
Constantin Enea
Ecole Polytechnique

CHECKING LINEARIZABILITY: THEORETICAL LIMITS

Concurrent Objects
Multi-threaded programming

e.g. Java Development Kit SE
dozens of objects, including queues, maps, sets, lists, locks, atomic integers, …

thread

queue

thread thread thread

concurrent enqueues concurrent dequeues

Linearizability [Herlihy&Wing 1990]

Effects of each invocation appear to occur instantaneously

Execution history

Linearization admitted by Queue ADT

enq: 1 deq: 2 deq: 1

enq: 2

d:1d:2e:2 e:1 ∃ lin. rb ⊆ lin ∧ lin ∈ Queue ADT

returns-before (rb)

enq: 1 deq: 2 deq: 1

enq: 2

Complexity of Testing Linearizability

Theorem [Gibbons.et.al.’97]
Checking linearizability for a fixed execution is NP-hard

Exponentially many linearizations to consider

d:2 e:2e:1 d:1d:2 d:1e:1 e:2 e:2 d:1e:1 d:2 e:2 d:2e:1 d:1

d:1 e:2e:1 d:2 d:1 d:2e:1 e:2 e:1 d:1e:2 d:2 e:1 d:2e:2 d:1

d:1 d:2e:2 e:1 e:1 e:2d:1 d:2 e:1 d:2d:1 e:2 e:2 d:2d:1 e:1

enq: 1

enq: 2

deq: 2

deq: 1Execution history

Checking Linearizability: Complexity
(finite-state implementations)

Bounded Nb. of Threads:

• EXSPACE-complete [Alur et al., 1996, Hamza 2015]

Unbounded Nb. of Threads:

• Undecidable [Bouajjani et al., 2013]

• Decidable with “fixed linearization points” [Bouajjani et al. 2013]

Alur et al. 1996: Rajeev Alur, Kenneth L. McMillan, Doron A. Peled: Model-Checking of Correctness
Conditions for Concurrent Objects. LICS 1996
Bouajjani et al., 2013: Ahmed Bouajjani, Michael Emmi, Constantin Enea, Jad Hamza: Verifying
Concurrent Programs against Sequential Specifications. ESOP 2013
Hamza 2015: Jad Hamza: On the Complexity of Linearizability. NETYS 2015

Checking Linearizability: Complexity
(finite-state implementations)

Bounded Nb. of Threads:

• EXSPACE-complete [Alur et al., 1996, Hamza 2015]

Unbounded Nb. of Threads:

• Undecidable [Bouajjani et al., 2013]

• Decidable with “fixed linearization points” [Bouajjani et al. 2013]

Concurrent Languages
• Concurrent language = (Σ,D), where Σ is an alphabet, D ⊆ Σ x Σ
(Mazurkiewicz traces - D is symmetric)

• a and b are called independent when (a,b) ∉ D

• ⇒D a relation that permutes independent symbols: for all (a,b) ∉ D,

σ ab σ’ ⇒D σ’ ba σ (and trans. closure)

• clD(L) = all strings σ’ such that σ’ ⇒D σ for some σ ∈ L

• Ex: Σ = {a,b}, L=(ab)*, D=∅ and D={(b,a)}

Specifications,
Implementations

• Specification = a language over an alphabet containing symbols
p:m(a)⇒b

• Example: bounded-value register, bounded size queue

• Implementation = a language over an alphabet containing symbols
p:call m(a) and p:ret m(a)⇒b where returns “match” previous calls

• Σp = (Σcall(p) ∪ Σret(p)) and Σ = ∪p Σp

Defining Linearizability

• lin = ∪p (Σp x Σp) ∪ (Σret x Σcall)
• Spec* = replacing p:m(a)⇒b with call/ret actions
• an execution σ is linearizable iff σ ∈ cllin(Spec*)
• Impl is linearizable iff Impl ⊆ cllin(Spec*)

• this inclusion check is undecidable in general (for regular languages)

Defining Linearizability

• Linearizability: an execution σ is linearizable iff there is a sequence τ
that contains σ and linearization points (symbols p:m(a)⇒b) s.t.:

• every projection over “actions” of the same process is “sequential”
• the projection over linearization point actions is included in the

specification

Defining Linearizability

• lin = ∪p (Σp x Σp) ∪ (Σret x Σcall)
• Spec* = replacing p:m(a)⇒b with call/ret actions
• an execution σ is linearizable iff σ ∈ cllin(Spec*)
• Impl is linearizable iff Impl ⊆ cllin(Spec*)

• this inclusion check is undecidable in general (for regular languages)

• cllin(Spec*) = (||p Llin_points(p) || Spec) ↓ (Σcall ∪ Σret)

EXPSPACE-hardness

MA

e1

MB

e2

MA

e3

MB

e4

MA

e5

MB

e6

Fig. 2. A linearizable execution, which can be ordered as e1e2e3e4e5e6

MA

e1

MB

e2

MA

e3

MB

e4

Fig. 3. A non-linearizable execution

Problem 2 (Letter Insertion). Input: A set of insertable letters A = {a1, . . . , al}.
An NFA N over an alphabet Γ ! A.

Question: For all words w ∈ Γ ∗, does there exist a decomposition w =
w0 · · ·wl, and a permutation p of {1, . . . , l}, such that w0ap[1]w1 . . . ap[l]wl is
accepted by N?

Said differently, for any word of Γ ∗, can we insert the letters {a1, . . . , al}
(each of them exactly once, in any order, anywhere in the word) to obtain a
word accepted by N?

Note: the size of the input is the size of N, to which we add l.

3 Reduction from Letter Insertion to Linearizability

In this section, we show that Letter Insertion can be reduced in polynomial time
to Linearizability. When we later show that Letter Insertion is EXPSPACE-hard,
we will get that Linearizability is EXPSPACE-hard as well.

Intuitively, the letters A = {a1, . . . , al} of Letter Insertion represent methods
which are all overlapping with every other method, and the word w represents
methods which are in sequence. Letter Insertion asks whether we can insert the
letters in w in order to obtain a sequence of N while linearizability asks whether
there is a way to order all the letters, while preserving the order of w, to obtain
a sequence of N , which is equivalent.

Lemma 1. Letter Insertion can be reduced in polynomial time to Linearizability.

Proof. Let A = {a1, . . . , al} and N an NFA over some alphabet A ! Γ .

5

– when projecting over the letters Mγ , γ ∈ Γ and Mi, i ∈ {1, . . . , l}, w is in
NM , where NM is N where each letter γ is replaced by the letter Mγ , and
where each letter ai is replaced by the letter Mi.

Since N is an NFA, SN is also an NFA. Moreover, its size is polynomial is
the size of N . We can now show the following equivalence:

1. there exists a word w in Γ ∗, such that there is no way to insert the letters
from A in order to obtain a word accepted by N

2. there exists an execution of Lib with k threads which is not linearizable
w.r.t. SN

(1) =⇒ (2). Let w ∈ Γ ∗ such that there is no way to insert the letters
A in order to obtain a word accepted by N . We construct an execution of Lib
following Fig 7, which is indeed a valid execution.

M1

read(Begin) read(End)

M2

read(Begin) read(End)

...

Ml

read(Begin) read(End)

MTick

write(Run) write(End)

Mγ1

read(Run)
· · ·

Mγm

read(Run)

Fig. 7. Non-linearizable execution corresponding to a word γ1 . . . γm in which we
cannot insert the letters from A = {a1, . . . , al} to make it accepted by N . The points
represent steps in the automata.

This execution is not linearizable since

– it has exactly one MTick method, and
– for each i ∈ {1, . . . , l}, it has exactly one Mi method, and
– no linearization of this execution can be in NM , since there is no way to

insert the letters A into w to be accepted by N .

Note: The value of the shared variable is initialized to Begin, allowing the
methods Mi (i ∈ {1, . . . , l}) to make their first transition. MTick then sets the
value to Run, thus allowing the methods Mγ , γ ∈ Γ to execute. Finally, MTick

sets the value to End, allowing the methods Mγ , γ ∈ Γ to make their second
transition and return. This tight interaction will enable us to show in the second
part of the proof that all non-linearizable executions of this library have this
very particular form.

7

k = l+2

Reducing Letter Insertion to Linearizability:

EXPSPACE-hardness

Define k, the number of threads, to be l + 2.
We will define a library Lib composed of

– methods M1, . . . ,Ml, one for each letter of A
– methods Mγ , one for each letter of Γ
– a method MTick.

and a specification SN , such that (A,N) is a valid instance of Letter Insertion
if and only if Libk is linearizable with respect to SN .

For the domain of the shared variable, we only need three values: D =
{Begin,Run,End} with Begin being the initial value.

The methods Mγ are all identical. They just read the value Run from the
shared variable (see Fig 4).

q0 q1
read(Run)

Fig. 4. Description of Mγ , γ ∈ Γ

The methods M1, . . . ,Ml all read Begin, and then read End (see Fig 5).

q0 q1 q2
read(Begin) read(End)

Fig. 5. Description of M1, . . . ,Ml

The method MTick writes Run, and then End (see Fig 6).

q0 q1 q2
write(Run) write(End)

Fig. 6. Description of MTick

The specification SN is defined as the set of words w over the alphabet
{M1, . . . ,Ml} ∪ {MTick} ∪ {Mγ|γ ∈ Γ} such that one the following condition
holds:

– w contains 0 letter MTick, or more than 1, or
– for a letter Mi, i ∈ {1, . . . , l}, w contains 0 such letter, or more than 1, or

6

– when projecting over the letters Mγ , γ ∈ Γ and Mi, i ∈ {1, . . . , l}, w is in
NM , where NM is N where each letter γ is replaced by the letter Mγ , and
where each letter ai is replaced by the letter Mi.

Since N is an NFA, SN is also an NFA. Moreover, its size is polynomial is
the size of N . We can now show the following equivalence:

1. there exists a word w in Γ ∗, such that there is no way to insert the letters
from A in order to obtain a word accepted by N

2. there exists an execution of Lib with k threads which is not linearizable
w.r.t. SN

(1) =⇒ (2). Let w ∈ Γ ∗ such that there is no way to insert the letters
A in order to obtain a word accepted by N . We construct an execution of Lib
following Fig 7, which is indeed a valid execution.

M1

read(Begin) read(End)

M2

read(Begin) read(End)

...

Ml

read(Begin) read(End)

MTick

write(Run) write(End)

Mγ1

read(Run)
· · ·

Mγm

read(Run)

Fig. 7. Non-linearizable execution corresponding to a word γ1 . . . γm in which we
cannot insert the letters from A = {a1, . . . , al} to make it accepted by N . The points
represent steps in the automata.

This execution is not linearizable since

– it has exactly one MTick method, and
– for each i ∈ {1, . . . , l}, it has exactly one Mi method, and
– no linearization of this execution can be in NM , since there is no way to

insert the letters A into w to be accepted by N .

Note: The value of the shared variable is initialized to Begin, allowing the
methods Mi (i ∈ {1, . . . , l}) to make their first transition. MTick then sets the
value to Run, thus allowing the methods Mγ , γ ∈ Γ to execute. Finally, MTick

sets the value to End, allowing the methods Mγ , γ ∈ Γ to make their second
transition and return. This tight interaction will enable us to show in the second
part of the proof that all non-linearizable executions of this library have this
very particular form.

7

Define k, the number of threads, to be l + 2.
We will define a library Lib composed of

– methods M1, . . . ,Ml, one for each letter of A
– methods Mγ , one for each letter of Γ
– a method MTick.

and a specification SN , such that (A,N) is a valid instance of Letter Insertion
if and only if Libk is linearizable with respect to SN .

For the domain of the shared variable, we only need three values: D =
{Begin,Run,End} with Begin being the initial value.

The methods Mγ are all identical. They just read the value Run from the
shared variable (see Fig 4).

q0 q1
read(Run)

Fig. 4. Description of Mγ , γ ∈ Γ

The methods M1, . . . ,Ml all read Begin, and then read End (see Fig 5).

q0 q1 q2
read(Begin) read(End)

Fig. 5. Description of M1, . . . ,Ml

The method MTick writes Run, and then End (see Fig 6).

q0 q1 q2
write(Run) write(End)

Fig. 6. Description of MTick

The specification SN is defined as the set of words w over the alphabet
{M1, . . . ,Ml} ∪ {MTick} ∪ {Mγ|γ ∈ Γ} such that one the following condition
holds:

– w contains 0 letter MTick, or more than 1, or
– for a letter Mi, i ∈ {1, . . . , l}, w contains 0 such letter, or more than 1, or

6

Define k, the number of threads, to be l + 2.
We will define a library Lib composed of

– methods M1, . . . ,Ml, one for each letter of A
– methods Mγ , one for each letter of Γ
– a method MTick.

and a specification SN , such that (A,N) is a valid instance of Letter Insertion
if and only if Libk is linearizable with respect to SN .

For the domain of the shared variable, we only need three values: D =
{Begin,Run,End} with Begin being the initial value.

The methods Mγ are all identical. They just read the value Run from the
shared variable (see Fig 4).

q0 q1
read(Run)

Fig. 4. Description of Mγ , γ ∈ Γ

The methods M1, . . . ,Ml all read Begin, and then read End (see Fig 5).

q0 q1 q2
read(Begin) read(End)

Fig. 5. Description of M1, . . . ,Ml

The method MTick writes Run, and then End (see Fig 6).

q0 q1 q2
write(Run) write(End)

Fig. 6. Description of MTick

The specification SN is defined as the set of words w over the alphabet
{M1, . . . ,Ml} ∪ {MTick} ∪ {Mγ|γ ∈ Γ} such that one the following condition
holds:

– w contains 0 letter MTick, or more than 1, or
– for a letter Mi, i ∈ {1, . . . , l}, w contains 0 such letter, or more than 1, or

6

Define k, the number of threads, to be l + 2.
We will define a library Lib composed of

– methods M1, . . . ,Ml, one for each letter of A
– methods Mγ , one for each letter of Γ
– a method MTick.

and a specification SN , such that (A,N) is a valid instance of Letter Insertion
if and only if Libk is linearizable with respect to SN .

For the domain of the shared variable, we only need three values: D =
{Begin,Run,End} with Begin being the initial value.

The methods Mγ are all identical. They just read the value Run from the
shared variable (see Fig 4).

q0 q1
read(Run)

Fig. 4. Description of Mγ , γ ∈ Γ

The methods M1, . . . ,Ml all read Begin, and then read End (see Fig 5).

q0 q1 q2
read(Begin) read(End)

Fig. 5. Description of M1, . . . ,Ml

The method MTick writes Run, and then End (see Fig 6).

q0 q1 q2
write(Run) write(End)

Fig. 6. Description of MTick

The specification SN is defined as the set of words w over the alphabet
{M1, . . . ,Ml} ∪ {MTick} ∪ {Mγ|γ ∈ Γ} such that one the following condition
holds:

– w contains 0 letter MTick, or more than 1, or
– for a letter Mi, i ∈ {1, . . . , l}, w contains 0 such letter, or more than 1, or

6

Define k, the number of threads, to be l + 2.
We will define a library Lib composed of

– methods M1, . . . ,Ml, one for each letter of A
– methods Mγ , one for each letter of Γ
– a method MTick.

and a specification SN , such that (A,N) is a valid instance of Letter Insertion
if and only if Libk is linearizable with respect to SN .

For the domain of the shared variable, we only need three values: D =
{Begin,Run,End} with Begin being the initial value.

