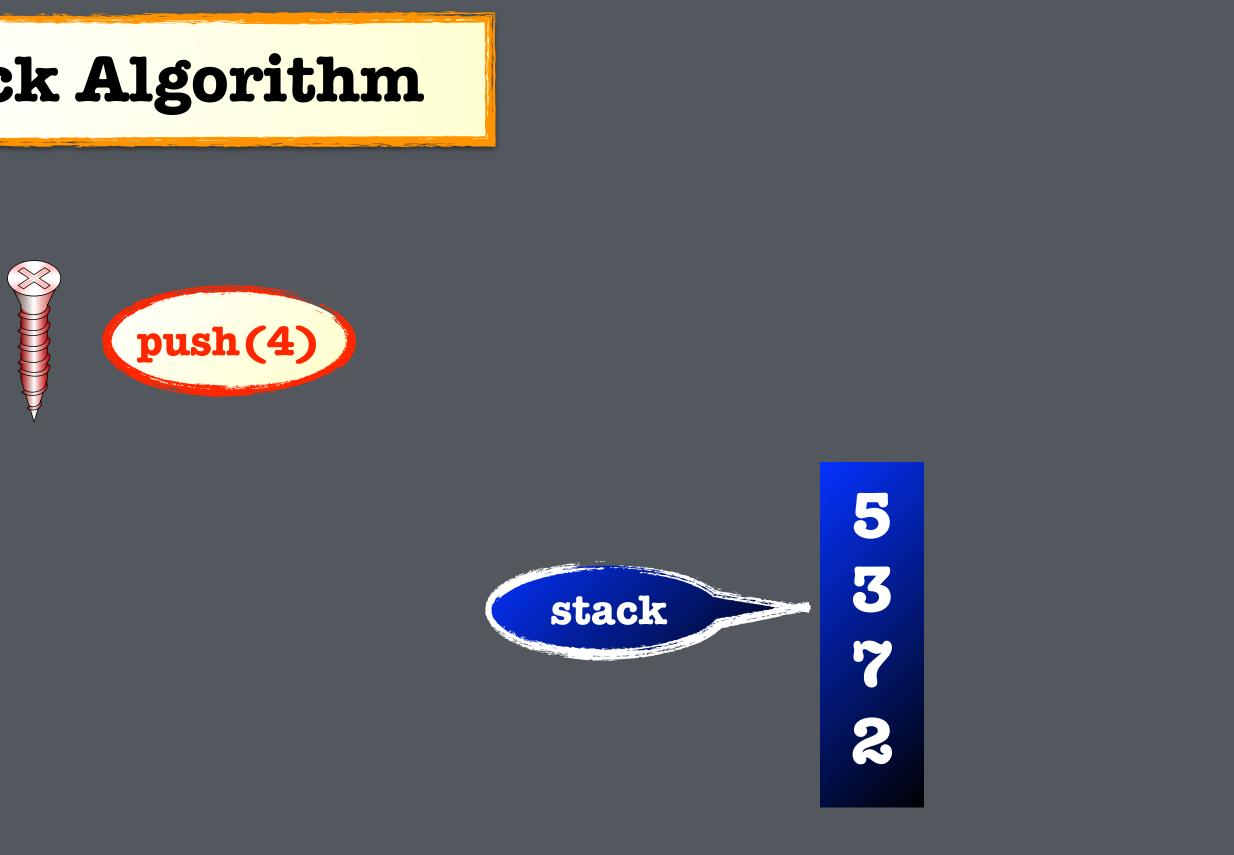


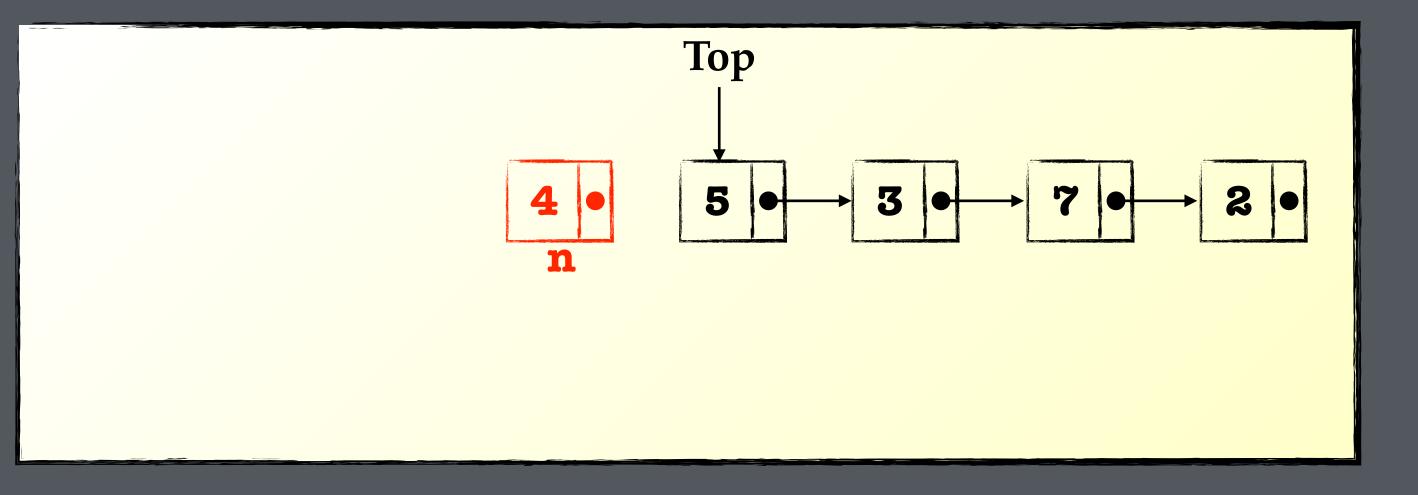


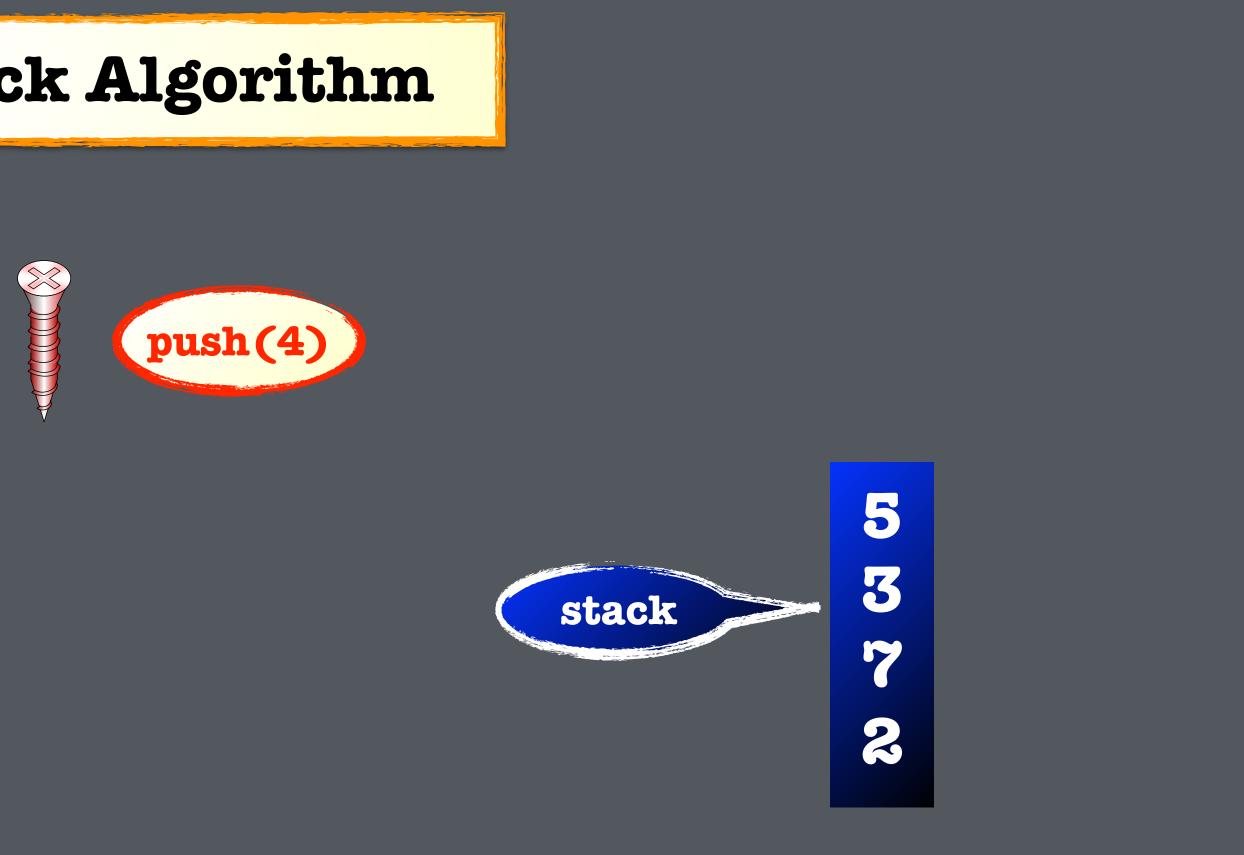


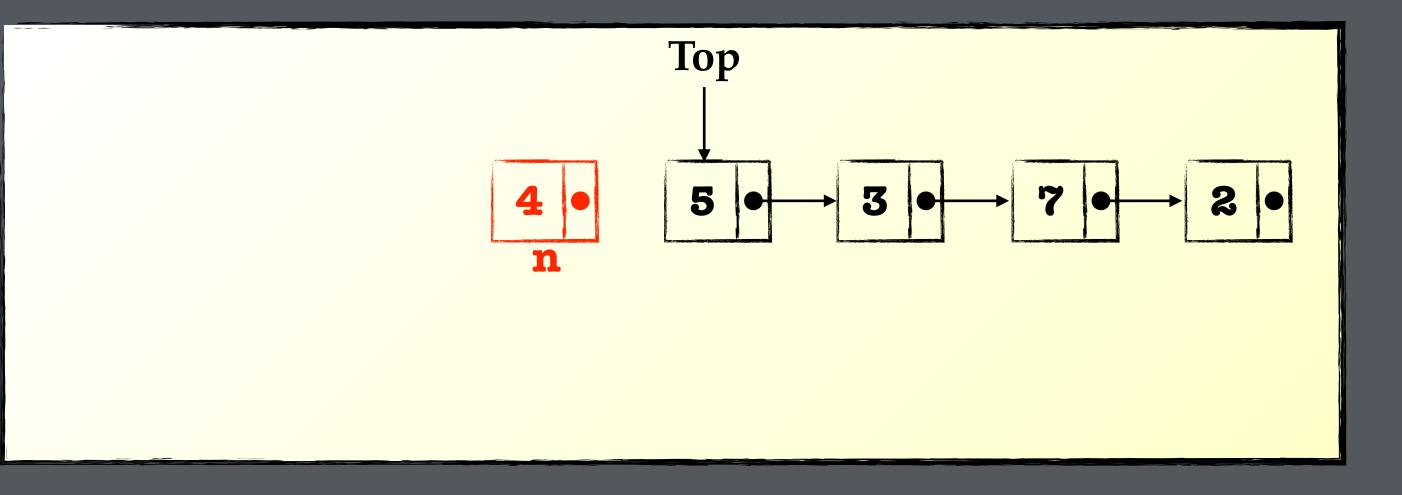


push(k): Node t 1 n = new Node(k,-) $\leftarrow \sim \sim$ 2 while (true) t = Top 3 n.next = t4 if (CAS (Top,t,n)) 5 exit 6

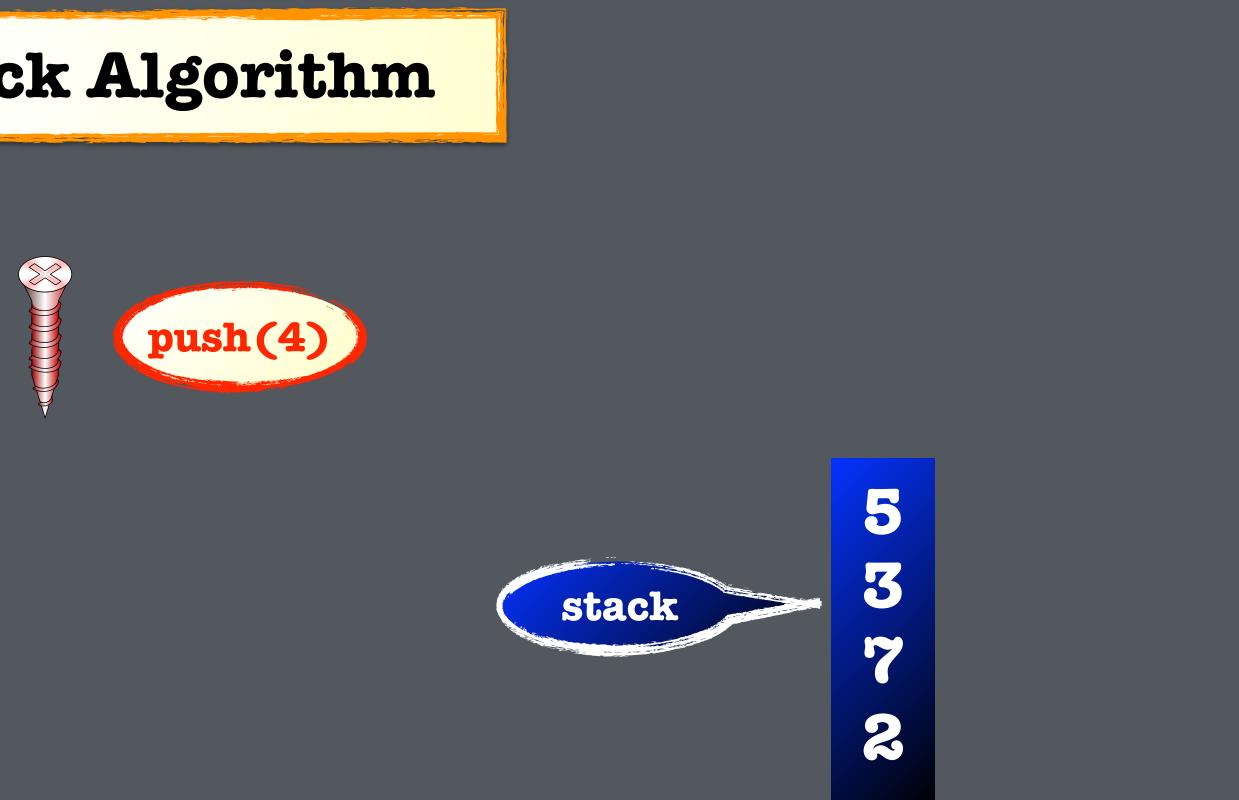


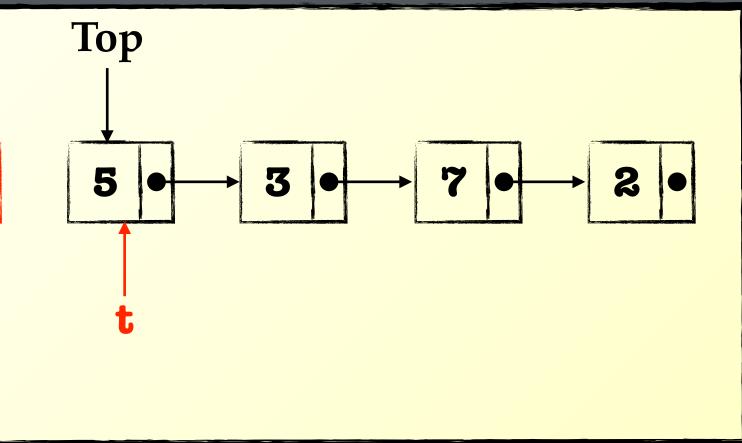




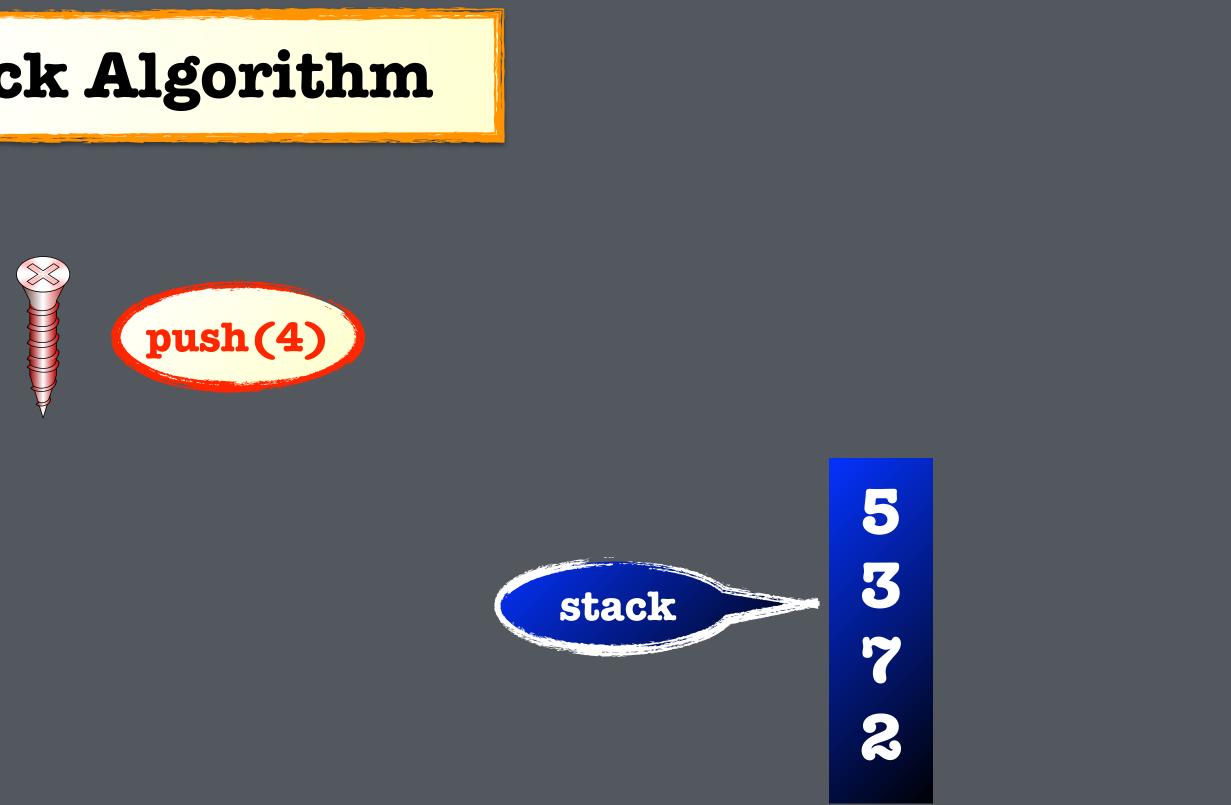


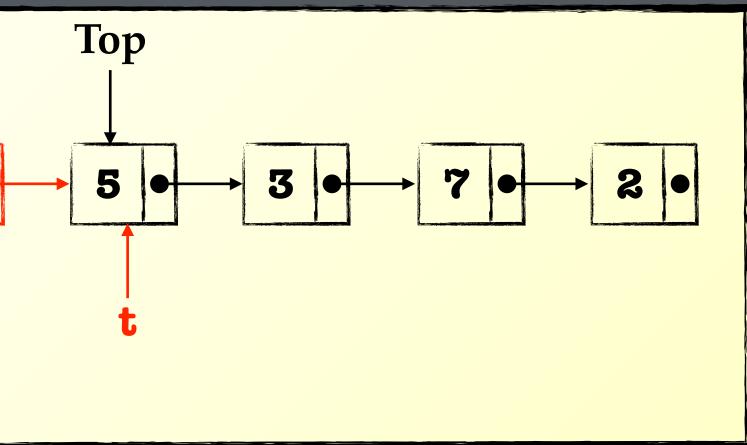
```
push(k):
Node t
1 n = new Node(k,-)
2 while (true)
3 t = Top\leftarrow \sim
4 n.next = t
5 if (CAS (Top,t,n))
6 exit
```



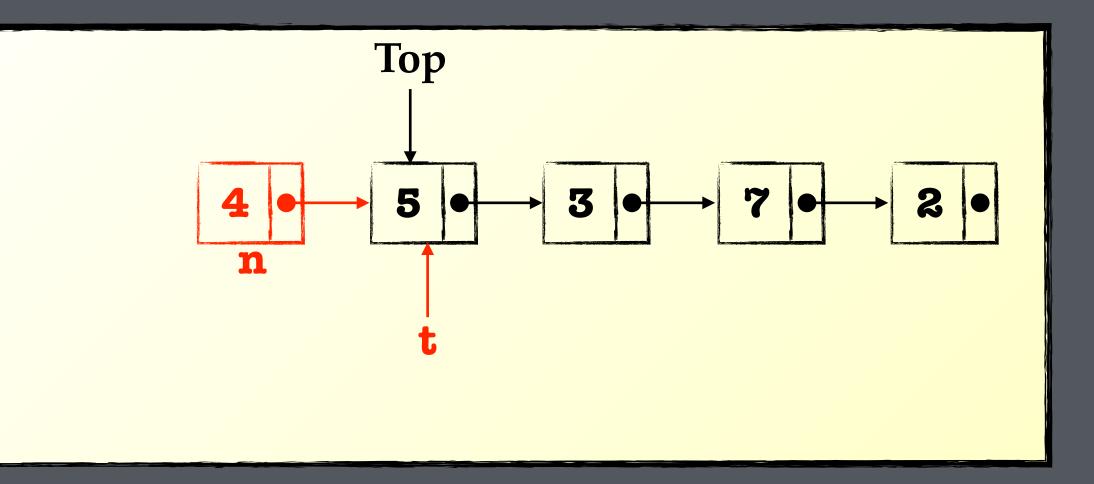


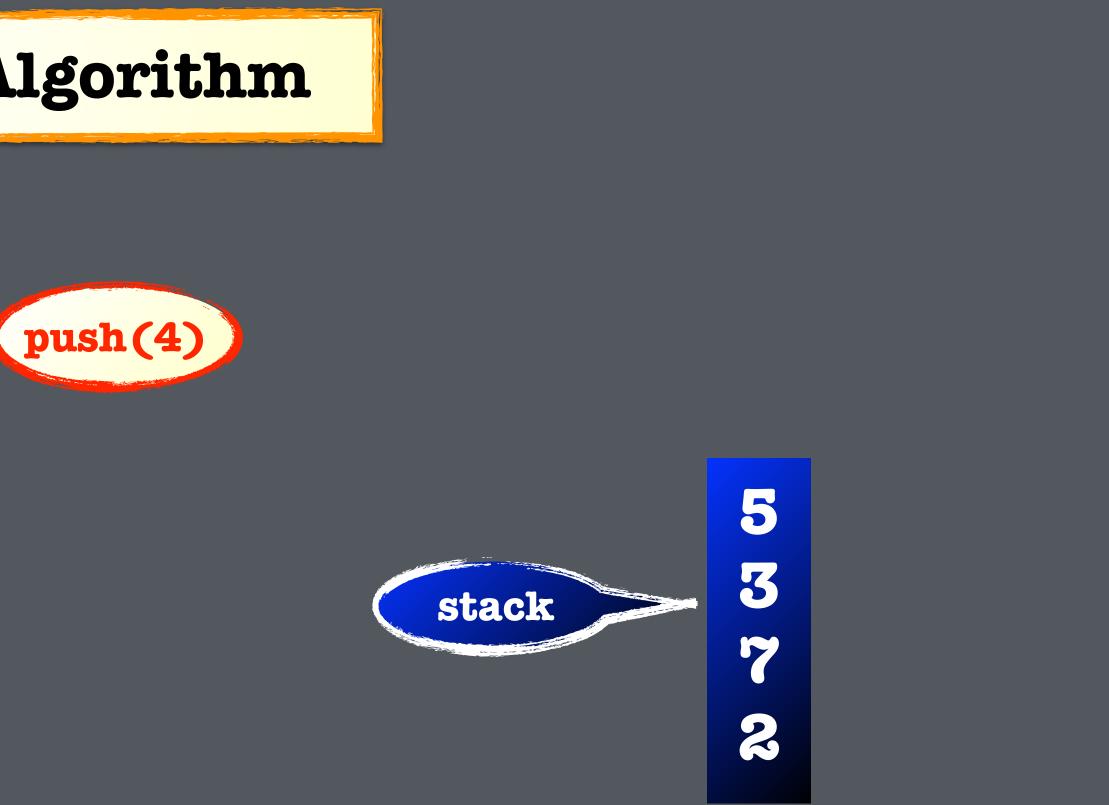
```
push(k):
Node t
1 n = new Node(k,-)
2 while (true)
3 t = Top
4 n.next = t\leftarrow \leftarrow \leftarrow
5 if (CAS (Top,t,n))
6 exit
```



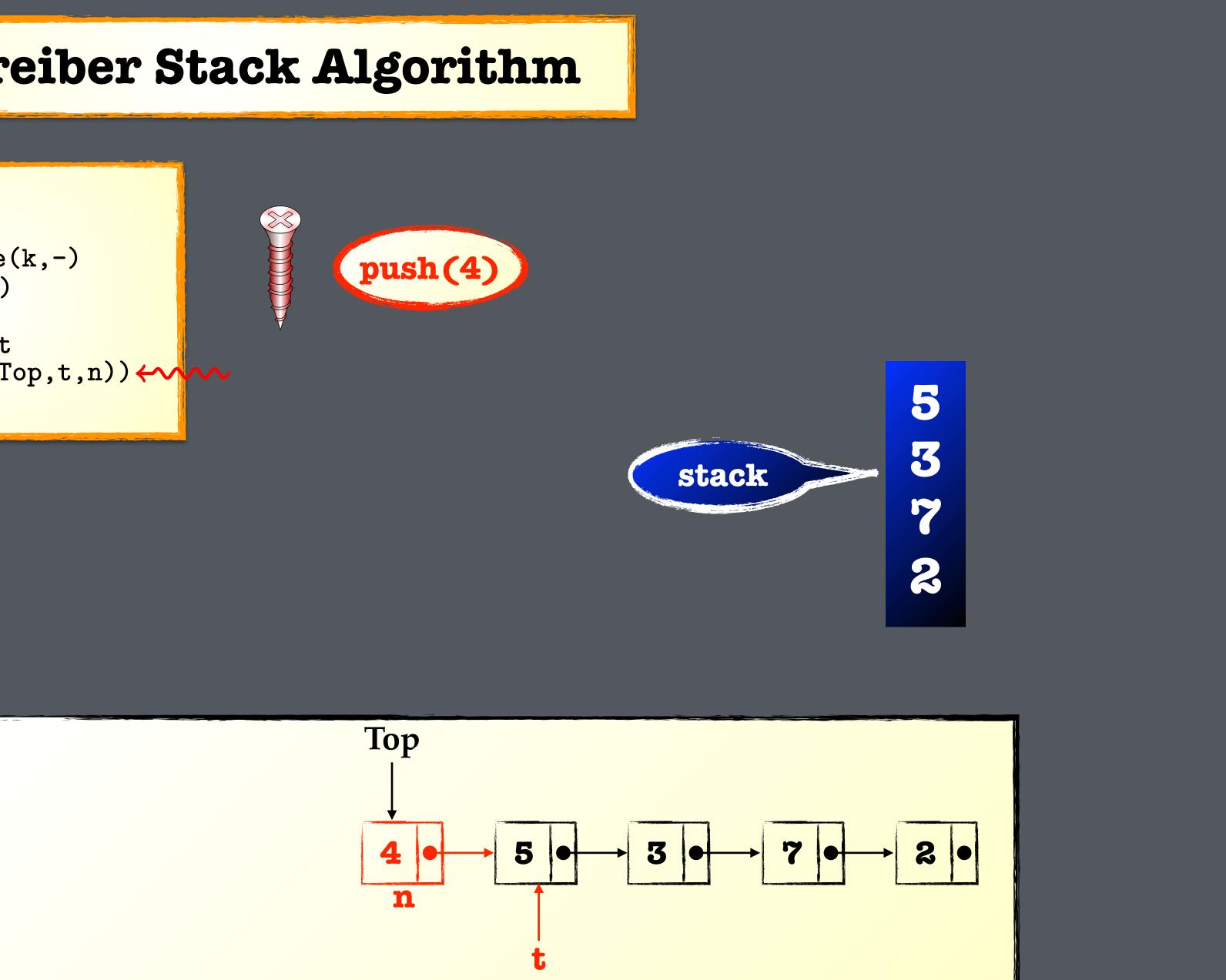


push(k): Node t 1 n = new Node(k, -)2 while (true) t = Top 3 n.next = t if (CAS (Top,t,n)) ~~~~~~ 4 5 exit 6

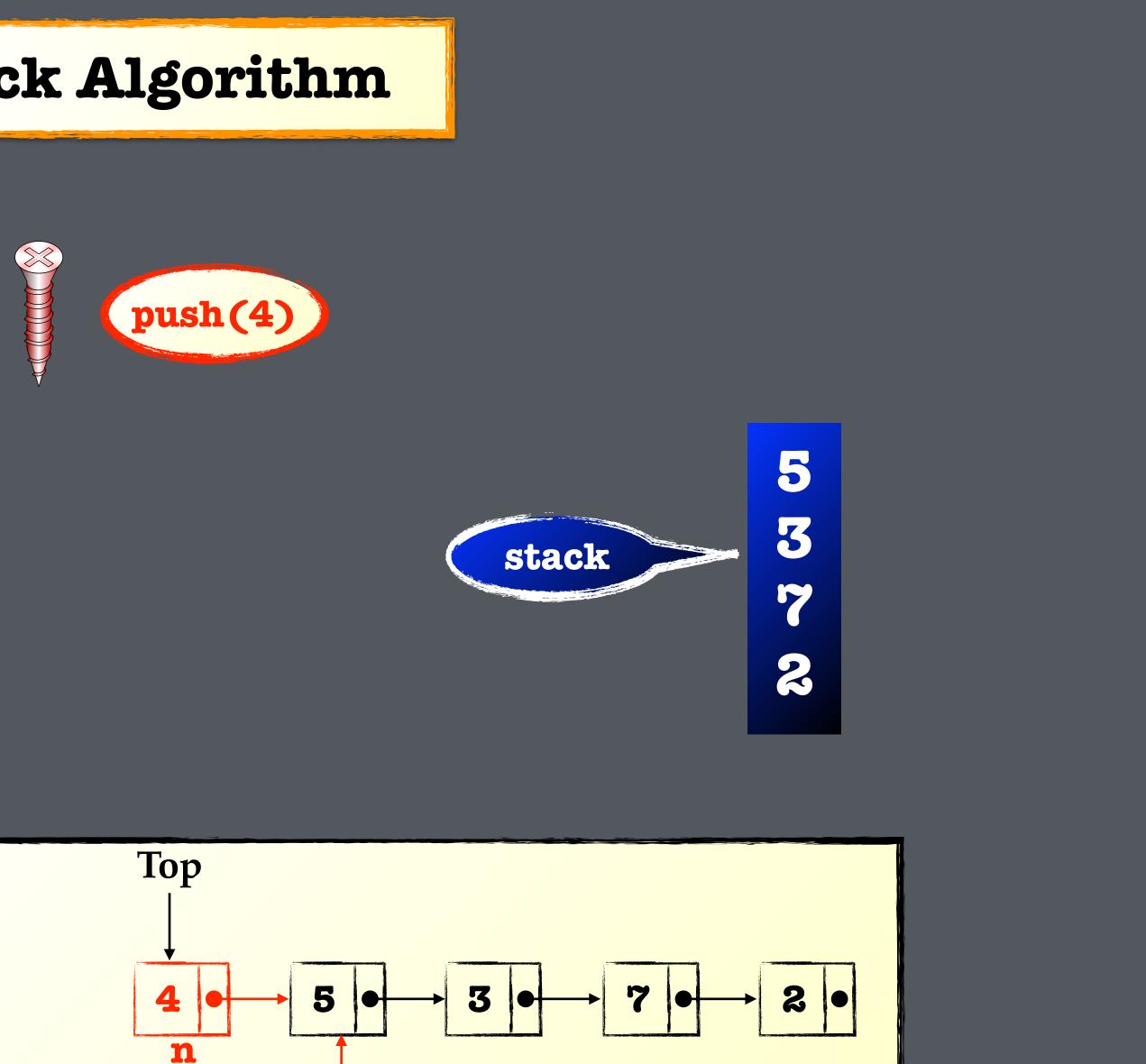


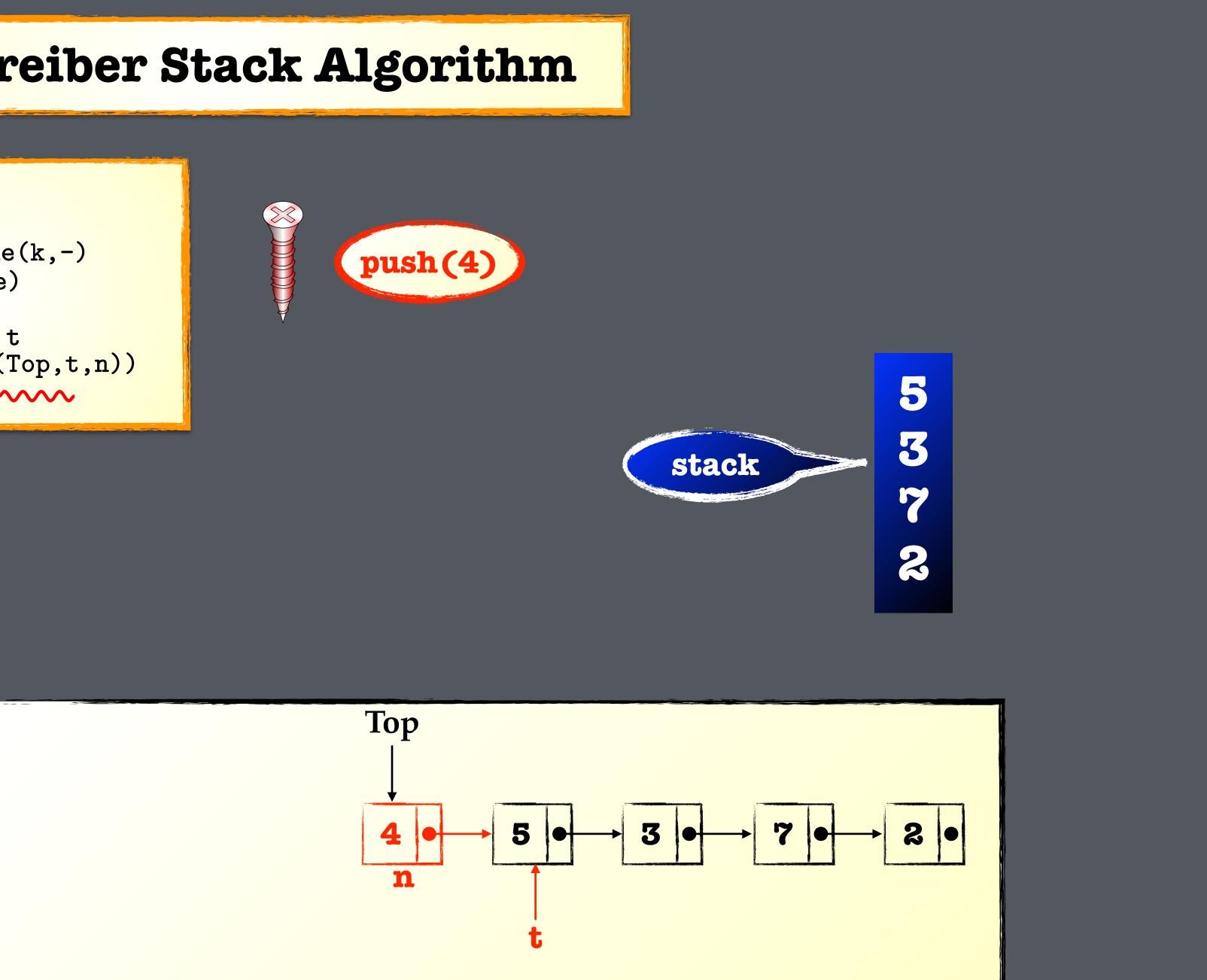


push(k): Node t 1 n = new Node(k, -)2 while (true) t = Top 3 4 5 exit 6

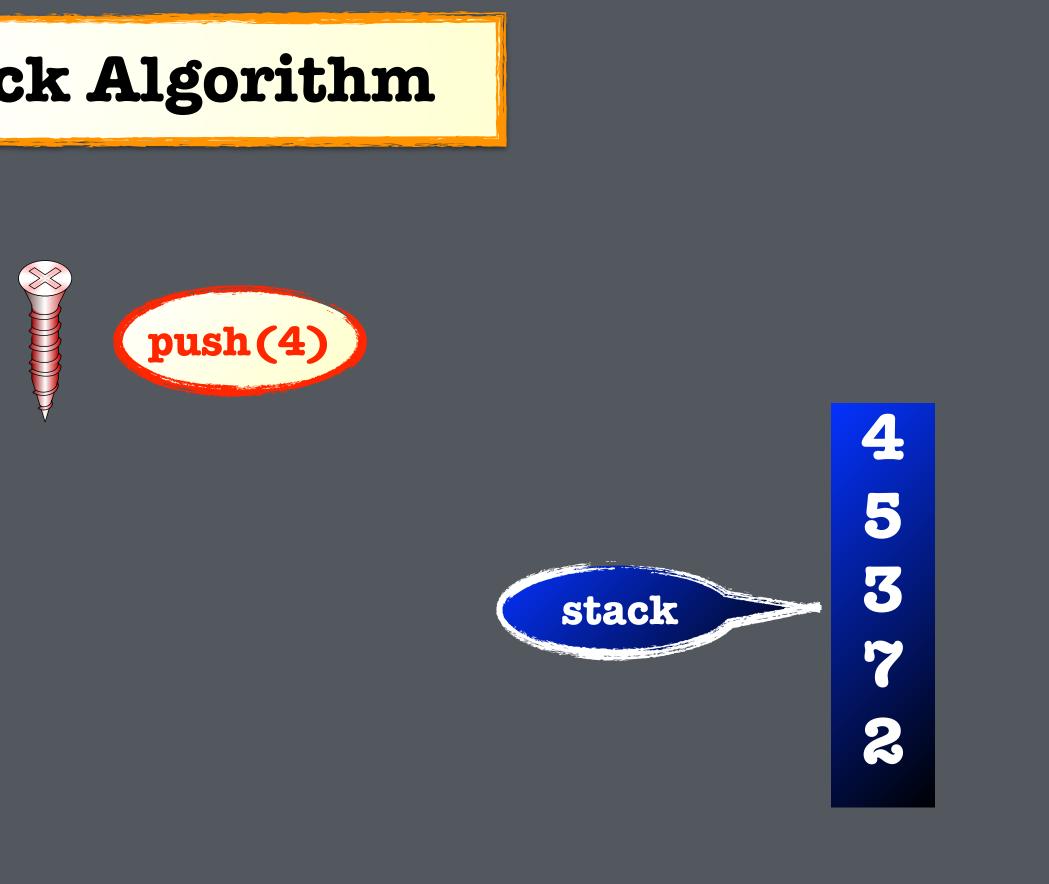


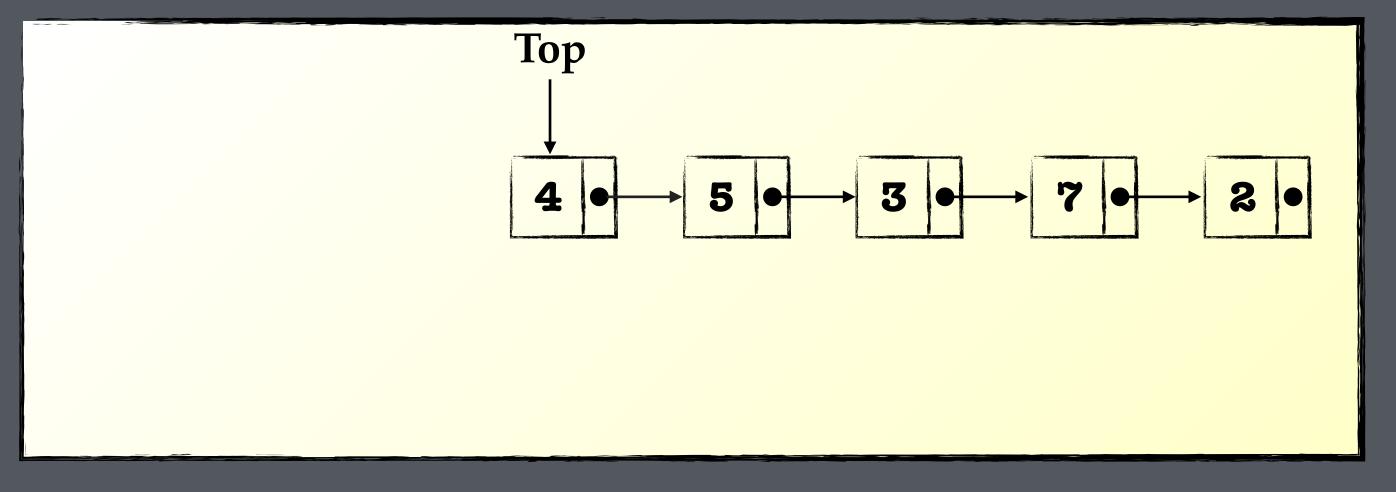
```
push(k):
Node t
1 n = new Node(k, -)
2 while (true)
    t = Top
3
   n.next = t
4
   if (CAS (Top,t,n))
5
      exit \longleftarrow
6
```