The methods Mγ are all identical. They just read the value Run from the
shared variable (see Fig 4).

q0 q1
read(Run)

Fig. 4. Description of Mγ , γ ∈ Γ

The methods M1, . . . ,Ml all read Begin, and then read End (see Fig 5).

q0 q1 q2
read(Begin) read(End)

Fig. 5. Description of M1, . . . ,Ml

The method MTick writes Run, and then End (see Fig 6).

q0 q1 q2
write(Run) write(End)

Fig. 6. Description of MTick

The specification SN is defined as the set of words w over the alphabet
{M1, . . . ,Ml} ∪ {MTick} ∪ {Mγ|γ ∈ Γ} such that one the following condition
holds:

– w contains 0 letter MTick, or more than 1, or
– for a letter Mi, i ∈ {1, . . . , l}, w contains 0 such letter, or more than 1, or

6

EXPSPACE-hardness

– when projecting over the letters Mγ , γ ∈ Γ and Mi, i ∈ {1, . . . , l}, w is in
NM , where NM is N where each letter γ is replaced by the letter Mγ , and
where each letter ai is replaced by the letter Mi.

Since N is an NFA, SN is also an NFA. Moreover, its size is polynomial is
the size of N . We can now show the following equivalence:

1. there exists a word w in Γ ∗, such that there is no way to insert the letters
from A in order to obtain a word accepted by N

2. there exists an execution of Lib with k threads which is not linearizable
w.r.t. SN

(1) =⇒ (2). Let w ∈ Γ ∗ such that there is no way to insert the letters
A in order to obtain a word accepted by N . We construct an execution of Lib
following Fig 7, which is indeed a valid execution.

M1

read(Begin) read(End)

M2

read(Begin) read(End)

...

Ml

read(Begin) read(End)

MTick

write(Run) write(End)

Mγ1

read(Run)
· · ·

Mγm

read(Run)

Fig. 7. Non-linearizable execution corresponding to a word γ1 . . . γm in which we
cannot insert the letters from A = {a1, . . . , al} to make it accepted by N . The points
represent steps in the automata.

This execution is not linearizable since

– it has exactly one MTick method, and
– for each i ∈ {1, . . . , l}, it has exactly one Mi method, and
– no linearization of this execution can be in NM , since there is no way to

insert the letters A into w to be accepted by N .

Note: The value of the shared variable is initialized to Begin, allowing the
methods Mi (i ∈ {1, . . . , l}) to make their first transition. MTick then sets the
value to Run, thus allowing the methods Mγ , γ ∈ Γ to execute. Finally, MTick

sets the value to End, allowing the methods Mγ , γ ∈ Γ to make their second
transition and return. This tight interaction will enable us to show in the second
part of the proof that all non-linearizable executions of this library have this
very particular form.

7

Checking Linearizability: Complexity
(finite-state implementations)

Bounded Nb. of Threads:

• EXSPACE-complete [Alur et al., 1996, Hamza 2015]

Unbounded Nb. of Threads:

• Undecidable [Bouajjani et al., 2013]

• Decidable with “fixed linearization points” [Bouajjani et al. 2013]

Undecidability
• Reduction from reachability in counter machines

• Given a counter machine A, we construct a library LA and a specification SA such

that LA is not linearizable w.r.t. SA iff A reaches the target state

• LA = transition methods T[t], increments I[ci], decrements D[ci] and zero-tests Z[ci]

• LA allows only valid sequences of transitions

• SA allows executions which don’t reach the target state, or which erroneously pass

some zero-test

Simulating an increment tr = hq1,ui, q2i:

M[tr]9 11

M inc[i]32 36

M dec[i]41 43

M[tr]12 14

Simulating a decrement tr = hq1,�ui, q2i:

M[tr]9 11

M dec[i]44 46

M[tr]12 14

Simulating a zero-test tr = hq1, i, q2i:

M[tr]9 11

M zero[i]19 21

M[tr]12 14

Fig. 9. Simulating transitions of A. Program fragments on the same line (resp., di↵erent

lines) are executed by the same thread (resp., di↵erent threads). The abscissa represents

time.

Defining a specification for LA: The specification SA is defined such that all
the executions of LA[C⇤], which don’t correctly simulate the counter machine
or which simulate runs of the counter machine not reaching the state qf , are
SA-linearizable. Note that an execution of LA[C⇤] doesn’t correctly simulate a
run of A only because of zero-test transitions.

The specification SA is a prefix-closed regular language that constrains only
the order between calls to the methods M inc[i], M dec[i], M zero[i], for any
i 2 N<d, and M[qf]. Let ⌃i = {M inc[i], M dec[i], M zero[i], M[qf]}, for any i 2 N<d.
Then, a word w over the alphabet containing all the method names in LA belongs
to SA if there exists i 2 i 2 N<d such that the projection of w on the alphabet
⌃i satisfies one of the following constraints:

– it doesn’t contain M[qf],
– it ends in M[qf] and it contains a prefix of the form

(M inc[i] M dec[i])⇤(M inc[i]+ + M dec[i]+)M zero[i]

– it ends in Mf and it contains a subword of the form

M zero[i](M inc[i] M dec[i])⇤(M inc[i]+ + M dec[i]+)M zero[i].

Note that SA does not constrain the order between methods that simulate
increments, decrements, and zero tests on di↵erent counters. Also, it does not
constrain the order between methods that simulate the finite control of A,
i.e., M[q,n, q0] or M[q, i, q0].

Undecidability

Verifying Concurrent Programs against Sequential Specifications 13

machines to linearizability of unbounded concurrent systems. Technically, given
a counter machine A, we construct a library LA and a specification SA such
that LA[C?] is not SA-linearizable exactly when A has an execution reaching
the given target state. In what follows we outline our simulation of A, ignoring
several details in order to highlight the crux of our reduction. Our full proof is
listed in an extended report [7].

In our simulation of A the most general client C? invokes an arbitrary sequence
of methods from the library LA containing a transition method T[t] for each
transition t of A, and an increment method I[ci], a decrement method D[ci], and
a zero-test method Z[ci], for each counter ci of A. As our simulation should allow
only concurrent traces which correspond to executions of A, and C? is a priori
free to invoke operations at arbitrary times, we are faced with constructing the
library LA and specification SA so that only certain well-formed concurrent
traces are permitted. Our strategy is essentially to build LA to allow only those
traces corresponding to valid sequences of A-transitions, and to build SA to
allow only those traces, which either do not reach the target state of A, or which
erroneously pass some zero-test—i.e., on a counter whose value is non-zero.

Figure 6 depicts the structure of our simulation, on an A-execution where
two increments are followed by two decrements and a zero test, all on the same
counter c1. Essentially we simulate each execution by a trace in which:

1. A sequence t1t2 . . . ti of A-transitions is modeled by a pairwise-overlapping
sequence of T[t1] · T[t2] · · ·T[ti] operations.

2. Each T[t]-operation has a corresponding I[ci], D[ci], or Z[ci] operation, de-
pending on whether t is, resp., an increment, decrement, or zero-test transition
with counter ci.

3. Each I[ci] operation has a corresponding D[ci] operation.
4. For each counter ci, all I[ci] and D[ci] between Z[ci] operations overlap.
5. For each counter ci, no I[ci] nor D[ci] operations overlap with a Z[ci] operation.
6. The number of I[ci] operations between two Z[ci] operations matches the

number of D[ci] operations.

The library LA ensures Properties 1–4 using rendezvous synchronization,
with six types of signals: a T/T signal between T[·]-operations, and for each
counter ci, T/I, T/D, and T/Z signals between T[·]-operations and, resp., I[ci],
D[ci], and Z[ci] operations, an I/D signal between I[ci] and D[ci] operations,
and a T/C signal between T[t] operations and I[ci] or D[ci] operations, for zero-
testing transitions t. An initial operation (not depicted in Figure 6) initiates a
T/T rendezvous with some T[t] operation. Each T[t] operation then performs a
rendezvous sequence: when t is an increment or decrement of counter ci, then T[t]
performs a T/T rendezvous, followed by a T/I, resp., T/D for counter ci, followed
by a final T/T rendezvous; when t is a zero-test of counter ci, T[t] performs a
T/T rendezvous, followed by some arbitrary number of T/Cs for ci, followed by a
T/Z for ci, and finally a last T/T rendezvous. Each I[ci] operation performs T/I,
then I/D, and finally T/C rendezvous for counter ci, while each D[ci] operation
performs I/D, then T/D, and finally T/C rendezvous for ci; the Z[ci] operations
perform a single T/Z rendezvous for ci. T/T rendezvousing ensures Property 1,

Undecidability
• a T/T signal between T[*] operations

• for each counter c, a T/I, T/D, T/Z between T[*] operations and, resp.,

I[ci], D[ci] and Z[ci] operations

• an I/D signal between I[ci] and D[ci] operations

• a T/C signal between T[t] operations and I[ci], D[ci] operations, for

zero-testing transitions t

Undecidability14 Ahmed Bouajjani, Michael Emmi, Constantin Enea, and Jad Hamza

T[inc c1]

T[inc c1] T[dec c1]

T[dec c1]

T[jz c1 ..]

T[...]

I[c1]

I[c1]

D[c1]

D[c1]

Z[c1]
T/I T/I T/D T/D T/C

I/D I/D

T/ZT/TT/T T/T T/T T/T

Fig. 6. The LA simulation of an A-execution with two increments followed by two
decrements and a zero-test of counter c1. Operations are drawn as horizontal lines con-
taining rendezvous actions drawn as circles. Matching rendezvous actions are connected
by dotted lines labeled by rendezvous type. Time advances to the right.

T/I, T/D, and T/Z rendezvousing ensures Property 2, I/D rendezvousing ensures
Property 3, and T/C rendezvousing ensures Property 4. Note that even in the
case where not all pending I[ci] and D[ci] operations perform T/C rendezvous
with a concurrent T[t] operation, where t is a zero-test transition, at the very least,
they overlap with all other pending I[ci] and D[ci] operations having performed
T/I, resp., T/D, rendezvous since the last Z[ci] operation.

The trickier part of our proof is indeed ensuring Properties 5 and 6. There
we leverage Property 4: when all I[ci] and D[ci] operations between two Z[ci]
operations overlap, every permutation of them, including those alternating be-
tween I[ci] and D[ci] operations, is strict, i.e., is permitted by the definition of
linearizability. Our specification SA takes advantage of this in order to match
the unbounded number of I[ci] and D[ci] operations using only bounded memory.

Lemma 5. The specification SA accepting all sequences which either do not end

with a transition to the target state, or in which the number of alternating I[ci]
and D[ci] operations between two Z[ci] operations are unequal, is regular.

Lemma 5 gives a way to ensure Properties 5 and 6, since any trace which
is SA-linearizable either does not encode an execution to A’s target state, or
respects Property 5 while violating Property 6—i.e., the number of increments
and decrements between zero-tests does not match—or violates Property 5: in the
latter case, where some I[ci] or D[ci] operation ✓1 overlaps with an Z[ci] operation
✓2, ✓1 can always be commuted over ✓2 to ensure that the number of I[ci] and D[ci]
operations does not match in some interval between Z[ci] operations. Thus any
trace which is not SA-linearizable must respect both Properties 5 and 6. It follows
that any trace of LA which is not SA-linearizable guarantees Properties 1–6, and
ultimately corresponds to a valid execution of A, and visa versa, thus reducing
counter machine state-reachability to SA-linearizability.

Theorem 3. The linearizability problem for unbounded concurrent systems with

regular specifications is undecidable.

Undecidability
Initially, all the binary semaphores except q0 are 0 (i.e., any thread that

should execute the operation wait on some semaphore q 6= q0 is blocked). Also,
for all i 2 N<d, the variable zero[i] is 0.

1 var q 2 Q: T
2 var req[U]: T
3 var ack[U]: T
4 var dec[i 2 N : i < d]: T
5 var zero[i 2 N : i < d]: B
6

7 // for each transition
⌦
q,n, q0

↵

8 method M[q,n, q0]()
9 atomic

10 wait(q);
11 signal(req[n]);
12 atomic
13 wait(ack[n]);

14 signal(q0);
15 return ()
16

17 // for each transition
⌦
q, i, q0

↵

18 method M[q, i, q0] ()
19 atomic
20 wait(q);
21 zero[i] := true;
22 atomic
23 if !zero[i] then
24 signal(q0);
25 return ()
26

27 // for each final state qf
28 method M[qf] ()
29 wait(qf);
30 return

31 method M_inc[i] ()
32 atomic
33 if !zero[i] then
34 wait(req[ui]);
35 signal(ack[ui]);

36 signal(dec[i])
37 assume zero[i];
38 return ()
39

40 method M_dec[i] ()
41 atomic
42 if !zero[i] then
43 wait(dec[i]);
44 atomic
45 wait(req[�ui]);
46 signal(ack[�ui]);
47 assume zero[i];
48 return ()
49

50 method M_zero[i] ()
51 atomic
52 if zero[i] then
53 zero[i] := false;

54 return ()

Fig. 8. The library LA (ui denotes the unit vector with ui(i) = 1, U denotes the type

of unit vectors, and T denotes the type of a binary semaphore).

Simulating runs of A by executions of LA[C⇤]: A run ⇠ of A can be simulated by
an execution ⇢ of LA[C⇤] as follows. Each transition in ⇠ is simulated by several
method calls as in Figure 9. An increment transition hq1,ui, q2i is simulated by
successive calls to M[q1,ui, q2], M inc[i], and M dec[i] (in di↵erent threads) such
that once a method is called it also executes its first atomic section, followed
by the execution of the rest of M[q1,ui, q2] (by induction, we suppose that in
the starting configuration, the semaphore q1 is 1). Analogously, for decrement
and zero-test transitions. The procedure M dec[i] is used in the simulation of an
increment transition in order to ensure that decrement transitions are taken only
when the value of the counter is strictly positive.

If ⇠ ends in qf then, when the semaphore qf becomes true, ⇢ contains a
complete execution of M[qf].

Checking Linearizability: Complexity
(finite-state implementations)

Bounded Nb. of Threads:

• EXSPACE-complete [Alur et al., 1996, Hamza 2015]

Unbounded Nb. of Threads:

• Undecidable [Bouajjani et al., 2013]

• Decidable with “fixed linearization points” [Bouajjani et al. 2013]

Libraries

vide a promising approach for proving either correctness or violation for many
practically-occurring systems.

2 Preliminaries

In this work we consider a program model in which an unbounded number of
operations concurrently access finite-domain shared data. Operations correspond
to invocations of a finite library of methods. Here, methods correspond to the
implementations of application programming interface (API) entries of concurrent
or distributed data structures, and less conventionally, to the atomic code sections
of concurrent programs, or to the SQL implementations of database transactions.
A library is then simply the collection of API implementations, or transactional
code. Usually concurrent data structure libraries and transactional runtime
systems are expected to ensure that executed operations are logically equivalent
to some understood serial behavior, regardless of how clients concurrently invoke
their methods or transactions; the implication is that such systems should function
correctly for a most-general client which concurrently invokes an unbounded
number of methods with arbitrary timing. In what follows we formalize these
notions as a basis for formulating our results.

2.1 Unbounded Concurrent Systems

A method is a finite automaton M = hQ,⌃, I, F, ,!i with labeled transitions
hm1, v1i a

,�! hm2, v2i between method-local states m1,m2 2 Q paired with
finite-domain shared-state valuations v1, v2 2 V . The initial and final states
I, F ✓ Q represent the method-local states passed to, and returned from, M . A
library L is a finite set of methods, and we refer to the components of a particular
method (resp., library) by subscripting, e.g., the states and symbols QM and ⌃M

(resp., QL and ⌃L). Though here we suppose an abstract notion of shared-state
valuations, in later sections we interpret them as valuations to a finite set of
finite-domain variables.

A client of a library L is a finite automaton C = hQ,⌃, `0, ,!i with initial
state `0 2 Q and transitions ,! ✓ Q ⇥ ⌃ ⇥ Q labeled by the alphabet ⌃ =
{M(m0,mf) : M 2 L,m0,mf 2 QM} of library method calls; we refer to a client
C’s components by subscripting, e.g., the states and symbols QC and ⌃C . The
most general client C? = hQ,⌃, `0, ,!i of a library L nondeterministically calls
L’s methods in any order: Q = {`0} and ,! = Q⇥⌃ ⇥Q.

We consider unbounded concurrent systems L[C] in which the methods of a
library L are invoked by an arbitrary number of concurrent threads executing a
copy of a given client C; note that any shared memory program with an unbounded
number of finite-state threads can be modeled using a suitably-defined client
C. A configuration c = hv, ui of L[C] is a shared memory valuation v 2 V ,
along with a map u mapping each thread t 2 N to a tuple u(t) = h`,m0,mi,
composed of a client-local state ` 2 QC , along with initial and current method
states m0,m 2 QL [{?}; m0 = m = ? when thread t is not executing a library

vide a promising approach for proving either correctness or violation for many
practically-occurring systems.

2 Preliminaries

In this work we consider a program model in which an unbounded number of
operations concurrently access finite-domain shared data. Operations correspond
to invocations of a finite library of methods. Here, methods correspond to the
implementations of application programming interface (API) entries of concurrent
or distributed data structures, and less conventionally, to the atomic code sections
of concurrent programs, or to the SQL implementations of database transactions.
A library is then simply the collection of API implementations, or transactional
code. Usually concurrent data structure libraries and transactional runtime
systems are expected to ensure that executed operations are logically equivalent
to some understood serial behavior, regardless of how clients concurrently invoke
their methods or transactions; the implication is that such systems should function
correctly for a most-general client which concurrently invokes an unbounded
number of methods with arbitrary timing. In what follows we formalize these
notions as a basis for formulating our results.

2.1 Unbounded Concurrent Systems

A method is a finite automaton M = hQ,⌃, I, F, ,!i with labeled transitions
hm1, v1i a

,�! hm2, v2i between method-local states m1,m2 2 Q paired with
finite-domain shared-state valuations v1, v2 2 V . The initial and final states
I, F ✓ Q represent the method-local states passed to, and returned from, M . A
library L is a finite set of methods, and we refer to the components of a particular
method (resp., library) by subscripting, e.g., the states and symbols QM and ⌃M

(resp., QL and ⌃L). Though here we suppose an abstract notion of shared-state
valuations, in later sections we interpret them as valuations to a finite set of
finite-domain variables.

A client of a library L is a finite automaton C = hQ,⌃, `0, ,!i with initial
state `0 2 Q and transitions ,! ✓ Q ⇥ ⌃ ⇥ Q labeled by the alphabet ⌃ =
{M(m0,mf) : M 2 L,m0,mf 2 QM} of library method calls; we refer to a client
C’s components by subscripting, e.g., the states and symbols QC and ⌃C . The
most general client C? = hQ,⌃, `0, ,!i of a library L nondeterministically calls
L’s methods in any order: Q = {`0} and ,! = Q⇥⌃ ⇥Q.

We consider unbounded concurrent systems L[C] in which the methods of a
library L are invoked by an arbitrary number of concurrent threads executing a
copy of a given client C; note that any shared memory program with an unbounded
number of finite-state threads can be modeled using a suitably-defined client
C. A configuration c = hv, ui of L[C] is a shared memory valuation v 2 V ,
along with a map u mapping each thread t 2 N to a tuple u(t) = h`,m0,mi,
composed of a client-local state ` 2 QC , along with initial and current method
states m0,m 2 QL [{?}; m0 = m = ? when thread t is not executing a library

vide a promising approach for proving either correctness or violation for many
practically-occurring systems.

2 Preliminaries

In this work we consider a program model in which an unbounded number of
operations concurrently access finite-domain shared data. Operations correspond
to invocations of a finite library of methods. Here, methods correspond to the
implementations of application programming interface (API) entries of concurrent
or distributed data structures, and less conventionally, to the atomic code sections
of concurrent programs, or to the SQL implementations of database transactions.
A library is then simply the collection of API implementations, or transactional
code. Usually concurrent data structure libraries and transactional runtime
systems are expected to ensure that executed operations are logically equivalent
to some understood serial behavior, regardless of how clients concurrently invoke
their methods or transactions; the implication is that such systems should function
correctly for a most-general client which concurrently invokes an unbounded
number of methods with arbitrary timing. In what follows we formalize these
notions as a basis for formulating our results.

2.1 Unbounded Concurrent Systems

A method is a finite automaton M = hQ,⌃, I, F, ,!i with labeled transitions
hm1, v1i a

,�! hm2, v2i between method-local states m1,m2 2 Q paired with
finite-domain shared-state valuations v1, v2 2 V . The initial and final states
I, F ✓ Q represent the method-local states passed to, and returned from, M . A
library L is a finite set of methods, and we refer to the components of a particular
method (resp., library) by subscripting, e.g., the states and symbols QM and ⌃M

(resp., QL and ⌃L). Though here we suppose an abstract notion of shared-state
valuations, in later sections we interpret them as valuations to a finite set of
finite-domain variables.

A client of a library L is a finite automaton C = hQ,⌃, `0, ,!i with initial
state `0 2 Q and transitions ,! ✓ Q ⇥ ⌃ ⇥ Q labeled by the alphabet ⌃ =
{M(m0,mf) : M 2 L,m0,mf 2 QM} of library method calls; we refer to a client
C’s components by subscripting, e.g., the states and symbols QC and ⌃C . The
most general client C? = hQ,⌃, `0, ,!i of a library L nondeterministically calls
L’s methods in any order: Q = {`0} and ,! = Q⇥⌃ ⇥Q.

We consider unbounded concurrent systems L[C] in which the methods of a
library L are invoked by an arbitrary number of concurrent threads executing a
copy of a given client C; note that any shared memory program with an unbounded
number of finite-state threads can be modeled using a suitably-defined client
C. A configuration c = hv, ui of L[C] is a shared memory valuation v 2 V ,
along with a map u mapping each thread t 2 N to a tuple u(t) = h`,m0,mi,
composed of a client-local state ` 2 QC , along with initial and current method
states m0,m 2 QL [{?}; m0 = m = ? when thread t is not executing a library

Example: Coarse-Grain Sets

remove(k):

Node p, c

Lock l

1 lock l;

2 p = H;

3 c = p.next

4 while (c.key < k)

5 p = c;

6 c = c.next;

7 if (c.key = k)

8 p.next = c.next

9 return true

10 else

11 return false

12 unlock l

ctn(k):

Node p, c

Lock l

1 lock l;

2 p = H;

3 c = p.next

4 while (c.key < k)

5 p = c;

6 c = c.next;

7 if (c.key = k)

8 return true

9 else

10 return false

11 unlock l

LP LP

Example: Fine-Grain Sets
add(k):

Node p, c

1 lock(H)

2 p = H

3 c = p.next;

4 lock(c);

5 while (c.key < k)

6 unlock(p);

7 p = c;

8 c = c.next;

9 lock(c);

10 if (c.key = k)

11 return false

12 else

13 n = new Node(k,-)

14 n.next = c

15 p.next = n

16 return true

17 unlock(c)

18 unlock(p)

LP
“time point at which I find

a key input key”≥

“time point at which I
lock the cell

with key input key”≥

The Treiber Stack Algorithm

CAS: Compare And Swap

hardware
Intel, AMD CMPXCHG

SPARC CAS

software
java CompareAndSet

C# CompareExchange

CAS(x,5,8)

memory

x

7

false

CAS (x,expected,new):
Integer tmp
1 Atomically
2 tmp = x
3 if (tmp == expected)
4 x = new
5 return true
6 else
7 return false

The Treiber Stack Algorithm

5 3 7 2

2
7
3
5

stack

Top

The Treiber Stack Algorithm

push(k):
Node t
1 n = new Node(k,-)
2 while (true)
3 t = Top
4 n.next = t
5 if (CAS (Top,t,n))
6 exit

4 n.next = t

5 3 7 2

2
7
3
5

stack

push(4)

4
n

Top

The Treiber Stack Algorithm

push(k):
Node t
1 n = new Node(k,-)
2 while (true)
3 t = Top
4 n.next = t
5 if (CAS (Top,t,n))
6 exit

4 n.next = t

5 3 7 2

2
7
3
5

stack

push(4)

4
n

Top

The Treiber Stack Algorithm

push(k):
Node t
1 n = new Node(k,-)
2 while (true)
3 t = Top
4 n.next = t
5 if (CAS (Top,t,n))
6 exit

4 n.next = t

5 3 7 2

2
7
3
5

stack

push(4)

t

4
n

Top

The Treiber Stack Algorithm

push(k):
Node t
1 n = new Node(k,-)
2 while (true)
3 t = Top
4 n.next = t
5 if (CAS (Top,t,n))
6 exit

4 n.next = t

5 3 7 2

2
7
3
5

stack

push(4)

t

4
n

Top

The Treiber Stack Algorithm

push(k):
Node t
1 n = new Node(k,-)
2 while (true)
3 t = Top
4 n.next = t
5 if (CAS (Top,t,n))
6 exit

4 n.next = t

5 3 7 2

Top

2
7
3
5

stack

push(4)

t

4
n

The Treiber Stack Algorithm

push(k):
Node t
1 n = new Node(k,-)
2 while (true)
3 t = Top
4 n.next = t
5 if (CAS (Top,t,n))
6 exit

4 n.next = t

5 3 7 2

2
7
3
5

stack

push(4)

t

4
n

Top

The Treiber Stack Algorithm

push(k):
Node t
1 n = new Node(k,-)
2 while (true)
3 t = Top
4 n.next = t
5 if (CAS (Top,t,n))
6 exit

4 n.next = t

5 3 7 2

2
7
3
5

stack

push(4)

t

4
n

Top

The Treiber Stack Algorithm

push(k):
Node t
1 n = new Node(k,-)
2 while (true)
3 t = Top
4 n.next = t
5 if (CAS (Top,t,n))
6 exit

4 n.next = t

5 3 7 2

Top

2
7
3
5

stack

push(4)

4

2
7
3
5
4

The Treiber Stack Algorithm

push(k):
Node t
1 n = new Node(k,-)
2 while (true)
3 t = Top
4 n.next = t
5 if (CAS (Top,t,n))
6 exit

4 n.next = t

5 3 7 2

Top

push(4)

push(k):
Node t
1 n = new Node(k,-)
2 while (true)
3 t = Top
4 n.next = t
5 if (CAS (Top,t,n))
6 exit

4 n.next = t

push(2)

4
n

Concurrent push operations

The Treiber Stack Algorithm

push(k):
Node t
1 n = new Node(k,-)
2 while (true)
3 t = Top
4 n.next = t
5 if (CAS (Top,t,n))
6 exit

4 n.next = t

5 3 7 2

Top

push(4)

push(k):
Node t
1 n = new Node(k,-)
2 while (true)
3 t = Top
4 n.next = t
5 if (CAS (Top,t,n))
6 exit

4 n.next = t

push(2)

4
n

Concurrent push operations

The Treiber Stack Algorithm

push(k):
Node t
1 n = new Node(k,-)
2 while (true)
3 t = Top
4 n.next = t
5 if (CAS (Top,t,n))
6 exit

4 n.next = t

5 3 7 2

Top

push(4)

t

push(k):
Node t
1 n = new Node(k,-)
2 while (true)
3 t = Top
4 n.next = t
5 if (CAS (Top,t,n))
6 exit

4 n.next = t

push(2)

4
n

Concurrent push operations

The Treiber Stack Algorithm

push(k):
Node t
1 n = new Node(k,-)
2 while (true)
3 t = Top
4 n.next = t
5 if (CAS (Top,t,n))
6 exit

4 n.next = t

5 3 7 2

Top

push(4)

4
n

t

push(k):
Node t
1 n = new Node(k,-)
2 while (true)
3 t = Top
4 n.next = t
5 if (CAS (Top,t,n))
6 exit

4 n.next = t

push(2)

Concurrent push operations

The Treiber Stack Algorithm

push(k):
Node t
1 n = new Node(k,-)
2 while (true)
3 t = Top
4 n.next = t
5 if (CAS (Top,t,n))
6 exit

4 n.next = t

5 3 7 2

Top

push(4)

t

push(k):
Node t
1 n = new Node(k,-)
2 while (true)
3 t = Top
4 n.next = t
5 if (CAS (Top,t,n))
6 exit

4 n.next = t

push(2)

4
n

2
n

Concurrent push operations

The Treiber Stack Algorithm

push(k):
Node t
1 n = new Node(k,-)
2 while (true)
3 t = Top
4 n.next = t
5 if (CAS (Top,t,n))
6 exit

4 n.next = t

5 3 7 2

Top

push(4)

t

push(k):
Node t
1 n = new Node(k,-)
2 while (true)
3 t = Top
4 n.next = t
5 if (CAS (Top,t,n))
6 exit

4 n.next = t

push(2)

4
n

2
n

Concurrent push operations

The Treiber Stack Algorithm

push(k):
Node t
1 n = new Node(k,-)
2 while (true)
3 t = Top
4 n.next = t
5 if (CAS (Top,t,n))
6 exit

4 n.next = t

5 3 7 2

Top

push(4)

t

push(k):
Node t
1 n = new Node(k,-)
2 while (true)
3 t = Top
4 n.next = t
5 if (CAS (Top,t,n))
6 exit

4 n.next = t

push(2)

4
n

2
n

t

Concurrent push operations

The Treiber Stack Algorithm

push(k):
Node t
1 n = new Node(k,-)
2 while (true)
3 t = Top
4 n.next = t
5 if (CAS (Top,t,n))
6 exit

4 n.next = t

5 3 7 2

Top

push(4)

push(k):
Node t
1 n = new Node(k,-)
2 while (true)
3 t = Top
4 n.next = t
5 if (CAS (Top,t,n))
6 exit

4 n.next = t

push(2)

4
n

2
n

t t

Concurrent push operations

The Treiber Stack Algorithm

push(k):
Node t
1 n = new Node(k,-)
2 while (true)
3 t = Top
4 n.next = t
5 if (CAS (Top,t,n))
6 exit

4 n.next = t

5 3 7 2

Top

push(4)

push(k):
Node t
1 n = new Node(k,-)
2 while (true)
3 t = Top
4 n.next = t
5 if (CAS (Top,t,n))
6 exit

4 n.next = t

push(2)

4
n

2
n

t t

Concurrent push operations

The Treiber Stack Algorithm

push(k):
Node t
1 n = new Node(k,-)
2 while (true)
3 t = Top
4 n.next = t
5 if (CAS (Top,t,n))
6 exit

4 n.next = t

5 3 7 2

push(4)

push(k):
Node t
1 n = new Node(k,-)
2 while (true)
3 t = Top
4 n.next = t
5 if (CAS (Top,t,n))
6 exit

4 n.next = t

push(2)

4
n

2
n

t t

To
p

Concurrent push operations

The Treiber Stack Algorithm

push(k):
Node t
1 n = new Node(k,-)
2 while (true)
3 t = Top
4 n.next = t
5 if (CAS (Top,t,n))
6 exit