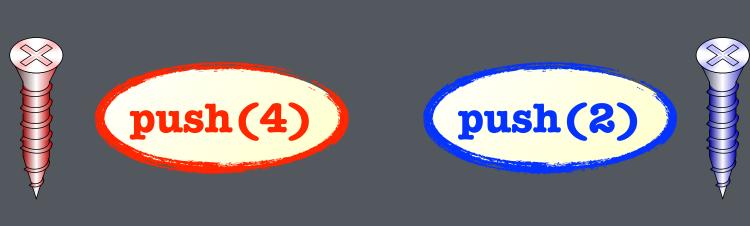


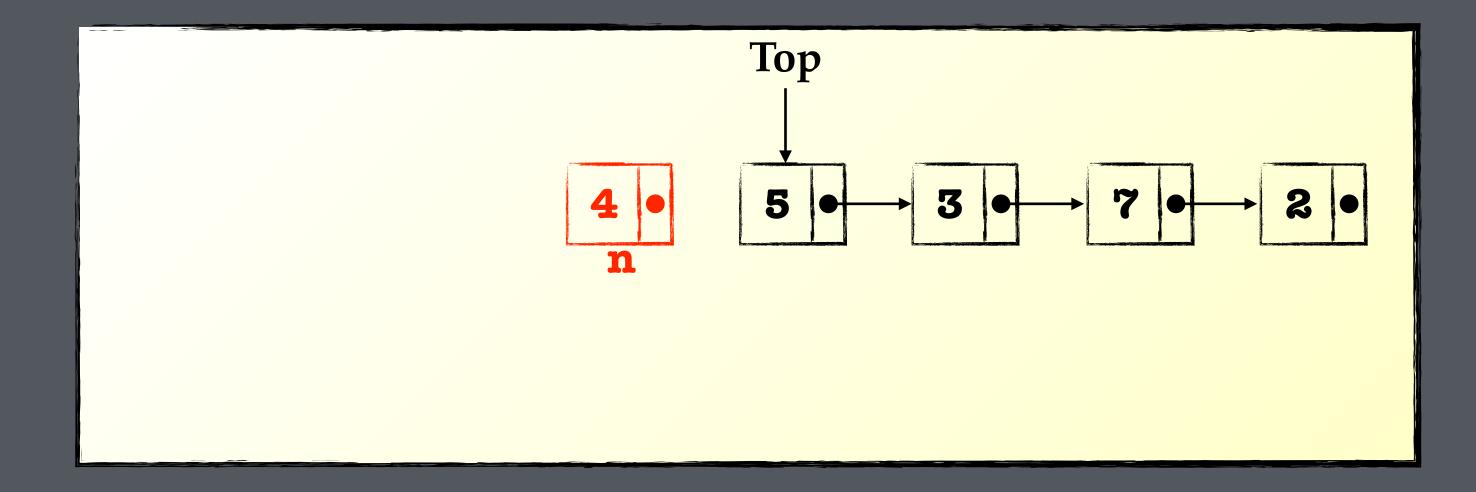
```
push(k):
Node t
1 n = new Node(k,-)
2 while (true)
3 t = Top
4 n.next = t
5 if (CAS (Top,t,n))
6 exit \leftarrow \cdots
```





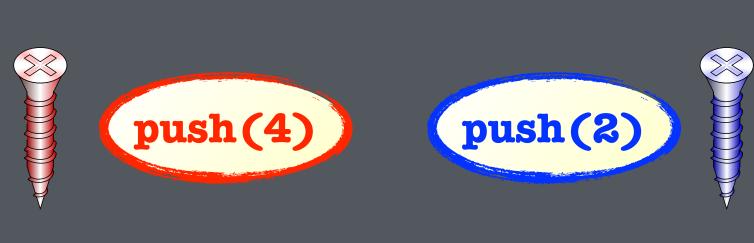
push(k): Node t 1 n = new Node(k,-) \longleftarrow 2 while (true) t = Top 3 n.next = t4 if (CAS (Top,t,n)) 5 6 exit

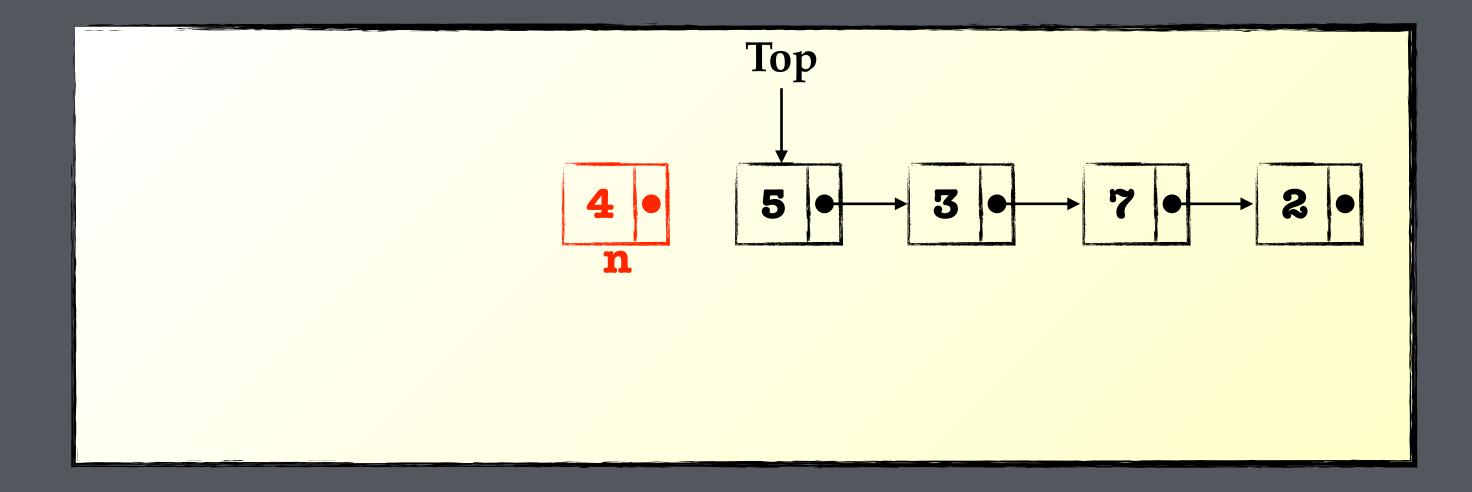




Concurrent push operations

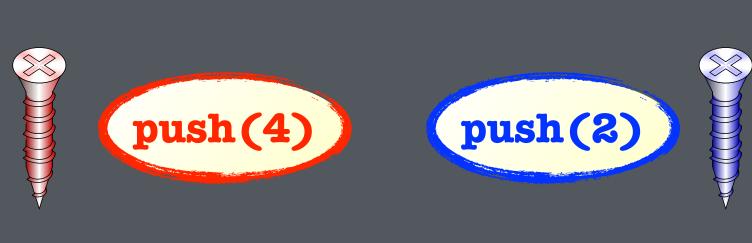
```
push(k):
Node t
1 n = new Node(k,-)
2 while (true) + + + + +
3 t = Top
4 n.next = t
5 if (CAS (Top,t,n))
6 exit
```

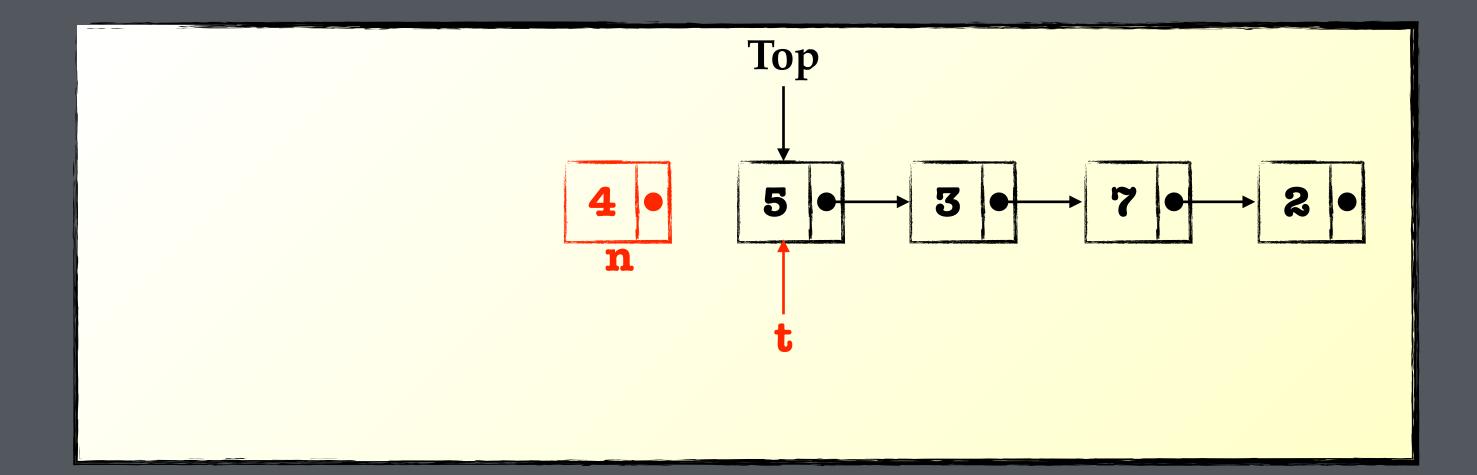




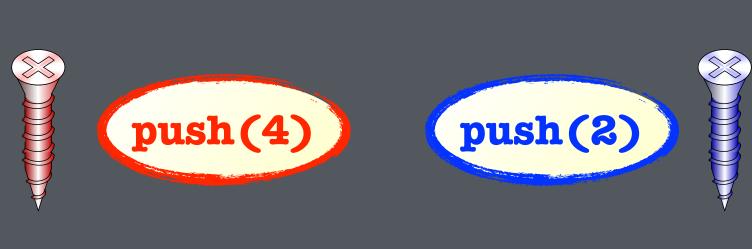
Concurrent push operations

```
push(k):
Node t
1 n = new Node(k,-)
2 while (true)
3 t = Top \leftarrow \leftarrow \leftarrow
4 n.next = t
5 if (CAS (Top,t,n))
6 exit
```



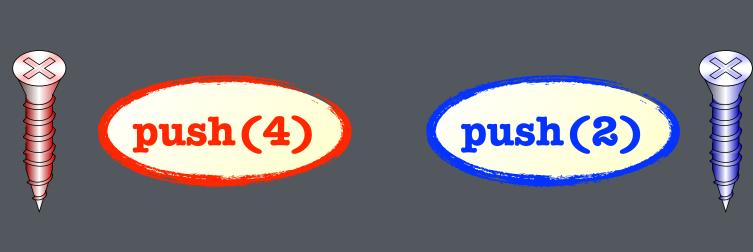


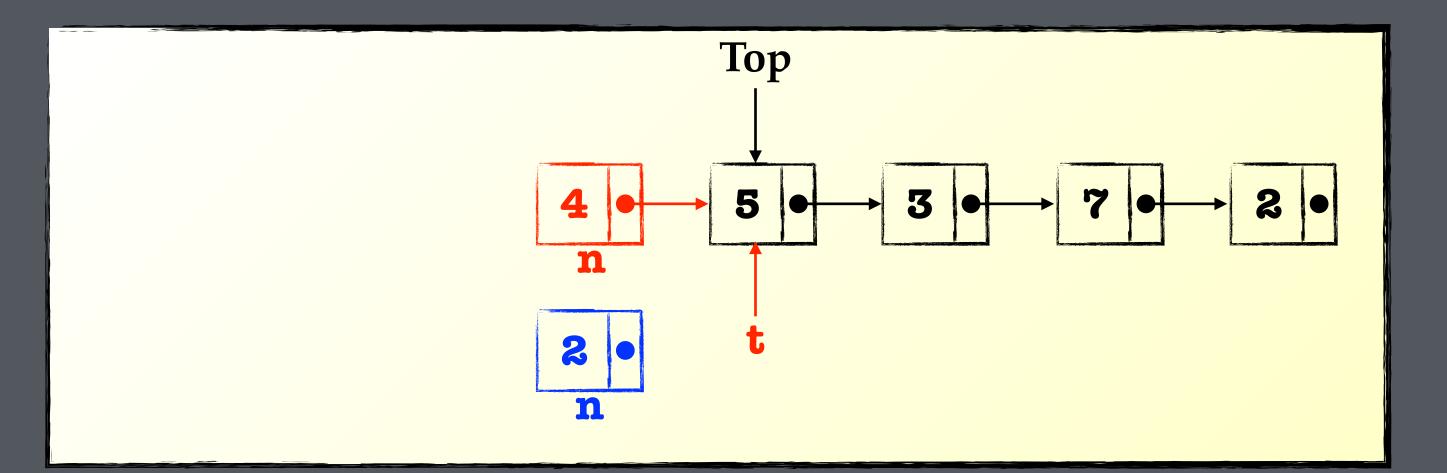
```
push(k):
Node t
1 n = new Node(k,-)
2 while (true)
3 t = Top
4 n.next = t \leftarrow \sim \sim
5 if (CAS (Top,t,n))
6 exit
```





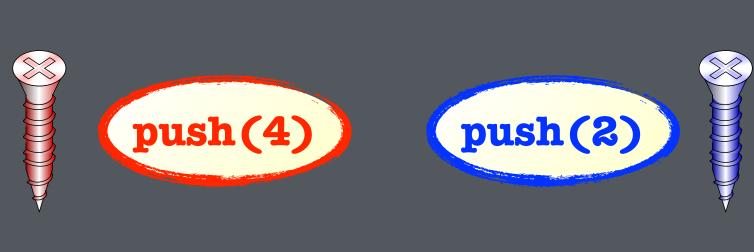
```
push(k):
Node t
1 n = new Node(k,-)
2 while (true)
3 t = Top
4 n.next = t \leftarrow \sim \sim
5 if (CAS (Top,t,n))
6 exit
```

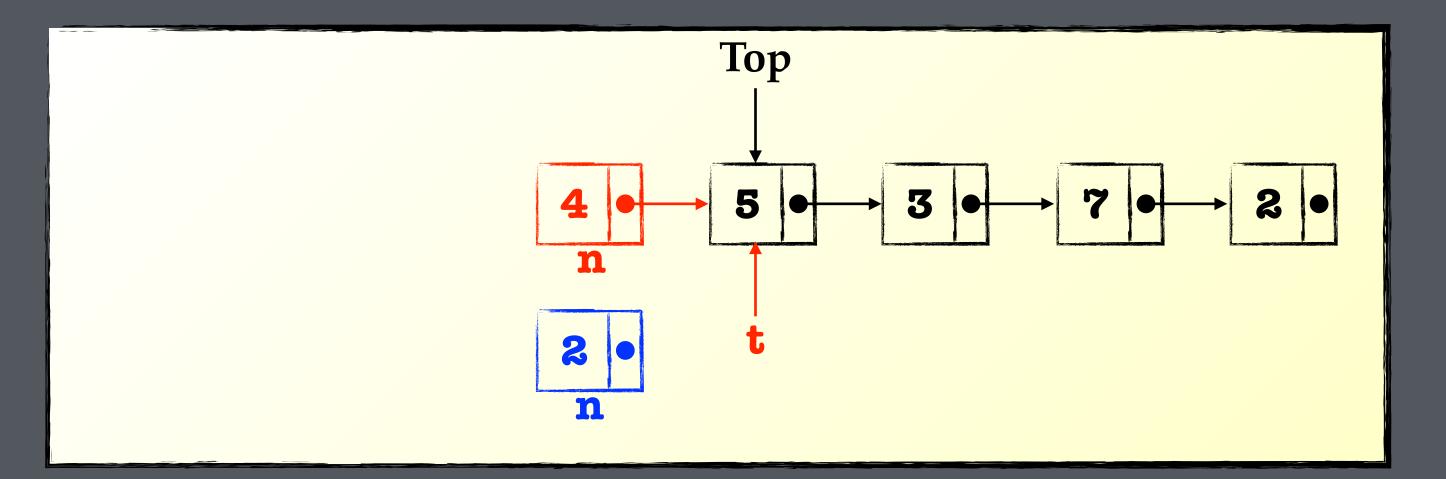




push(k): Node t 1 n = new Node(k, -) 2 while (true) t = Top 3 n.next = t4 if (CAS (Top,t,n)) 5 6 exit

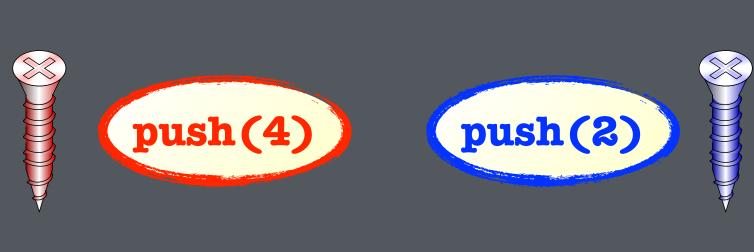
```
push(k):
Node t
1 n = new Node(k,-)
2 while (true)
3 t = Top
4 n.next = t \leftarrow \sim \sim
5 if (CAS (Top,t,n))
6 exit
```

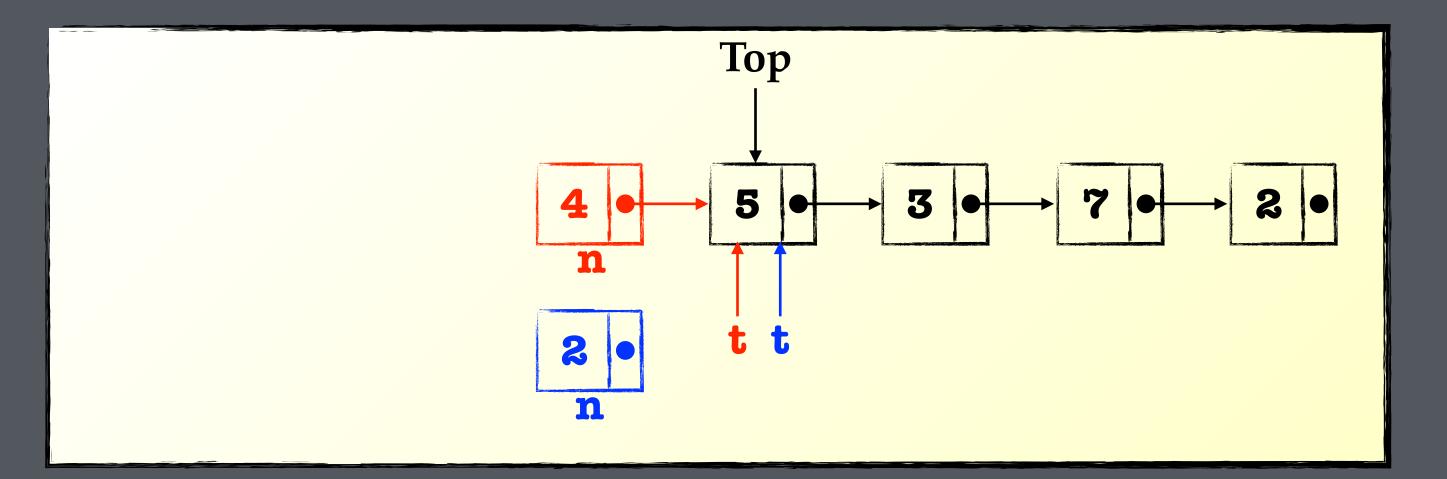




push(k): Node t 1 n = new Node(k, -)2 t = Top 3 n.next = t4 if (CAS (Top,t,n)) 5 6 exit

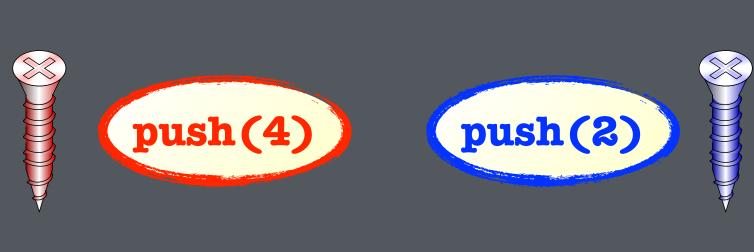
```
push(k):
Node t
1 n = new Node(k,-)
2 while (true)
3 t = Top
4 n.next = t \leftarrow \sim \sim
5 if (CAS (Top,t,n))
6 exit
```

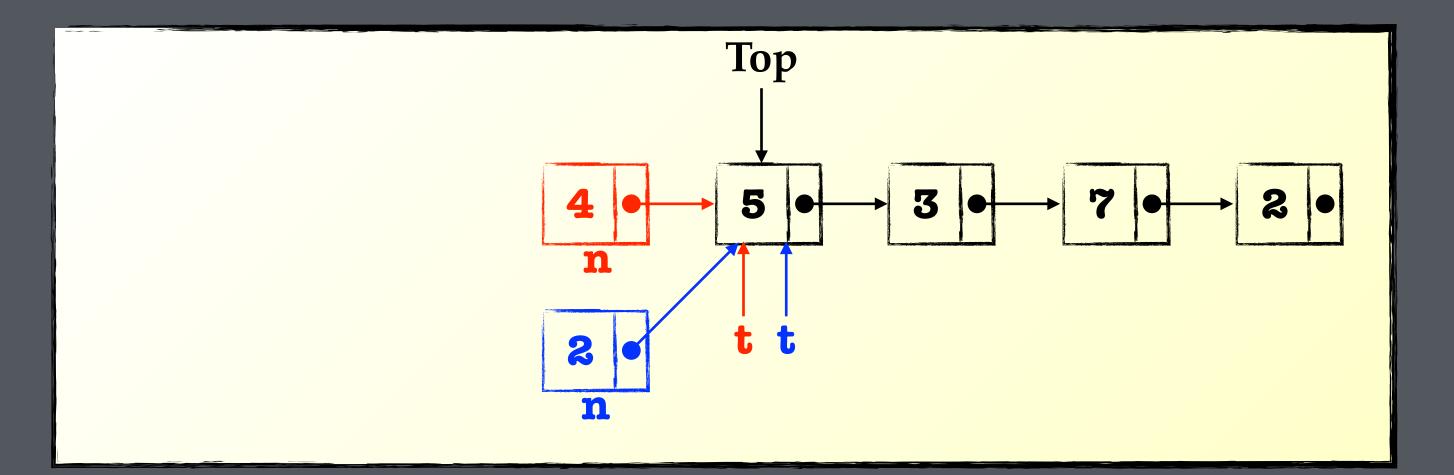




push(k): Node t 1 n = new Node(k, -)while (true) 2 t = Top + · · · · · 3 n.next = t4 if (CAS (Top,t,n)) 5 6 exit

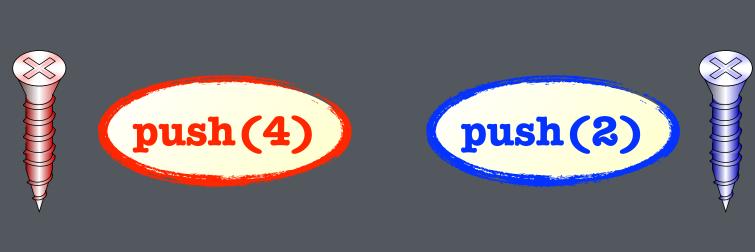
```
push(k):
Node t
1 n = new Node(k,-)
2 while (true)
3 t = Top
4 n.next = t \leftarrow \sim \sim
5 if (CAS (Top,t,n))
6 exit
```

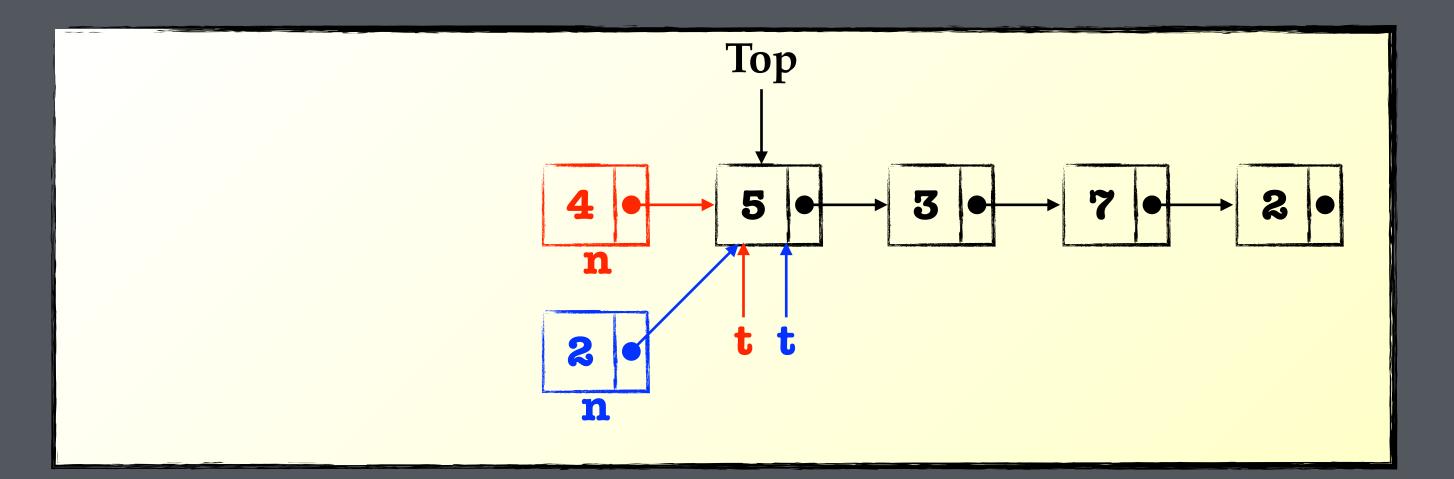




push(k): Node t 1 n = new Node(k, -)while (true) 2 t = Top 3 $n.next = t \leftrightarrow \cdots$ 4 if (CAS (Top,t,n)) 5 6 exit

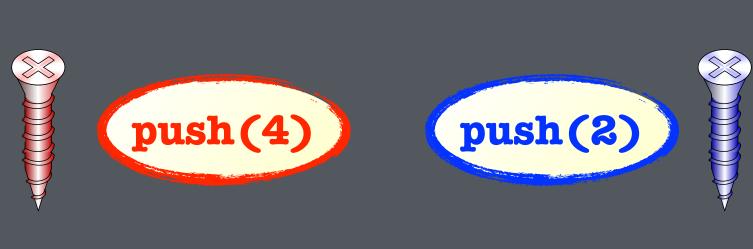
```
push(k):
Node t
1 n = new Node(k,-)
2 while (true)
3 t = Top
4 n.next = t \leftarrow \sim \sim
5 if (CAS (Top,t,n))
6 exit
```

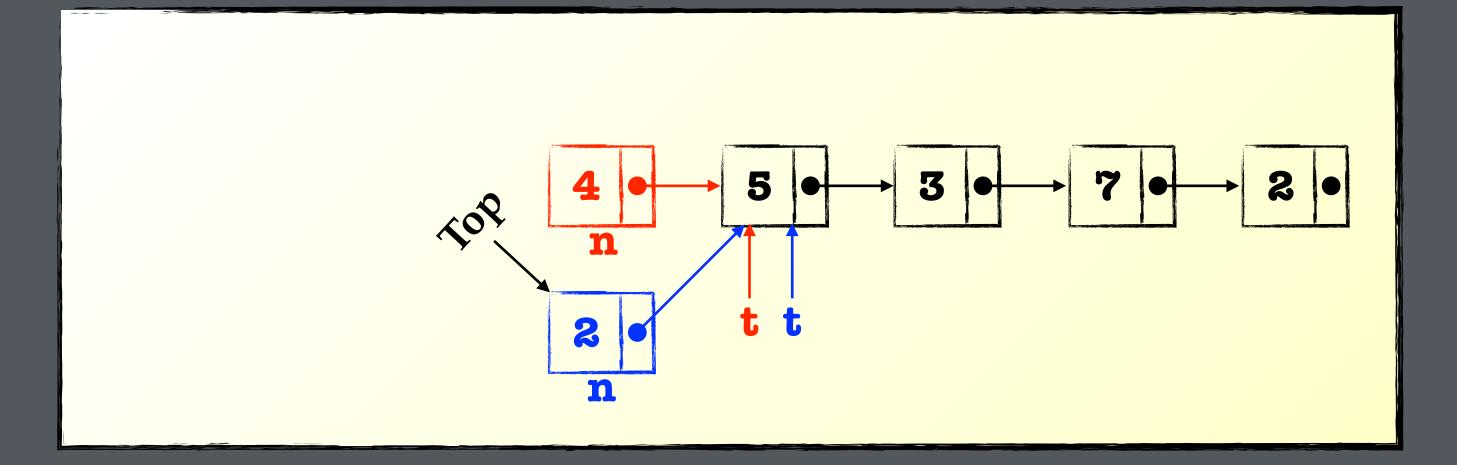




push(k): Node t 1 n = new Node(k, -)while (true) 2 t = Top 3 n.next = t4 if (CAS (Top,t,n)) 5 6 exit

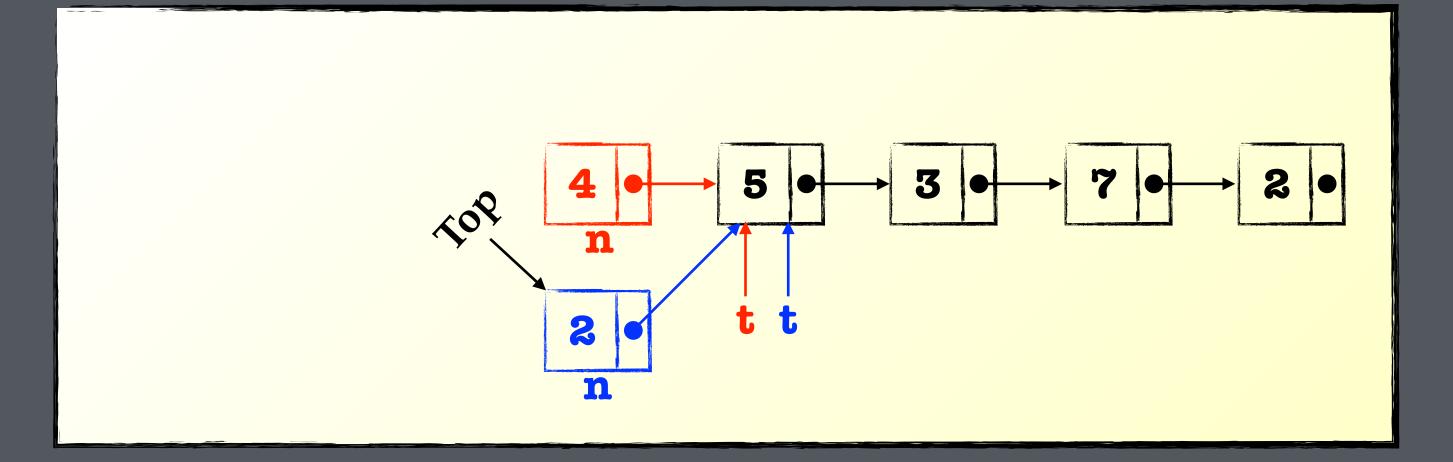
```
push(k):
Node t
1 n = new Node(k,-)
2 while (true)
3 t = Top
4 n.next = t \leftarrow \sim \sim
5 if (CAS (Top,t,n))
6 exit
```





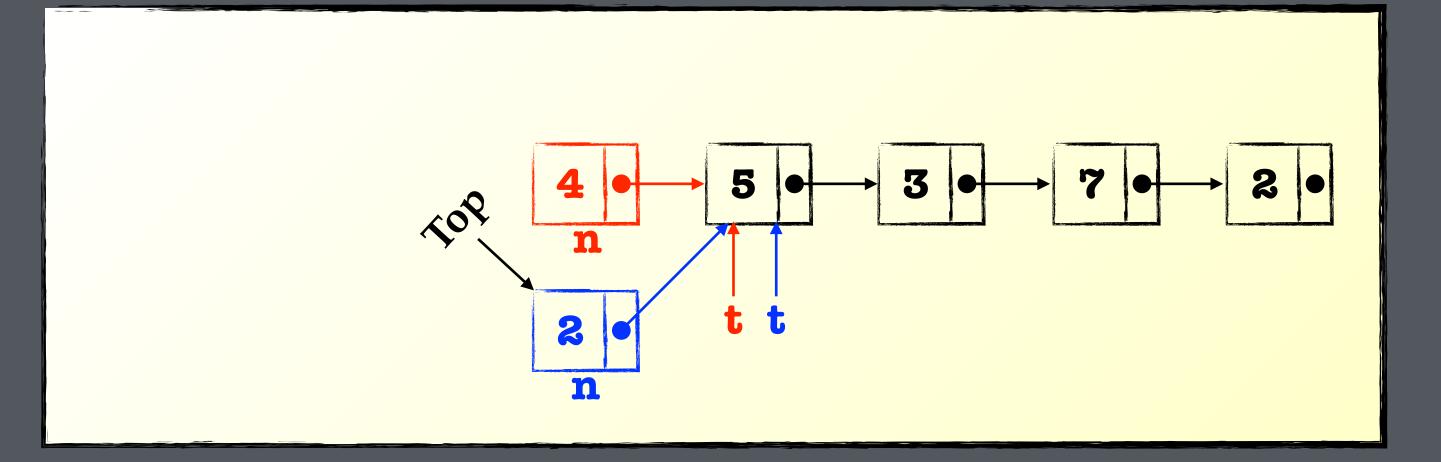
push(k): Node t 1 n = new Node(k, -)while (true) 2 t = Top 3 n.next = t4 if (CAS (Top,t,n)) 5 6 exit

push(k): Node t 1 n = new Node(k, -)2 while (true) t = Top 3 n.next = t4 if (CAS (Top,t,n)) 5 6 exit

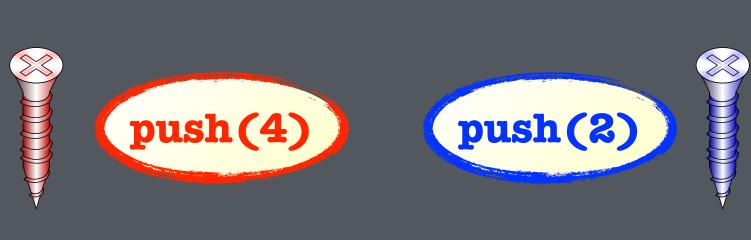


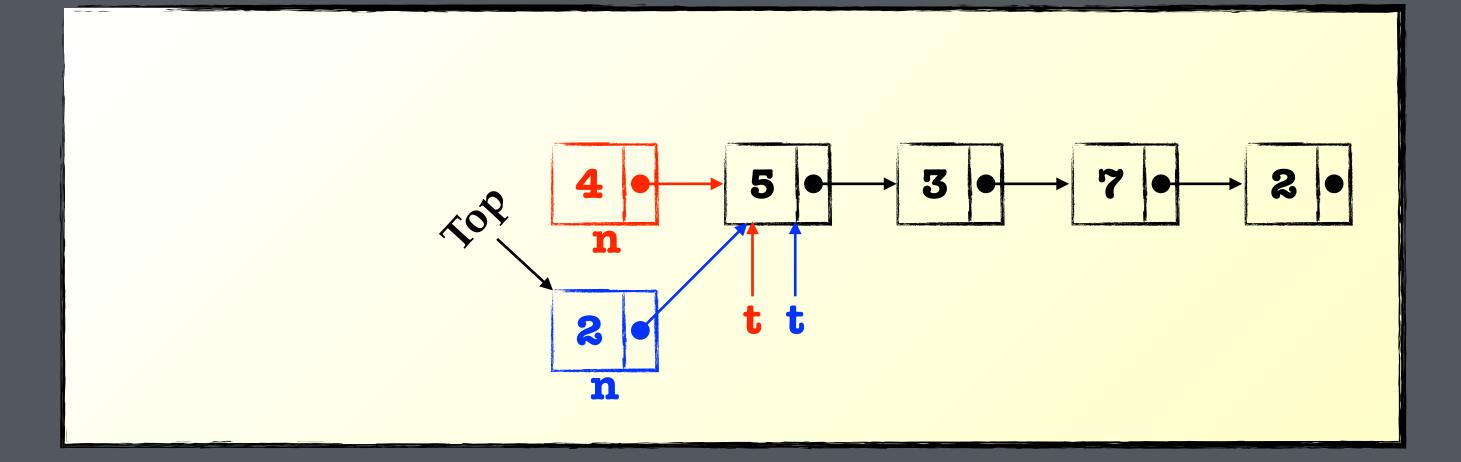
push(k): Node t 1 n = new Node(k, -)while (true) 2 t = Top 3 n.next = t4 if (CAS (Top,t,n)) 5 6 exit $\leftrightarrow \sim \sim$

push(k): X Node t 1 n = new Node(k, -)push(4) 2 while (true) t = Top 3 n.next = t4 if (CAS (Top,t,n)) ↔ ↓ ↓ ↓ 5 6 exit

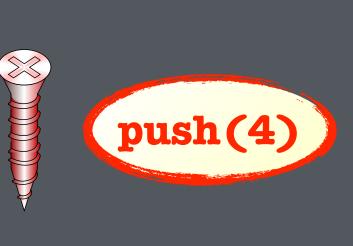


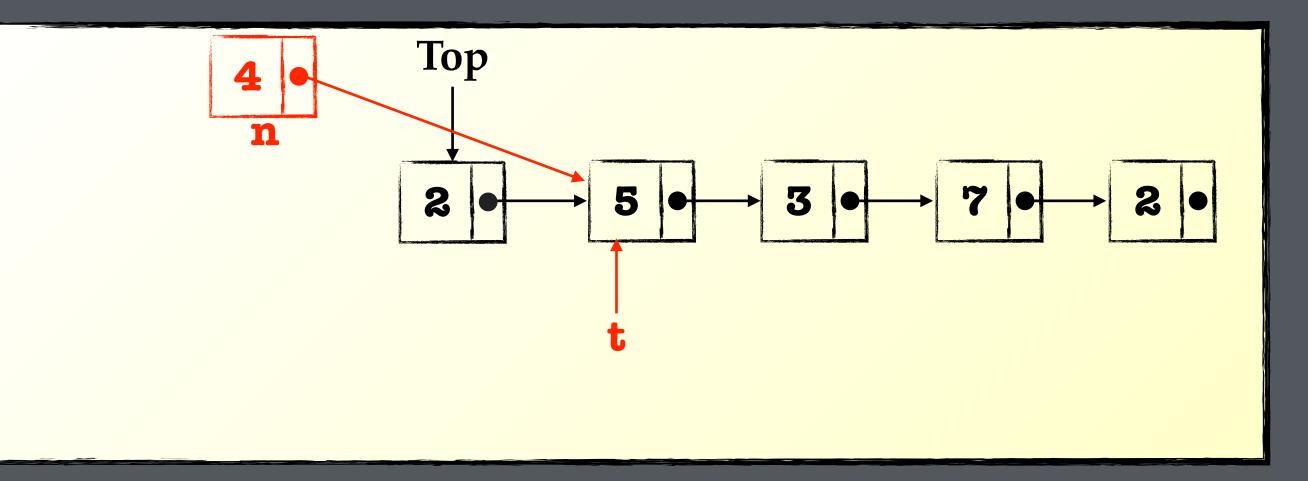
push(k): Node t 1 n = new Node(k, -)2 while (true) t = Top 3 n.next = t4 if (CAS (Top,t,n)) 5 6 exit $\leftrightarrow \sim \sim$



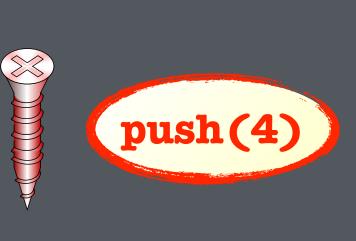


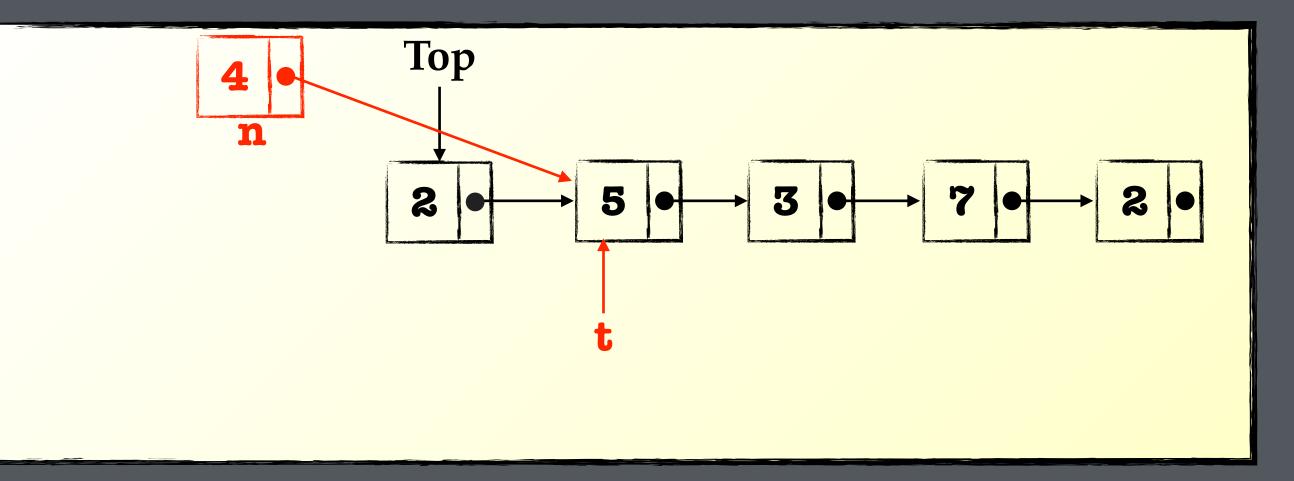
push(k): Node t 1 n = new Node(k, -)while (true) 2 t = Top 3 n.next = t4 if (CAS (Top,t,n)) 5 6 exit $\leftrightarrow \sim \sim$



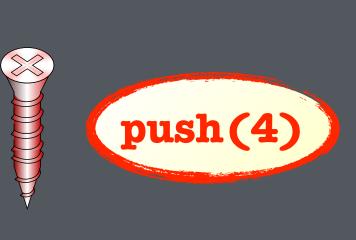


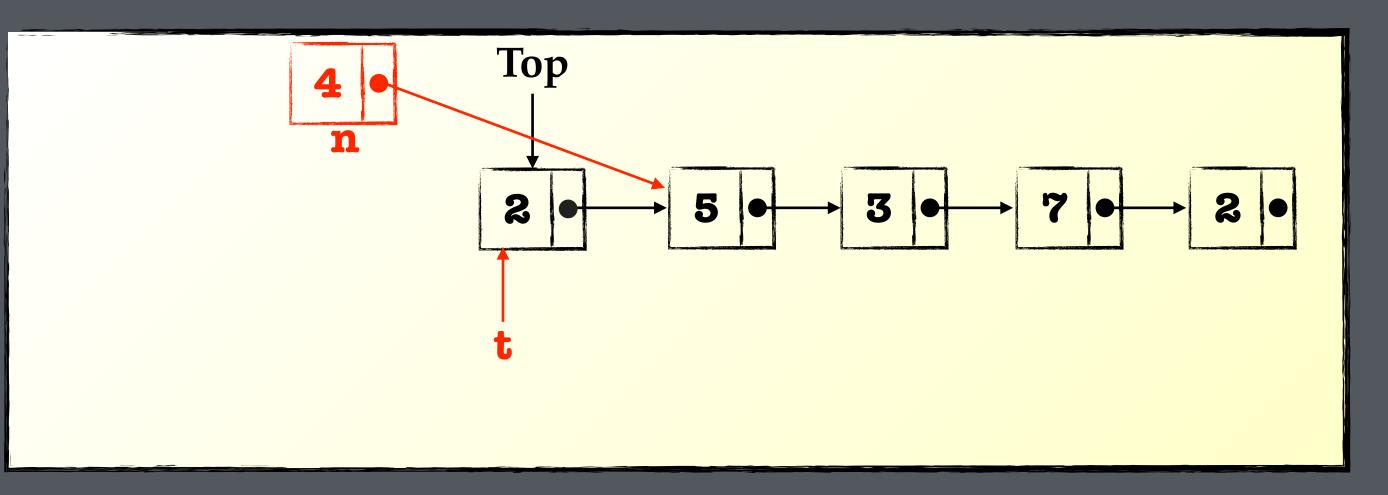
```
push(k):
Node t
1 n = new Node(k,-)
2 while (true)
3 t = Top \longleftarrow
4 n.next = t
5 if (CAS (Top,t,n))
6 exit
```



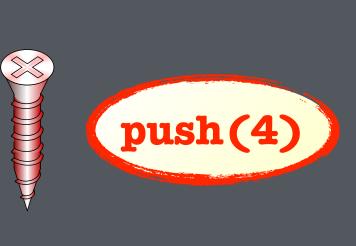


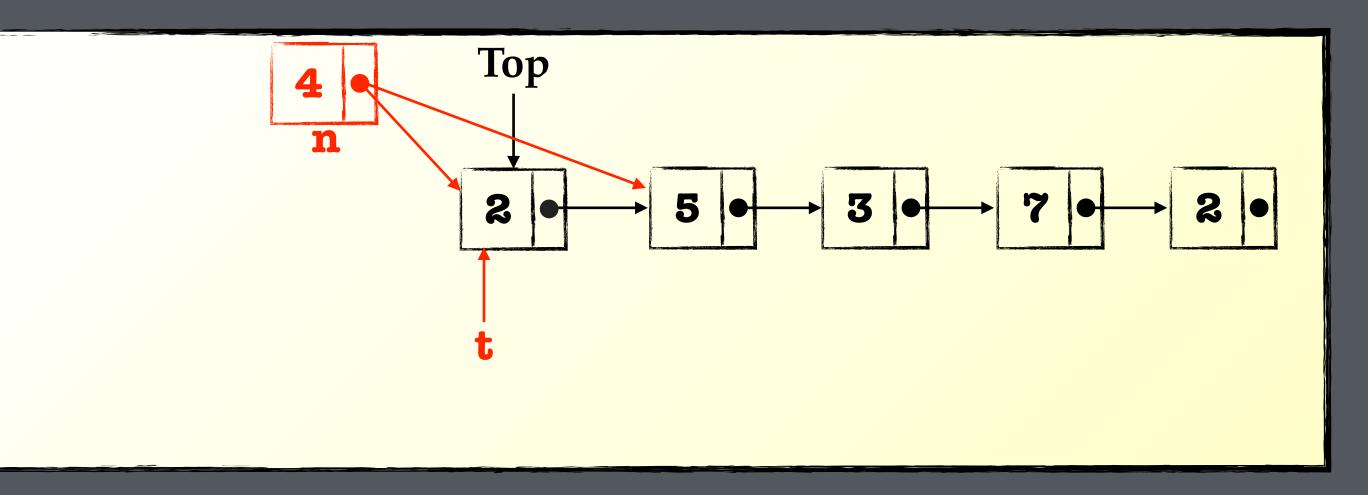
```
push(k):
Node t
1 n = new Node(k,-)
2 while (true)
3 t = Top \longleftarrow
4 n.next = t
5 if (CAS (Top,t,n))
6 exit
```

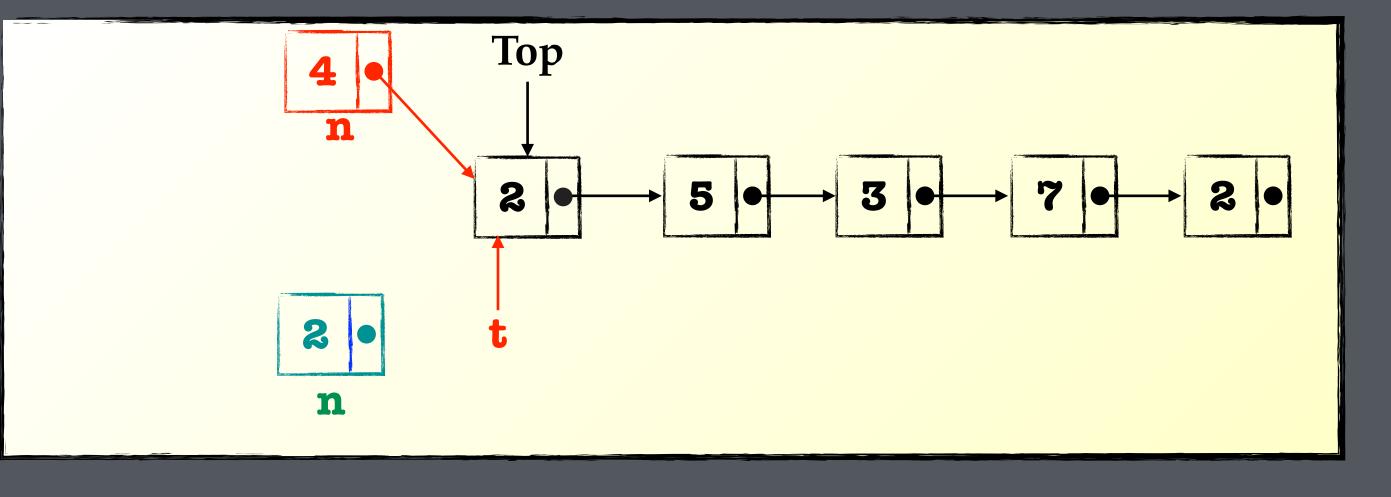




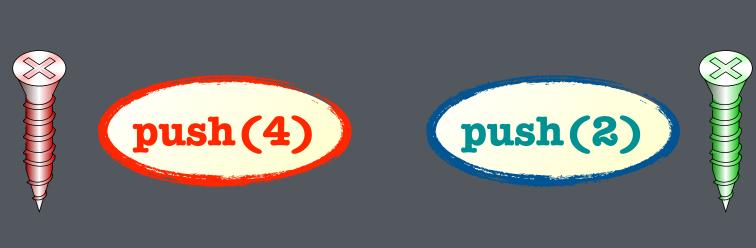
```
push(k):
Node t
1 n = new Node(k,-)
2 while (true)
3 t = Top
4 n.next = t \leftarrow \leftarrow \leftarrow
5 if (CAS (Top,t,n))
6 exit
```

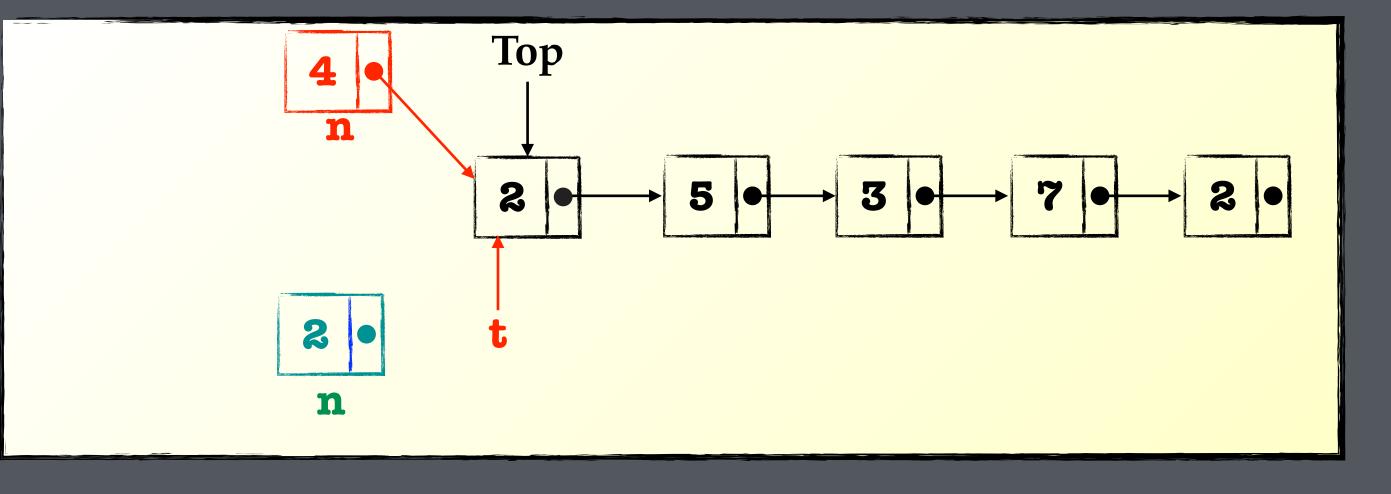




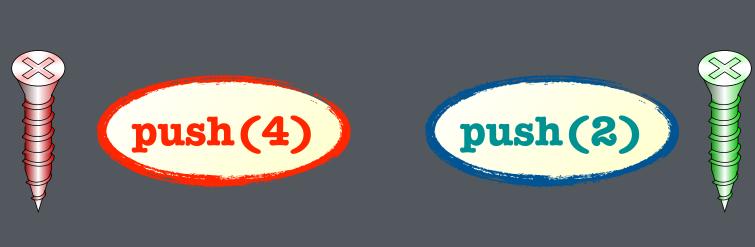


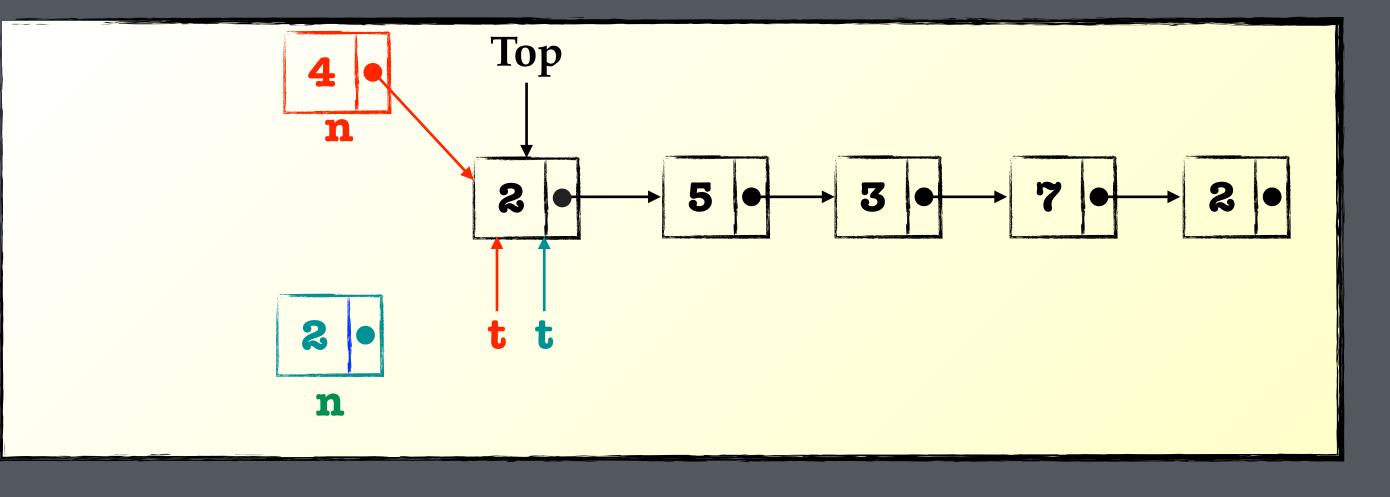
push(k): Node t 1 n = new Node(k, -) $\leftrightarrow \sim \sim$ 2 while (true) t = Top 3 n.next = t4 if (CAS (Top,t,n)) 5 6 exit





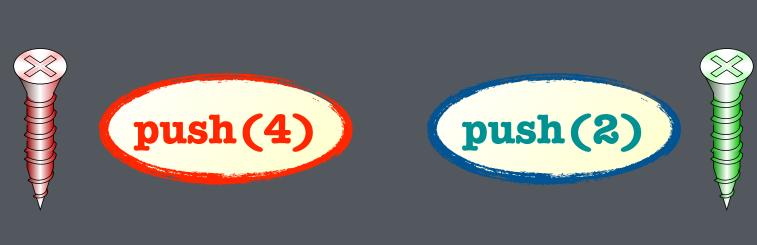
push(k): Node t 1 n = new Node(k, -)t = Top 3 n.next = t4 if (CAS (Top,t,n)) 5 6 exit

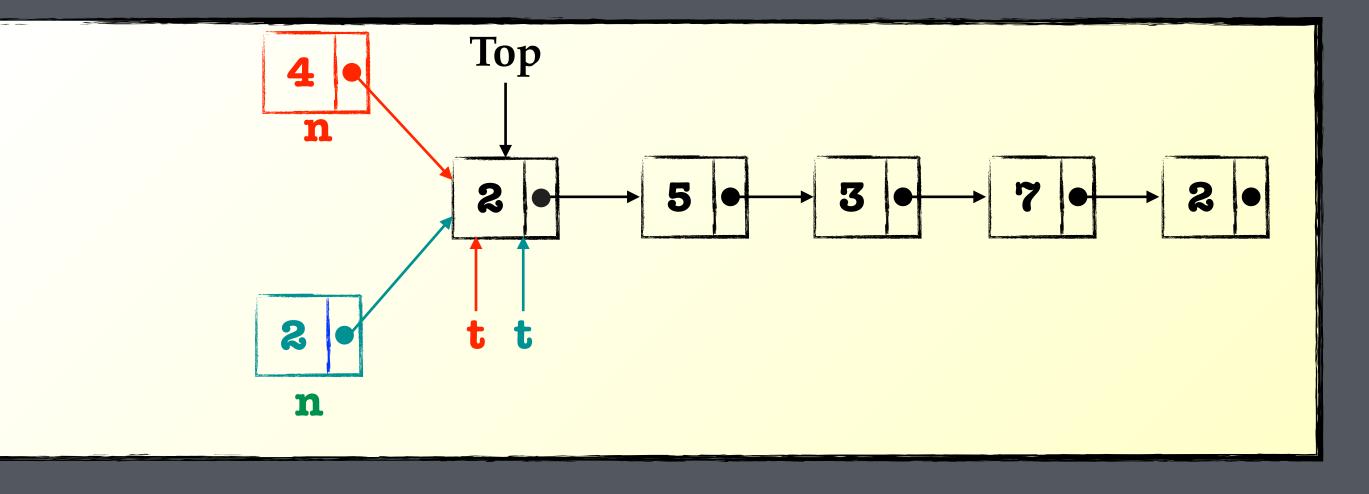




push(k): Node t 1 n = new Node(k, -)2 while (true) 3 n.next = t4 if (CAS (Top,t,n)) 5 6 exit

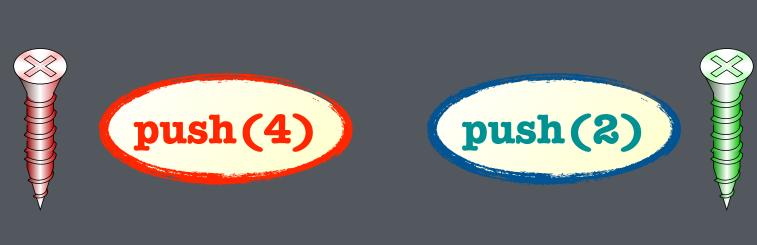
```
push(k):
Node t
1 n = new Node(k,-)
2 while (true) \leftarrow \sim
3 t = Top
4 n.next = t \leftarrow \sim
5 if (CAS (Top,t,n))
6 exit
```

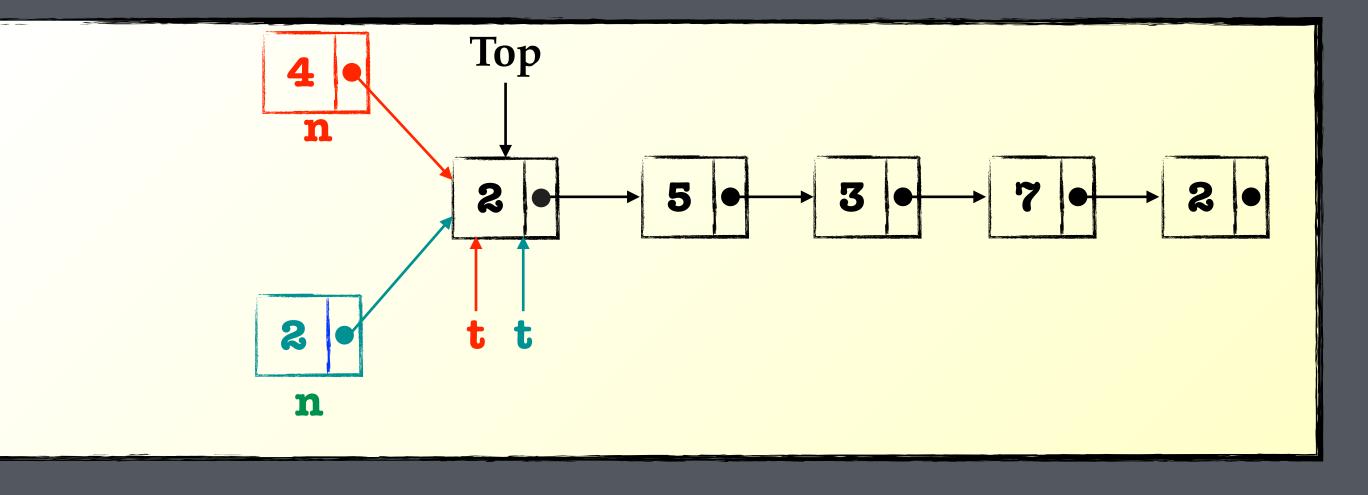




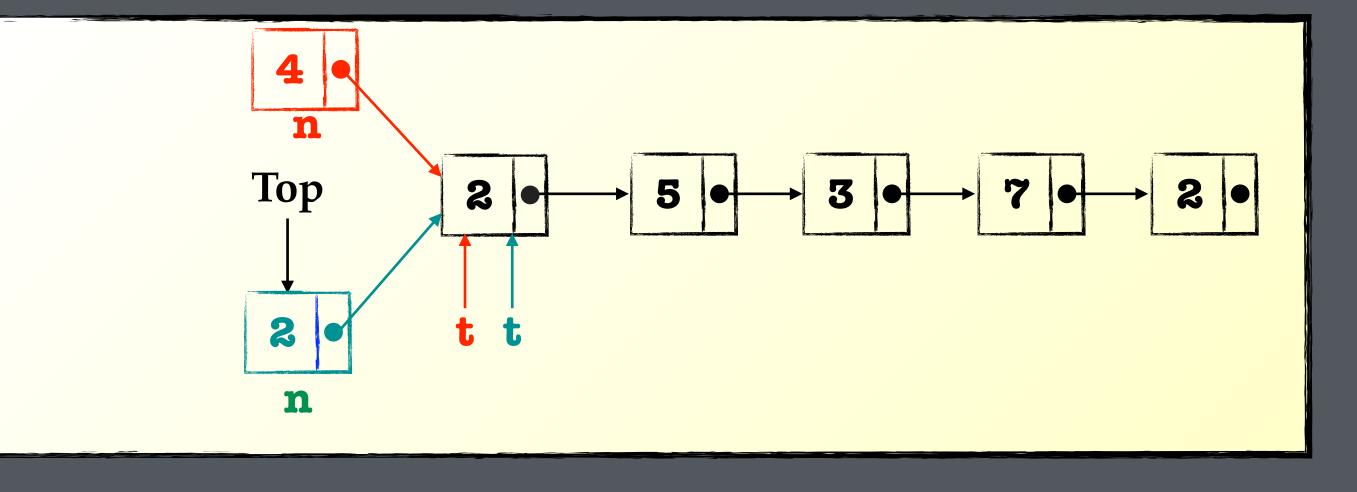
push(k): Node t 1 n = new Node(k, -)while (true) 2 t = Top 3 $n.next = t \leftrightarrow \infty$ 4 if (CAS (Top,t,n)) 5 6 exit

```
push(k):
Node t
1 n = new Node(k,-)
2 while (true) \leftarrow \sim
3 t = Top
4 n.next = t \leftarrow \sim
5 if (CAS (Top,t,n))
6 exit
```

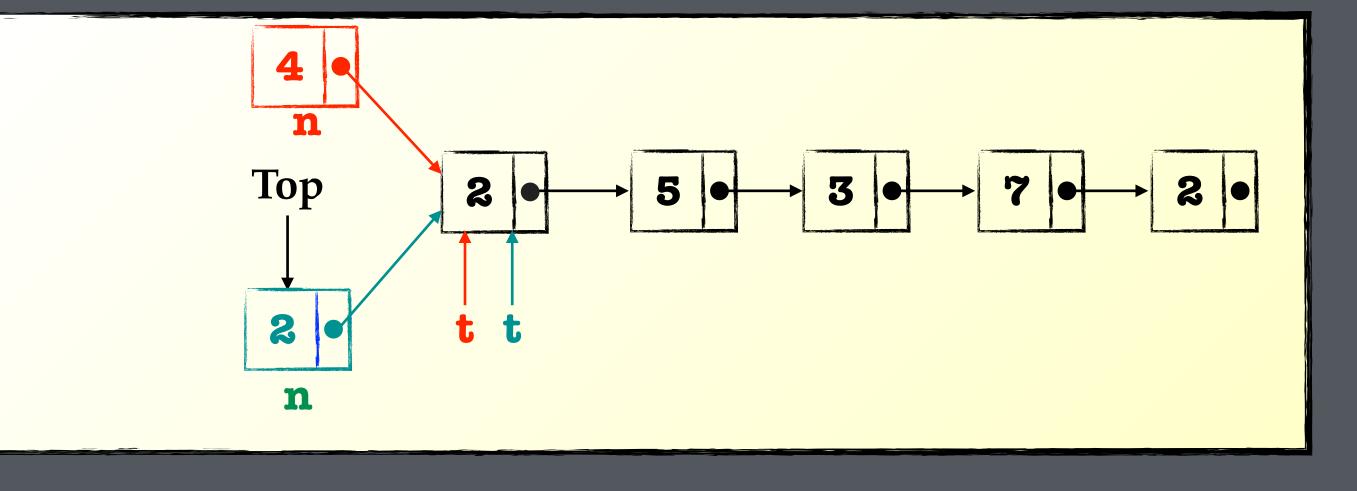




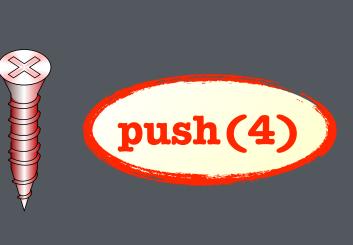
push(k): Node t 1 n = new Node(k, -)2 while (true) t = Top 3 n.next = tZ 4 if (CAS (Top,t,n)) 5 6 exit

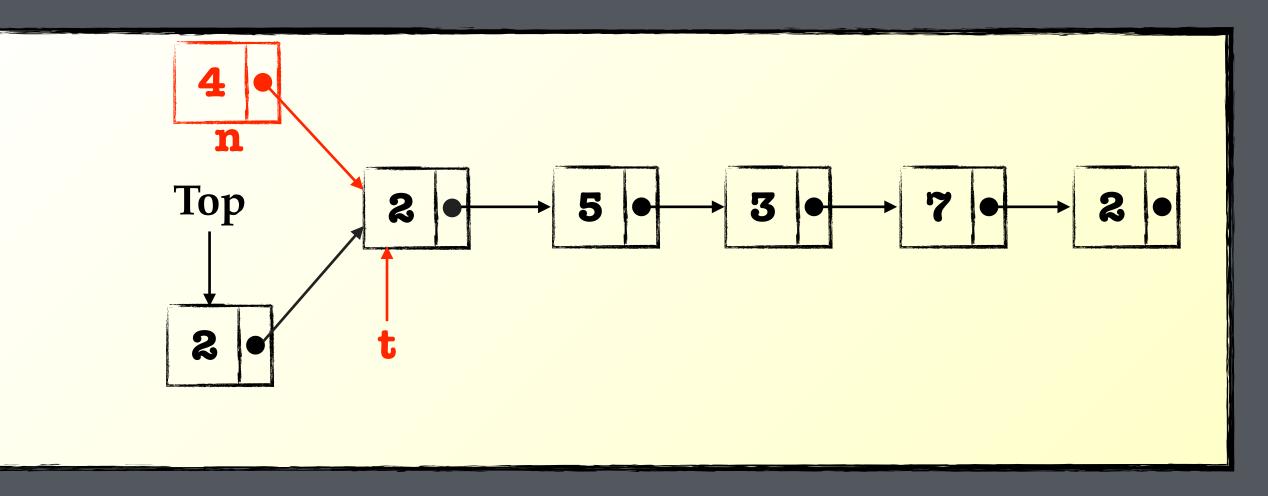


push(k): Node t 1 n = new Node(k, -)2 while (true) t = Top 3 n.next = t2 4 if (CAS (Top,t,n)) 5 6 exit

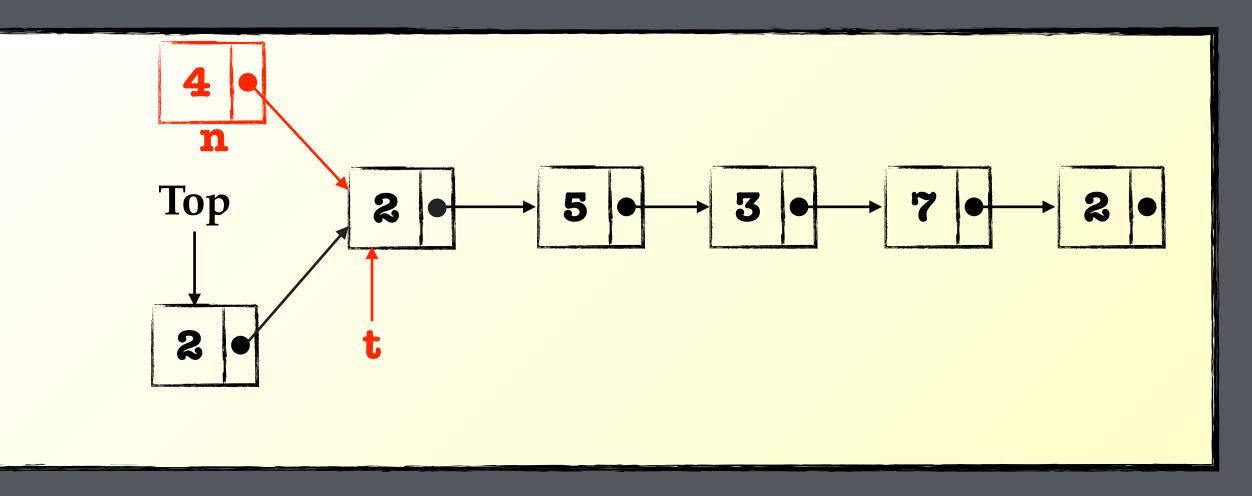


push(k): Node t 1 n = new Node(k, -)2 while (true) t = Top 3 n.next = t4 if (CAS (Top,t,n)) 5 exit $\leftrightarrow \sim \sim$ 6

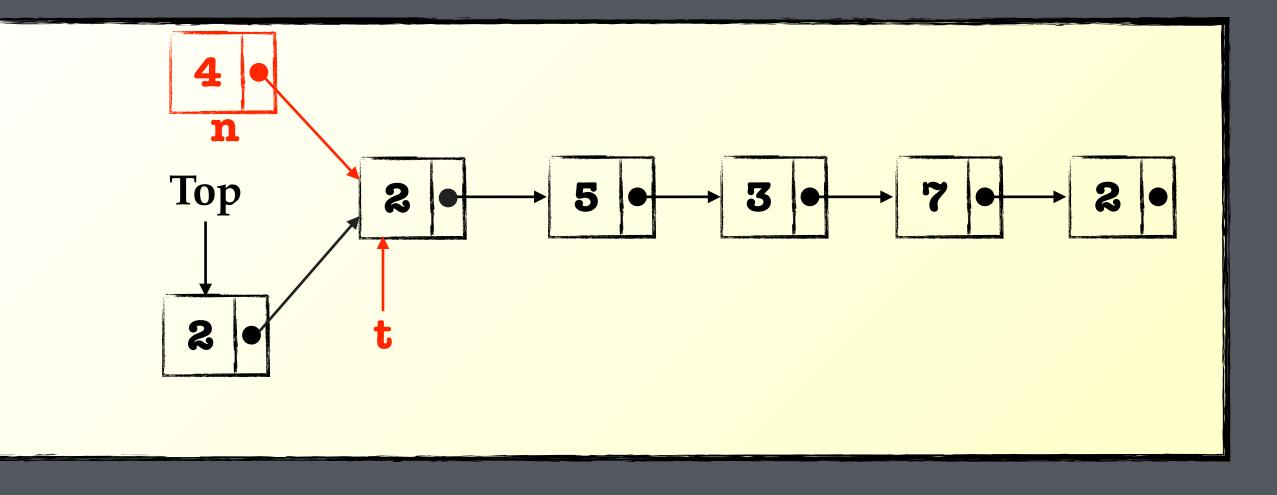




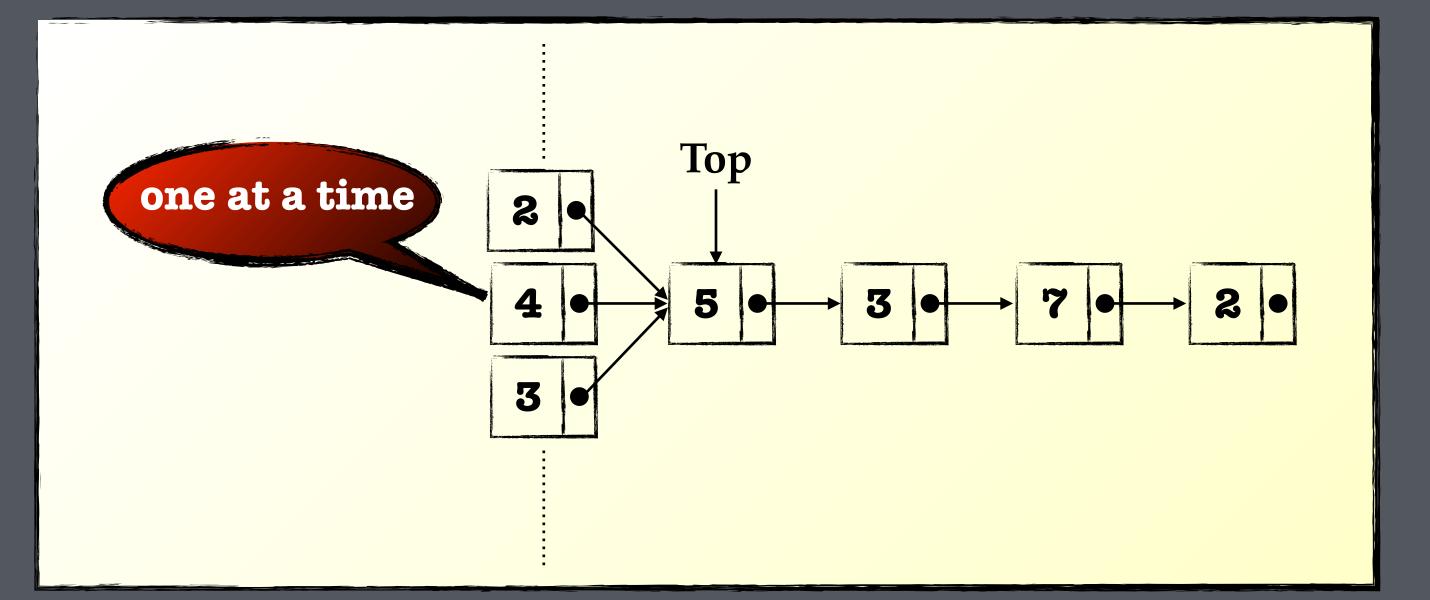
push(k): X Node t 1 n = new Node(k, -)push(4) 2 while (true) t = Top 3 n.next = t4 if (CAS (Top,t,n))↔ 5 exit 6



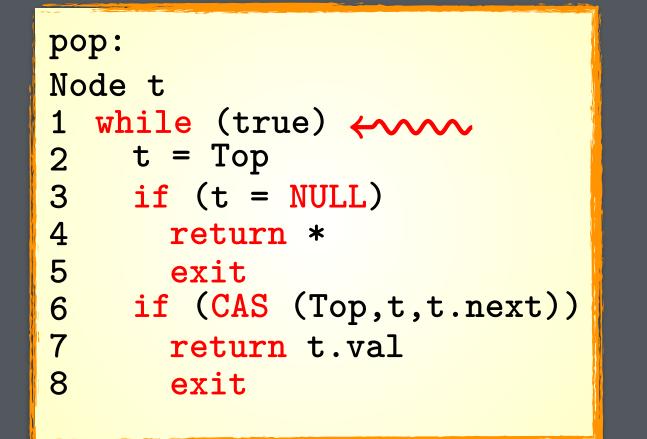

```
push(k):
Node t
1 n = new Node(k, -)
2 while (true) ← → → →
    t = Top
3
  n.next = t
4
   if (CAS (Top,t,n))
5
6
      exit
```