4 n.next = t

5 3 7 2

push(4)

push(k):
Node t
1 n = new Node(k,-)
2 while (true)
3 t = Top
4 n.next = t
5 if (CAS (Top,t,n))
6 exit

4 n.next = t

push(2)

4
n

2
n

t t

To
p

Concurrent push operations

The Treiber Stack Algorithm

push(k):
Node t
1 n = new Node(k,-)
2 while (true)
3 t = Top
4 n.next = t
5 if (CAS (Top,t,n))
6 exit

4 n.next = t

5 3 7 2

push(4)

push(k):
Node t
1 n = new Node(k,-)
2 while (true)
3 t = Top
4 n.next = t
5 if (CAS (Top,t,n))
6 exit

4 n.next = t

push(2)

4
n

2
n

t t

To
p

Concurrent push operations

The Treiber Stack Algorithm

push(k):
Node t
1 n = new Node(k,-)
2 while (true)
3 t = Top
4 n.next = t
5 if (CAS (Top,t,n))
6 exit

4 n.next = t

5 3 7 2

push(4)

push(k):
Node t
1 n = new Node(k,-)
2 while (true)
3 t = Top
4 n.next = t
5 if (CAS (Top,t,n))
6 exit

4 n.next = t

push(2)

4
n

2
n

t t

To
p

Concurrent push operations

The Treiber Stack Algorithm

push(k):
Node t
1 n = new Node(k,-)
2 while (true)
3 t = Top
4 n.next = t
5 if (CAS (Top,t,n))
6 exit

4 n.next = t

5 3 7 2

push(4)

4
n

2

Top

t

Concurrent push operations

The Treiber Stack Algorithm

push(k):
Node t
1 n = new Node(k,-)
2 while (true)
3 t = Top
4 n.next = t
5 if (CAS (Top,t,n))
6 exit

4 n.next = t

5 3 7 2

push(4)

4
n

2

Top

t

Concurrent push operations

The Treiber Stack Algorithm

push(k):
Node t
1 n = new Node(k,-)
2 while (true)
3 t = Top
4 n.next = t
5 if (CAS (Top,t,n))
6 exit

4 n.next = t

5 3 7 2

push(4)

4
n

2

Top

t

Concurrent push operations

The Treiber Stack Algorithm

push(k):
Node t
1 n = new Node(k,-)
2 while (true)
3 t = Top
4 n.next = t
5 if (CAS (Top,t,n))
6 exit

4 n.next = t

5 3 7 2

push(4)

4
n

2

Top

t

Concurrent push operations

The Treiber Stack Algorithm

push(k):
Node t
1 n = new Node(k,-)
2 while (true)
3 t = Top
4 n.next = t
5 if (CAS (Top,t,n))
6 exit

4 n.next = t

5 3 7 2

push(4)

push(k):
Node t
1 n = new Node(k,-)
2 while (true)
3 t = Top
4 n.next = t
5 if (CAS (Top,t,n))
6 exit

4 n.next = t

4
n

2

Top

t2

push(2)

Concurrent push operations

n

The Treiber Stack Algorithm

push(k):
Node t
1 n = new Node(k,-)
2 while (true)
3 t = Top
4 n.next = t
5 if (CAS (Top,t,n))
6 exit

4 n.next = t

5 3 7 2

push(4)

push(k):
Node t
1 n = new Node(k,-)
2 while (true)
3 t = Top
4 n.next = t
5 if (CAS (Top,t,n))
6 exit

4 n.next = t

4
n

2

Top

t2

push(2)

Concurrent push operations

n

The Treiber Stack Algorithm

push(k):
Node t
1 n = new Node(k,-)
2 while (true)
3 t = Top
4 n.next = t
5 if (CAS (Top,t,n))
6 exit

4 n.next = t

5 3 7 2

push(4)

push(k):
Node t
1 n = new Node(k,-)
2 while (true)
3 t = Top
4 n.next = t
5 if (CAS (Top,t,n))
6 exit

4 n.next = t

4
n

2

Top

t2

push(2)

t

Concurrent push operations

n

The Treiber Stack Algorithm

push(k):
Node t
1 n = new Node(k,-)
2 while (true)
3 t = Top
4 n.next = t
5 if (CAS (Top,t,n))
6 exit

4 n.next = t

5 3 7 2

push(4)

push(k):
Node t
1 n = new Node(k,-)
2 while (true)
3 t = Top
4 n.next = t
5 if (CAS (Top,t,n))
6 exit

4 n.next = t

4
n

2

Top

t2

push(2)

t

Concurrent push operations

n

The Treiber Stack Algorithm

push(k):
Node t
1 n = new Node(k,-)
2 while (true)
3 t = Top
4 n.next = t
5 if (CAS (Top,t,n))
6 exit

4 n.next = t

5 3 7 2

push(4)

push(k):
Node t
1 n = new Node(k,-)
2 while (true)
3 t = Top
4 n.next = t
5 if (CAS (Top,t,n))
6 exit

4 n.next = t

4
n

2

Top

t2

push(2)

t

Concurrent push operations

n

The Treiber Stack Algorithm

push(k):
Node t
1 n = new Node(k,-)
2 while (true)
3 t = Top
4 n.next = t
5 if (CAS (Top,t,n))
6 exit

4 n.next = t

5 3 7 2

push(4)

push(k):
Node t
1 n = new Node(k,-)
2 while (true)
3 t = Top
4 n.next = t
5 if (CAS (Top,t,n))
6 exit

4 n.next = t

4
n

2Top

t2

push(2)

t

Concurrent push operations

n

The Treiber Stack Algorithm

push(k):
Node t
1 n = new Node(k,-)
2 while (true)
3 t = Top
4 n.next = t
5 if (CAS (Top,t,n))
6 exit

4 n.next = t

5 3 7 2

push(4)

push(k):
Node t
1 n = new Node(k,-)
2 while (true)
3 t = Top
4 n.next = t
5 if (CAS (Top,t,n))
6 exit

4 n.next = t

4
n

2Top

t2

push(2)

t

Concurrent push operations

n

The Treiber Stack Algorithm

push(k):
Node t
1 n = new Node(k,-)
2 while (true)
3 t = Top
4 n.next = t
5 if (CAS (Top,t,n))
6 exit

4 n.next = t

5 3 7 2

push(4)

4
n

2Top

t2

Concurrent push operations

The Treiber Stack Algorithm

push(k):
Node t
1 n = new Node(k,-)
2 while (true)
3 t = Top
4 n.next = t
5 if (CAS (Top,t,n))
6 exit

4 n.next = t

5 3 7 2

push(4)

4
n

2Top

t2

Concurrent push operations

The Treiber Stack Algorithm

push(k):
Node t
1 n = new Node(k,-)
2 while (true)
3 t = Top
4 n.next = t
5 if (CAS (Top,t,n))
6 exit

4 n.next = t

5 3 7 2

push(4)

4
n

2Top

2

not wait-free (starvation)

lock-free

t

The Treiber Stack Algorithm

push(k):
Node t
1 n = new Node(k,-)
2 while (true)
3 t = Top
4 n.next = t
5 if (CAS (Top,t,n))
6 exit

4 n.next = t

push(4) not wait-free (starvation)

lock-free

essentially sequential

5 3 7 24

2

3

Top
one at a time

The Treiber Stack Algorithm

5 3 7 2

pop

2

Top

pop:
Node t
1 while (true)
2 t = Top
3 if (t = NULL)
4 return *
5 exit
6 if (CAS (Top,t,t.next))
7 return t.val
8 exit

The Treiber Stack Algorithm

5 3 7 2

pop

2

Top

pop:
Node t
1 while (true)
2 t = Top
3 if (t = NULL)
4 return *
5 exit
6 if (CAS (Top,t,t.next))
7 return t.val
8 exit

t

The Treiber Stack Algorithm

5 3 7 2

pop

2

Top

pop:
Node t
1 while (true)
2 t = Top
3 if (t = NULL)
4 return *
5 exit
6 if (CAS (Top,t,t.next))
7 return t.val
8 exit

t

The Treiber Stack Algorithm

5 3 7 2

pop

2

Top

pop:
Node t
1 while (true)
2 t = Top
3 if (t = NULL)
4 return *
5 exit
6 if (CAS (Top,t,t.next))
7 return t.val
8 exit

t

The Treiber Stack Algorithm

5 3 7 2

pop

2

Top

pop:
Node t
1 while (true)
2 t = Top
3 if (t = NULL)
4 return *
5 exit
6 if (CAS (Top,t,t.next))
7 return t.val
8 exit

t

The Treiber Stack Algorithm

5 3 7 2

Top

Concurrent pop operations

The Treiber Stack Algorithm

pop:
Node t
1 while (true)
2 t = Top
3 if (t = NULL)
4 return *
5 exit
6 if (CAS (Top,t,t.next))
7 return t.val
8 exit

5 3 7 2

pop

2

Top

Concurrent pop operations

The Treiber Stack Algorithm

pop:
Node t
1 while (true)
2 t = Top
3 if (t = NULL)
4 return *
5 exit
6 if (CAS (Top,t,t.next))
7 return t.val
8 exit

5 3 7 2

pop

2

Top

t

Concurrent pop operations

The Treiber Stack Algorithm

pop:
Node t
1 while (true)
2 t = Top
3 if (t = NULL)
4 return *
5 exit
6 if (CAS (Top,t,t.next))
7 return t.val
8 exit

5 3 7 2

pop

2

Top

pop:
Node t
1 while (true)
2 t = Top
3 if (t = NULL)
4 return *
5 exit
6 if (CAS (Top,t,t.next))
7 return t.val
8 exit

pop

t

Concurrent pop operations

The Treiber Stack Algorithm

pop:
Node t
1 while (true)
2 t = Top
3 if (t = NULL)
4 return *
5 exit
6 if (CAS (Top,t,t.next))
7 return t.val
8 exit

5 3 7 2

pop

2

Top

pop:
Node t
1 while (true)
2 t = Top
3 if (t = NULL)
4 return *
5 exit
6 if (CAS (Top,t,t.next))
7 return t.val
8 exit

pop

t t

Concurrent pop operations

The Treiber Stack Algorithm

pop:
Node t
1 while (true)
2 t = Top
3 if (t = NULL)
4 return *
5 exit
6 if (CAS (Top,t,t.next))
7 return t.val
8 exit

5 3 7 2

pop

2

Top

pop:
Node t
1 while (true)
2 t = Top
3 if (t = NULL)
4 return *
5 exit
6 if (CAS (Top,t,t.next))
7 return t.val
8 exit

pop

t t

Concurrent pop operations

The Treiber Stack Algorithm

pop:
Node t
1 while (true)
2 t = Top
3 if (t = NULL)
4 return *
5 exit
6 if (CAS (Top,t,t.next))
7 return t.val
8 exit

5 3 7 2

pop

2

Top

pop:
Node t
1 while (true)
2 t = Top
3 if (t = NULL)
4 return *
5 exit
6 if (CAS (Top,t,t.next))
7 return t.val
8 exit

pop

t t

Concurrent pop operations

The Treiber Stack Algorithm

pop:
Node t
1 while (true)
2 t = Top
3 if (t = NULL)
4 return *
5 exit
6 if (CAS (Top,t,t.next))
7 return t.val
8 exit

5 3 7 2

pop

2

Top

pop:
Node t
1 while (true)
2 t = Top
3 if (t = NULL)
4 return *
5 exit
6 if (CAS (Top,t,t.next))
7 return t.val
8 exit

pop

t t

Concurrent pop operations

The Treiber Stack Algorithm

pop:
Node t
1 while (true)
2 t = Top
3 if (t = NULL)
4 return *
5 exit
6 if (CAS (Top,t,t.next))
7 return t.val
8 exit

5 3 7 2

pop

2

Top

pop:
Node t
1 while (true)
2 t = Top
3 if (t = NULL)
4 return *
5 exit
6 if (CAS (Top,t,t.next))
7 return t.val
8 exit

pop

t t

Concurrent pop operations

The Treiber Stack Algorithm

pop:
Node t
1 while (true)
2 t = Top
3 if (t = NULL)
4 return *
5 exit
6 if (CAS (Top,t,t.next))
7 return t.val
8 exit

5 3 7 2

pop

2

Top

t

Concurrent pop operations

The Treiber Stack Algorithm

pop:
Node t
1 while (true)
2 t = Top
3 if (t = NULL)
4 return *
5 exit
6 if (CAS (Top,t,t.next))
7 return t.val
8 exit

5 3 7 2

pop

2

Top

t

Concurrent pop operations

The Treiber Stack Algorithm

pop

Top

pop:
Node t
1 while (true)
2 t = Top
3 if (t = NULL)
4 return *
5 exit
6 if (CAS (Top,t,t.next))
7 return t.val
8 exit

empty
stack

The Treiber Stack Algorithm

pop

Top

pop:
Node t
1 while (true)
2 t = Top
3 if (t = NULL)
4 return *
5 exit
6 if (CAS (Top,t,t.next))
7 return t.val
8 exit

empty
stack

t

The Treiber Stack Algorithm

pop

Top

pop:
Node t
1 while (true)
2 t = Top
3 if (t = NULL)
4 return *
5 exit
6 if (CAS (Top,t,t.next))
7 return t.val
8 exit

empty
stack

t

The Treiber Stack Algorithm

pop

Top

pop:
Node t
1 while (true)
2 t = Top
3 if (t = NULL)
4 return *
5 exit
6 if (CAS (Top,t,t.next))
7 return t.val
8 exit

empty
stack

t

The Treiber Stack Algorithm

pop

Top

pop:
Node t
1 while (true)
2 t = Top
3 if (t = NULL)
4 return *
5 exit
6 if (CAS (Top,t,t.next))
7 return t.val
8 exit

empty
stack

t

The Treiber Stack Algorithm

push(k):
Node t
1 n = new Node(k,-)
2 while (true)
3 t = Top
4 n.next = t
5 if (CAS (Top,t,n))
6 exit

4 n.next = t

Linearization Policy

pop:
Node t
1 while (true)
2 t = Top
3 if (t = NULL)
4 return *
5 exit
6 if (CAS (Top,t,t.next))
7 return t.val
8 exit

when successful when successful

when empty

The Treiber Stack Algorithm

push(k):
Node t
1 n = new Node(k,-)
2 while (true)
3 t = Top
4 n.next = t
5 if (CAS (Top,t,n))
6 exit

4 n.next = t

pop:
Node t
1 while (true)
2 t = Top
3 if (t = NULL)
4 return *
5 exit
6 if (CAS (Top,t,t.next))
7 return t.val
8 exit

when successful when successful

when empty

?

Linearization Policy

The Treiber Stack Algorithm

5 3 7 2

Top

push(4)

4
n

push(k):
Node t
1 n = new Node(k,-)
2 while (true)
3 t = Top
4 n.next = t
5 if (CAS (Top,t,n))
6 exit

4 n.next = t

push(4)

Linearization Policy

The Treiber Stack Algorithm

5 3 7 2

Top

push(4)

4
n

push(k):
Node t
1 n = new Node(k,-)
2 while (true)
3 t = Top
4 n.next = t
5 if (CAS (Top,t,n))
6 exit

4 n.next = t

push(4)

t

Linearization Policy

The Treiber Stack Algorithm

5 3 7 2

Top

push(4)

4
n

push(k):
Node t
1 n = new Node(k,-)
2 while (true)
3 t = Top
4 n.next = t
5 if (CAS (Top,t,n))
6 exit

4 n.next = t

push(4)

t

Linearization Policy

The Treiber Stack Algorithm

5 3 7 2

Top

push(4)

4
n

push(k):
Node t
1 n = new Node(k,-)
2 while (true)
3 t = Top
4 n.next = t
5 if (CAS (Top,t,n))
6 exit

4 n.next = t

push(4)

t

pop

pop:
Node t
1 while (true)
2 t = Top
3 if (t = NULL)
4 return *
5 exit
6 if (CAS (Top,t,t.next))
7 return t.val
8 exit

pop

Linearization Policy

The Treiber Stack Algorithm

5 3 7 2

Top

push(4)

4
n

push(k):
Node t
1 n = new Node(k,-)
2 while (true)
3 t = Top
4 n.next = t
5 if (CAS (Top,t,n))
6 exit

4 n.next = t

push(4)

t

pop

pop:
Node t
1 while (true)
2 t = Top
3 if (t = NULL)
4 return *
5 exit
6 if (CAS (Top,t,t.next))
7 return t.val
8 exit

pop

t

Linearization Policy

The Treiber Stack Algorithm

5 3 7 2

Top

push(4)

4
n

push(k):
Node t
1 n = new Node(k,-)
2 while (true)
3 t = Top
4 n.next = t
5 if (CAS (Top,t,n))
6 exit

4 n.next = t

push(4)

t

pop

pop:
Node t
1 while (true)
2 t = Top
3 if (t = NULL)
4 return *
5 exit
6 if (CAS (Top,t,t.next))
7 return t.val
8 exit

pop

t

Linearization Policy

The Treiber Stack Algorithm

5 3 7 2

Top

push(4)

4
n

push(k):
Node t
1 n = new Node(k,-)
2 while (true)
3 t = Top
4 n.next = t
5 if (CAS (Top,t,n))
6 exit

4 n.next = t

push(4)

t

pop

pop:
Node t
1 while (true)
2 t = Top
3 if (t = NULL)
4 return *
5 exit
6 if (CAS (Top,t,t.next))
7 return t.val
8 exit

pop

t

Linearization Policy

The Treiber Stack Algorithm

5 3 7 2

Top

push(4)

4
n

push(k):
Node t
1 n = new Node(k,-)
2 while (true)
3 t = Top
4 n.next = t
5 if (CAS (Top,t,n))
6 exit

4 n.next = t

push(4)

t

pop

pop:
Node t
1 while (true)
2 t = Top
3 if (t = NULL)
4 return *
5 exit
6 if (CAS (Top,t,t.next))
7 return t.val
8 exit

pop

t

Linearization Policy

The Treiber Stack Algorithm

5 3 7 2

Top

push(4)

4
n

push(k):
Node t
1 n = new Node(k,-)
2 while (true)
3 t = Top
4 n.next = t
5 if (CAS (Top,t,n))
6 exit

4 n.next = t

push(4)

t

pop

pop:
Node t
1 while (true)
2 t = Top
3 if (t = NULL)
4 return *
5 exit
6 if (CAS (Top,t,t.next))
7 return t.val
8 exit

pop

t

5

Linearization Policy

The Treiber Stack Algorithm

5 3 7 2

Top

push(4)

4
n

push(k):
Node t
1 n = new Node(k,-)
2 while (true)
3 t = Top
4 n.next = t
5 if (CAS (Top,t,n))
6 exit

4 n.next = t

push(4)

t

pop:
Node t
1 while (true)
2 t = Top
3 if (t = NULL)
4 return *
5 exit
6 if (CAS (Top,t,t.next))
7 return t.val
8 exit

pop 5

Linearization Policy

The Treiber Stack Algorithm

5 3 7 2

Top

push(4)

4
n

push(k):
Node t
1 n = new Node(k,-)
2 while (true)
3 t = Top
4 n.next = t
5 if (CAS (Top,t,n))
6 exit

4 n.next = t

push(4)

t

pop:
Node t
1 while (true)
2 t = Top
3 if (t = NULL)
4 return *
5 exit
6 if (CAS (Top,t,t.next))
7 return t.val
8 exit

pop 5

Linearization Policy

The Treiber Stack Algorithm

5 3 7 2

Top

push(4)

4
n

push(k):
Node t
1 n = new Node(k,-)
2 while (true)
3 t = Top
4 n.next = t
5 if (CAS (Top,t,n))
6 exit

4 n.next = t

push(4)

t

pop:
Node t
1 while (true)
2 t = Top
3 if (t = NULL)
4 return *
5 exit
6 if (CAS (Top,t,t.next))
7 return t.val
8 exit

pop 5

pop

pop

Linearization Policy

The Treiber Stack Algorithm

5 3 7 2

Top

push(4)

4
n

push(k):
Node t
1 n = new Node(k,-)
2 while (true)
3 t = Top
4 n.next = t
5 if (CAS (Top,t,n))
6 exit

4 n.next = t

push(4)

t

pop:
Node t
1 while (true)
2 t = Top
3 if (t = NULL)
4 return *
5 exit
6 if (CAS (Top,t,t.next))
7 return t.val
8 exit

pop 5

pop

pop

Linearization Policy

The Treiber Stack Algorithm

5 3 7 2

Top

push(4)

4
n

push(k):
Node t
1 n = new Node(k,-)
2 while (true)
3 t = Top
4 n.next = t
5 if (CAS (Top,t,n))
6 exit

4 n.next = t

push(4)

t

pop:
Node t
1 while (true)
2 t = Top
3 if (t = NULL)
4 return *
5 exit
6 if (CAS (Top,t,t.next))
7 return t.val
8 exit

pop 5

pop

pop

Linearization Policy

The Treiber Stack Algorithm

5 3 7 2

Top

push(4)

4
n

push(k):
Node t
1 n = new Node(k,-)
2 while (true)
3 t = Top
4 n.next = t
5 if (CAS (Top,t,n))
6 exit

4 n.next = t

push(4)

t

pop:
Node t
1 while (true)
2 t = Top
3 if (t = NULL)
4 return *
5 exit
6 if (CAS (Top,t,t.next))
7 return t.val
8 exit

pop 5

pop

pop

Linearization Policy

The Treiber Stack Algorithm

3 7 2

Top

push(4)

4
n

push(k):
Node t
1 n = new Node(k,-)
2 while (true)
3 t = Top
4 n.next = t
5 if (CAS (Top,t,n))
6 exit

4 n.next = t

push(4)

t

pop:
Node t
1 while (true)
2 t = Top
3 if (t = NULL)
4 return *
5 exit
6 if (CAS (Top,t,t.next))
7 return t.val
8 exit

pop 5

pop

pop

Linearization Policy

The Treiber Stack Algorithm

3 7 2

Top

push(4)

4
n

push(k):
Node t
1 n = new Node(k,-)
2 while (true)
3 t = Top
4 n.next = t
5 if (CAS (Top,t,n))
6 exit

4 n.next = t

push(4)

t

pop:
Node t
1 while (true)
2 t = Top
3 if (t = NULL)
4 return *
5 exit
6 if (CAS (Top,t,t.next))
7 return t.val
8 exit

pop 5

pop

pop

Linearization Policy

The Treiber Stack Algorithm

3 7 2

Top

push(4)

4
n

push(k):
Node t
1 n = new Node(k,-)
2 while (true)
3 t = Top
4 n.next = t
5 if (CAS (Top,t,n))
6 exit

4 n.next = t

push(4)

t

pop:
Node t
1 while (true)
2 t = Top
3 if (t = NULL)
4 return *
5 exit
6 if (CAS (Top,t,t.next))
7 return t.val
8 exit

pop 5

pop

pop

Linearization Policy

The Treiber Stack Algorithm

3 7 2

Top

push(4)

4
n

push(k):
Node t
1 n = new Node(k,-)
2 while (true)
3 t = Top
4 n.next = t
5 if (CAS (Top,t,n))
6 exit

4 n.next = t

push(4)

t

pop:
Node t
1 while (true)
2 t = Top
3 if (t = NULL)
4 return *
5 exit
6 if (CAS (Top,t,t.next))
7 return t.val
8 exit

pop 5

pop

pop

Linearization Policy

The Treiber Stack Algorithm

3 7 2

Top

push(4)

4
n

push(k):
Node t
1 n = new Node(k,-)
2 while (true)
3 t = Top
4 n.next = t
5 if (CAS (Top,t,n))
6 exit

4 n.next = t

push(4)

pop:
Node t
1 while (true)
2 t = Top
3 if (t = NULL)
4 return *
5 exit
6 if (CAS (Top,t,t.next))
7 return t.val
8 exit

pop 5

pop

t t

pop

Linearization Policy

The Treiber Stack Algorithm

3 7 2

Top

push(4)

4
n

push(k):
Node t
1 n = new Node(k,-)
2 while (true)
3 t = Top
4 n.next = t
5 if (CAS (Top,t,n))
6 exit

4 n.next = t

push(4)

pop:
Node t
1 while (true)
2 t = Top
3 if (t = NULL)
4 return *
5 exit
6 if (CAS (Top,t,t.next))
7 return t.val
8 exit

pop 5

pop

pop

t t

Linearization Policy

The Treiber Stack Algorithm

3 7 2

Top

push(4)

4
n

push(k):
Node t
1 n = new Node(k,-)
2 while (true)
3 t = Top
4 n.next = t
5 if (CAS (Top,t,n))
6 exit

4 n.next = t

push(4)

pop:
Node t
1 while (true)
2 t = Top
3 if (t = NULL)
4 return *
5 exit
6 if (CAS (Top,t,t.next))
7 return t.val
8 exit

pop 5

pop

t t

pop

Linearization Policy

The Treiber Stack Algorithm

3 7 2

Top

push(4)

4
n

push(k):
Node t
1 n = new Node(k,-)
2 while (true)
3 t = Top
4 n.next = t
5 if (CAS (Top,t,n))
6 exit

4 n.next = t

push(4)

pop:
Node t
1 while (true)
2 t = Top
3 if (t = NULL)
4 return *
5 exit
6 if (CAS (Top,t,t.next))
7 return t.val
8 exit

pop 5

pop

t t

pop

Linearization Policy

The Treiber Stack Algorithm

3 7 2

Top

push(4)

4
n

push(k):
Node t
1 n = new Node(k,-)
2 while (true)
3 t = Top
4 n.next = t
5 if (CAS (Top,t,n))
6 exit

4 n.next = t

push(4)

pop:
Node t
1 while (true)
2 t = Top
3 if (t = NULL)
4 return *
5 exit
6 if (CAS (Top,t,t.next))
7 return t.val
8 exit

pop 5

pop

t

4

t

pop

Linearization Policy

The Treiber Stack Algorithm

3 7 2

Top

push(4)

4
n

push(k):
Node t
1 n = new Node(k,-)
2 while (true)
3 t = Top
4 n.next = t
5 if (CAS (Top,t,n))
6 exit

4 n.next = t

push(4)

pop:
Node t
1 while (true)
2 t = Top
3 if (t = NULL)
4 return *
5 exit
6 if (CAS (Top,t,t.next))
7 return t.val
8 exit

pop 5

pop

t

.

t

4pop

Linearization Policy

The Treiber Stack Algorithm Linearization Policy

push(4)

pop 5

.

4pop

Libraries

vide a promising approach for proving either correctness or violation for many
practically-occurring systems.

2 Preliminaries

In this work we consider a program model in which an unbounded number of
operations concurrently access finite-domain shared data. Operations correspond
to invocations of a finite library of methods. Here, methods correspond to the
implementations of application programming interface (API) entries of concurrent
or distributed data structures, and less conventionally, to the atomic code sections
of concurrent programs, or to the SQL implementations of database transactions.
A library is then simply the collection of API implementations, or transactional
code. Usually concurrent data structure libraries and transactional runtime
systems are expected to ensure that executed operations are logically equivalent
to some understood serial behavior, regardless of how clients concurrently invoke
their methods or transactions; the implication is that such systems should function
correctly for a most-general client which concurrently invokes an unbounded
number of methods with arbitrary timing. In what follows we formalize these
notions as a basis for formulating our results.

2.1 Unbounded Concurrent Systems

A method is a finite automaton M = hQ,⌃, I, F, ,!i with labeled transitions
hm1, v1i a

,�! hm2, v2i between method-local states m1,m2 2 Q paired with
finite-domain shared-state valuations v1, v2 2 V . The initial and final states
I, F ✓ Q represent the method-local states passed to, and returned from, M . A
library L is a finite set of methods, and we refer to the components of a particular
method (resp., library) by subscripting, e.g., the states and symbols QM and ⌃M

(resp., QL and ⌃L). Though here we suppose an abstract notion of shared-state
valuations, in later sections we interpret them as valuations to a finite set of
finite-domain variables.

A client of a library L is a finite automaton C = hQ,⌃, `0, ,!i with initial
state `0 2 Q and transitions ,! ✓ Q ⇥ ⌃ ⇥ Q labeled by the alphabet ⌃ =
{M(m0,mf) : M 2 L,m0,mf 2 QM} of library method calls; we refer to a client
C’s components by subscripting, e.g., the states and symbols QC and ⌃C . The
most general client C? = hQ,⌃, `0, ,!i of a library L nondeterministically calls
L’s methods in any order: Q = {`0} and ,! = Q⇥⌃ ⇥Q.

We consider unbounded concurrent systems L[C] in which the methods of a
library L are invoked by an arbitrary number of concurrent threads executing a
copy of a given client C; note that any shared memory program with an unbounded
number of finite-state threads can be modeled using a suitably-defined client
C. A configuration c = hv, ui of L[C] is a shared memory valuation v 2 V ,
along with a map u mapping each thread t 2 N to a tuple u(t) = h`,m0,mi,
composed of a client-local state ` 2 QC , along with initial and current method
states m0,m 2 QL [{?}; m0 = m = ? when thread t is not executing a library

Internal
u1(t) = h`,m0,m1i

hm1, v1i
a

,��! hm2, v2i
u2 = u1 (t 7! h`,m0,m2i)

hv1, u1i
ha,ti���!
L[C]

hv2, u2i

Call
u1(t) = h`1,?,?i

m0 2 IM `1
M(m0,mf)
,���!C `2

u2 = u1 (t 7! h`1,m0,m0i)

hv, u1i
call(M,m0,t)��������!

L[C]
hv, u2i

Return
u1(t) = h`1,m0,mf i

mf 2 FM `1
M(m0,mf)
,���!C `2

u2 = u1 (t 7! h`2,?,?i)

hv, u1i
ret(M,mf ,t)
�������!

L[C]
hv, u2i

Fig. 1. The transition relation !L[C] for the library-client composition L[C].

method. In this way, configurations describe the states of arbitrarily-many threads
executing library methods. The transition relation !L[C] of L[C] is listed in

Figure 1 as a set of operational steps on configurations. A configuration hv, ui
of L[C] is called v0-initial for a given v0 2 V when v = v0 and u(t) = h`0,?,?i
for all t 2 N, where `0 is the initial state of client C. An execution of L[C] is a
sequence ⇢ = c0c1 . . . of configurations such that ci !L[C] ci+1 for all 0 i < |⇢|,
and ⇢ is called v0-initial when c0 is.

We associate to each concurrent system L[C] a canonical VASS,2 denoted
AL[C], whose states are the set of shared-memory valuations, and whose vector
components count the number of threads in each thread-local state; a transition
of AL[C] from hv1,n1i to hv2,n2i updates the shared-memory valuation from v1
to v2 and the local state of some thread t from u1(t) to u2(t) by decrementing
the u1(t)-component of n1, and incrementing the u2(t)-component, to derive n2.
Several of our proof arguments in the following sections invoke the canonical
VASS simulation of a concurrent system, which we define fully in Appendix A.2.