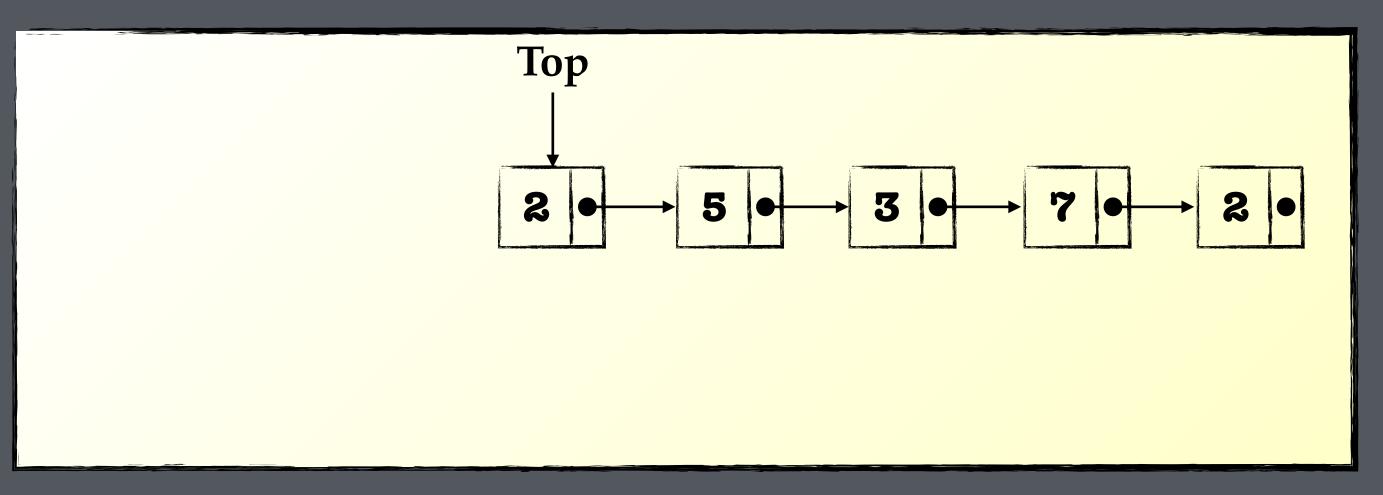




```
push(k):
Node t
1 n = new Node(k, -)
2 while (true) ← → → →
    t = Top
3
   n.next = t
4
   if (CAS (Top,t,n))
5
6
      exit
```

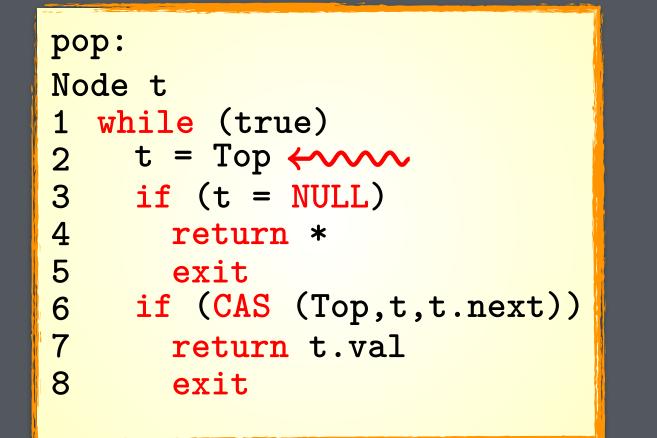
X

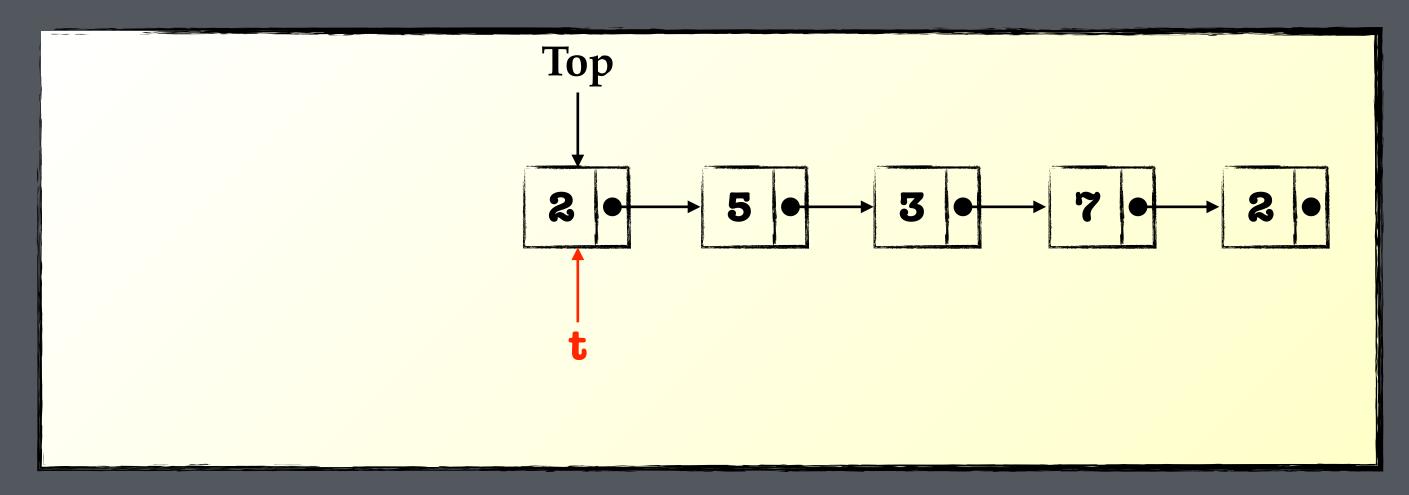




pop

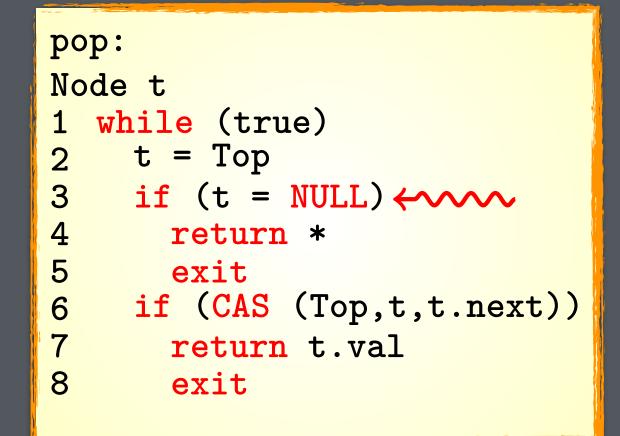
X

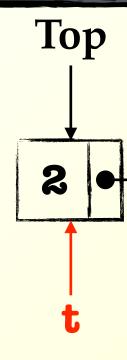




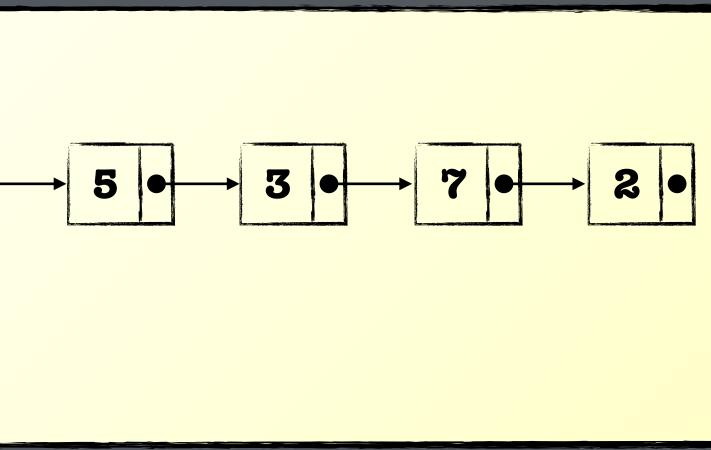
pop

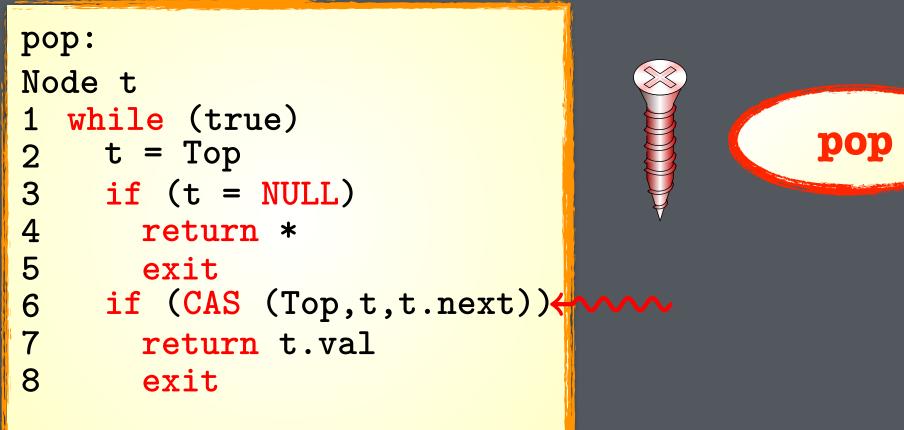
X

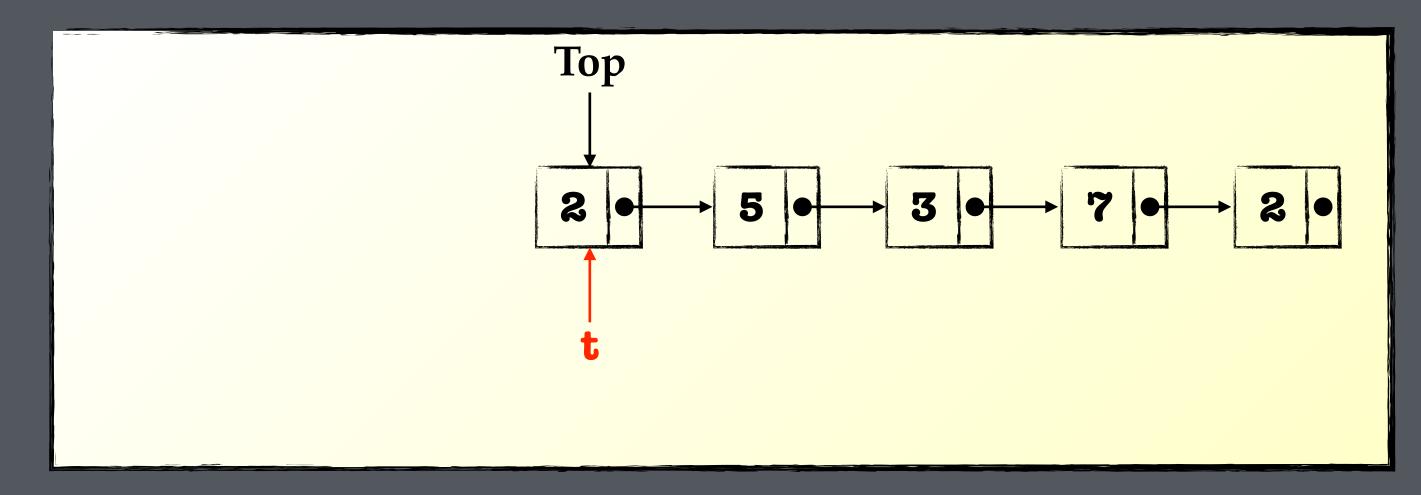


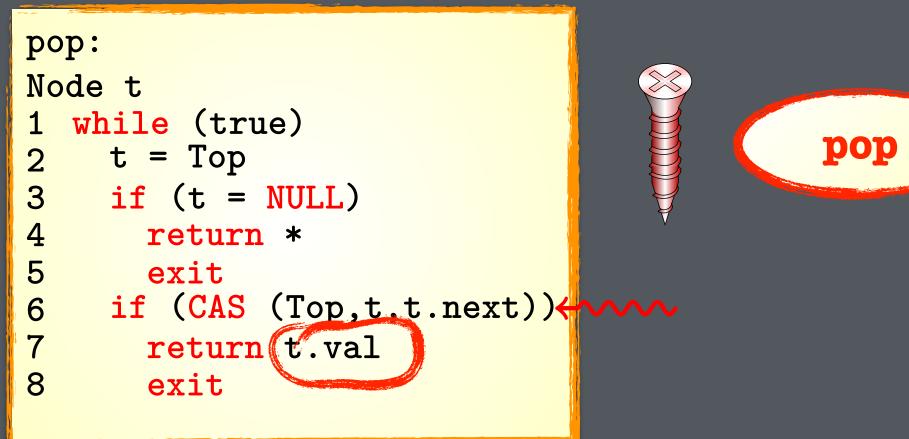


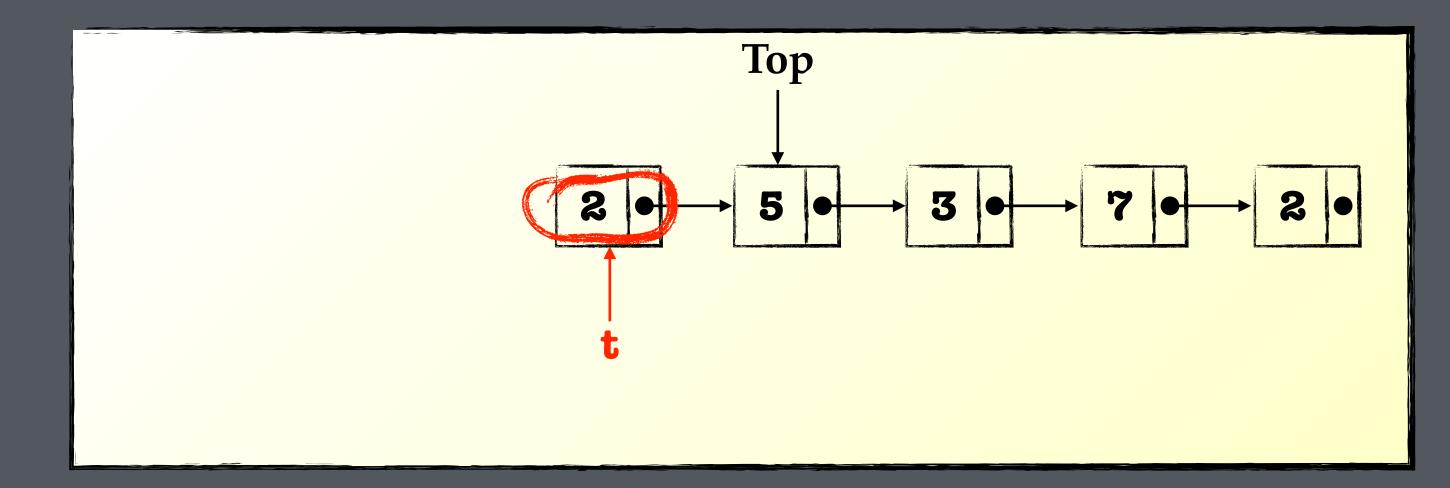
pop

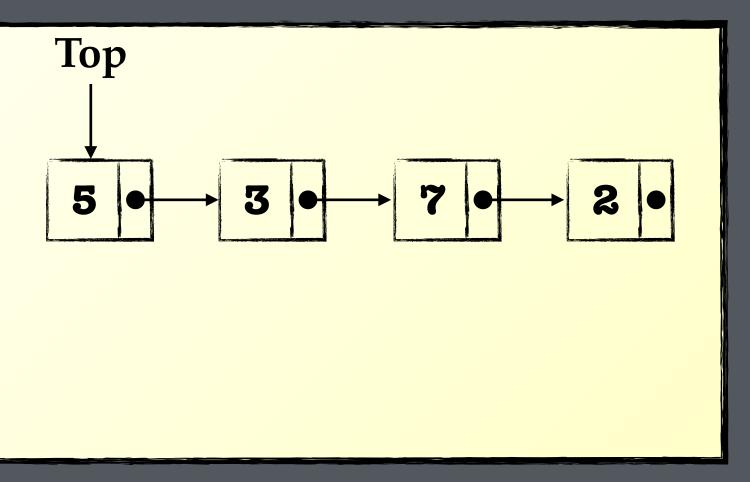


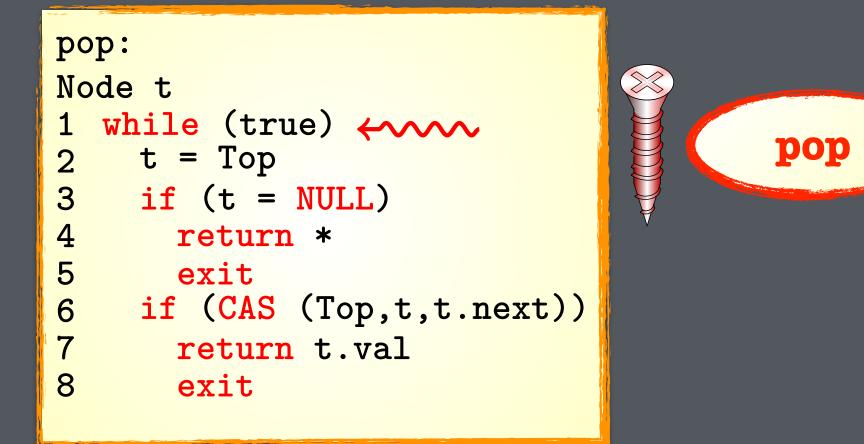


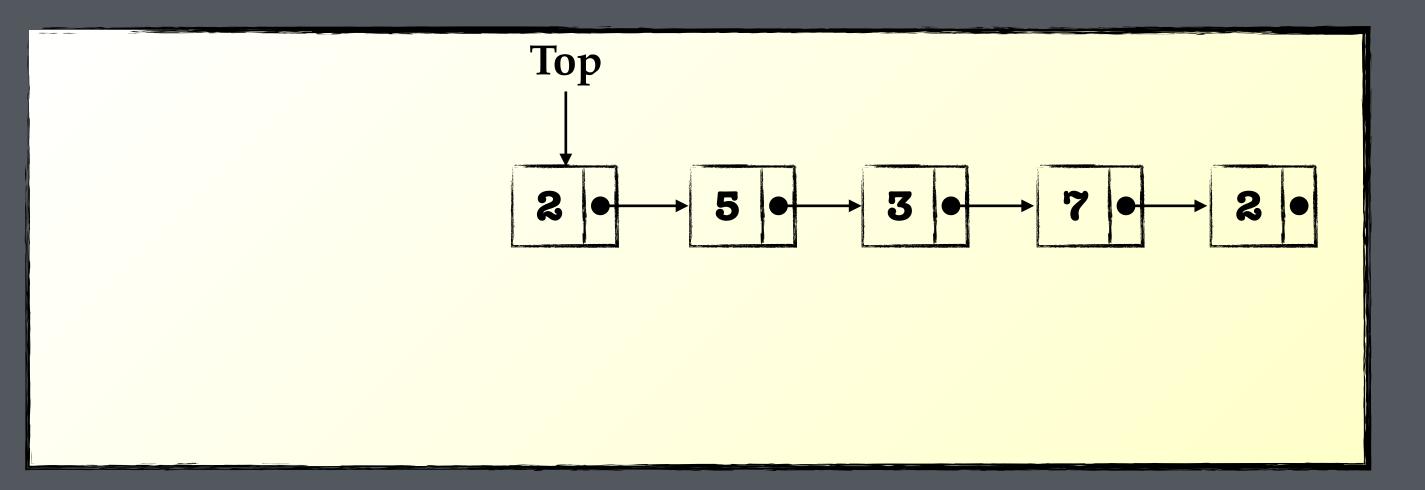


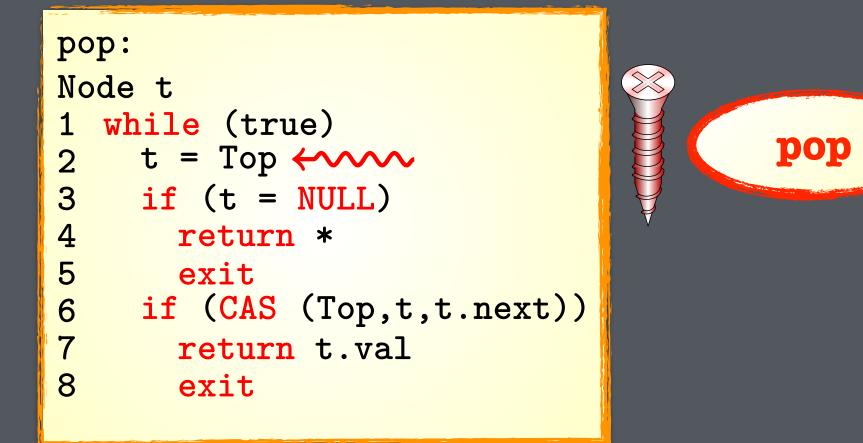


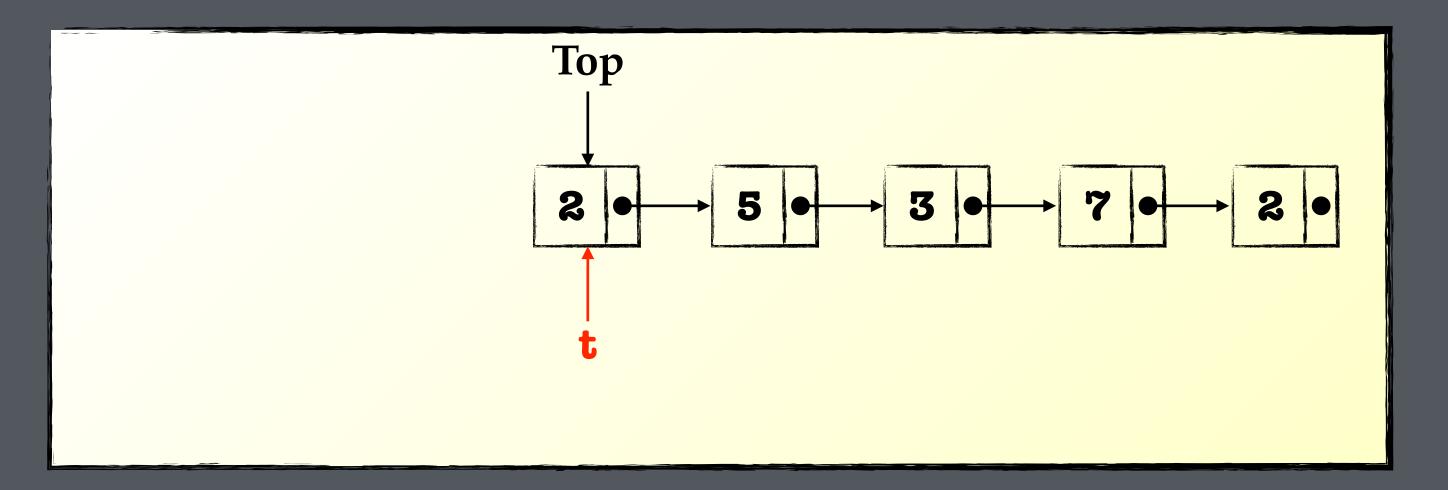


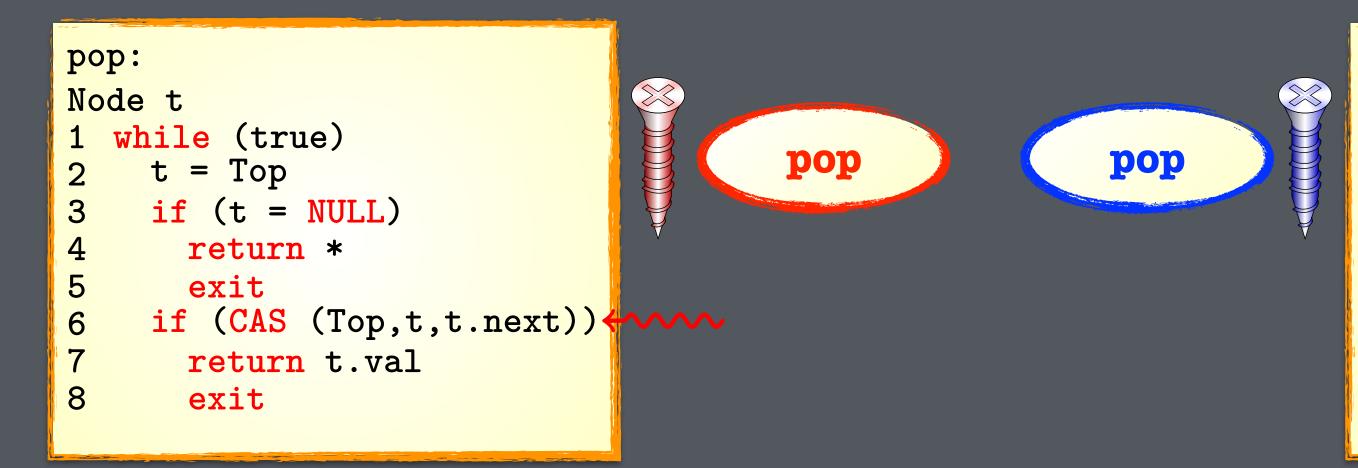


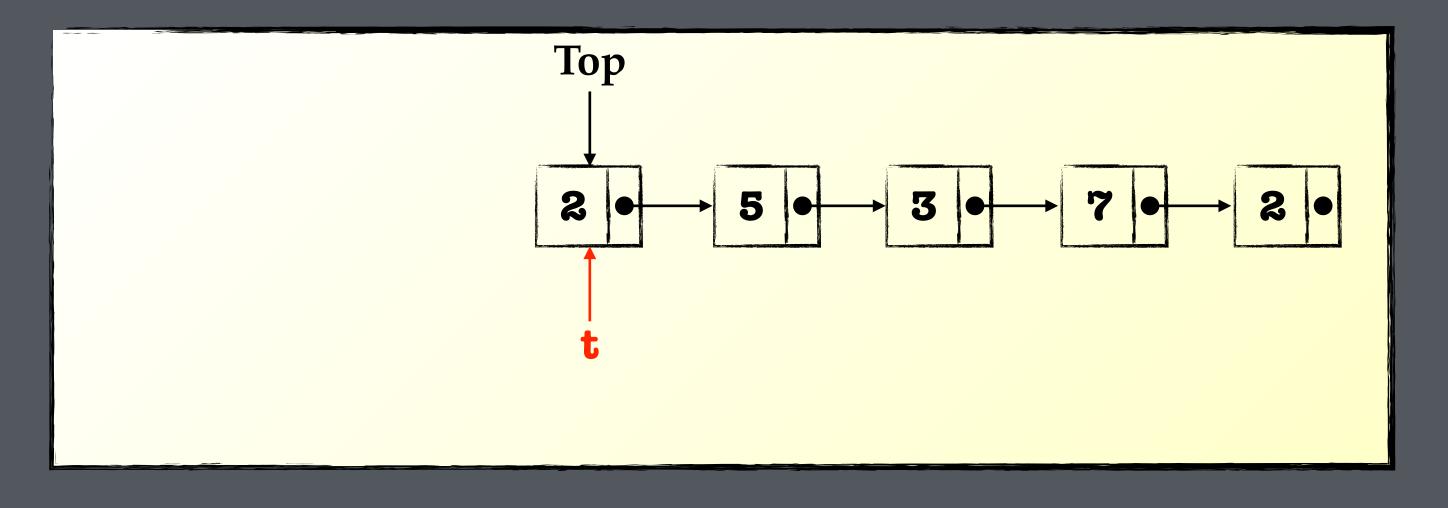


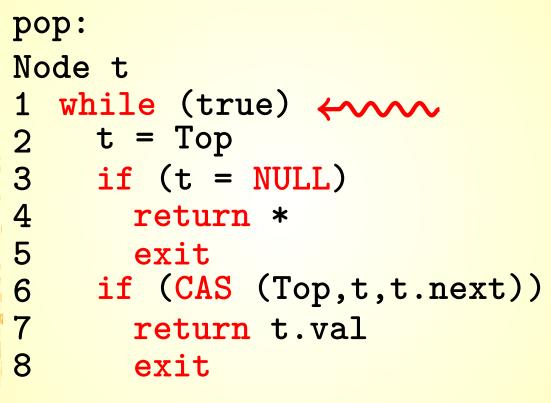


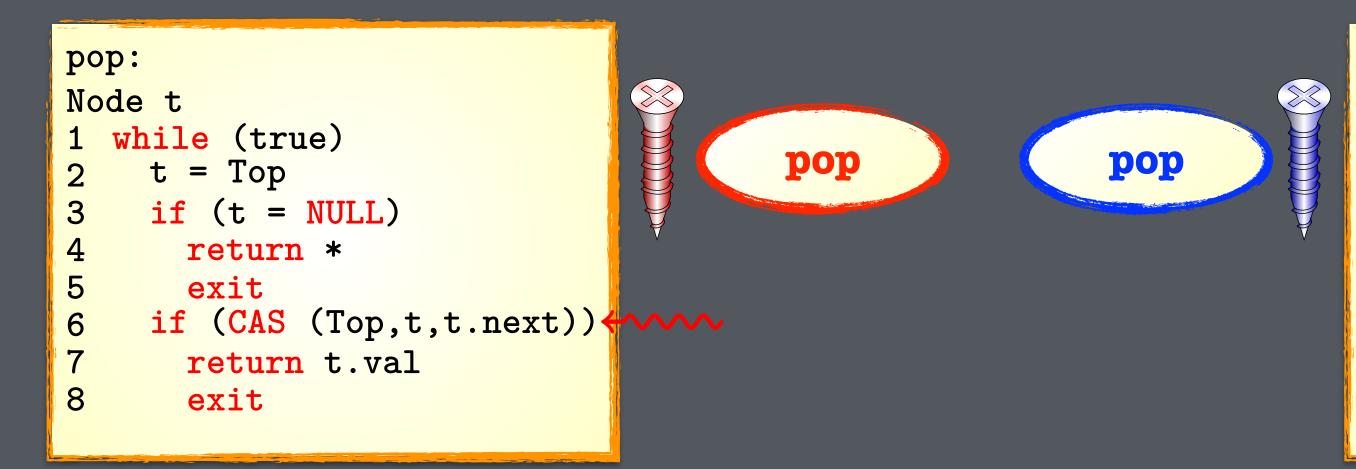


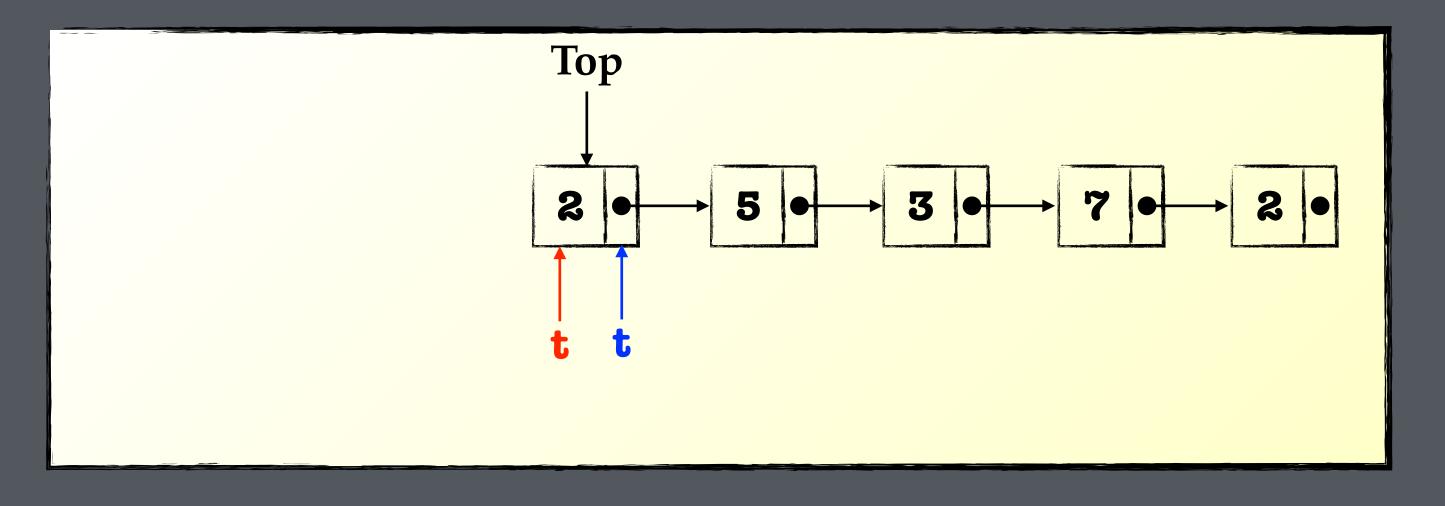


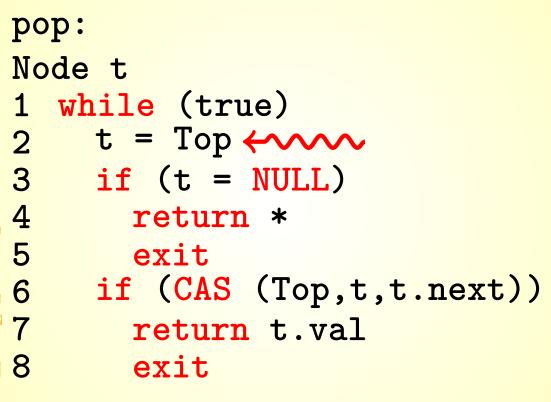


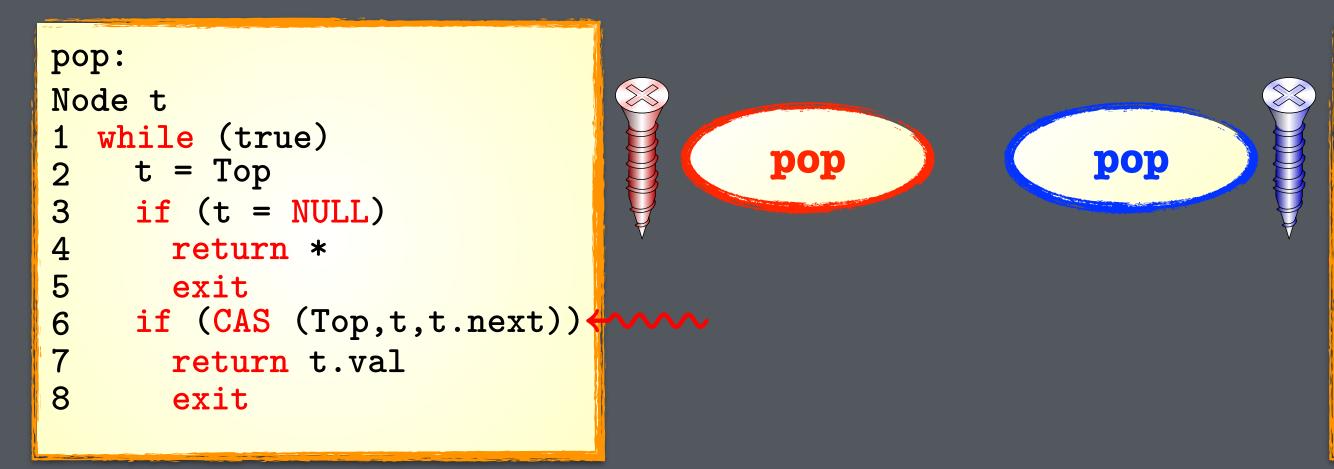


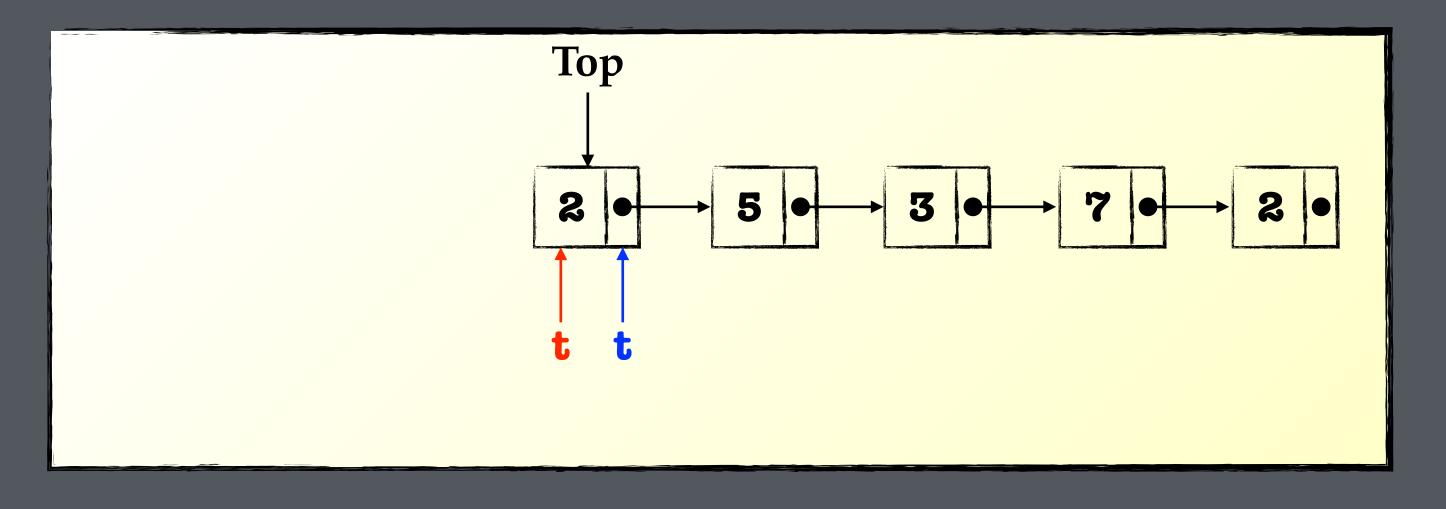


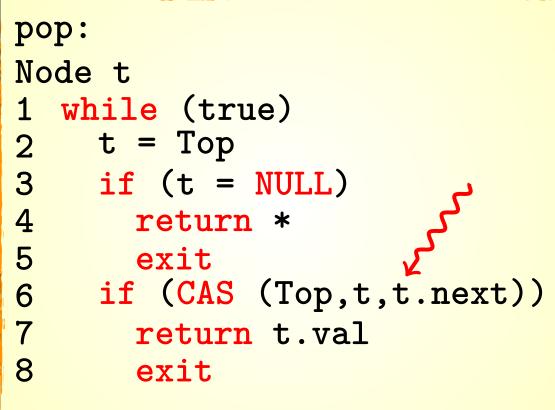


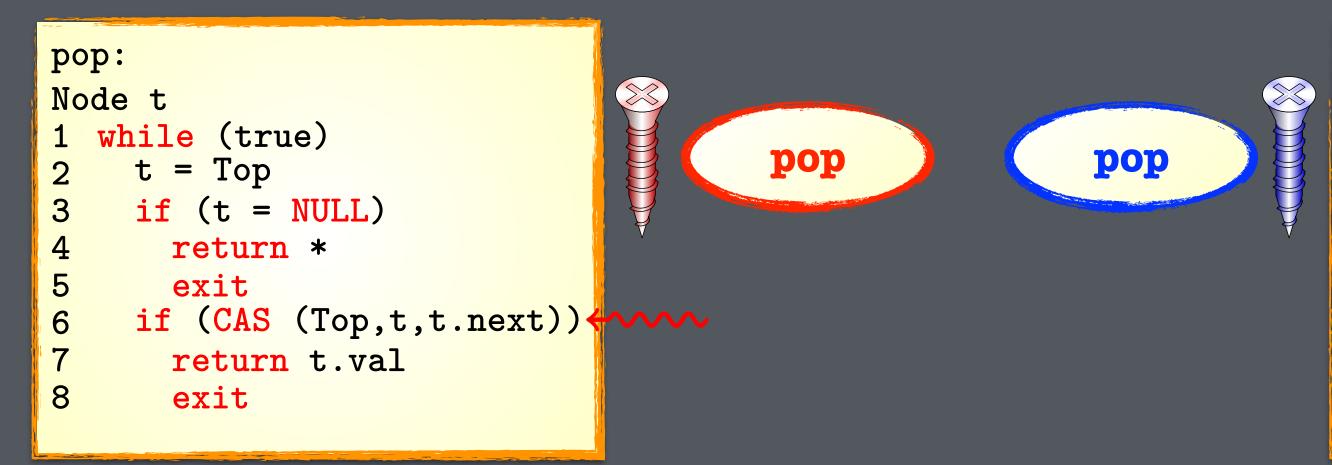


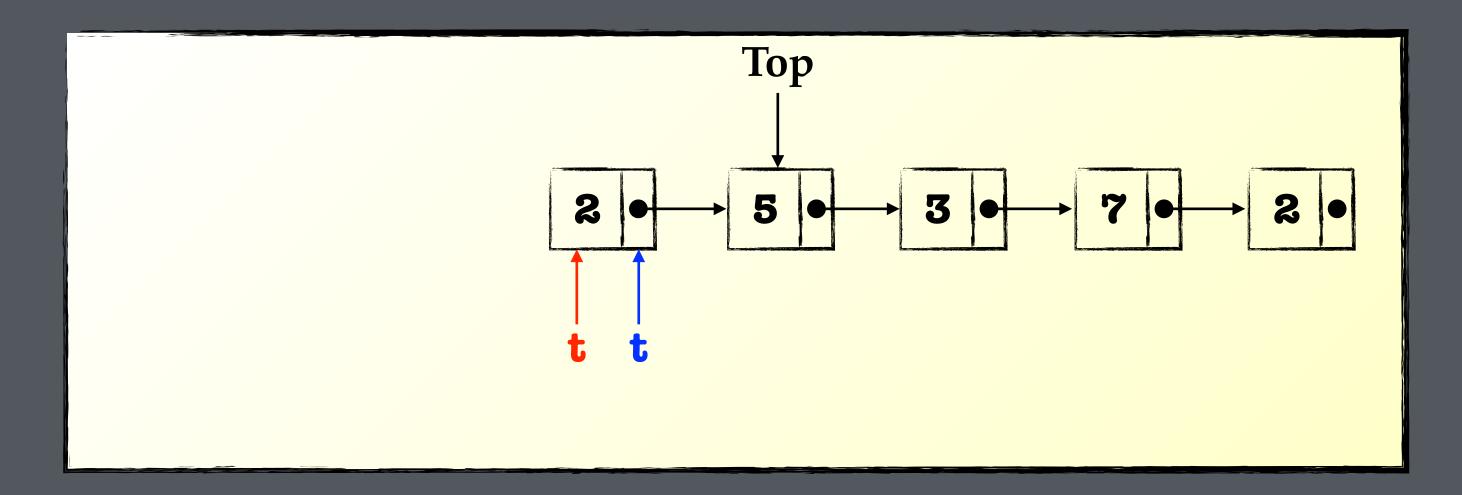


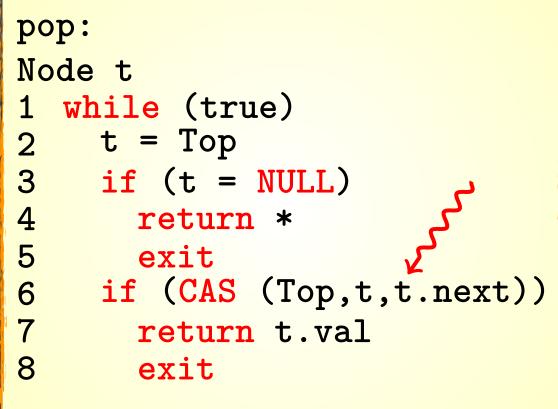


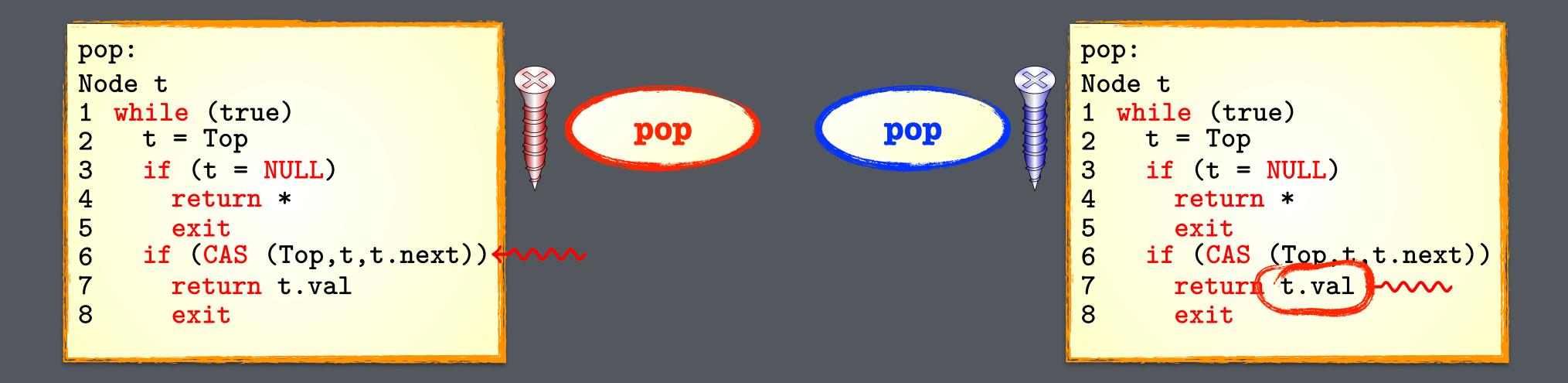


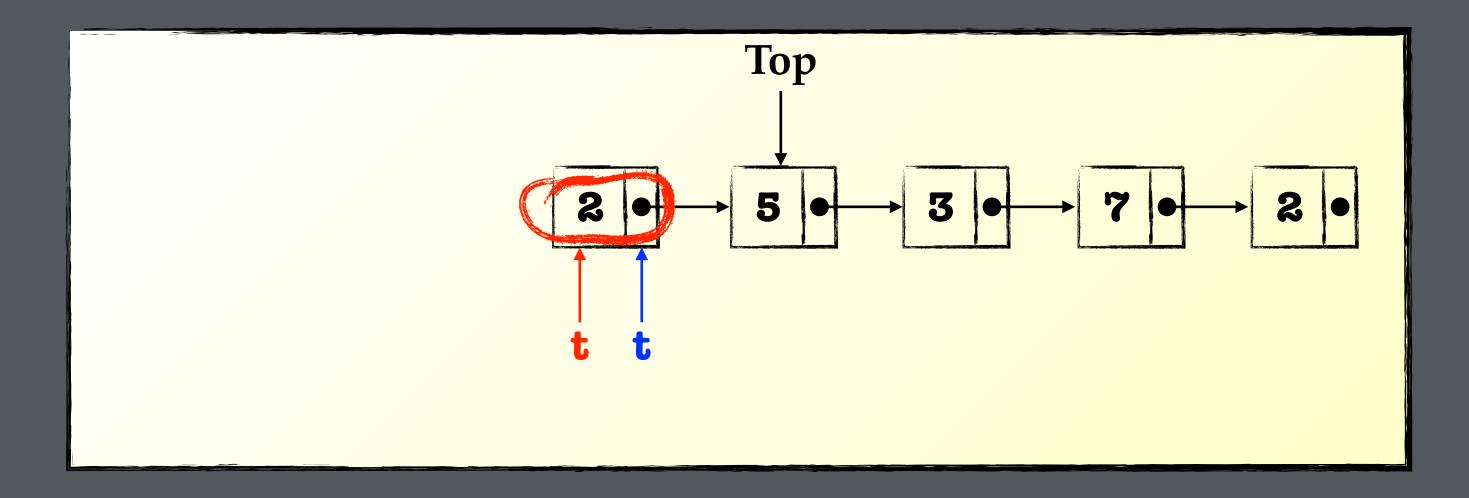


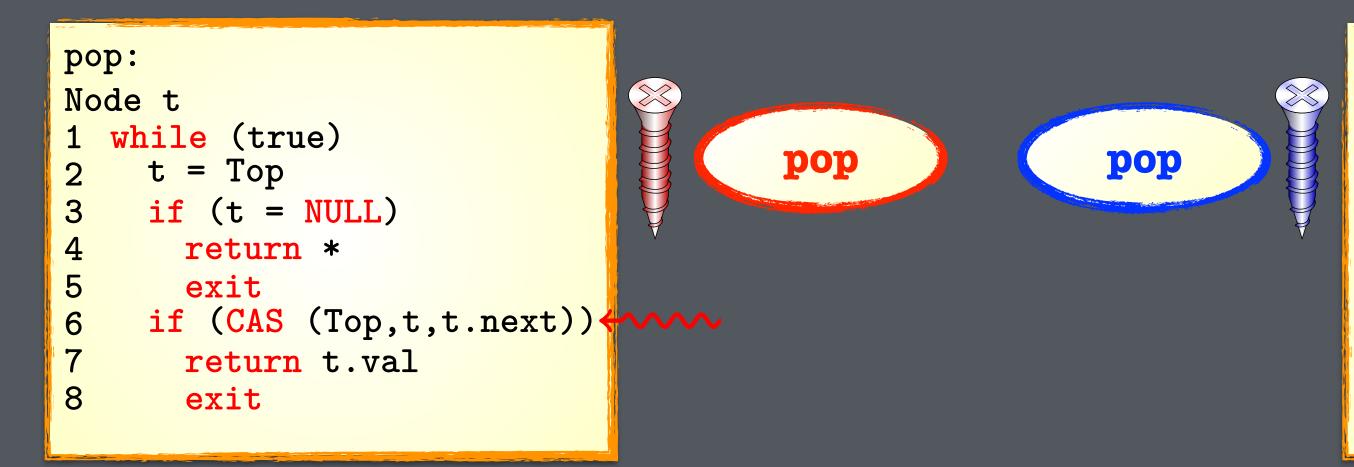


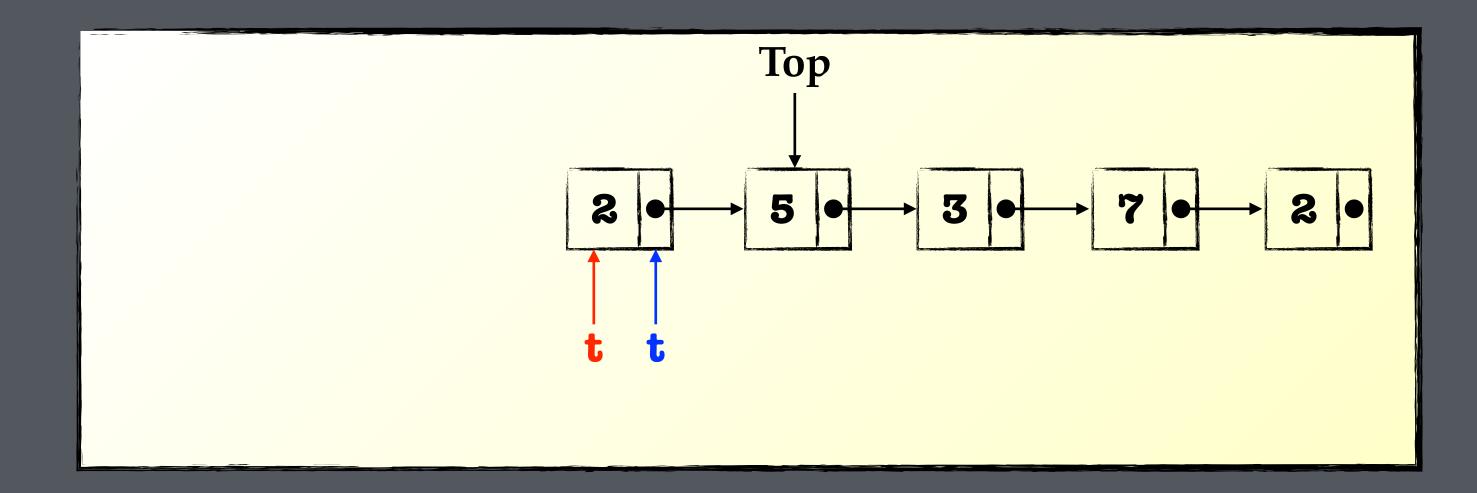


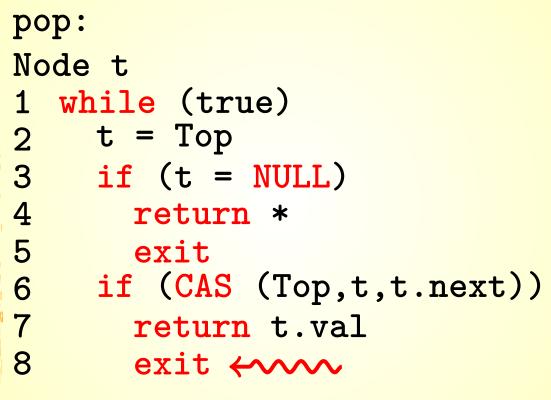


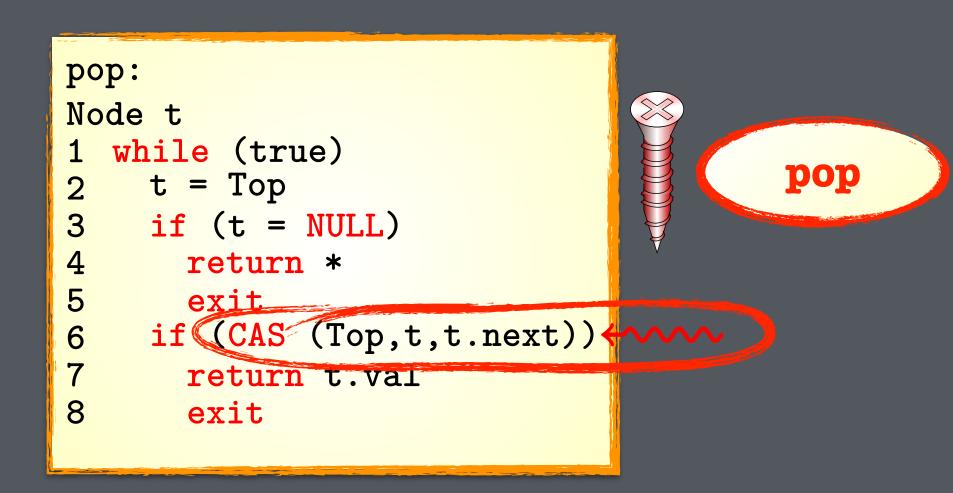




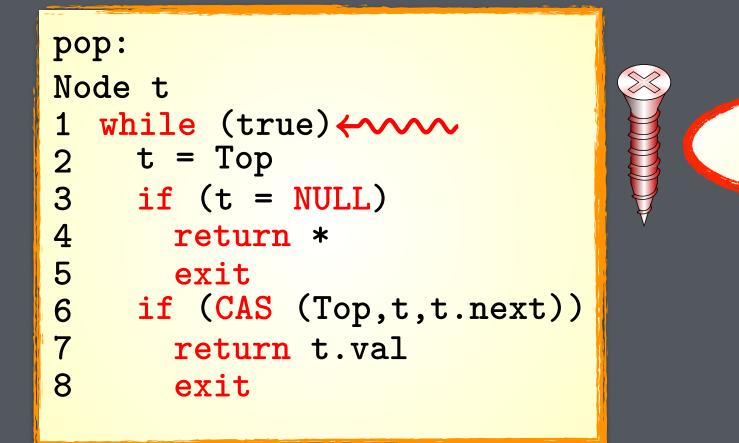


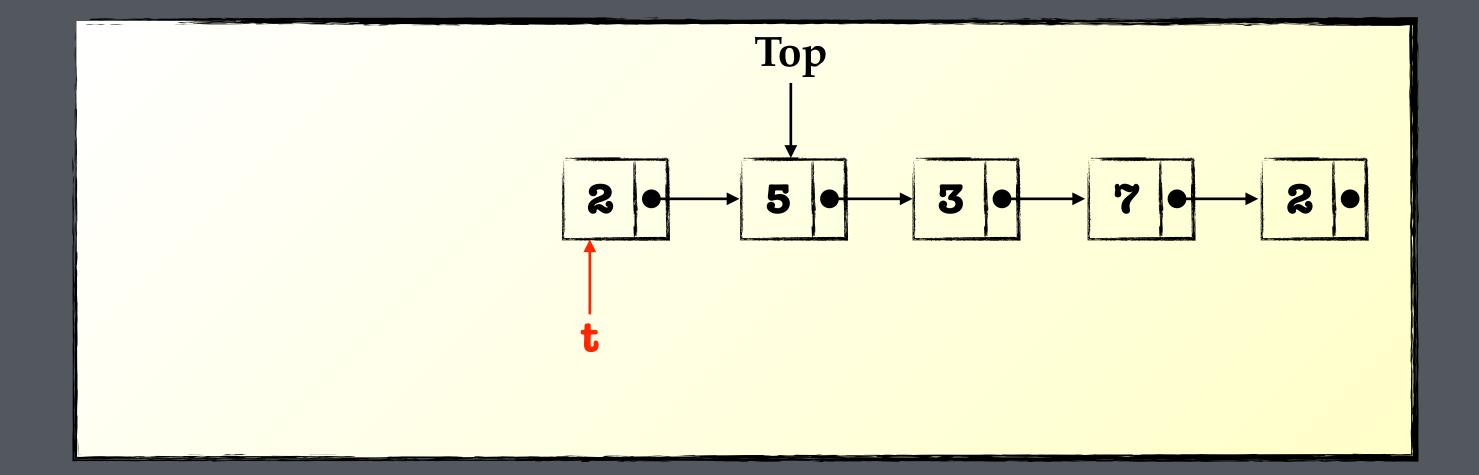






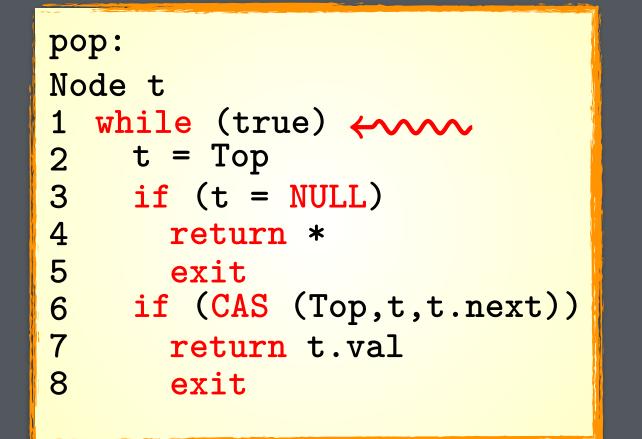


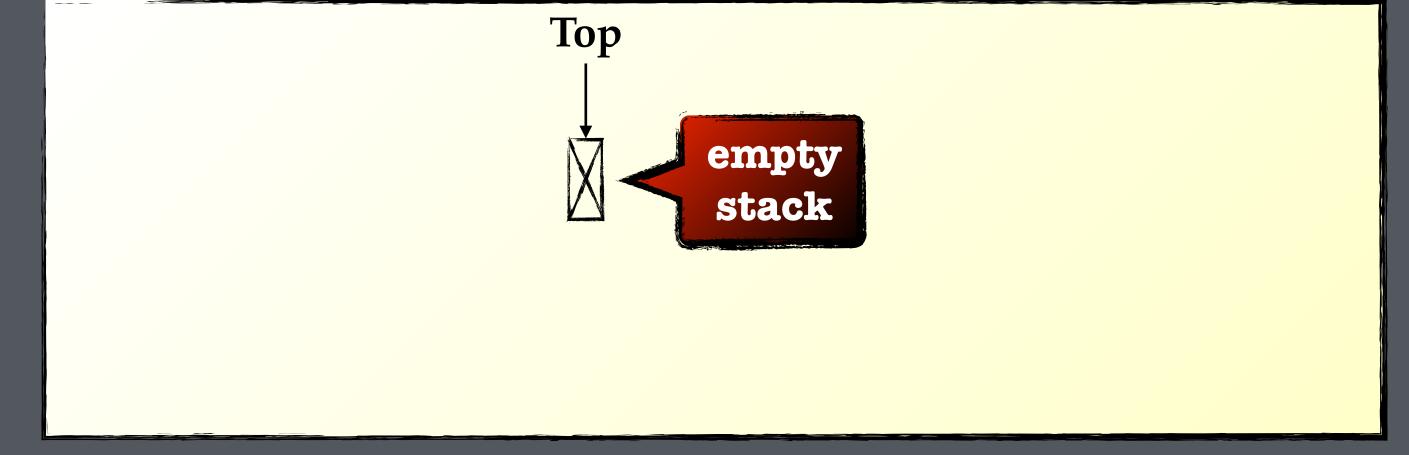




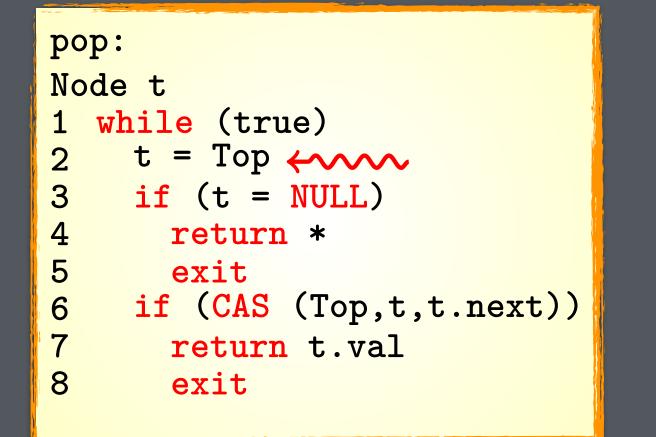
pop

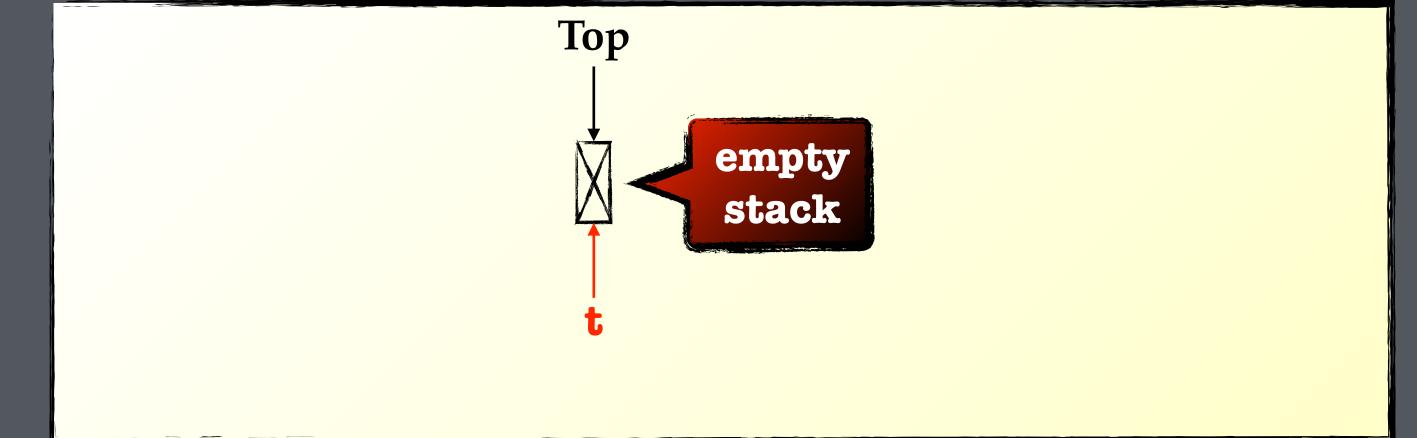
X



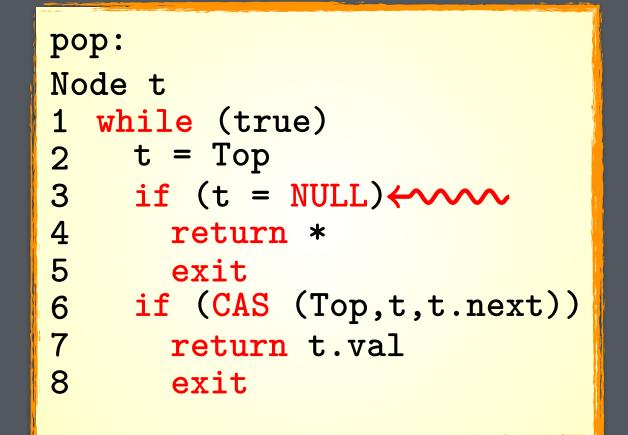


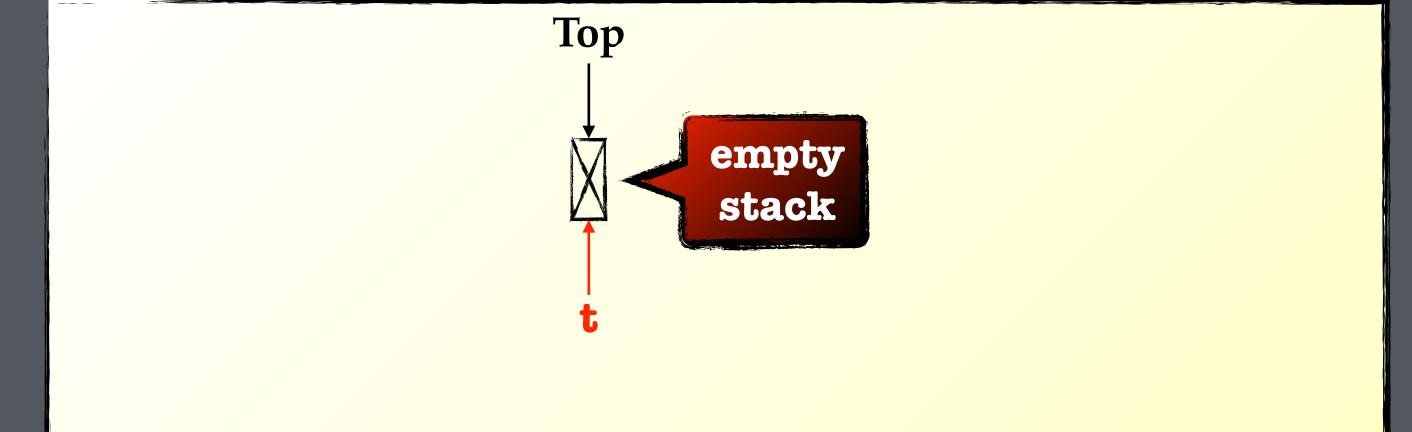
X

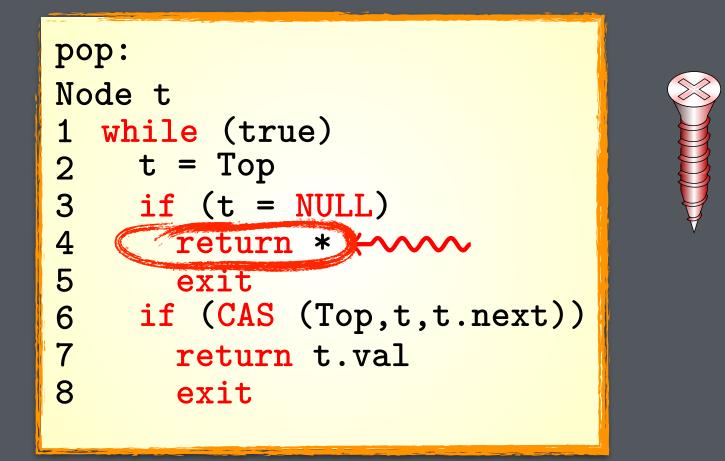


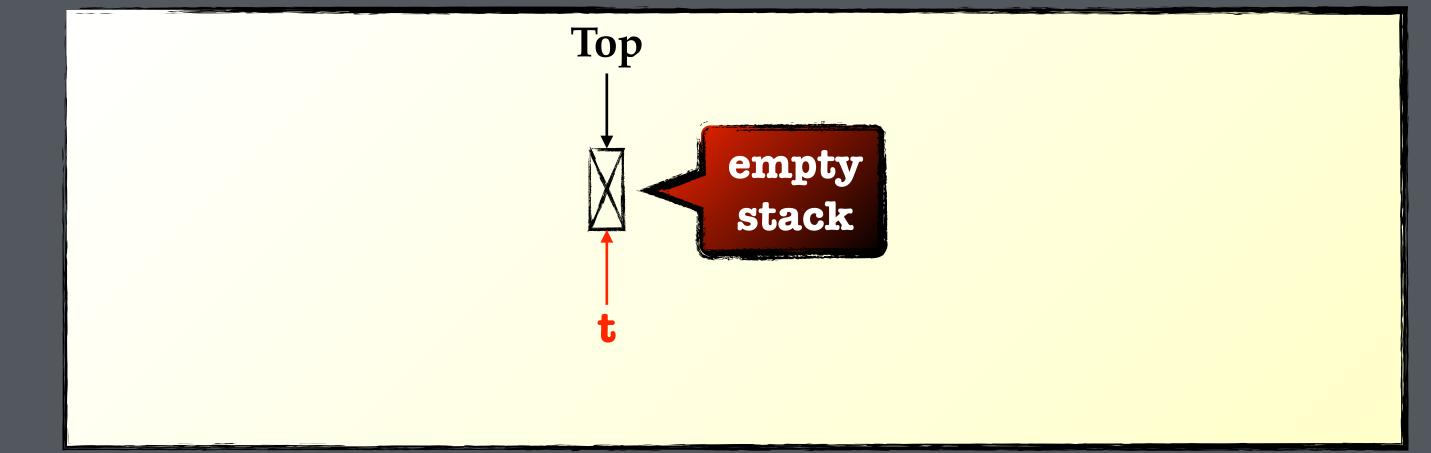


X

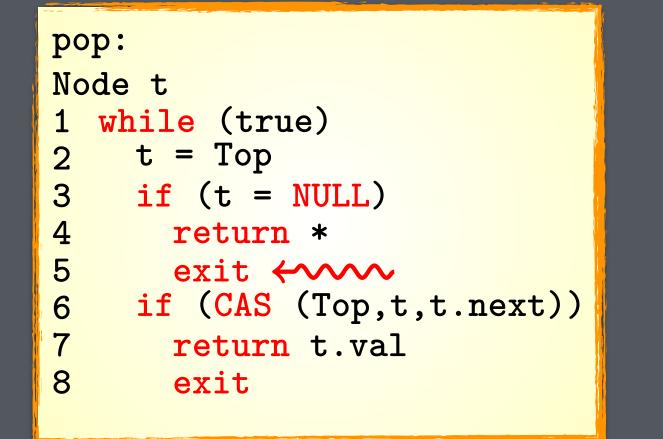


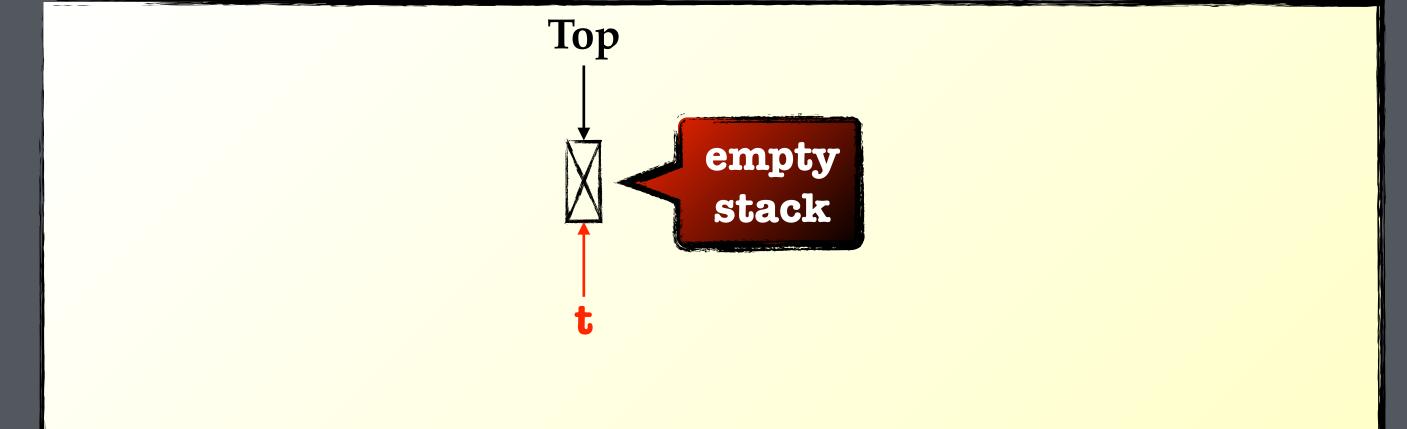




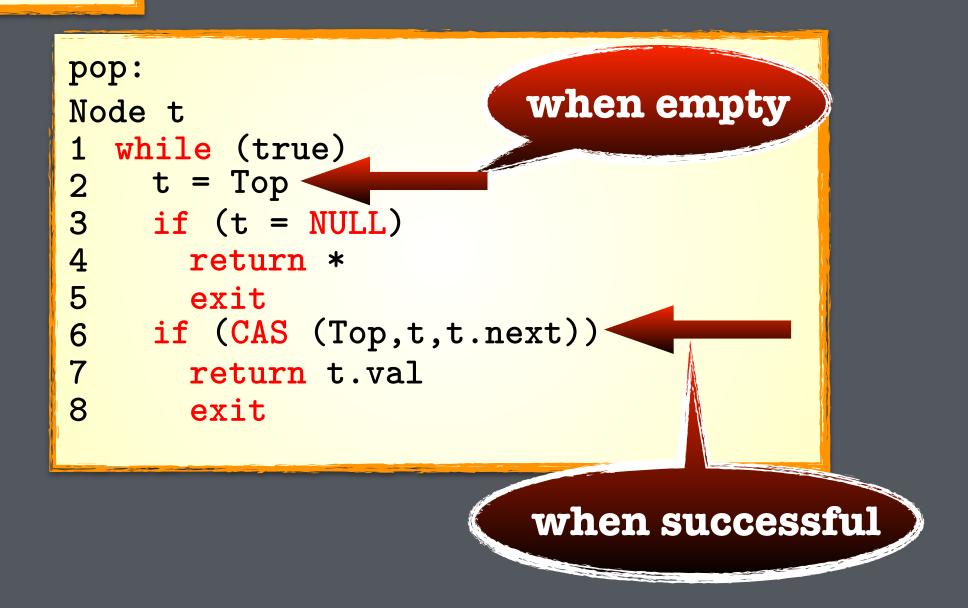


X

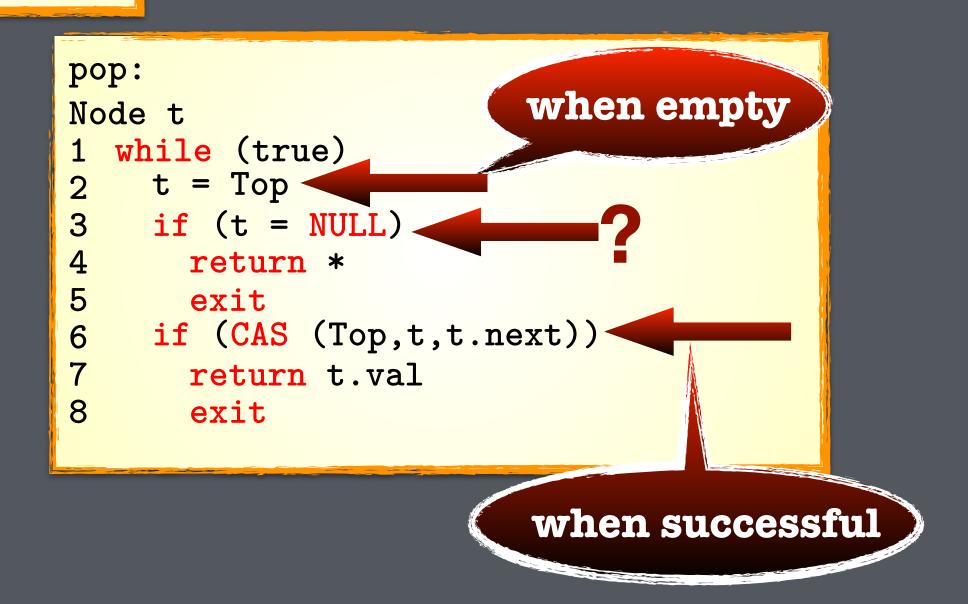


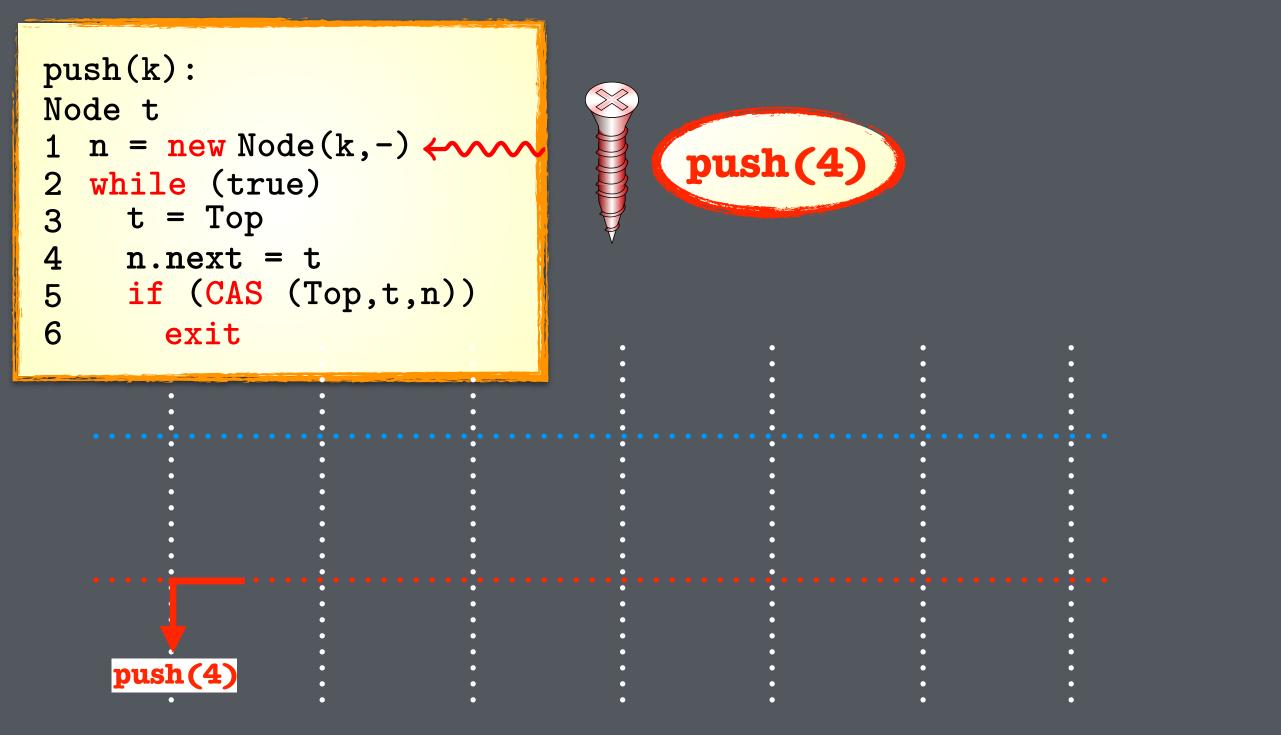



```
push(k):
Node t
1 n = new Node(k,-)
2 while (true)
3 t = Top
4 n.next = t
5 if (CAS (Top,t,n))
6 exit
when successful
```