A call action of thread t is a symbol call(M,m, t), a return action is a symbol
ret(M,m, t), and an internal action is a symbol ha, ti. We write � to denote a
sequence of actions, and ⌧ to denote a trace—i.e., a sequence of actions labeling
some execution. An M [m0,mf]-operation ✓ (or more simply, M -operation, or just
operation) of a sequence � is a maximal subsequence of actions of some thread t
beginning with a call action call(M,m0, t), followed by a possibly-empty sequence
of internal actions, and possibly ending with a return action ret(M,mf , t); mf = ⇤
when ✓ does not end in a return action. When ✓ ends with a return action, we
say ✓ is completed, and otherwise ✓ is pending ; a sequence � is complete when all
of its operations are completed. Two operations ✓1 and ✓2 of � overlap when the
minimal subsequence of � containing both ✓1 and ✓2 is neither ✓1 · ✓2 nor ✓2 · ✓1.
Two non-overlapping operations ✓1 followed by ✓2 in � are called serial when ✓1
is completed; note that all operations of the same thread are serial. A sequence
� is (quasi) serial when no two (completed) operations of � overlap.

A (strict) permutation of an action sequence � containing operations ⇥ is an
action sequence ⇡ with operations ⇥ such that every two same-thread operations
(resp., every two serial operations) of � occur in the same serial order in ⇡. Note
that ⇡ itself is not necessarily a trace of a system from which � may be a trace.

2
See Appendix A.1 for a standard definition of vector addition system with states.

VASS model

Internal
u1(t) = h`,m0,m1i

hm1, v1i
a

,��! hm2, v2i
u2 = u1 (t 7! h`,m0,m2i)

hv1, u1i
ha,ti���!
L[C]

hv2, u2i

Call
u1(t) = h`1,?,?i

m0 2 IM `1
M(m0,mf)
,���!C `2

u2 = u1 (t 7! h`1,m0,m0i)

hv, u1i
call(M,m0,t)��������!

L[C]
hv, u2i

Return
u1(t) = h`1,m0,mf i

mf 2 FM `1
M(m0,mf)
,���!C `2

u2 = u1 (t 7! h`2,?,?i)

hv, u1i
ret(M,mf ,t)
�������!

L[C]
hv, u2i

Fig. 1. The transition relation !L[C] for the library-client composition L[C].

method. In this way, configurations describe the states of arbitrarily-many threads
executing library methods. The transition relation !L[C] of L[C] is listed in

Figure 1 as a set of operational steps on configurations. A configuration hv, ui
of L[C] is called v0-initial for a given v0 2 V when v = v0 and u(t) = h`0,?,?i
for all t 2 N, where `0 is the initial state of client C. An execution of L[C] is a
sequence ⇢ = c0c1 . . . of configurations such that ci !L[C] ci+1 for all 0 i < |⇢|,
and ⇢ is called v0-initial when c0 is.

We associate to each concurrent system L[C] a canonical VASS,2 denoted
AL[C], whose states are the set of shared-memory valuations, and whose vector
components count the number of threads in each thread-local state; a transition
of AL[C] from hv1,n1i to hv2,n2i updates the shared-memory valuation from v1
to v2 and the local state of some thread t from u1(t) to u2(t) by decrementing
the u1(t)-component of n1, and incrementing the u2(t)-component, to derive n2.
Several of our proof arguments in the following sections invoke the canonical
VASS simulation of a concurrent system, which we define fully in Appendix A.2.

A call action of thread t is a symbol call(M,m, t), a return action is a symbol
ret(M,m, t), and an internal action is a symbol ha, ti. We write � to denote a
sequence of actions, and ⌧ to denote a trace—i.e., a sequence of actions labeling
some execution. An M [m0,mf]-operation ✓ (or more simply, M -operation, or just
operation) of a sequence � is a maximal subsequence of actions of some thread t
beginning with a call action call(M,m0, t), followed by a possibly-empty sequence
of internal actions, and possibly ending with a return action ret(M,mf , t); mf = ⇤
when ✓ does not end in a return action. When ✓ ends with a return action, we
say ✓ is completed, and otherwise ✓ is pending ; a sequence � is complete when all
of its operations are completed. Two operations ✓1 and ✓2 of � overlap when the
minimal subsequence of � containing both ✓1 and ✓2 is neither ✓1 · ✓2 nor ✓2 · ✓1.
Two non-overlapping operations ✓1 followed by ✓2 in � are called serial when ✓1
is completed; note that all operations of the same thread are serial. A sequence
� is (quasi) serial when no two (completed) operations of � overlap.

A (strict) permutation of an action sequence � containing operations ⇥ is an
action sequence ⇡ with operations ⇥ such that every two same-thread operations
(resp., every two serial operations) of � occur in the same serial order in ⇡. Note
that ⇡ itself is not necessarily a trace of a system from which � may be a trace.

2
See Appendix A.1 for a standard definition of vector addition system with states.

Specifications

2.2 Conflict Serializability

The notion of “conflict serializability” is a restriction to the more liberal “seri-
alizability” [27]: besides requiring that each concurrent execution of operations
corresponds to some serial sequence, a “conflict relation,” relating the individual
actions of each operation, must be preserved in deriving that serial sequence from
a permutation of actions in the original concurrent execution. Both notions are
widely accepted correctness criteria for transactional systems.

We fix a symmetric3 relation � on the internal library actions ⌃L called
the conflict relation. Although here we assume an abstract notion of conflict,
in practice, two actions conflict when both access the same memory location,
and at least one a↵ects the value stored in that location; e.g., two writes to the
same shared variable would conflict. A permutation ⇡ of a trace ⌧ is conflict-

preserving when every pair ha1, t1i and ha2, t2i of actions of ⌧ appear in the
same order in ⇡ whenever a1 � a2. Intuitively, a conflict-preserving permutation
w.r.t. the previously-mentioned notion of conflict is equally executable on a
sequentially-consistent machine.

Definition 1 (Conflict Serializability [27]). A trace ⌧ is conflict serializable
when there exists a conflict-preserving serial permutation of ⌧ .

This definition extends to executions, to systems L[C] whose executions are all
conflict serializable, and to libraries L when C is the most general client C?.

2.3 Linearizability

Contrary to (conflict) serializability, linearizability [20] is more often used in
contexts, such as concurrent data structure libraries, in which an abstract specifi-
cation of operations’ serial behavior is given explicitly. For instance, linearizability
with respect to a specification of a concurrent stack implementation would require
the abstract push(·) and pop(·) operations carried out in a concurrent trace ⌧
correspond to some serial sequence � of push(·)s and pop(·)s, in which each pop(a)
can be matched to a previous push(a); Figure 2 illustrates an automaton-based
specification of a two-element unary stack. Note that linearizability does not
require that a corresponding reordering of the trace ⌧ can actually be executed by
this stack implementation, nor that the implementation could have even executed
these operations serially.

A specification S of a library L is a language over the specification alphabet

⌃S
def
= {M [m0,mf] : M 2 L,m0,mf 2 QM}.

In this work we assume specifications are regular languages; in practice, spec-
ifications are prefix closed. We refer to the alphabet containing both symbols
M [m0,mf] and M [m0, ⇤] for each M [m0,mf] occurring in ⌃S as the pending-

closed alphabet of S, denoted ⌃S .

3
All definitions of conflict that we are aware of assume symmetric relations.

q✏ qa qa,a
push[a, true]

pop[·, true] pop[·, true]

push[a, true]

pop[·, false]

Fig. 2. The sequential specification of two-

element stacks containing the (abstract)

value a, given as the language of a finite

automaton, whose operation alphabet indi-

cates both the argument and return values.

q✏ qa qa,a

push[a, ⇤],
push[a, true]

pop[·, ⇤],
pop[·, true]

pop[·, ⇤],
pop[·, true]

push[a, ⇤],
push[a, true]

pop[·, false]

pop[·, ⇤],
push[a, ⇤]

pop[·, ⇤],
push[a, ⇤]

pop[·, ⇤],
push[a, ⇤]

Fig. 3. The pending closure of the stack

specification from Figure 2.

Informally, a library L is linearizable w.r.t. a specification S when the op-
erations of any concurrent trace can be serialized to a sequence of operations
belonging to S, which must preserve the order between non-overlapping opera-
tions. However, the presence of pending operations introduces a subtlety: a trace
may be considered linearizable by supposing that certain pending operations
have already been e↵ectuated—e.g., a trace of a concurrent stack implemen-
tation in which push(a) is pending and pop(a) has successfully completed is

linearizable—while simultaneously supposing that other pending operations are
ignored—e.g., a trace in which push(a) is pending and pop(a) returned false is
also linearizable. To account for the possible e↵ects of pending operations, we
define a completion of a serial sequence � = ✓1✓2 . . . ✓i of operations to be any
sequence f(�) = f(1)f(2) . . . f(i) for some function f preserving completed oper-
ations (i.e., f(j) = ✓j when ✓j is completed), and either deleting (i.e., f(j) = ")
or completing (i.e., f(j) = ✓j · ret(M,mf , t), for some mf 2 QM) each M [m0, ⇤]
operation of some thread t. Note that a completion of a serial sequence � is a
complete serial sequence. Finally, the S-image of a serial sequence �, denoted
� | S, maps each M [m0,mf]-operation ✓ to the symbol M [m0,mf] 2 ⌃S .

Definition 2 (Linearizability [20]). A trace ⌧ is S-linearizable when there

exists a completion
4 ⇡ of a strict, serial permutation of ⌧ such that (⇡ | S) 2 S.

This notion extends naturally to executions of a system L[C], to the system L[C]
itself, and to L when C is the most general client C?.

Example 1. The trace pictured in Figure 4 can be strictly permuted into a serial
sequence whose completion (shown) excludes the pending push operation, and
whose S-image

push[a, true] pop[·, true] pop[·, false] push[a, true]

belongs to the stack specification from Figure 2.

4
Some works give an alternative yet equivalent definition using the completion of a strict,

serial permutation of the S-image, rather than the S-image of a completion.

Specifications

call(push, a, t1)

ret(push, true, t1)

call(pop, ·, t2)

ret(pop, true, t2)

call(push, a, t3)

ret(push, true, t3)

call(push, a, t4)

call(pop, ·, t1)

ret(pop, false, t1) call(push, a, t1) · ret(push, true, t1)
· call(pop, ·, t2) · ret(pop, true, t2)
· call(pop, ·, t1) · ret(pop, false, t1)
· call(push, a, t3) · ret(push, true, t3)

Fig. 4. The visualization of a trace ⌧ with four threads executing four completed and

one pending operation, along with a completion of a strict, serial permutation of ⌧
(ignoring internal actions).

2.4 Linearizability with Pending-Closed Specifications

In fact, even though the subtlety arising from pending operations is a necessary
complication to the definition of linearizability, for the specifications we consider
in this work given by regular languages, this complication can be “compiled away”
into the specification itself. This leads to an equivalent notion of linearizability
without the need to find a completion of a given serial operation sequence.

The pending closure of a specification S, denoted S is the set of S-images of
serial sequences which have completions whose S-images are in S:

S
def
= {(� | S) 2 ⌃

⇤
S : 9�0 2 ⌃⇤

S . (�
0 | S) 2 S and �0 is a completion of �}.

The language of the automaton of Figure 3 is the pending closure of the spec-
ification from Figure 2; looping transitions labeled from ⌃S \ ⌃S correspond
to deleting a pending operation in the completion, while non-loop transitions
labeled from ⌃S \⌃S correspond to completing a pending operation.

The following straightforward results allow us to suppose that the complication
of closing serializations of each trace is compiled away, into the specification.

Lemma 1. The pending closure S of a regular specification S is regular.

Lemma 2. A trace ⌧ is S-linearizable if and only if there exists a strict, serial

permutation ⇡ of ⌧ such that (⇡ | S) 2 S.

3 Deciding Conflict Serializability

Existing procedures for deciding conflict serializability (e.g., of individual traces,
or finite-state systems) essentially monitor executions using a “conflict graph”
which tracks the conflict relation between concurrent operations; an execution
remains conflict serializable as long as the conflict graph remains acyclic, while
a cyclic graph indicates a violation to conflict serializability. While the conflict
graph can be maintained in polynomial-space when the number of concurrent
threads is bounded [16], this graph becomes unbounded as soon as the number
of threads does. In this section we demonstrate that there exists an alternative
structure witnessing non-conflict-serializability, whose size remains bounded

Specifications

call(push, a, t1)

ret(push, true, t1)

call(pop, ·, t2)

ret(pop, true, t2)

call(push, a, t3)

ret(push, true, t3)

call(push, a, t4)

call(pop, ·, t1)

ret(pop, false, t1) call(push, a, t1) · ret(push, true, t1)
· call(pop, ·, t2) · ret(pop, true, t2)
· call(pop, ·, t1) · ret(pop, false, t1)
· call(push, a, t3) · ret(push, true, t3)

Fig. 4. The visualization of a trace ⌧ with four threads executing four completed and

one pending operation, along with a completion of a strict, serial permutation of ⌧
(ignoring internal actions).

2.4 Linearizability with Pending-Closed Specifications

In fact, even though the subtlety arising from pending operations is a necessary
complication to the definition of linearizability, for the specifications we consider
in this work given by regular languages, this complication can be “compiled away”
into the specification itself. This leads to an equivalent notion of linearizability
without the need to find a completion of a given serial operation sequence.

The pending closure of a specification S, denoted S is the set of S-images of
serial sequences which have completions whose S-images are in S:

S
def
= {(� | S) 2 ⌃

⇤
S : 9�0 2 ⌃⇤

S . (�
0 | S) 2 S and �0 is a completion of �}.

The language of the automaton of Figure 3 is the pending closure of the spec-
ification from Figure 2; looping transitions labeled from ⌃S \ ⌃S correspond
to deleting a pending operation in the completion, while non-loop transitions
labeled from ⌃S \⌃S correspond to completing a pending operation.

The following straightforward results allow us to suppose that the complication
of closing serializations of each trace is compiled away, into the specification.

Lemma 1. The pending closure S of a regular specification S is regular.

Lemma 2. A trace ⌧ is S-linearizable if and only if there exists a strict, serial

permutation ⇡ of ⌧ such that (⇡ | S) 2 S.

3 Deciding Conflict Serializability

Existing procedures for deciding conflict serializability (e.g., of individual traces,
or finite-state systems) essentially monitor executions using a “conflict graph”
which tracks the conflict relation between concurrent operations; an execution
remains conflict serializable as long as the conflict graph remains acyclic, while
a cyclic graph indicates a violation to conflict serializability. While the conflict
graph can be maintained in polynomial-space when the number of concurrent
threads is bounded [16], this graph becomes unbounded as soon as the number
of threads does. In this section we demonstrate that there exists an alternative
structure witnessing non-conflict-serializability, whose size remains bounded

q✏ qa qa,a
push[a, true]

pop[·, true] pop[·, true]

push[a, true]

pop[·, false]

Fig. 2. The sequential specification of two-

element stacks containing the (abstract)

value a, given as the language of a finite

automaton, whose operation alphabet indi-

cates both the argument and return values.

q✏ qa qa,a

push[a, ⇤],
push[a, true]

pop[·, ⇤],
pop[·, true]

pop[·, ⇤],
pop[·, true]

push[a, ⇤],
push[a, true]

pop[·, false]

pop[·, ⇤],
push[a, ⇤]

pop[·, ⇤],
push[a, ⇤]

pop[·, ⇤],
push[a, ⇤]

Fig. 3. The pending closure of the stack

specification from Figure 2.

Informally, a library L is linearizable w.r.t. a specification S when the op-
erations of any concurrent trace can be serialized to a sequence of operations
belonging to S, which must preserve the order between non-overlapping opera-
tions. However, the presence of pending operations introduces a subtlety: a trace
may be considered linearizable by supposing that certain pending operations
have already been e↵ectuated—e.g., a trace of a concurrent stack implemen-
tation in which push(a) is pending and pop(a) has successfully completed is

linearizable—while simultaneously supposing that other pending operations are
ignored—e.g., a trace in which push(a) is pending and pop(a) returned false is
also linearizable. To account for the possible e↵ects of pending operations, we
define a completion of a serial sequence � = ✓1✓2 . . . ✓i of operations to be any
sequence f(�) = f(1)f(2) . . . f(i) for some function f preserving completed oper-
ations (i.e., f(j) = ✓j when ✓j is completed), and either deleting (i.e., f(j) = ")
or completing (i.e., f(j) = ✓j · ret(M,mf , t), for some mf 2 QM) each M [m0, ⇤]
operation of some thread t. Note that a completion of a serial sequence � is a
complete serial sequence. Finally, the S-image of a serial sequence �, denoted
� | S, maps each M [m0,mf]-operation ✓ to the symbol M [m0,mf] 2 ⌃S .

Definition 2 (Linearizability [20]). A trace ⌧ is S-linearizable when there

exists a completion
4 ⇡ of a strict, serial permutation of ⌧ such that (⇡ | S) 2 S.

This notion extends naturally to executions of a system L[C], to the system L[C]
itself, and to L when C is the most general client C?.

Example 1. The trace pictured in Figure 4 can be strictly permuted into a serial
sequence whose completion (shown) excludes the pending push operation, and
whose S-image

push[a, true] pop[·, true] pop[·, false] push[a, true]

belongs to the stack specification from Figure 2.

4
Some works give an alternative yet equivalent definition using the completion of a strict,

serial permutation of the S-image, rather than the S-image of a completion.

Specifications

call(push, a, t1)

ret(push, true, t1)

call(pop, ·, t2)

ret(pop, true, t2)

call(push, a, t3)

ret(push, true, t3)

call(push, a, t4)

call(pop, ·, t1)

ret(pop, false, t1) call(push, a, t1) · ret(push, true, t1)
· call(pop, ·, t2) · ret(pop, true, t2)
· call(pop, ·, t1) · ret(pop, false, t1)
· call(push, a, t3) · ret(push, true, t3)

Fig. 4. The visualization of a trace ⌧ with four threads executing four completed and

one pending operation, along with a completion of a strict, serial permutation of ⌧
(ignoring internal actions).

2.4 Linearizability with Pending-Closed Specifications

In fact, even though the subtlety arising from pending operations is a necessary
complication to the definition of linearizability, for the specifications we consider
in this work given by regular languages, this complication can be “compiled away”
into the specification itself. This leads to an equivalent notion of linearizability
without the need to find a completion of a given serial operation sequence.

The pending closure of a specification S, denoted S is the set of S-images of
serial sequences which have completions whose S-images are in S:

S
def
= {(� | S) 2 ⌃

⇤
S : 9�0 2 ⌃⇤

S . (�
0 | S) 2 S and �0 is a completion of �}.

The language of the automaton of Figure 3 is the pending closure of the spec-
ification from Figure 2; looping transitions labeled from ⌃S \ ⌃S correspond
to deleting a pending operation in the completion, while non-loop transitions
labeled from ⌃S \⌃S correspond to completing a pending operation.

The following straightforward results allow us to suppose that the complication
of closing serializations of each trace is compiled away, into the specification.

Lemma 1. The pending closure S of a regular specification S is regular.

Lemma 2. A trace ⌧ is S-linearizable if and only if there exists a strict, serial

permutation ⇡ of ⌧ such that (⇡ | S) 2 S.

3 Deciding Conflict Serializability

Existing procedures for deciding conflict serializability (e.g., of individual traces,
or finite-state systems) essentially monitor executions using a “conflict graph”
which tracks the conflict relation between concurrent operations; an execution
remains conflict serializable as long as the conflict graph remains acyclic, while
a cyclic graph indicates a violation to conflict serializability. While the conflict
graph can be maintained in polynomial-space when the number of concurrent
threads is bounded [16], this graph becomes unbounded as soon as the number
of threads does. In this section we demonstrate that there exists an alternative
structure witnessing non-conflict-serializability, whose size remains bounded

q✏ qa qa,a
push[a, true]

pop[·, true] pop[·, true]

push[a, true]

pop[·, false]

Fig. 2. The sequential specification of two-

element stacks containing the (abstract)

value a, given as the language of a finite

automaton, whose operation alphabet indi-

cates both the argument and return values.

q✏ qa qa,a

push[a, ⇤],
push[a, true]

pop[·, ⇤],
pop[·, true]

pop[·, ⇤],
pop[·, true]

push[a, ⇤],
push[a, true]

pop[·, false]

pop[·, ⇤],
push[a, ⇤]

pop[·, ⇤],
push[a, ⇤]

pop[·, ⇤],
push[a, ⇤]

Fig. 3. The pending closure of the stack

specification from Figure 2.

Informally, a library L is linearizable w.r.t. a specification S when the op-
erations of any concurrent trace can be serialized to a sequence of operations
belonging to S, which must preserve the order between non-overlapping opera-
tions. However, the presence of pending operations introduces a subtlety: a trace
may be considered linearizable by supposing that certain pending operations
have already been e↵ectuated—e.g., a trace of a concurrent stack implemen-
tation in which push(a) is pending and pop(a) has successfully completed is

linearizable—while simultaneously supposing that other pending operations are
ignored—e.g., a trace in which push(a) is pending and pop(a) returned false is
also linearizable. To account for the possible e↵ects of pending operations, we
define a completion of a serial sequence � = ✓1✓2 . . . ✓i of operations to be any
sequence f(�) = f(1)f(2) . . . f(i) for some function f preserving completed oper-
ations (i.e., f(j) = ✓j when ✓j is completed), and either deleting (i.e., f(j) = ")
or completing (i.e., f(j) = ✓j · ret(M,mf , t), for some mf 2 QM) each M [m0, ⇤]
operation of some thread t. Note that a completion of a serial sequence � is a
complete serial sequence. Finally, the S-image of a serial sequence �, denoted
� | S, maps each M [m0,mf]-operation ✓ to the symbol M [m0,mf] 2 ⌃S .

Definition 2 (Linearizability [20]). A trace ⌧ is S-linearizable when there

exists a completion
4 ⇡ of a strict, serial permutation of ⌧ such that (⇡ | S) 2 S.

This notion extends naturally to executions of a system L[C], to the system L[C]
itself, and to L when C is the most general client C?.

Example 1. The trace pictured in Figure 4 can be strictly permuted into a serial
sequence whose completion (shown) excludes the pending push operation, and
whose S-image

push[a, true] pop[·, true] pop[·, false] push[a, true]

belongs to the stack specification from Figure 2.

4
Some works give an alternative yet equivalent definition using the completion of a strict,

serial permutation of the S-image, rather than the S-image of a completion.

call(push, a, t1)

ret(push, true, t1)

call(pop, ·, t2)

ret(pop, true, t2)

call(push, a, t3)

ret(push, true, t3)

call(push, a, t4)

call(pop, ·, t1)

ret(pop, false, t1) call(push, a, t1) · ret(push, true, t1)
· call(pop, ·, t2) · ret(pop, true, t2)
· call(pop, ·, t1) · ret(pop, false, t1)
· call(push, a, t3) · ret(push, true, t3)

Fig. 4. The visualization of a trace ⌧ with four threads executing four completed and

one pending operation, along with a completion of a strict, serial permutation of ⌧
(ignoring internal actions).

2.4 Linearizability with Pending-Closed Specifications

In fact, even though the subtlety arising from pending operations is a necessary
complication to the definition of linearizability, for the specifications we consider
in this work given by regular languages, this complication can be “compiled away”
into the specification itself. This leads to an equivalent notion of linearizability
without the need to find a completion of a given serial operation sequence.

The pending closure of a specification S, denoted S is the set of S-images of
serial sequences which have completions whose S-images are in S:

S
def
= {(� | S) 2 ⌃

⇤
S : 9�0 2 ⌃⇤

S . (�
0 | S) 2 S and �0 is a completion of �}.

The language of the automaton of Figure 3 is the pending closure of the spec-
ification from Figure 2; looping transitions labeled from ⌃S \ ⌃S correspond
to deleting a pending operation in the completion, while non-loop transitions
labeled from ⌃S \⌃S correspond to completing a pending operation.

The following straightforward results allow us to suppose that the complication
of closing serializations of each trace is compiled away, into the specification.

Lemma 1. The pending closure S of a regular specification S is regular.

Lemma 2. A trace ⌧ is S-linearizable if and only if there exists a strict, serial

permutation ⇡ of ⌧ such that (⇡ | S) 2 S.

3 Deciding Conflict Serializability

Existing procedures for deciding conflict serializability (e.g., of individual traces,
or finite-state systems) essentially monitor executions using a “conflict graph”
which tracks the conflict relation between concurrent operations; an execution
remains conflict serializable as long as the conflict graph remains acyclic, while
a cyclic graph indicates a violation to conflict serializability. While the conflict
graph can be maintained in polynomial-space when the number of concurrent
threads is bounded [16], this graph becomes unbounded as soon as the number
of threads does. In this section we demonstrate that there exists an alternative
structure witnessing non-conflict-serializability, whose size remains bounded

Read-only operations

4 Deciding Static Linearizability

Due to the intricacy of checking whether a system is linearizable according to
the general notion, of Definition 2, Herlihy and Wing [20] have introduced a
stricter criterion, where the so-called “linearization points”—i.e., the points at
which operations’ e↵ects becomes instantaneously visible—are specified manually.
Though it is sometimes possible to map linearization points to atomic actions in
method implementations, generally speaking, the placement of an operation’s
linearization point can be quite complicated: it may depend on other concurrently
executing operations, and it may even reside outside of the operation’s execution.
Vafeiadis [30] observed that in practice such complicated linearization points
arise mainly for “read-only” operations, which do not modify a library’s abstract
state; a typical example being the contains-operation of an optimistic set [26],
whose linearization point may reside in a concurrently executing add- or remove-
operation when the contains-operation returns, resp., true or false.

In this section we demonstrate that the static linearizability problem, in which
the linearization points of non-read-only operations can be statically fixed to
implementation actions, is decidable, and complete for exponential space.

Given a method M of a library L and m0,mf 2 QM , an M [m0,mf]-operation
✓ is read-only for a specification S if and only if for all w1, w2, w3 2 ⌃⇤

S ,

1. If w1 ·M [m0,mf] · w2 2 S then w1 ·M [m0,mf]k · w2 2 S for all k � 0, and
2. If w1 ·M [m0,mf] · w2 2 S and w1 · w3 2 S then w1 ·M [m0,mf] · w3 2 S.

The first condition is a sort of idempotence of M [m0,mf] w.r.t. S, while the
second says that M [m0,mf] does not disable other operations.

Remark 1. Whether an operation is read-only can be derived from the specifica-
tion. Roughly, an operation M [m0,mf] is read-only for a specification given by
a finite automaton A if every transition of A labeled by M [m0,mf] is a self-loop.
For instance, the specification in Fig. 2 dictates that pop[·, false] is read-only.

The control graph GM = hQM , Ei is the quotient of a method M ’s transition
system by shared-state valuations V : hm1, a,m2i 2 E i↵ hm1, v1i ,!a

M hm2, v2i
for some v1, v2 2 V . A function LP : L ! }(⌃L) is called a linearization-point

mapping when for each M 2 L:

1. each symbol a 2 LP(M) labels at most one transition of M ,
2. any directed path in GM contains at most one symbol of LP(M), and
3. all directed paths in GM containing a 2 LP(M) reach the same ma 2 FM .

An action ha, ii of an M -operation is called a linearization point when a 2 LP(M),
and operations containing linearization points are said to be e↵ectuated ; LP(✓)
denotes the unique linearization point of an e↵ectuated operation ✓. A read-points

mapping RP : ⇥ ! N for an action sequence � with operations ⇥ maps each
read-only operation ✓ to the index RP(✓) of an internal ✓-action in �.

Remark 2. One could also define linearization points which depend on predicates
involving, e.g., shared-state valuations, loop iteration counts, and return values.

q✏ qa qa,a
push[a, true]

pop[·, true] pop[·, true]

push[a, true]

pop[·, false]

Fig. 2. The sequential specification of two-

element stacks containing the (abstract)

value a, given as the language of a finite

automaton, whose operation alphabet indi-

cates both the argument and return values.

q✏ qa qa,a

push[a, ⇤],
push[a, true]

pop[·, ⇤],
pop[·, true]

pop[·, ⇤],
pop[·, true]

push[a, ⇤],
push[a, true]

pop[·, false]

pop[·, ⇤],
push[a, ⇤]

pop[·, ⇤],
push[a, ⇤]

pop[·, ⇤],
push[a, ⇤]

Fig. 3. The pending closure of the stack

specification from Figure 2.

Informally, a library L is linearizable w.r.t. a specification S when the op-
erations of any concurrent trace can be serialized to a sequence of operations
belonging to S, which must preserve the order between non-overlapping opera-
tions. However, the presence of pending operations introduces a subtlety: a trace
may be considered linearizable by supposing that certain pending operations
have already been e↵ectuated—e.g., a trace of a concurrent stack implemen-
tation in which push(a) is pending and pop(a) has successfully completed is

linearizable—while simultaneously supposing that other pending operations are
ignored—e.g., a trace in which push(a) is pending and pop(a) returned false is
also linearizable. To account for the possible e↵ects of pending operations, we
define a completion of a serial sequence � = ✓1✓2 . . . ✓i of operations to be any
sequence f(�) = f(1)f(2) . . . f(i) for some function f preserving completed oper-
ations (i.e., f(j) = ✓j when ✓j is completed), and either deleting (i.e., f(j) = ")
or completing (i.e., f(j) = ✓j · ret(M,mf , t), for some mf 2 QM) each M [m0, ⇤]
operation of some thread t. Note that a completion of a serial sequence � is a
complete serial sequence. Finally, the S-image of a serial sequence �, denoted
� | S, maps each M [m0,mf]-operation ✓ to the symbol M [m0,mf] 2 ⌃S .

Definition 2 (Linearizability [20]). A trace ⌧ is S-linearizable when there

exists a completion
4 ⇡ of a strict, serial permutation of ⌧ such that (⇡ | S) 2 S.

This notion extends naturally to executions of a system L[C], to the system L[C]
itself, and to L when C is the most general client C?.

Example 1. The trace pictured in Figure 4 can be strictly permuted into a serial
sequence whose completion (shown) excludes the pending push operation, and
whose S-image

push[a, true] pop[·, true] pop[·, false] push[a, true]

belongs to the stack specification from Figure 2.

4
Some works give an alternative yet equivalent definition using the completion of a strict,

serial permutation of the S-image, rather than the S-image of a completion.