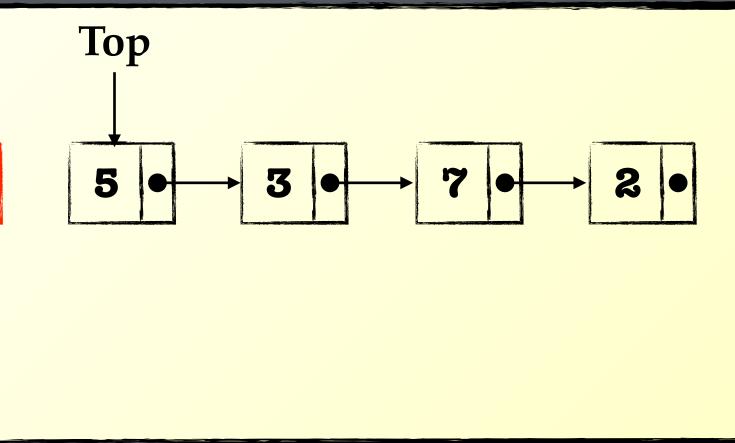


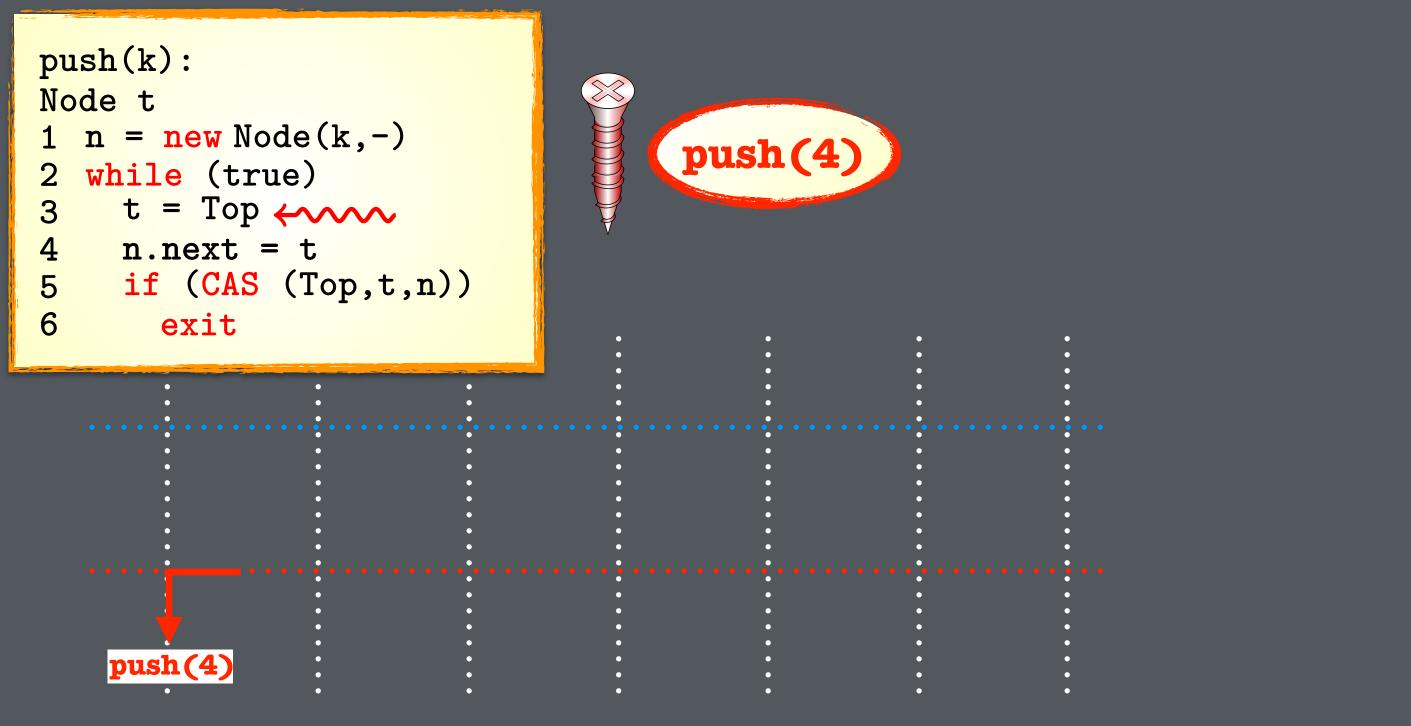
```
push(k):
Node t
1 n = new Node(k,-)
2 while (true)
3 t = Top
4 n.next = t
5 if (CAS (Top,t,n))
6 exit
when successful
```





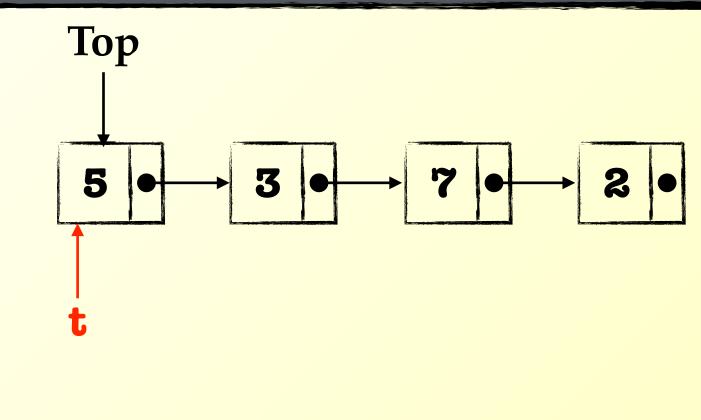
4 • n

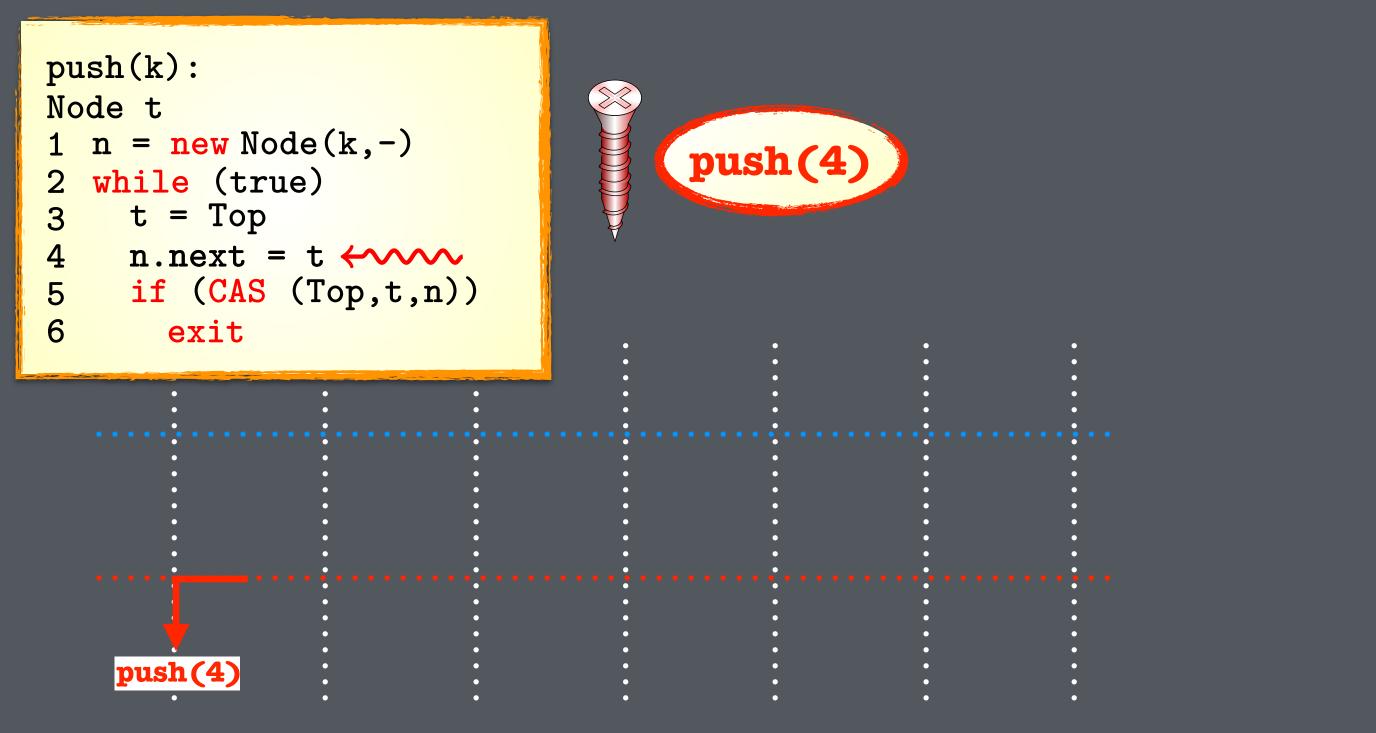




4•

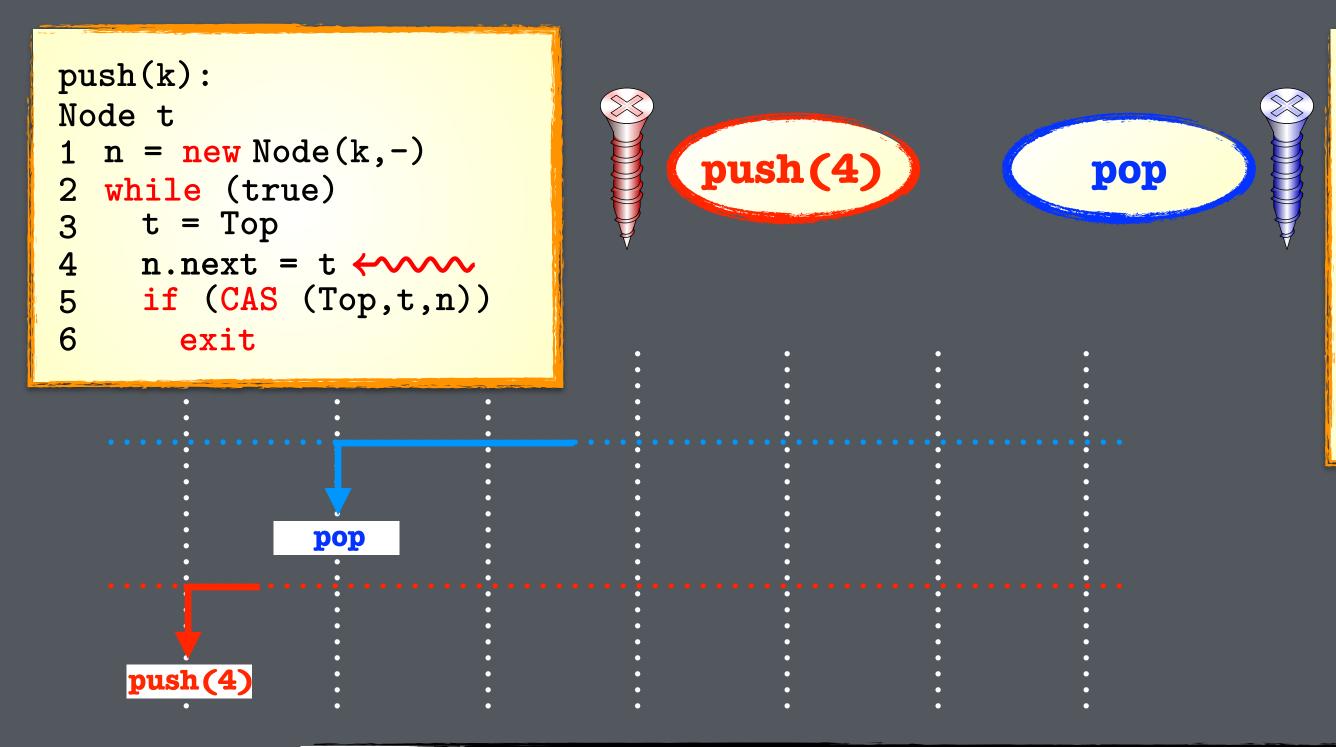
n





4• n

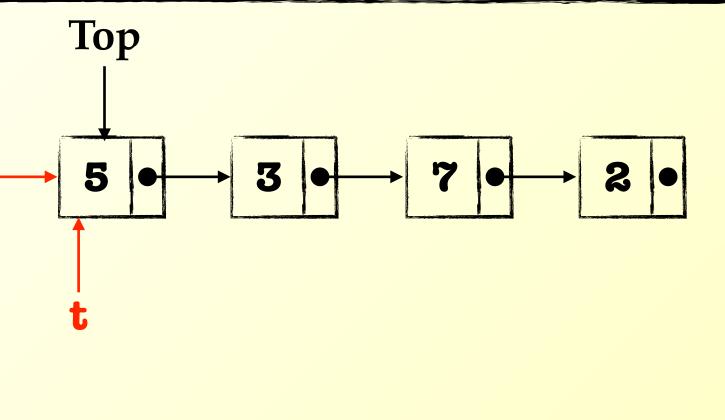


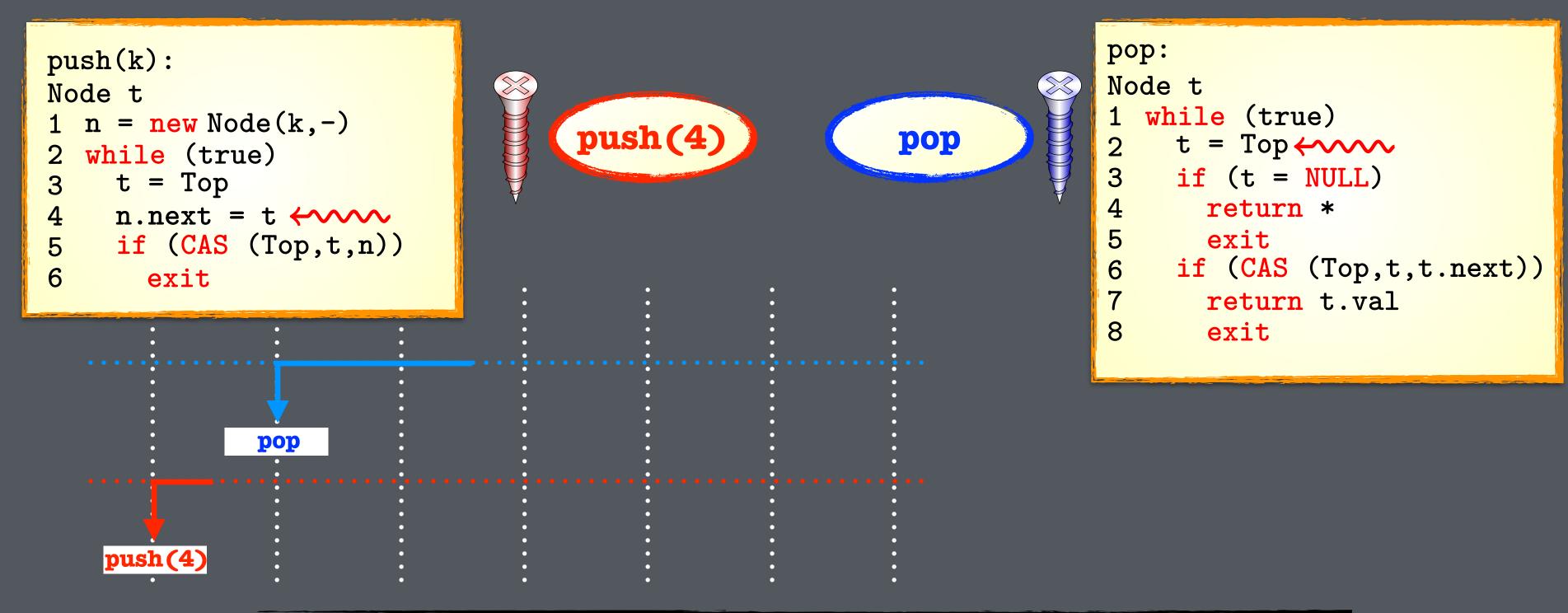


4

n

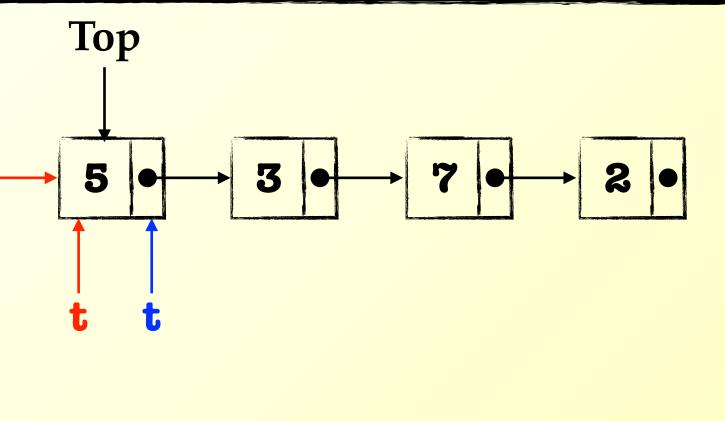
pop: Node t t = Top 2 3 if (t = NULL) 4 return * 5 exit if (CAS (Top,t,t.next)) 6 7 return t.val 8 exit

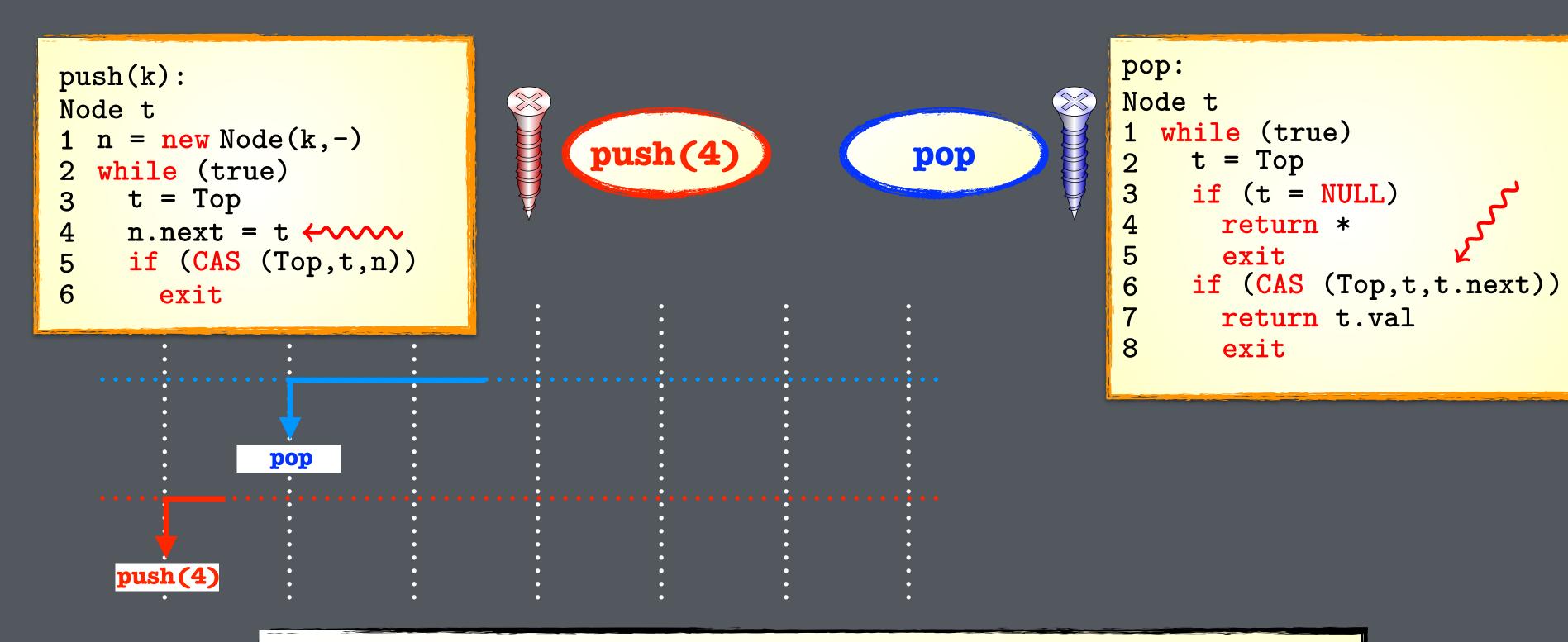




4

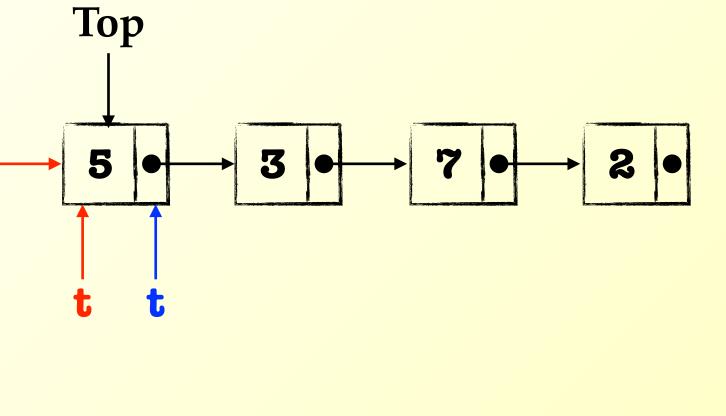
n

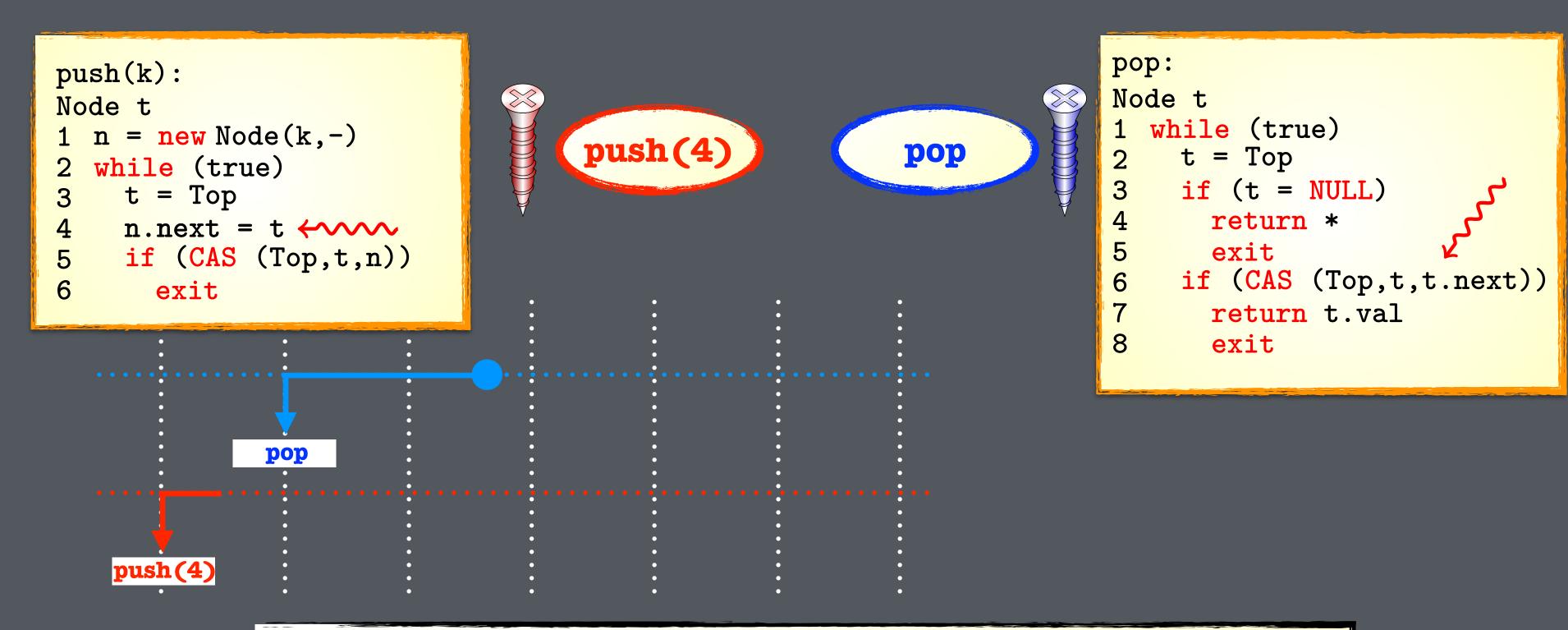




4

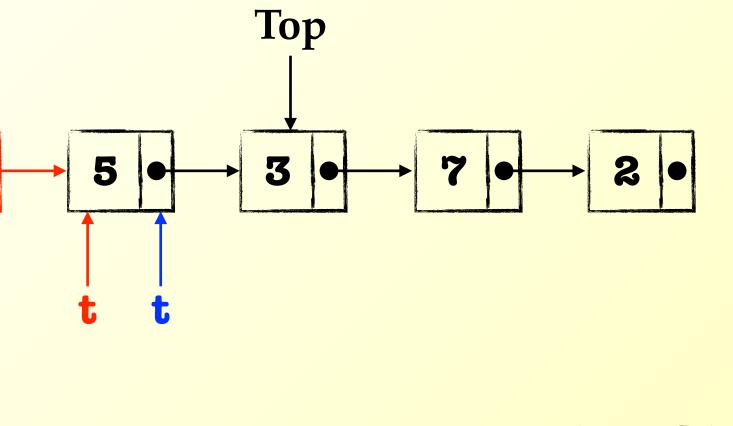
n

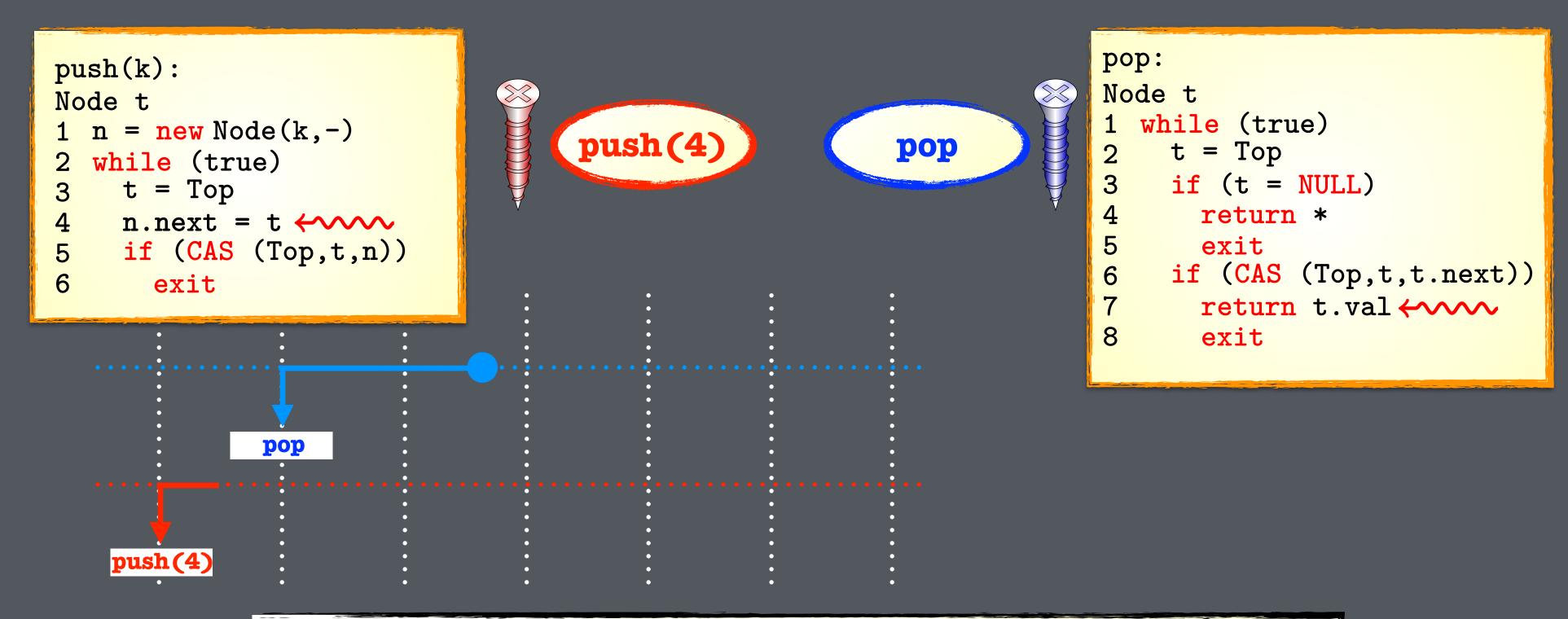




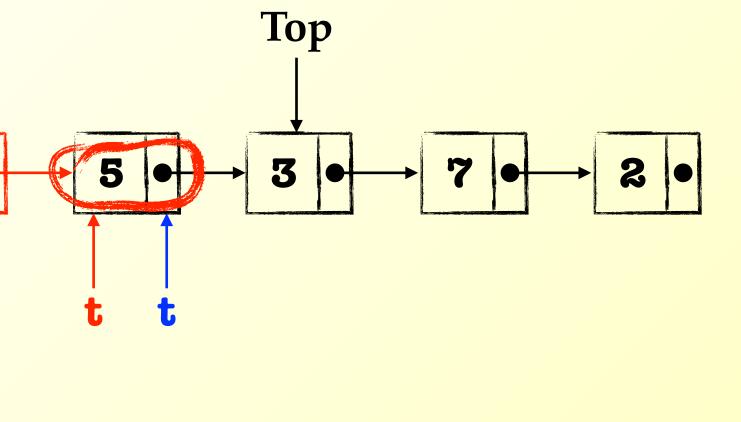
4

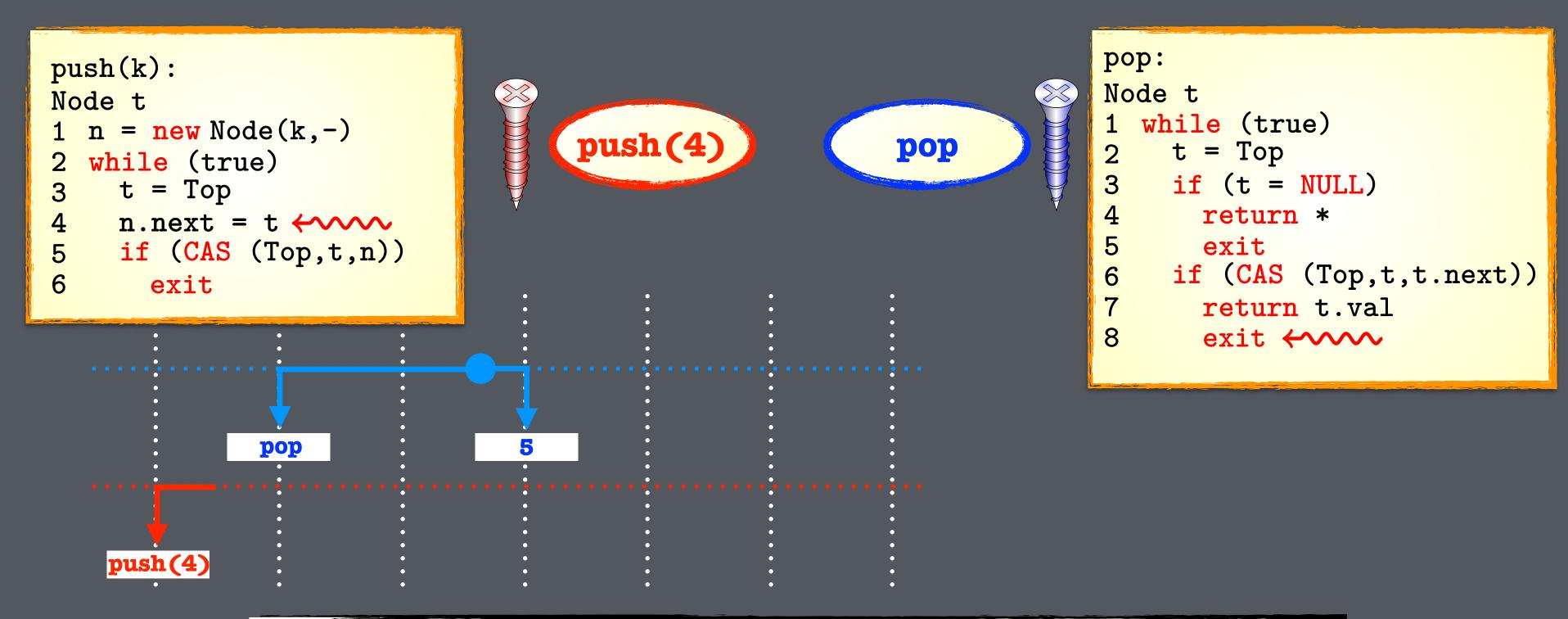
n



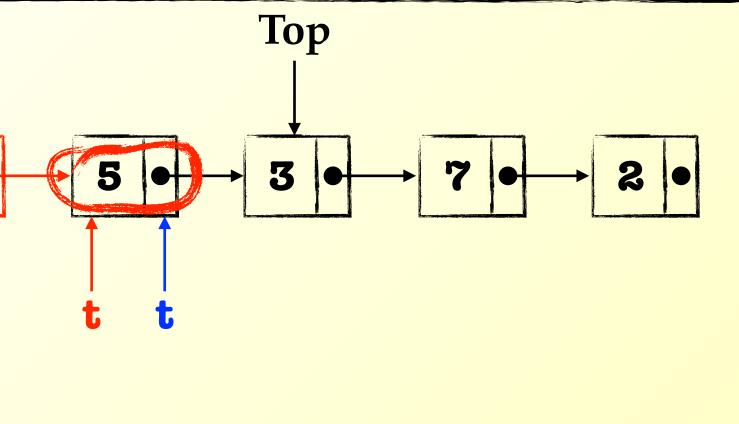


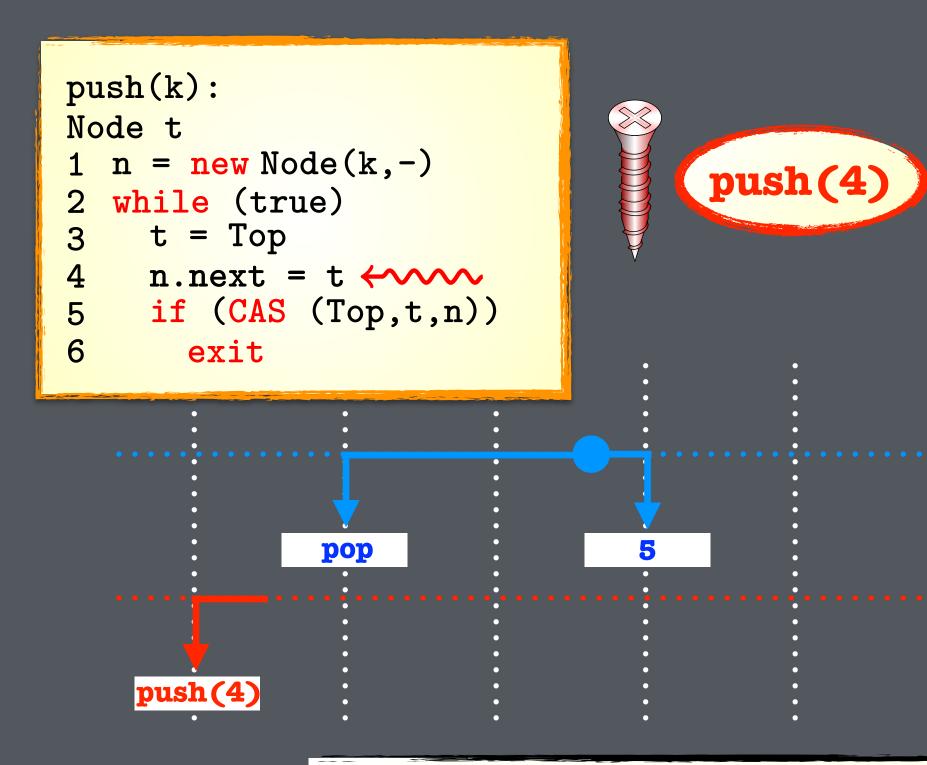
n





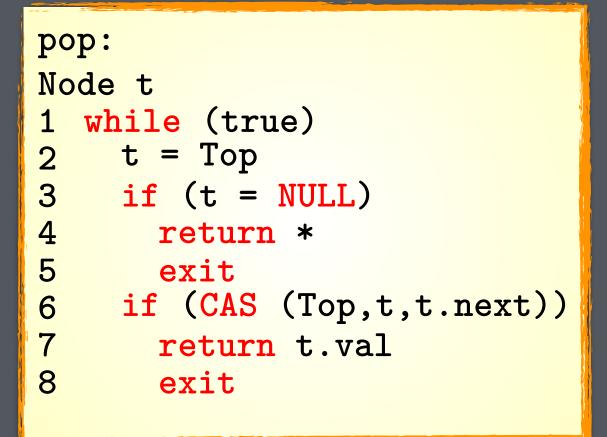
n

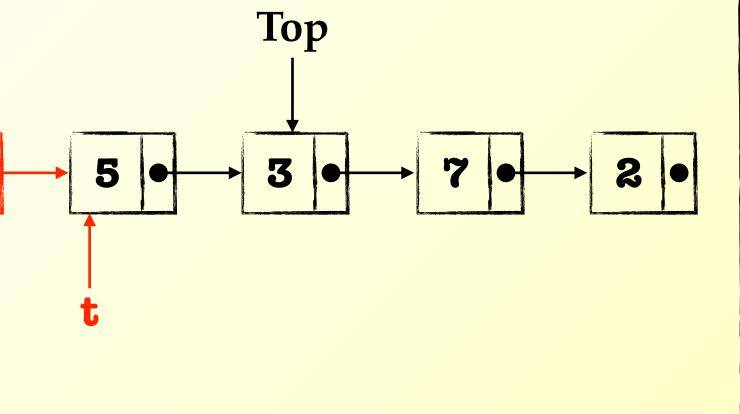


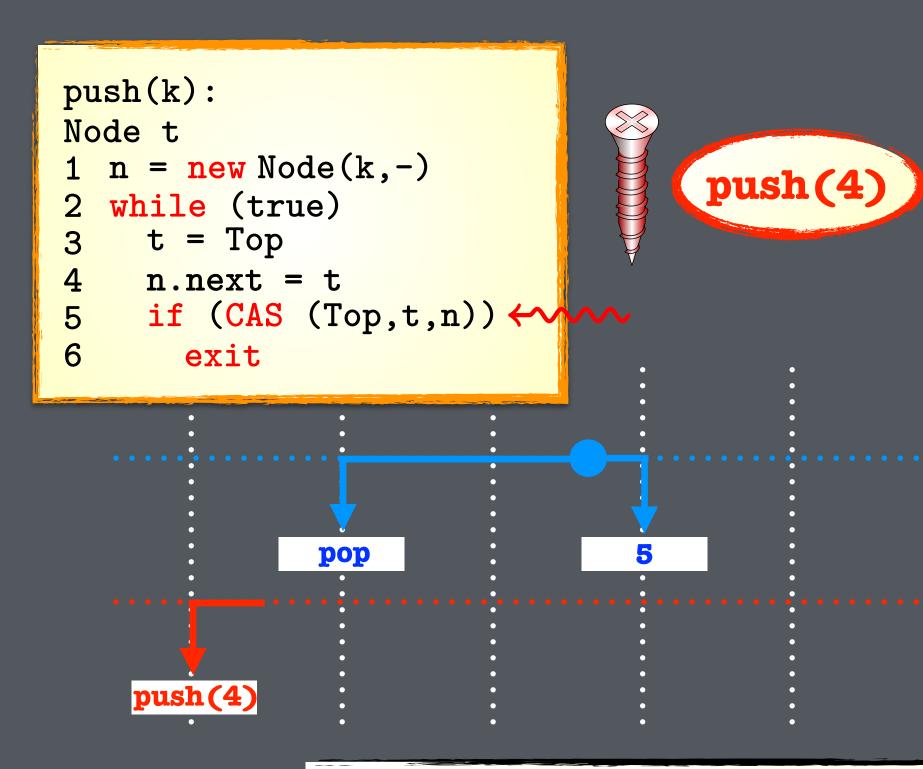


4•

n

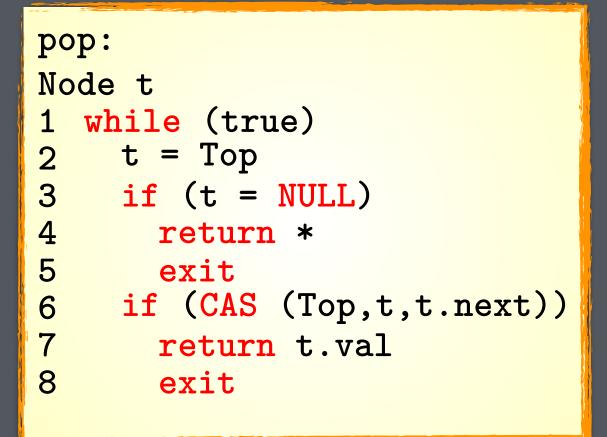


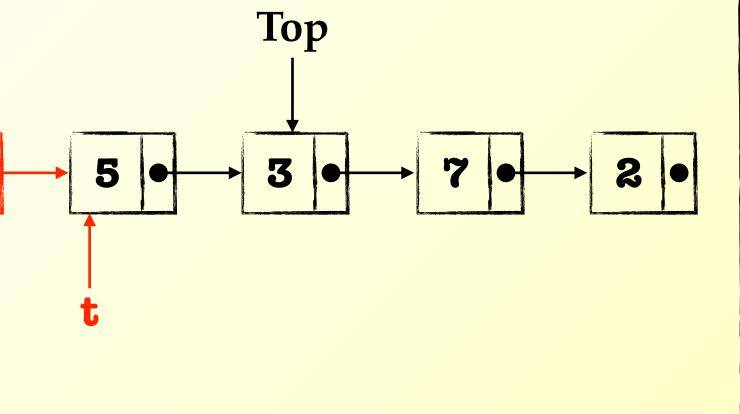


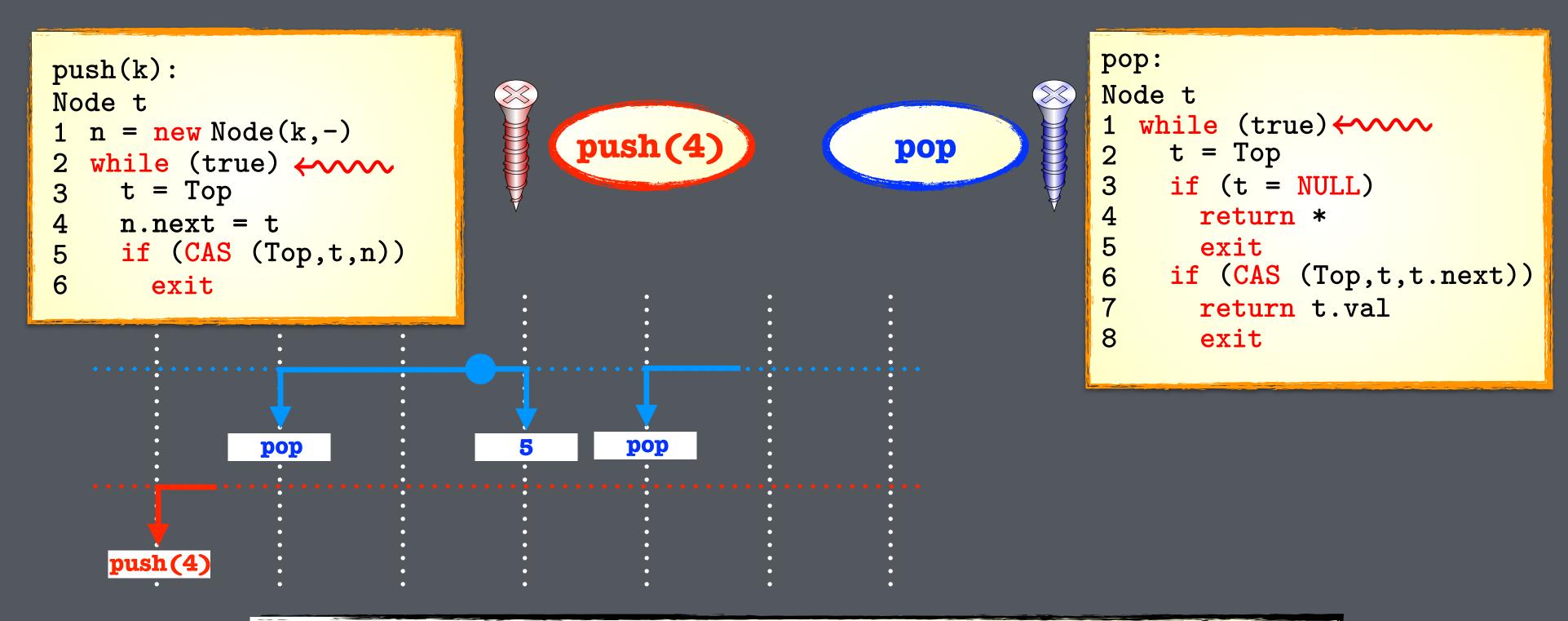


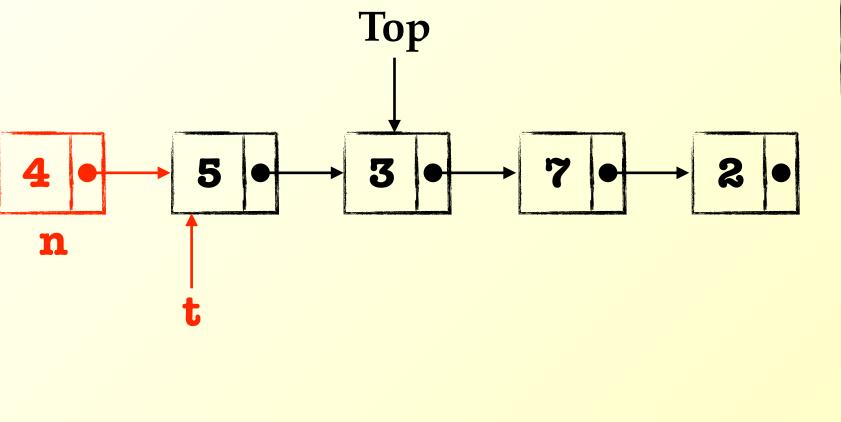
4•

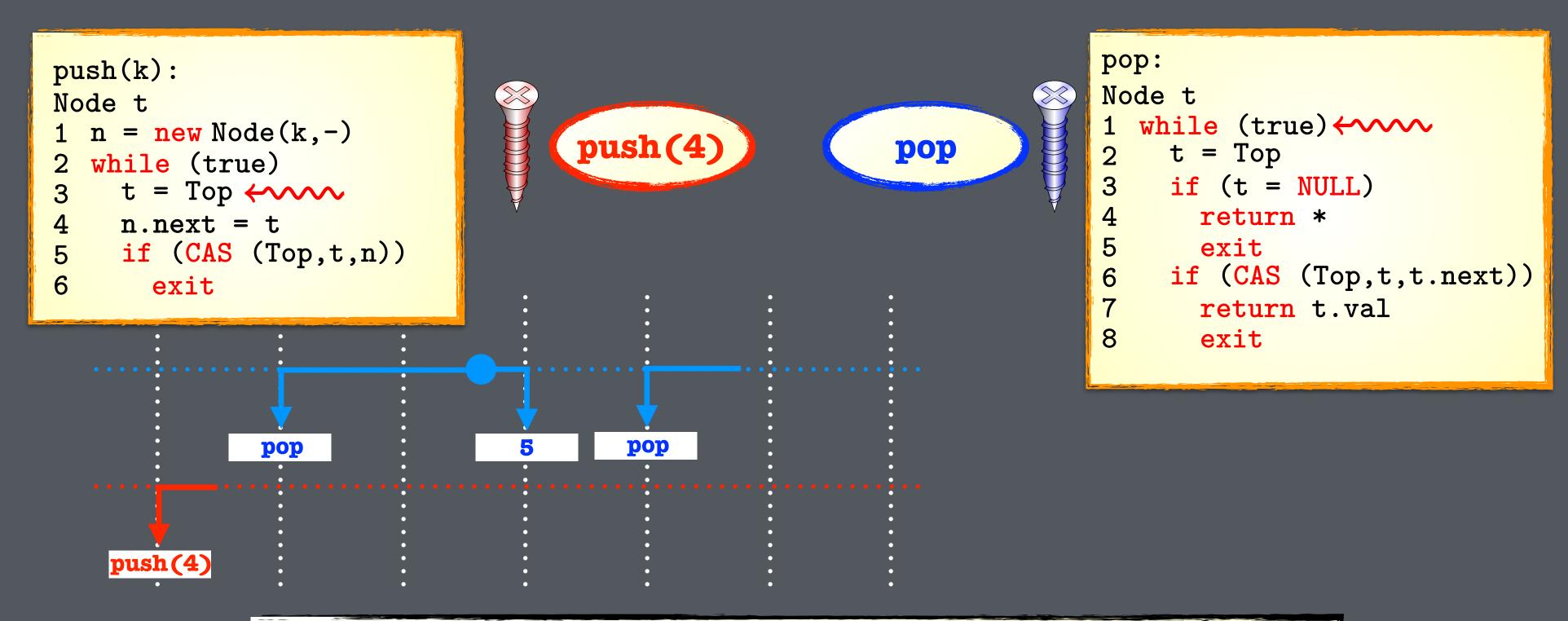
n





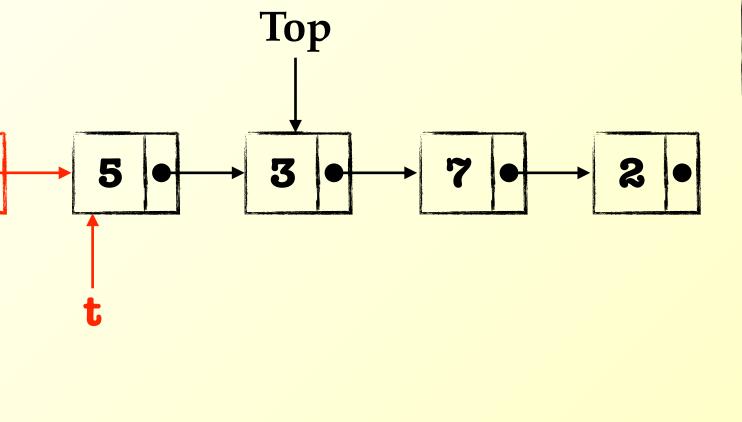


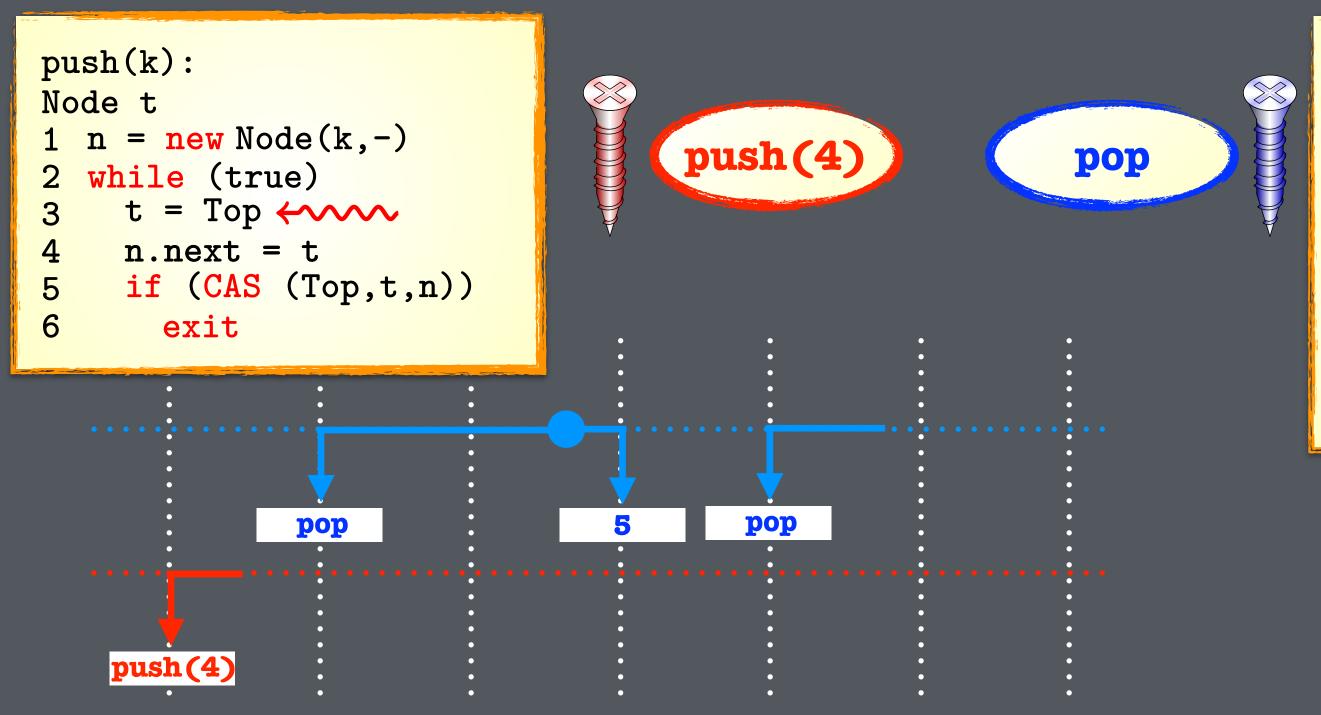




4

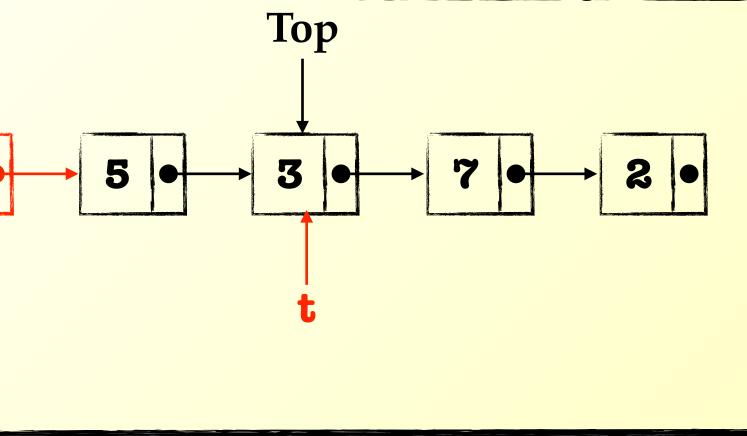
n

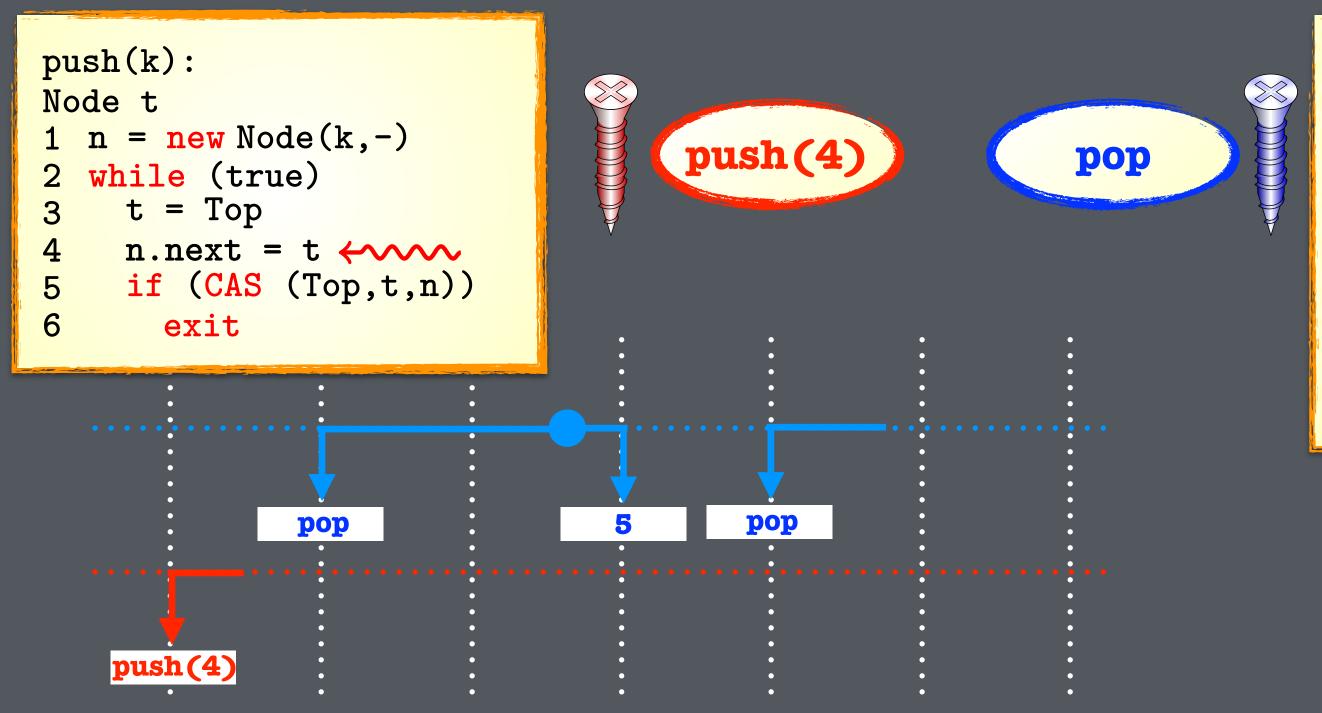




n

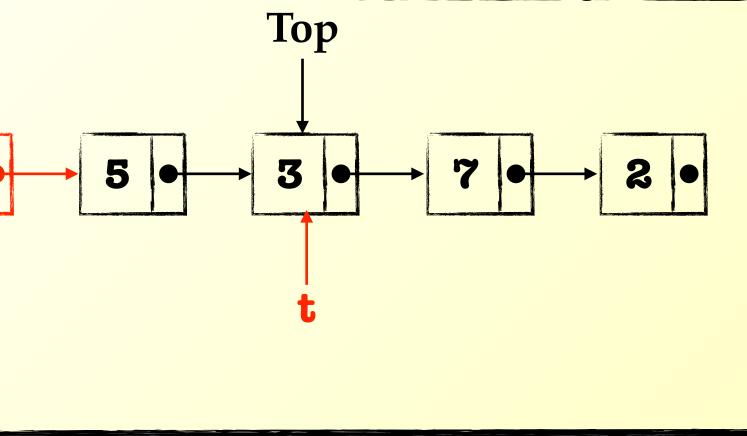
pop: Node t 1 while (true) ← → → → t = Top 2 3 if (t = NULL) return * 4 5 exit if (CAS (Top,t,t.next)) 6 7 return t.val 8 exit

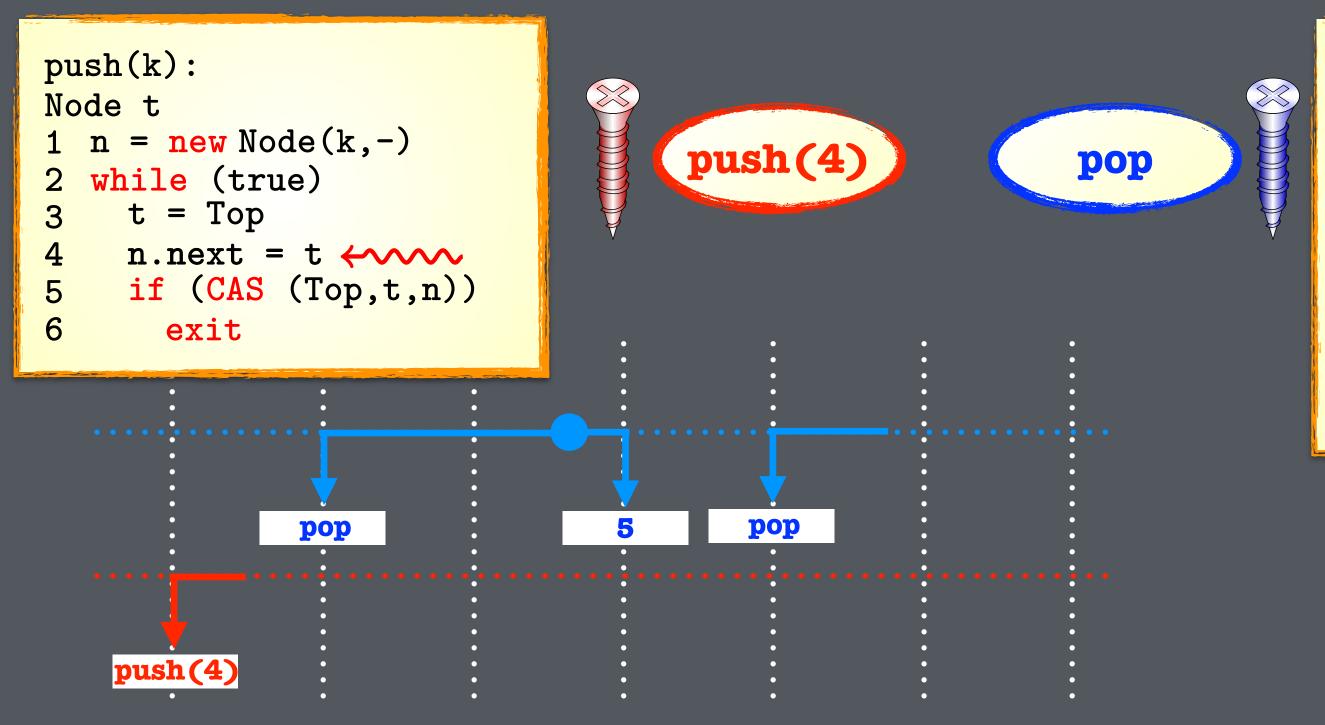




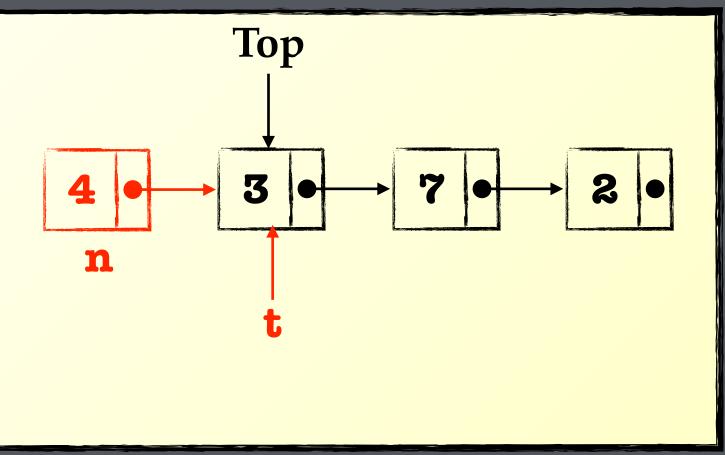
n

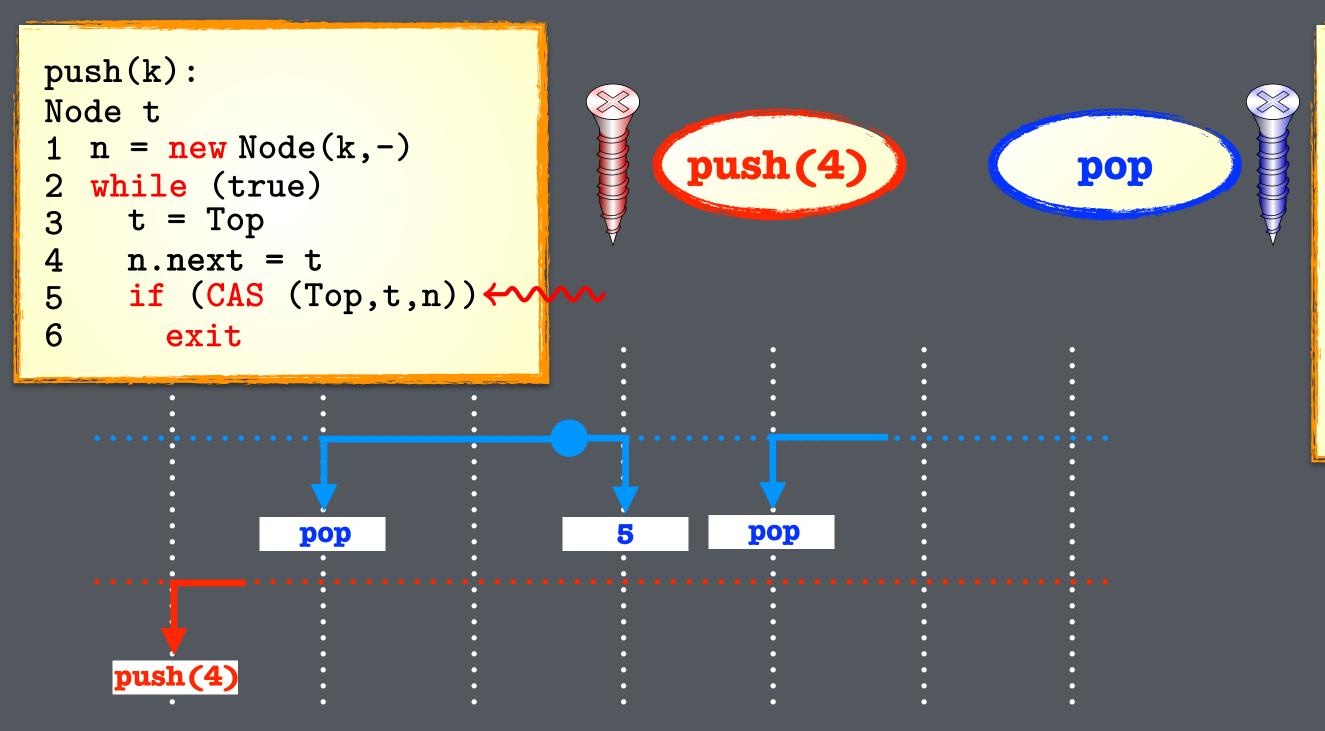
pop: Node t t = Top 2 3 if (t = NULL) return * 4 5 exit if (CAS (Top,t,t.next)) 6 7 return t.val 8 exit



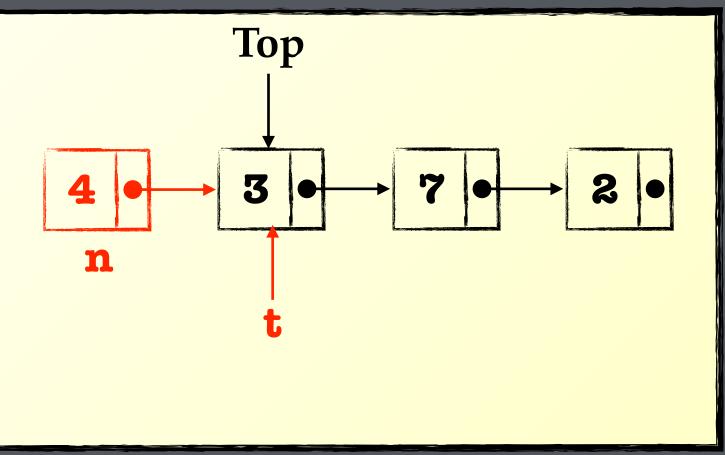


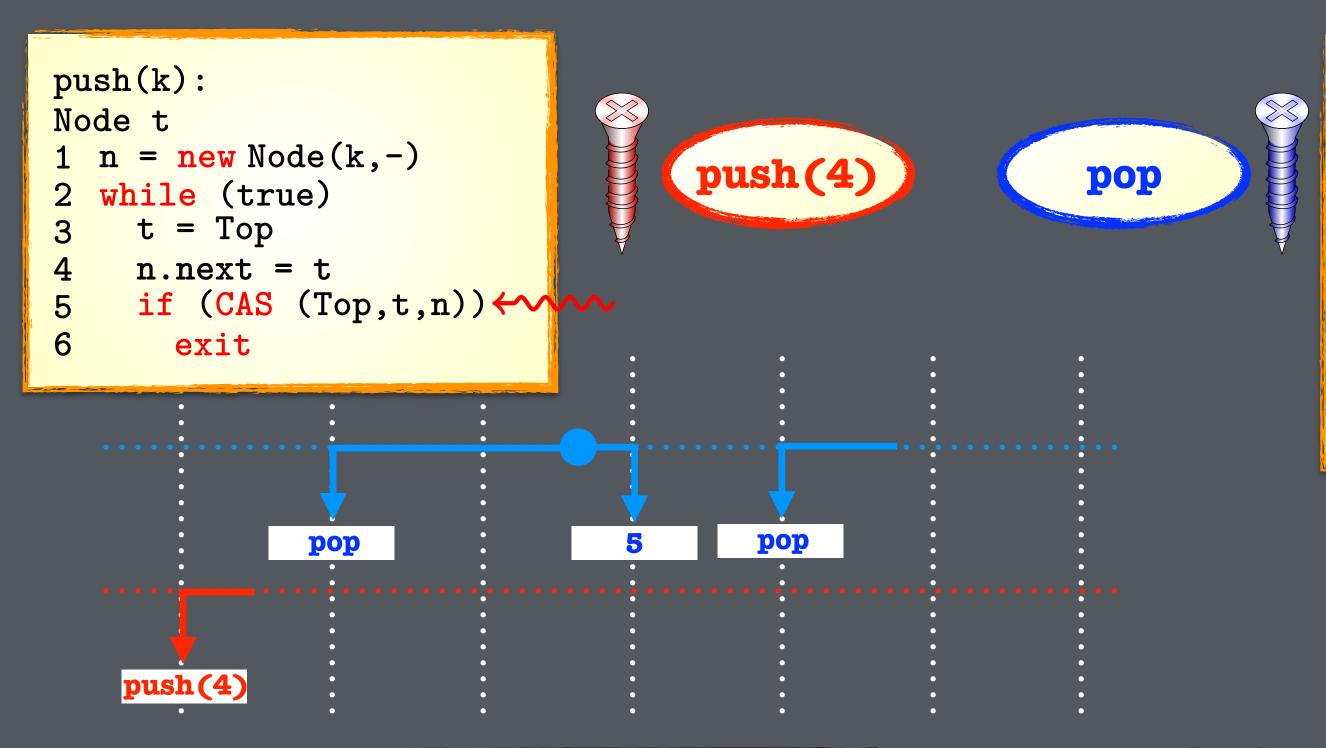
pop: Node t t = Top 2 3 if (t = NULL) return * 4 5 exit if (CAS (Top,t,t.next)) 6 7 return t.val 8 exit



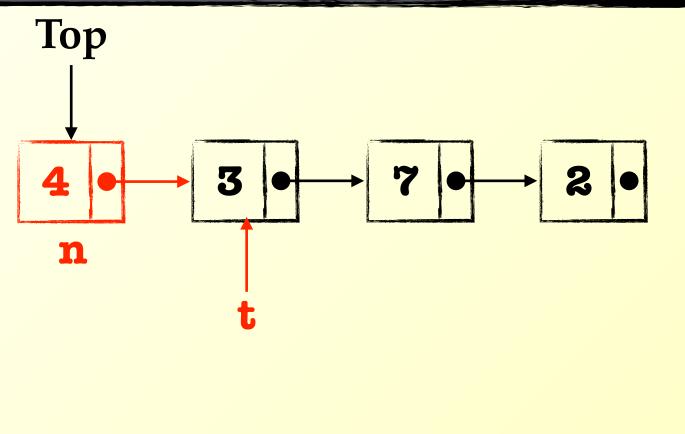


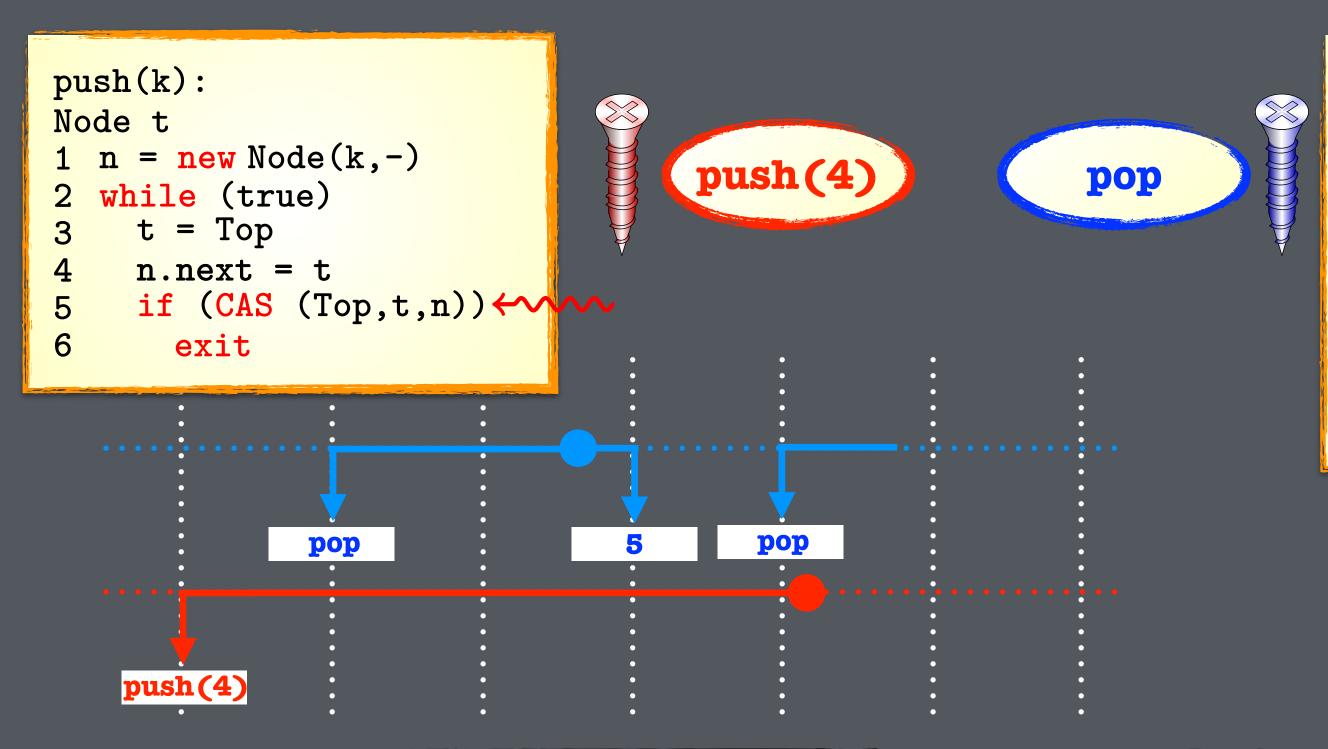
pop: Node t t = Top 2 3 if (t = NULL) 4 return * 5 exit if (CAS (Top,t,t.next)) 6 7 return t.val 8 exit



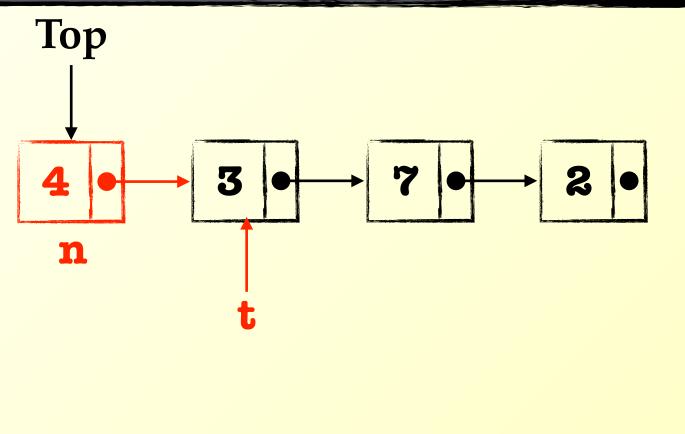


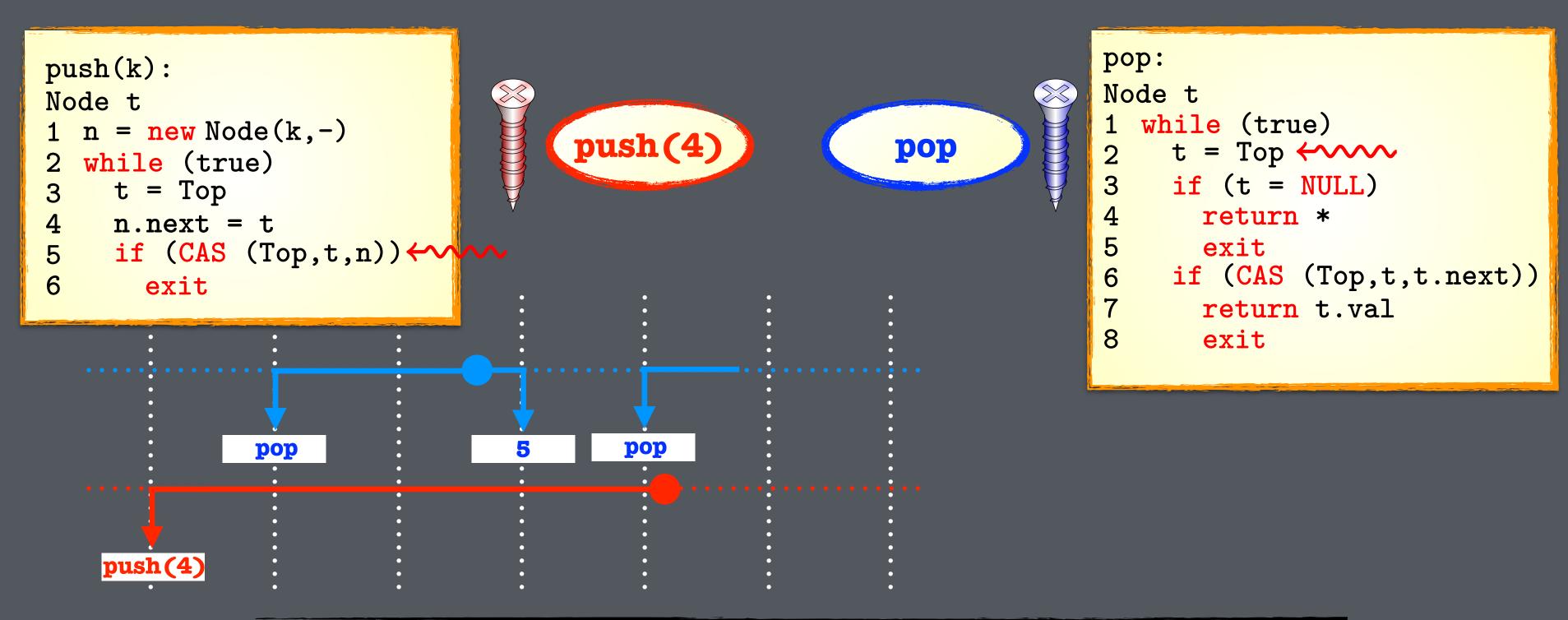
pop: Node t t = Top 2 3 if (t = NULL) 4 return * 5 exit if (CAS (Top,t,t.next)) 6 7 return t.val 8 exit