Linearization points

4 Deciding Static Linearizability

Due to the intricacy of checking whether a system is linearizable according to
the general notion, of Definition 2, Herlihy and Wing [20] have introduced a
stricter criterion, where the so-called “linearization points”—i.e., the points at
which operations’ e↵ects becomes instantaneously visible—are specified manually.
Though it is sometimes possible to map linearization points to atomic actions in
method implementations, generally speaking, the placement of an operation’s
linearization point can be quite complicated: it may depend on other concurrently
executing operations, and it may even reside outside of the operation’s execution.
Vafeiadis [30] observed that in practice such complicated linearization points
arise mainly for “read-only” operations, which do not modify a library’s abstract
state; a typical example being the contains-operation of an optimistic set [26],
whose linearization point may reside in a concurrently executing add- or remove-
operation when the contains-operation returns, resp., true or false.

In this section we demonstrate that the static linearizability problem, in which
the linearization points of non-read-only operations can be statically fixed to
implementation actions, is decidable, and complete for exponential space.

Given a method M of a library L and m0,mf 2 QM , an M [m0,mf]-operation
✓ is read-only for a specification S if and only if for all w1, w2, w3 2 ⌃⇤

S ,

1. If w1 ·M [m0,mf] · w2 2 S then w1 ·M [m0,mf]k · w2 2 S for all k � 0, and
2. If w1 ·M [m0,mf] · w2 2 S and w1 · w3 2 S then w1 ·M [m0,mf] · w3 2 S.

The first condition is a sort of idempotence of M [m0,mf] w.r.t. S, while the
second says that M [m0,mf] does not disable other operations.

Remark 1. Whether an operation is read-only can be derived from the specifica-
tion. Roughly, an operation M [m0,mf] is read-only for a specification given by
a finite automaton A if every transition of A labeled by M [m0,mf] is a self-loop.
For instance, the specification in Fig. 2 dictates that pop[·, false] is read-only.

The control graph GM = hQM , Ei is the quotient of a method M ’s transition
system by shared-state valuations V : hm1, a,m2i 2 E i↵ hm1, v1i ,!a

M hm2, v2i
for some v1, v2 2 V . A function LP : L ! }(⌃L) is called a linearization-point

mapping when for each M 2 L:

1. each symbol a 2 LP(M) labels at most one transition of M ,
2. any directed path in GM contains at most one symbol of LP(M), and
3. all directed paths in GM containing a 2 LP(M) reach the same ma 2 FM .

An action ha, ii of an M -operation is called a linearization point when a 2 LP(M),
and operations containing linearization points are said to be e↵ectuated ; LP(✓)
denotes the unique linearization point of an e↵ectuated operation ✓. A read-points

mapping RP : ⇥ ! N for an action sequence � with operations ⇥ maps each
read-only operation ✓ to the index RP(✓) of an internal ✓-action in �.

Remark 2. One could also define linearization points which depend on predicates
involving, e.g., shared-state valuations, loop iteration counts, and return values.

Exercices (1)
• Does the Herlihy & Wing queue admit fixed linearization

points ?

void enq(int x) {

i = back++; items[i] = x;

}

int deq() {

while (1) {

range = back - 1;

for (int i = 0; i <= range; i++) {

x = swap(items[i],null);

if (x != null) return x;

} } }

Fig. 1. The Herlihy & Wing Queue [18].

inv(enq, y, 2)

ret(enq, 1)

ret(enq, 2)
inv(deq, 3) ret(deq, y, 3)

inv(enq, x, 1)

2

(y, PEND)

1

(x, PEND)

1

(x, PEND)

2

1

(x, PEND)

2

1

(x, COMP)

2

1

(x, COMP)

(y, COMP) (y, COMP) (y, COMP)

lin(deq, y, 3)

1

(x, COMP)

1

(x, COMP)

inv(enq, y, 2)

ret(enq, 1)

ret(enq, 2)

inv(deq, 3)
inv(enq, x, 1)

1

(x, PEND)
1

2

1

2

1

(x, COMP)

2

1

(x, COMP)

(y, COMP) (y, COMP)

(x, COMP) (x, COMP)

(y, PEND)

2

(y, COMP)

2

(y, COMP)

lin(deq, x, 3) ret(deq, x, 3)

Fig. 2. Forward simulation with AbsQ. Lines depict
operations, and circles depict call, return, and lin-
earization point actions.

function loc: O ! {inv,lin,ret,?}
function arg, ret: O ! V

function present , pending: O ! B

function before: O⇥O ! B

rule inv(enq ,v,k):

arg(k) := v

present(k) := true
pending(k) := true
forall k1 with present(k1):

if ¬pending(k1):

before(k1,k) := true

rule ret(enq ,k):

pending(k) := false

rule inv(deq ,k):

pass

rule lin(deq ,v,k):

ret(k) := v

if v = EMPTY:

forall k’ with present(k’):

assert pending(k’)

else:
let k1 = arg

�1
(v)

assert present(k1)

forall k2 with present(k2):

assert ¬before(k2,k1)

present(k1) := false

rule ret(deq ,v,k):

assert ret(k) = v

Fig. 3. The AbsQ implementation;
each rule a(_,k) implicitly begins
with assert loc(k)=a and ends with
the appropriate loc(k):=b.

linearization points, or EMPTY. Some implementations, like the queue of Herlihy and
Wing [18], denoted HWQ and listed in Figure 1, are not forward-simulated by AbsQ0,
even though they refine AbsQ0, since the order in which their enqueues are linearized
to form AbsQ0s sequence is not determined until later, when their values are dequeued.

In this section we develop an abstract queue implementation, denoted AbsQ, which
maintains a partial order of enqueues, rather than a linear sequence. Since AbsQ does not
force refining implementations to eagerly pick among linearizations of their enqueues, it
forward-simulates many more queue implementations. In fact, AbsQ forward-simulates
all queue implementations of which we are aware that are not forward-simulated by
AbsQ0, including HWQ, The Baskets Queue [19], The Linked Concurrent Ring Queue
(LCRQ) [22], and The Time-Stamped Queue [10].

4.1 Enqueue Methods With Non-Fixed Linearization Points

We describe HWQ where the linearization points of the enqueue methods are not fixed.
The shared state consists of an array items storing the values in the queue and a counter
back storing the index of the first unused position in items. Initially, all the positions in

Static linearizability
An action sequence � is called e↵ectuated when every completed operation

of � is either e↵ectuated or read-only, and an e↵ectuated completion �0 of � is
e↵ect preserving when each e↵ectuated operation of � also appears in �0. Given
a linearization-point mapping LP, and a read-points mapping RP of an action
sequence �, we say a permutation ⇡ of � is point preserving when every two
operations of ⇡ are ordered by their linearization/read points in �.

Definition 4. A trace ⌧ is hS, LPi-linearizable when ⌧ is e↵ectuated, and there

exists a read-points mapping RP of ⌧ , along with an e↵ect-preserving completion

⇡ of a strict, point-preserving, and serial permutation of ⌧ such that (⇡ | S) 2 S.

This notion extends naturally to executions of a system L[C], to the system L[C]
itself, and to L when C is the most general client C?.

Definition 5 (Static Linearizability). The system L[C] is S-static lineariz-
able when L[C] is hS, LPi-linearizable for some mapping LP.

Example 3. The execution of Example 1 is hS, LPi-linearizable with an LP which
assigns points denoted by ⇥s in Figure 4; the completion of a strict, point-
preserving, and serial permutation which witnesses this fact is also shown.

Lemma 4. Every S-static linearizable library is S-linearizable.

To decide hLP, Si-static-linearizability we reduce to a reachability problem on
an extension of the given system L[C]. The extension simulates the specification
automaton AS , updating its state when operations are e↵ectuated—i.e., at
linearization points. Besides ensuring that the method corresponding to each
read-only operation ✓ is enabled in AS at some point during ✓’s execution, our
reachability query ensures that each e↵ectuated operation corresponds to an
enabled transition in AS ; otherwise the current execution is not S-linearizable,
w.r.t. the mapping LP. Technically, we discharge this reachability query via state-
reachability on the canonical VASS of L[C]’s extension (see Section 2.1), which
yields an exponential-space procedure. As the set of possible linearization-point
mappings is finite, this procedure is hoisted to an exponential-space procedure for
static-linearizability, leveraging Savitch’s Theorem. Our proof in Appendix A.4
also demonstrates asymptotic optimality, since VASS state-reachability is also
polynomial-time reducible to static linearizability.

Theorem 2. The static linearizability problem for unbounded concurrent systems

with regular specifications is EXPSPACE-complete.

5 Undecidability of Linearizability in the General Case

Though verifying linearizability is decidable for finite-state systems [1], allowing
for an unbounded number of concurrent operations lends the power, e.g., to
encode unbounded counters. In this section we demonstrate how to harness this
power via a reduction from the undecidable state-reachability problem of counter

An action sequence � is called e↵ectuated when every completed operation
of � is either e↵ectuated or read-only, and an e↵ectuated completion �0 of � is
e↵ect preserving when each e↵ectuated operation of � also appears in �0. Given
a linearization-point mapping LP, and a read-points mapping RP of an action
sequence �, we say a permutation ⇡ of � is point preserving when every two
operations of ⇡ are ordered by their linearization/read points in �.

Definition 4. A trace ⌧ is hS, LPi-linearizable when ⌧ is e↵ectuated, and there

exists a read-points mapping RP of ⌧ , along with an e↵ect-preserving completion

⇡ of a strict, point-preserving, and serial permutation of ⌧ such that (⇡ | S) 2 S.

This notion extends naturally to executions of a system L[C], to the system L[C]
itself, and to L when C is the most general client C?.

Definition 5 (Static Linearizability). The system L[C] is S-static lineariz-
able when L[C] is hS, LPi-linearizable for some mapping LP.

Example 3. The execution of Example 1 is hS, LPi-linearizable with an LP which
assigns points denoted by ⇥s in Figure 4; the completion of a strict, point-
preserving, and serial permutation which witnesses this fact is also shown.

Lemma 4. Every S-static linearizable library is S-linearizable.

To decide hLP, Si-static-linearizability we reduce to a reachability problem on
an extension of the given system L[C]. The extension simulates the specification
automaton AS , updating its state when operations are e↵ectuated—i.e., at
linearization points. Besides ensuring that the method corresponding to each
read-only operation ✓ is enabled in AS at some point during ✓’s execution, our
reachability query ensures that each e↵ectuated operation corresponds to an
enabled transition in AS ; otherwise the current execution is not S-linearizable,
w.r.t. the mapping LP. Technically, we discharge this reachability query via state-
reachability on the canonical VASS of L[C]’s extension (see Section 2.1), which
yields an exponential-space procedure. As the set of possible linearization-point
mappings is finite, this procedure is hoisted to an exponential-space procedure for
static-linearizability, leveraging Savitch’s Theorem. Our proof in Appendix A.4
also demonstrates asymptotic optimality, since VASS state-reachability is also
polynomial-time reducible to static linearizability.

Theorem 2. The static linearizability problem for unbounded concurrent systems

with regular specifications is EXPSPACE-complete.

5 Undecidability of Linearizability in the General Case

Though verifying linearizability is decidable for finite-state systems [1], allowing
for an unbounded number of concurrent operations lends the power, e.g., to
encode unbounded counters. In this section we demonstrate how to harness this
power via a reduction from the undecidable state-reachability problem of counter

12 Ahmed Bouajjani, Michael Emmi, Constantin Enea, and Jad Hamza

An action sequence � is called e↵ectuated when every completed operation
of � is either e↵ectuated or read-only, and an e↵ectuated completion �0 of � is
e↵ect preserving when each e↵ectuated operation of � also appears in �0. Given
a linearization-point mapping LP, and a read-points mapping RP of an action
sequence �, we say a permutation ⇡ of � is point preserving when every two
operations of ⇡ are ordered by their linearization/read points in �.

Definition 4. A trace ⌧ is hS, LPi-linearizable when ⌧ is e↵ectuated, and there

exists a read-points mapping RP of ⌧ , along with an e↵ect-preserving completion

⇡ of a strict, point-preserving, and serial permutation of ⌧ such that (⇡ | S) 2 S.

This notion extends naturally to executions of a system L[C], to the system L[C]
itself, and to L when C is the most general client C?.

Definition 5 (Static Linearizability). The system L[C] is S-static lineariz-
able when L[C] is hS, LPi-linearizable for some mapping LP.

Example 3. The execution of Example 1 is hS, LPi-linearizable with an LP which
assigns points denoted by ⇥s in Figure 4; the completion of a strict, point-
preserving, and serial permutation which witnesses this fact is also shown.

Lemma 4. Every S-static linearizable library is S-linearizable.

To decide hLP, Si-static-linearizability we reduce to a reachability problem on
an extension of the given system L[C]. The extension simulates the specification
automaton AS , updating its state when operations are e↵ectuated—i.e., at
linearization points. Besides ensuring that the method corresponding to each
read-only operation ✓ is enabled in AS at some point during ✓’s execution, our
reachability query ensures that each e↵ectuated operation corresponds to an
enabled transition in AS ; otherwise the current execution is not S-linearizable,
w.r.t. the mapping LP. Technically, we discharge this reachability query via state-
reachability on the canonical VASS of L[C]’s extension (see Section 2.1), which
yields an exponential-space procedure. As the set of possible linearization-point
mappings is finite, this procedure is hoisted to an exponential-space procedure
for static-linearizability, leveraging Savitch’s Theorem. Our proof in our extended
report [7] also demonstrates asymptotic optimality, since VASS state-reachability
is also polynomial-time reducible to static linearizability.

Theorem 2. The static linearizability problem for unbounded concurrent systems

with regular specifications is EXPSPACE-complete.

5 Undecidability of Linearizability in the General Case

Though verifying linearizability is decidable for finite-state systems [1], allowing
for an unbounded number of concurrent operations lends the power, e.g., to
encode unbounded counters. In this section we demonstrate how to harness this
power via a reduction from the undecidable state-reachability problem of counter

Checking Static Linerizability
• AS = a deterministic automaton recognizing the Specification
• we define a monitor to be composed with L[C] that simulates the Specification

• methods have a new local variable RO which is initially ∅ (records return values of
read-only operations)

• if mf ∈ RO in an invocation of M, then M[m0,mf] is read-only and a state of AS in
which M[m0,mf] is enabled has been observed

• L[C] executes a linearization point => the state of the Specification is advanced to
the M[m0,mf] successor (m0 is the initial state of the current operation and mf is the
unique final state reachable from this lin. point)

• L[C] executes an internal action from an M[m0,*] operation => RO is enriched with
every mf such that M[m0,mf] is read-only and enabled in the current specification
state

• L[C] executes the return of an M[m0,mf] read-only operation => if mf ∉ RO then the
monitor goes to an error state

EXPSPACE-hardness

• Reduce control state reachability in VASS (which is EXPSPACE-complete)
to static linearizability

• Use the library from the undecidability proof without the zero-test method
(the specification excludes only executions not reaching the target state)

Checking Linearizability: Complexity
(finite-state implementations)

Bounded Nb. of Threads:

• EXSPACE-complete [Alur et al., 1996, Hamza 2015]

Unbounded Nb. of Threads:

• Undecidable [Bouajjani et al., 2013]

• Decidable with “fixed linearization points” [Bouajjani et al. 2013]

Alur et al. 1996: Rajeev Alur, Kenneth L. McMillan, Doron A. Peled: Model-Checking of Correctness
Conditions for Concurrent Objects. LICS 1996
Bouajjani et al., 2013: Ahmed Bouajjani, Michael Emmi, Constantin Enea, Jad Hamza: Verifying
Concurrent Programs against Sequential Specifications. ESOP 2013
Hamza 2015: Jad Hamza: On the Complexity of Linearizability. NETYS 2015