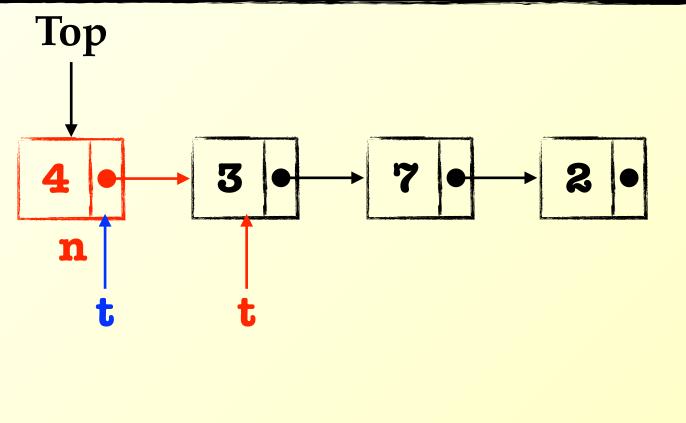


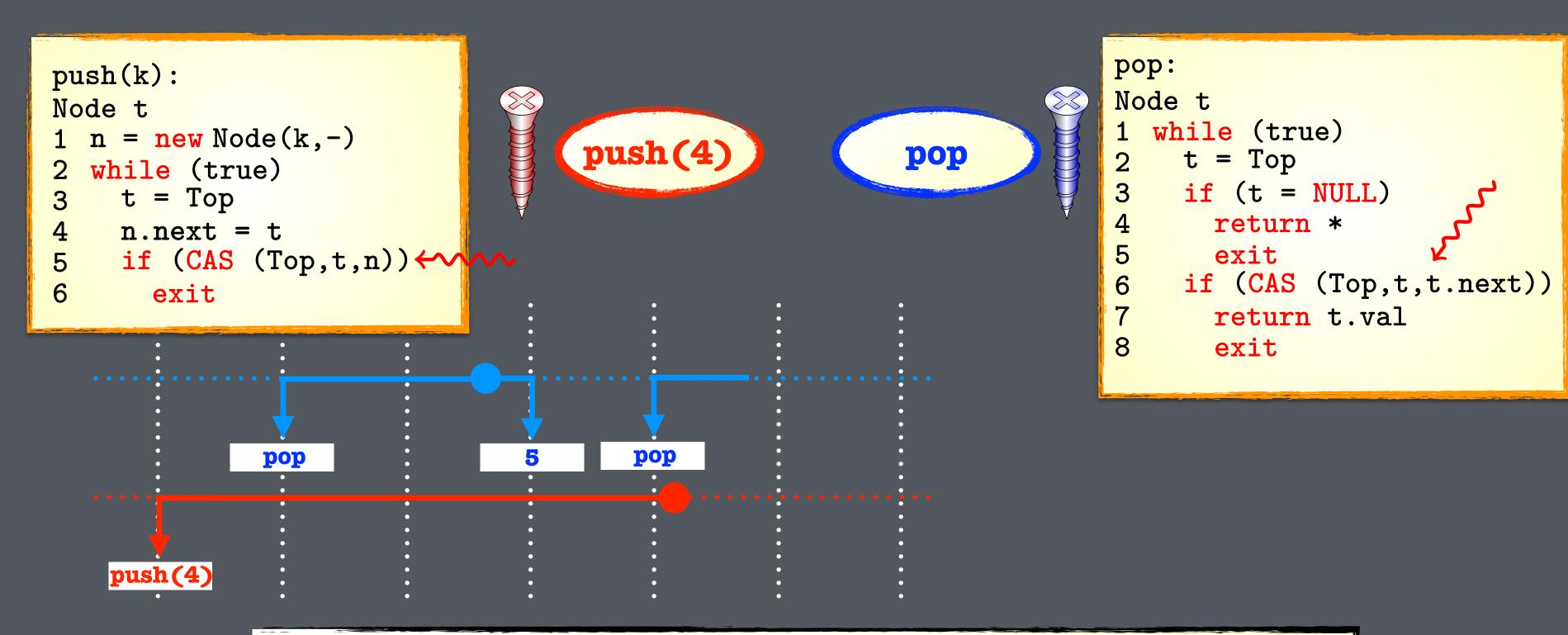


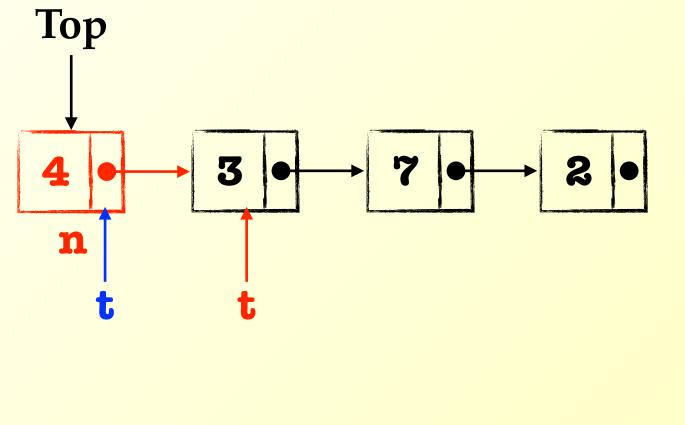
pop: Node t t = Top 2 3 if (t = NULL) 4 return * 5 exit if (CAS (Top,t,t.next)) 6 7 return t.val 8 exit

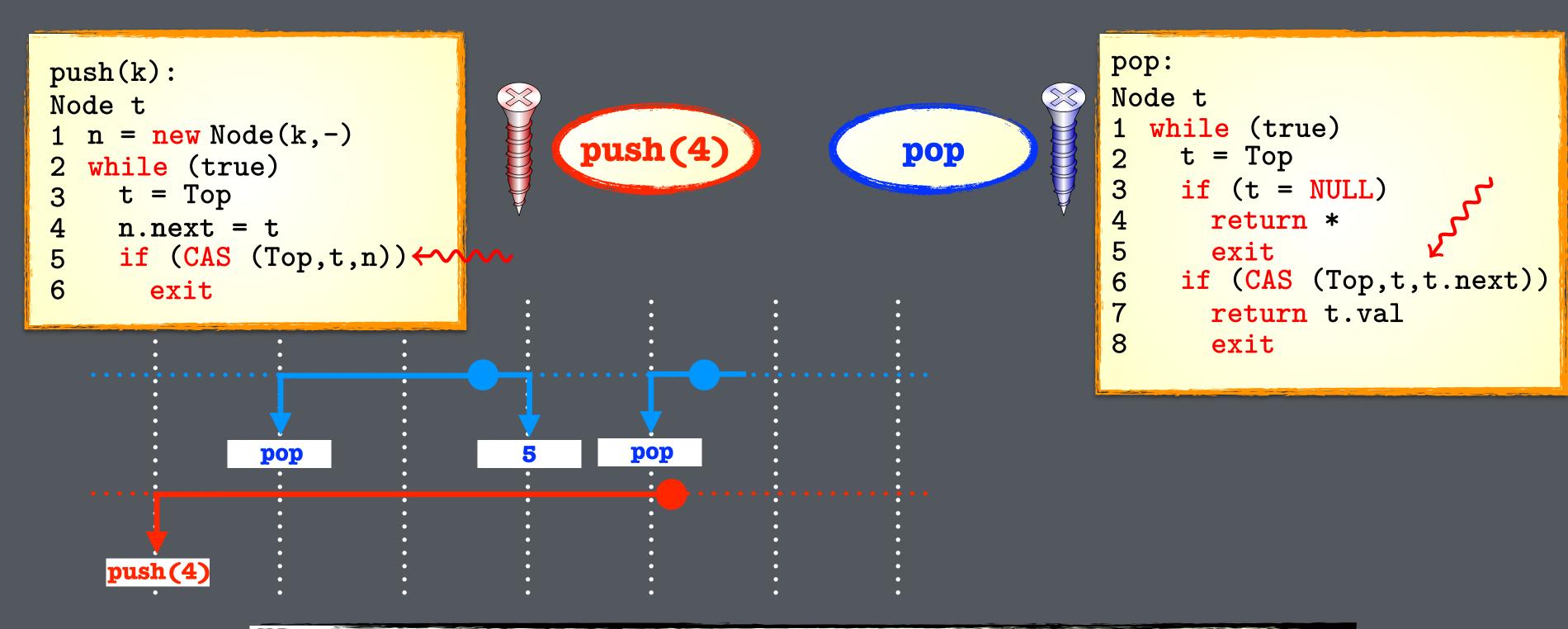


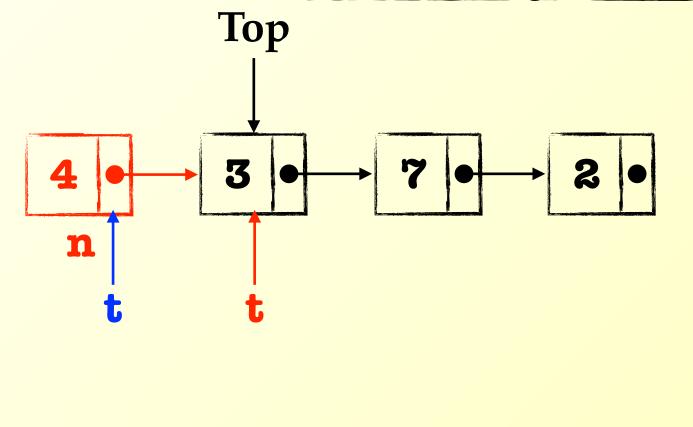


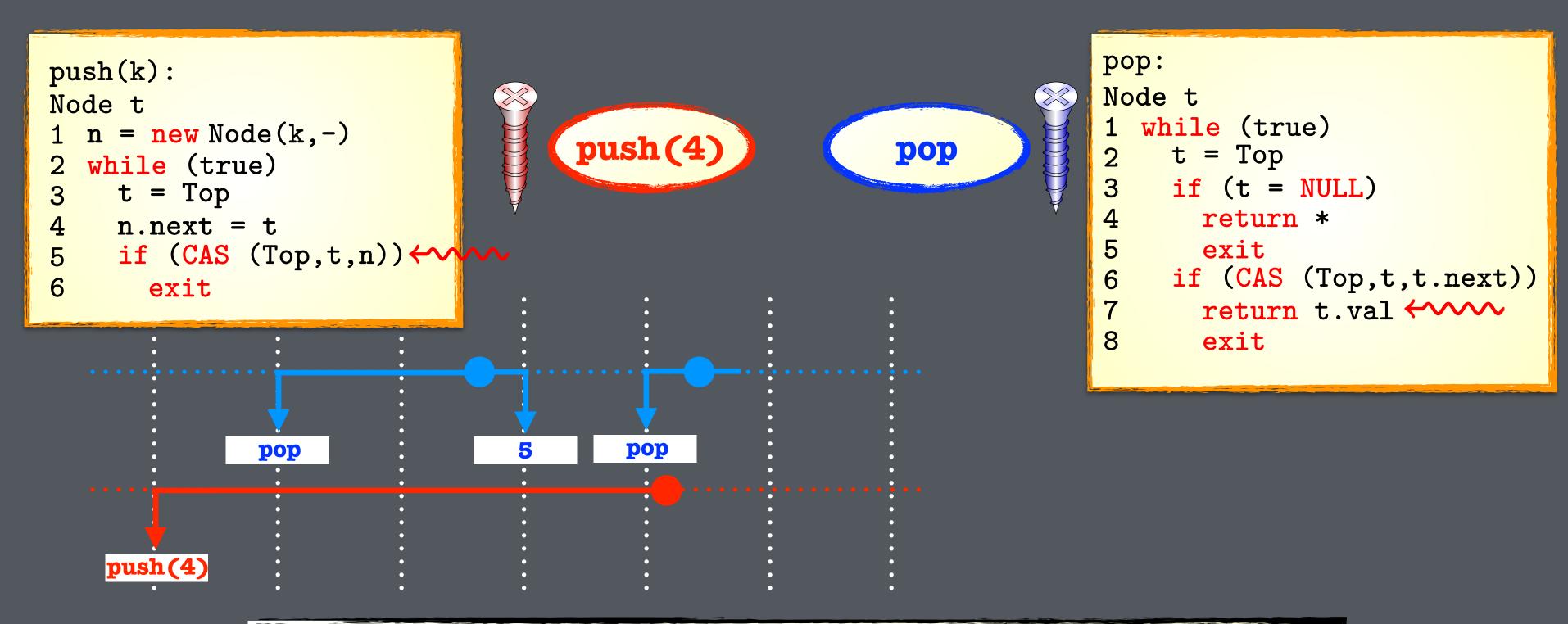


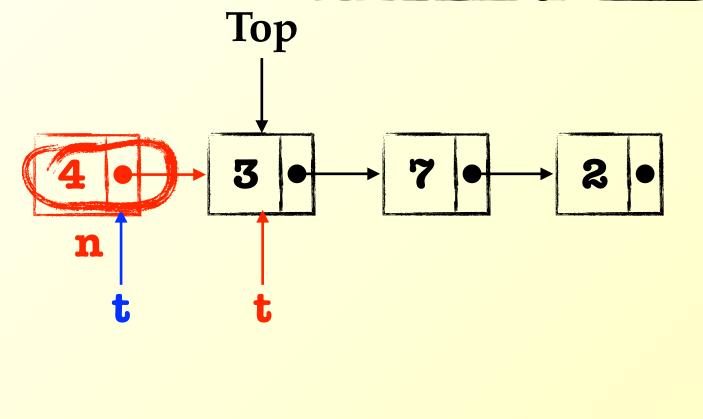




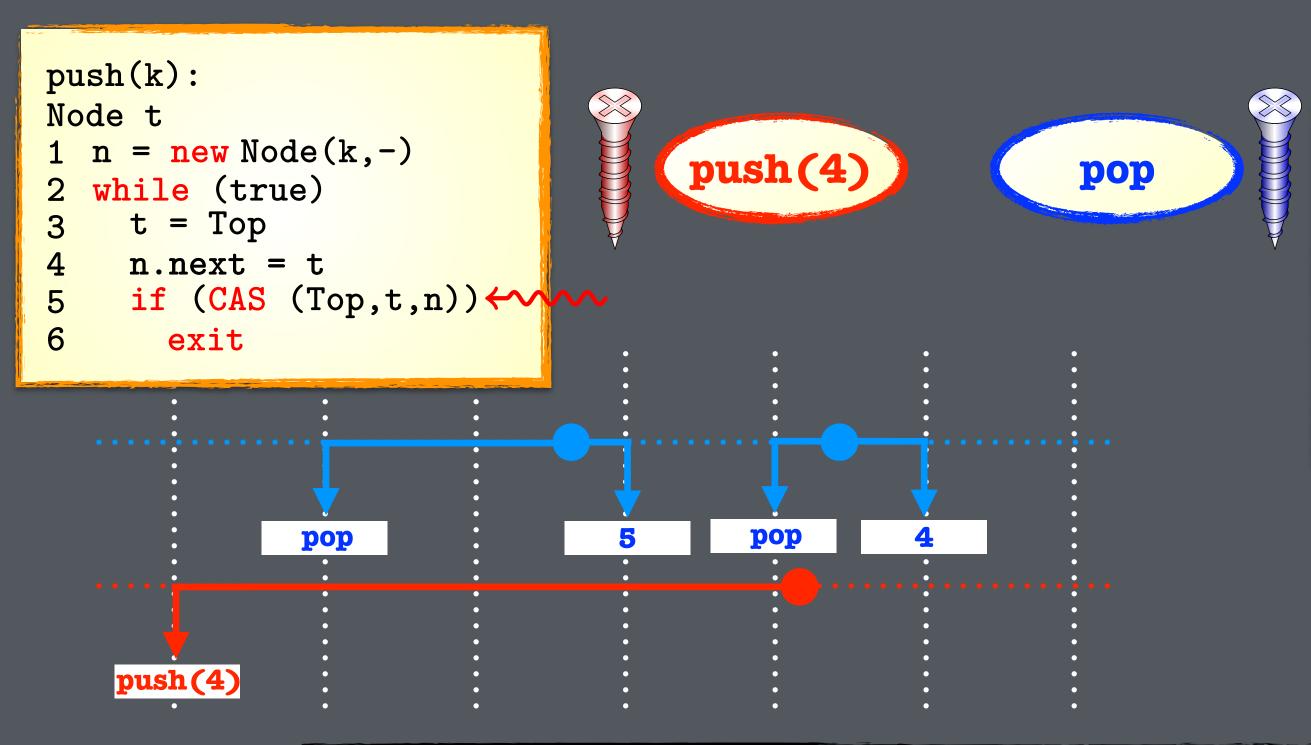




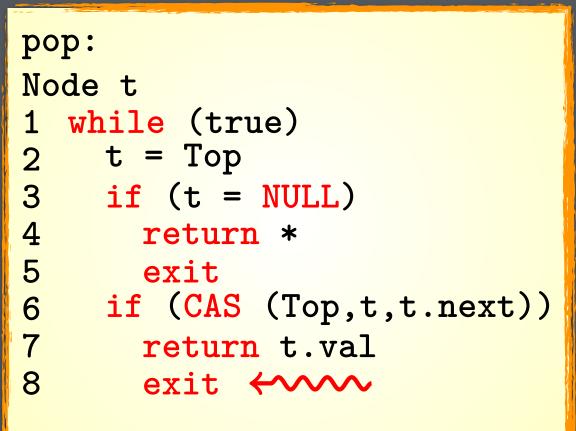


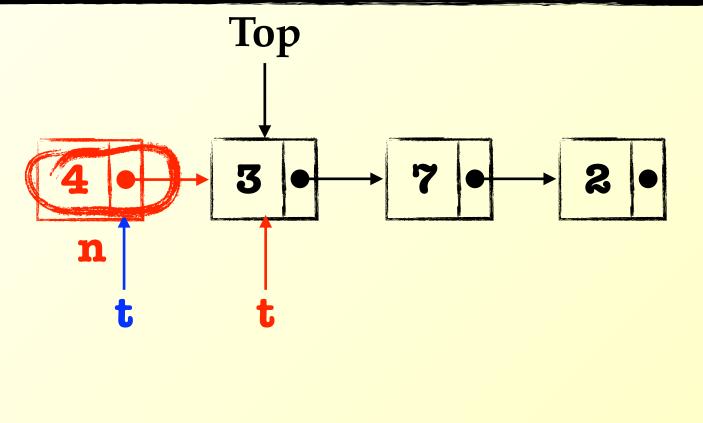


The Treiber Stack Algorithm

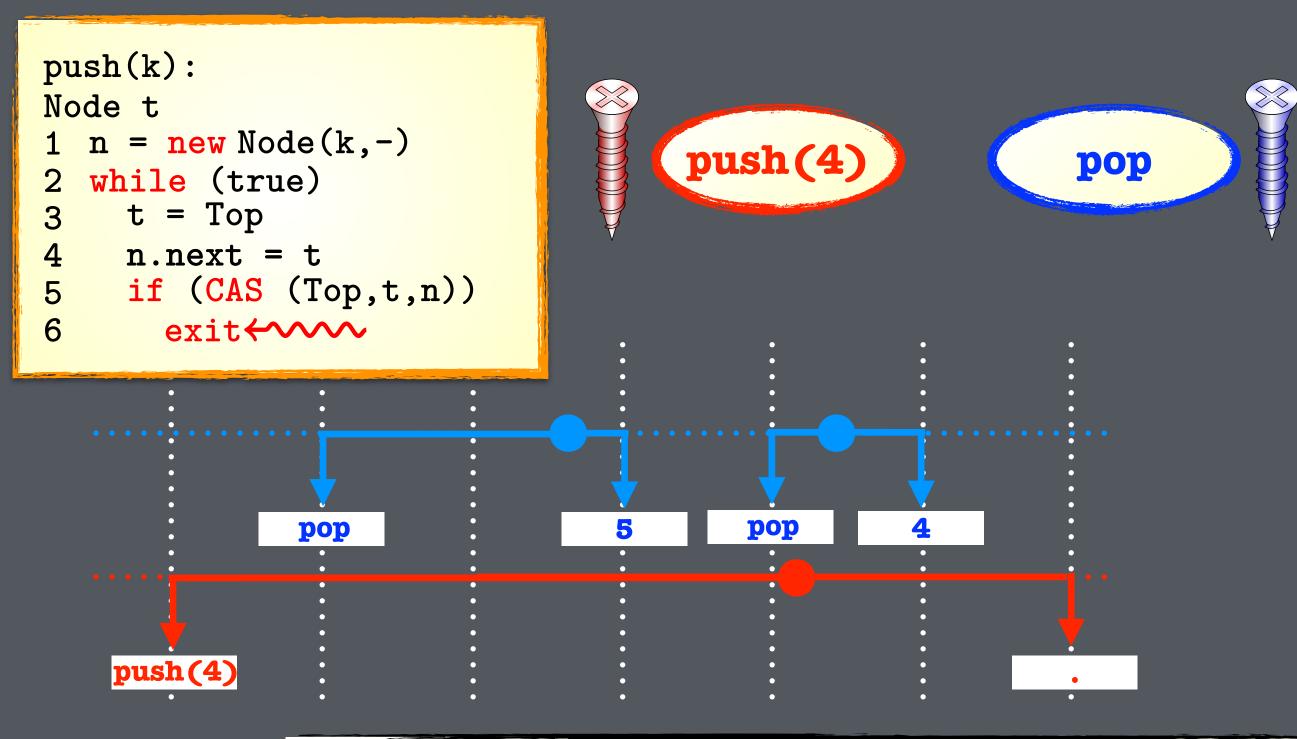


Linearization Policy



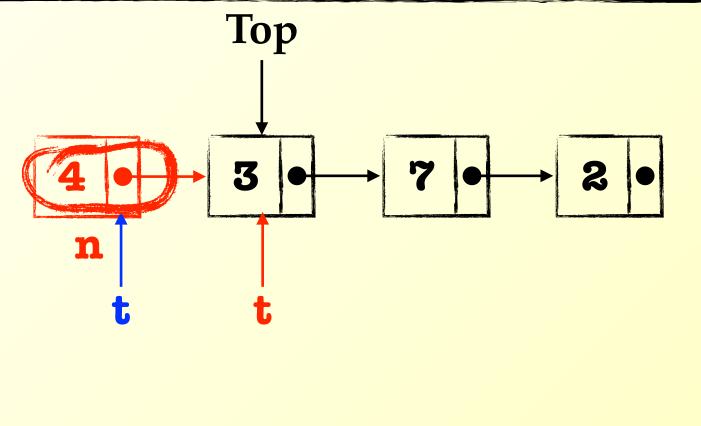


The Treiber Stack Algorithm

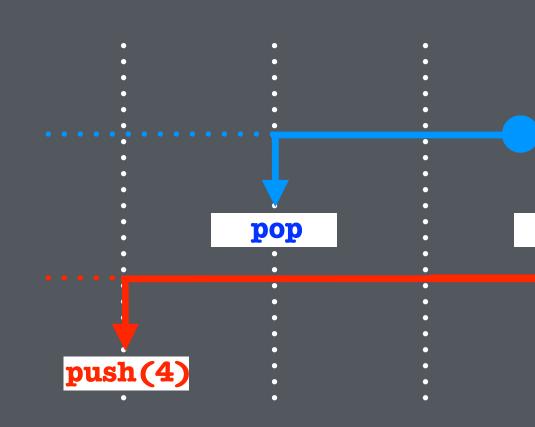


Linearization Policy

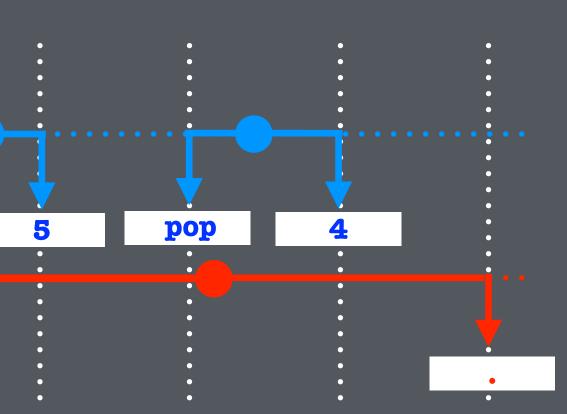
pop: Node t while (true) 1 t = Top 2 3 if (t = NULL) return * 4 5 exit if (CAS (Top,t,t.next)) 6 7 return t.val 8 exit $\leftrightarrow \sim \sim$



The Treiber Stack Algorithm



Linearization Policy



A configuration $c = \langle v, u \rangle$ of L[C] is a shared memory valuation $v \in V$, along with a map u mapping each thread $t \in \mathbb{N}$ to a tuple $u(t) = \langle \ell, m_0, m \rangle$, composed of a client-local state $\ell \in Q_C$, along with initial and current method states $m_0, m \in Q_L \cup \{\bot\}; m_0 = m = \bot$ when thread t is not executing a library

Libraries

Fig. 1. The transition relation $\rightarrow_{L[C]}$ for the library-client composition L[C].

VASS model

We associate to each concurrent system L[C] a canonical VASS,² denoted $\mathcal{A}_{L[C]}$, whose states are the set of shared-memory valuations, and whose vector components count the number of threads in each thread-local state; a transition of $\mathcal{A}_{L[C]}$ from $\langle v_1, \mathbf{n}_1 \rangle$ to $\langle v_2, \mathbf{n}_2 \rangle$ updates the shared-memory valuation from v_1 to v_2 and the local state of some thread t from $u_1(t)$ to $u_2(t)$ by decrementing the $u_1(t)$ -component of \mathbf{n}_1 , and incrementing the $u_2(t)$ -component, to derive \mathbf{n}_2 .

A specification S of a library L is a language over the specification alphabet $\Sigma_S \stackrel{\text{\tiny def}}{=} \{M[m_0, m_f]\}$

Definition 2 (Linearizability [20]). A trace τ is S-linearizable when there exists a completion⁴ π of a strict, serial permutation of τ such that $(\pi \mid S) \in S$.

$$: M \in L, m_0, m_f \in Q_M \}.$$

The *pending closure* of a specification S, denoted \overline{S} is the set of S-images of serial sequences which have completions whose S-images are in S:

 $\overline{S} \stackrel{\text{\tiny def}}{=} \{ (\sigma \mid S) \in \overline{\Sigma}_S^* : \exists \sigma' \in \Sigma_S^*. \ (\sigma' \mid S) \in S \text{ and } \sigma' \text{ is a completion of } \sigma \}.$

serial sequences which have completions whose S-images are in S:

$$\overline{S} \stackrel{\text{def}}{=} \{ (\sigma \mid S) \in \overline{\Sigma}_{S}^{*} : \exists \sigma' \in \Sigma_{S}^{*} . (\sigma \mid S) \in \overline{\Sigma}_{S}^{*} : \exists \sigma' \in \Sigma_{S}^{*} . (\sigma \mid S) \in \overline{\Sigma}_{S}^{*} . (\sigma \mid S) \in \overline$$

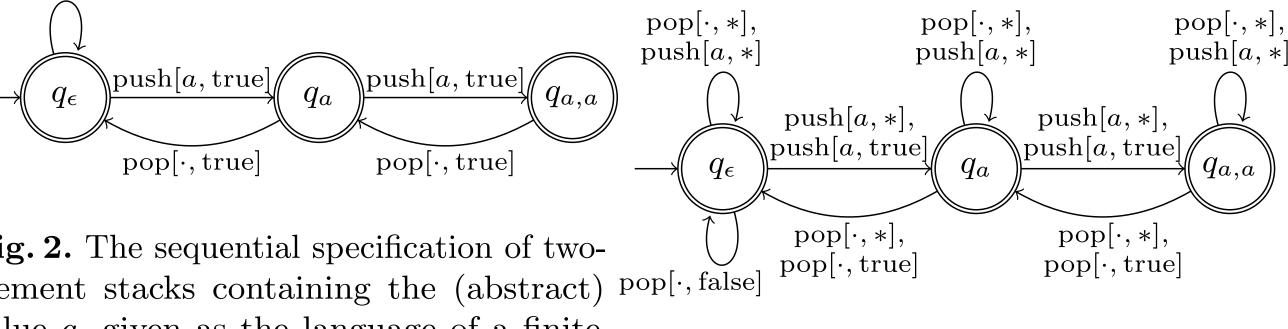


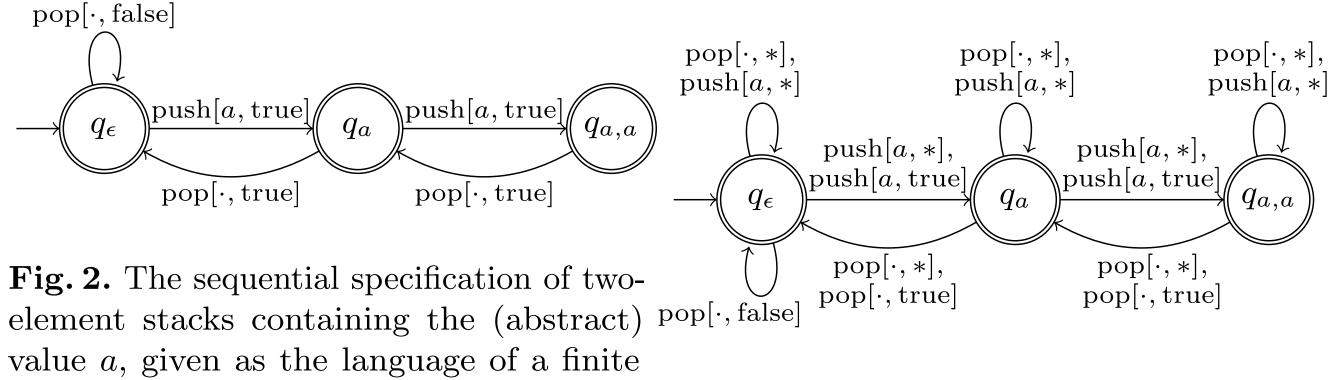
Fig. 2. The sequential specification of twoelement stacks containing the (abstract) $pop[\cdot, false]$ value a, given as the language of a finite automaton, whose operation alphabet indi- Fig. 3. The pending closure of the stack cates both the argument and return values. specification from Figure 2.

The *pending closure* of a specification S, denoted S is the set of S-images of

 $(\sigma' \mid S) \in S \text{ and } \sigma' \text{ is a completion of } \sigma\}.$

serial sequences which have completions whose S-images are in S:

$$\overline{S} \stackrel{\text{def}}{=} \{ (\sigma \mid S) \in \overline{\Sigma}_S^* : \exists \sigma' \in \Sigma_S^*. \ (\sigma \mid S) \in \overline{\Sigma}_S^* : \exists \sigma' \in \Sigma_S^*. \ (\sigma \mid S) \in \overline{\Sigma}_S^* : \exists \sigma' \in \Sigma_S^*. \ (\sigma \mid S) \in \overline{\Sigma}_S^* : \exists \sigma' \in \Sigma_S^*. \ (\sigma \mid S) \in \overline{\Sigma}_S^* : \exists \sigma' \in \Sigma_S^*. \ (\sigma \mid S) \in \overline{\Sigma}_S^* : \exists \sigma' \in \Sigma_S^*. \ (\sigma \mid S) \in \overline{\Sigma}_S^* : \exists \sigma' \in \Sigma_S^*. \ (\sigma \mid S) \in \overline{\Sigma}_S^* : \exists \sigma' \in \Sigma_S^*. \ (\sigma \mid S) \in \overline{\Sigma}_S^* : \exists \sigma' \in \Sigma_S^*. \ (\sigma \mid S) \in \overline{\Sigma}_S^* : \exists \sigma' \in \Sigma_S^*. \ (\sigma \mid S) \in \overline{\Sigma}_S^* : \exists \sigma' \in \Sigma_S^*. \ (\sigma \mid S) \in \overline{\Sigma}_S^* : \exists \sigma' \in \Sigma_S^*. \ (\sigma \mid S) \in \overline{\Sigma}_S^* : \exists \sigma' \in \Sigma_S^*. \ (\sigma \mid S) \in \overline{\Sigma}_S^* : \exists \sigma' \in \Sigma_S^*. \ (\sigma \mid S) \in \overline{\Sigma}_S^* : \exists \sigma' \in \Sigma_S^*. \ (\sigma \mid S) \in \overline{\Sigma}_S^* : \exists \sigma' \in \Sigma_S^*. \ (\sigma \mid S) \in \overline{\Sigma}_S^* : \exists \sigma' \in \Sigma_S^*. \ (\sigma \mid S) \in \overline{\Sigma}_S^* : \exists \sigma' \in \Sigma_S^*. \ (\sigma \mid S) \in \overline{\Sigma}_S^* : \exists \sigma' \in \Sigma_S^*. \ (\sigma \mid S) \in \overline{\Sigma}_S^* : \exists \sigma' \in \Sigma_S^*. \ (\sigma \mid S) \in \overline{\Sigma}_S^* : \exists \sigma' \in \Sigma_S^*. \ (\sigma \mid S) \in \overline{\Sigma}_S^* : \exists \sigma' \in \Sigma_S^*. \ (\sigma \mid S) \in \overline{\Sigma}_S^* : \exists \sigma' \in \Sigma_S^*. \ (\sigma \mid S) \in \overline{\Sigma}_S^* : \exists \sigma' \in \Sigma_S^*. \ (\sigma \mid S) \in \overline{\Sigma}_S^* : \exists \sigma' \in \Sigma_S^*. \ (\sigma \mid S) \in \overline{\Sigma}_S^* : \exists \sigma' \in \Sigma_S^* : \exists \sigma' \in \Sigma_S^*. \ (\sigma \mid S) \in \overline{\Sigma}_S^* : \exists \sigma' \in \Sigma_S^* : \exists \sigma' \in$$



automaton, whose operation alphabet indi- Fig. 3. The pending closure of the stack cates both the argument and return values. specification from Figure 2.

Lemma 1. The pending closure \overline{S} of a regular specification S is regular.

permutation π of τ such that $(\pi \mid S) \in \overline{S}$.

The *pending closure* of a specification S, denoted S is the set of S-images of

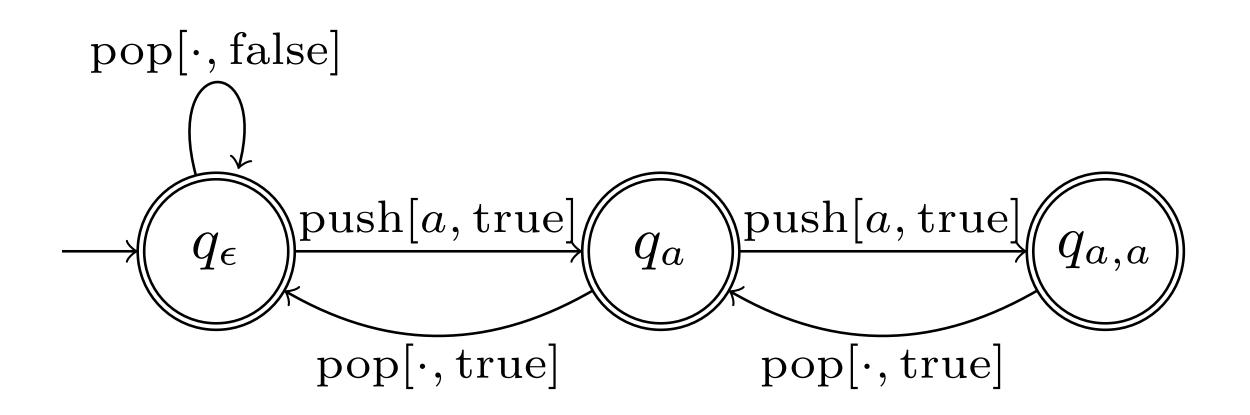
 $(\sigma' \mid S) \in S \text{ and } \sigma' \text{ is a completion of } \sigma\}.$

Lemma 2. A trace τ is S-linearizable if and only if there exists a strict, serial

Read-only operations

Given a method M of a library L and $m_0, m_f \in Q_M$, an $M[m_0, m_f]$ -operation θ is *read-only* for a specification S if and only if for all $w_1, w_2, w_3 \in \Sigma_S^*$, 1. If $w_1 = M[m_1, m_2]$, $w_2 \in S$ then $w_1 = M[m_2, m_3]^k$, $w_2 \in S$ for all k > 0, and

1. If $w_1 \cdot M[m_0, m_f] \cdot w_2 \in S$ then $w_1 \cdot M[m_0, m_f]^k \cdot w_2 \in S$ for all $k \ge 0$, and 2. If $w_1 \cdot M[m_0, m_f] \cdot w_2 \in S$ and $w_1 \cdot w_3 \in S$ then $w_1 \cdot M[m_0, m_f] \cdot w_3 \in S$.



Linearization points

The control graph $G_M = \langle Q_M, E \rangle$ is the quotient of a method M's transition system by shared-state valuations V: $\langle m_1, a, m_2 \rangle \in E$ iff $\langle m_1, v_1 \rangle \hookrightarrow_{M}^{a} \langle m_2, v_2 \rangle$ for some $v_1, v_2 \in V$. A function $LP : L \to \wp(\Sigma_L)$ is called a *linearization-point* mapping when for each $M \in L$:

- 1. each symbol $a \in LP(M)$ labels at most one transition of M,

An action $\langle a, i \rangle$ of an *M*-operation is called a *linearization point* when $a \in LP(M)$, and operations containing linearization points are said to be effectuated; $LP(\theta)$ denotes the unique linearization point of an effectuated operation θ . A read-points mapping $\mathsf{RP}: \Theta \to \mathbb{N}$ for an action sequence σ with operations Θ maps each read-only operation θ to the index $\mathsf{RP}(\theta)$ of an internal θ -action in σ .

2. any directed path in G_M contains at most one symbol of LP(M), and 3. all directed paths in G_M containing $a \in LP(M)$ reach the same $m_a \in F_M$.

Exercices (1)

 Does the Herlihy & Wing queue admit fixed linearization points?

```
void enq(int x) {
  i = back++; items[i] = x;
int deq() {
  while (1) {
    range = back - 1;
```

for (int i = 0; i <= range; i++) {</pre> x = swap(items[i], null); if (x != null) return x;

Static linearizability

An action sequence σ is called *effectuated* when every completed operation of σ is either effectuated or read-only, and an effectuated completion σ' of σ is *effect preserving* when each effectuated operation of σ also appears in σ' . Given a linearization-point mapping LP, and a read-points mapping RP of an action sequence σ , we say a permutation π of σ is *point preserving* when every two operations of π are ordered by their linearization/read points in σ .

Definition 4. A trace τ is $\langle S, \mathsf{LP} \rangle$ -linearizable when τ is effectuated, and there exists a read-points mapping RP of τ , along with an effect-preserving completion π of a strict, point-preserving, and serial permutation of τ such that $(\pi \mid S) \in S$.

Definition 5 (Static Linearizability). The system L[C] is S-static linearizable when L[C] is $\langle S, LP \rangle$ -linearizable for some mapping LP.

Checking Static Linerizability

- A_S = a deterministic automaton recognizing the Specification
- we define a monitor to be composed with L[C] that simulates the Specification
 - methods have a new local variable RO which is initially Ø (records return values of read-only operations)
 - if $mf \in RO$ in an invocation of M, then M[m0,mf] is read-only and a state of A_S in which M[m_0,m_f] is enabled has been observed
 - L[C] executes a linearization point => the state of the Specification is advanced to the M[m₀,m_f] successor (m₀ is the initial state of the current operation and m_f is the unique final state reachable from this lin. point)
 - L[C] executes an internal action from an $M[m_0,*]$ operation => RO is enriched with every m_f such that $M[m_0,m_f]$ is read-only and enabled in the current specification state
 - L[C] executes the return of an M[m monitor goes to an error state

L[C] executes the return of an M[m₀,m_f] read-only operation => if m_f \notin RO then the

EXPSPACE-hardness

- to static linearizability

• Reduce control state reachability in VASS (which is EXPSPACE-complete)

• Use the library from the undecidability proof without the zero-test method (the specification excludes only executions not reaching the target state)

Bounded Nb. of Threads:

• EXSPACE-complete [Alur et al., 1996, Hamza 2015]

Unbounded Nb. of Threads:

- Undecidable [Bouajjani et al., 2013]

Alur et al. 1996: Rajeev Alur, Kenneth L. McMillan, Doron A. Peled: Model-Checking of Correctness Conditions for Concurrent Objects. LICS 1996

Bouajjani et al., 2013: Ahmed Bouajjani, Michael Emmi, Constantin Enea, Jad Hamza: Verifying Concurrent Programs against Sequential Specifications. ESOP 2013

Hamza 2015: Jad Hamza: On the Complexity of Linearizability. NETYS 2015

Checking Linearizability: Complexity (finite-state implementations)

• Decidable with "fixed linearization points" [Bouajjani et al. 2013]