Checking Linearizability: Theoretical Limits

Constantin Enea Ecole Polytechnique

Concurrent Objects

Multi-threaded programming

e.g. Java Development Kit SE

dozens of objects, including queues, maps, sets, lists, locks, atomic integers, ...

Observational Refinement <=> Linearizability/ Refinement

Observational Refinement

Reference implementation class AtomicStack { cell* top; Lock l; minimize void push (int v) { contention l.lock(); top->next = malloc(sizeof *x); top = top->next; top->data = v; l.unlock(); } **int** pop () { }

Efficient implementation

```
class TreiberStack {
  cell* top;
  void push (int v) {
    cell* t;
    cell* x = malloc(sizeof *x);
    x \rightarrow data = v;
    do {
       t = top;
       x \rightarrow next = top;
    } while (!CAS(&top,t,x));
  }
  int pop () {
  }
}
```

For every Client, Client x Impl included in Client x Spec

Formalizing Libraries/Programs

We fix an arbitrary set \mathbb{O} of operation identifiers, and for given sets \mathbb{M} and \mathbb{V} of methods and values, we fix the sets

 $C = \{m(v)_o : m \in \mathbb{M}, v \in \mathbb{V}, o \in \mathbb{O}\}, \text{and}$ $R = \{\operatorname{ret}(v)_o : v \in \mathbb{V}, o \in \mathbb{O}\}$

of *call actions* and *return actions*; each call action $m(v)_o$ combines a method $m \in \mathbb{M}$ and value $v \in \mathbb{V}$ with an *operation identifier* $o \in \mathbb{O}$. Operation identifiers are used to pair call and return actions.

A sequence in $(C \cup R)^*$ is **well-formed** if every return is preceded by a matching call, each identifier is used at most once

A sequence in $(C \cup R)^*$ is **sequential** if there exists a return between every successive two calls

Formalizing Libraries/Programs

Definition 3.1. A library *L* is an LTS over alphabet $C \cup R$ such that each execution $e \in E(L)$ is well formed, and

- Call actions $c \in C$ cannot be disabled: $e \cdot e' \in E(L)$ implies $e \cdot c \cdot e' \in E(L)$ if $e \cdot c \cdot e'$ is well formed.
- Call actions $c \in C$ cannot disable other actions: $e \cdot a \cdot c \cdot e' \in E(L)$ implies $e \cdot c \cdot a \cdot e' \in E(L)$.
- Return actions $r \in R$ cannot enable other actions: $e \cdot r \cdot a \cdot e' \in E(L)$ implies $e \cdot a \cdot r \cdot e' \in E(L)$.

Definition 3.2. A program P over actions Σ is an LTS over alphabet $(\Sigma \uplus C \uplus R)$ where each execution $e \in E(P)$ is well formed, and

- Call actions $c \in C$ cannot enable other actions: $e \cdot c \cdot a \cdot e' \in E(P)$ implies $c \mapsto a$ or $e \cdot a \cdot c \cdot e' \in E(P)$.
- Return actions $r \in R$ cannot disable other actions: $e \cdot a \cdot r \cdot e' \in E(P)$ implies $a \mapsto r$ or $e \cdot r \cdot a \cdot e \in E(P)$.
- Return actions $r \in R$ cannot be disabled: $e \cdot e' \in E(P)$ implies $e \cdot r \cdot e' \in E(L)$ if $e \cdot r \cdot e'$ is well formed.

Observational Refinement

Definition 3.3. The library L_1 refines L_2 , written $L_1 \leq L_2$, iff $E(P \times L_1)|\Sigma \subseteq E(P \times L_2)|\Sigma$

for all programs P over actions Σ .

For given sets \mathbb{M} and \mathbb{V} of methods and values, we fix a set $\mathbb{L} = \mathbb{M} \times \mathbb{V} \times (\mathbb{V} \cup \{\bot\})$ of *operation labels*, and denote the label $\langle m, u, v \rangle$ by $m(u) \Rightarrow v$. A history $h = \langle O, <, f \rangle$ is a partial order \langle on a set $O \subseteq \mathbb{O}$ of operation identifiers labeled by $f : O \to \mathbb{L}$ for which $f(o) = m(u) \Rightarrow \bot$ implies o is maximal in \langle . The history H(e) of a well-formed execution $e \in \Sigma^*$ labels each operation with a method-call summary, and orders non-overlapping operations:

• $O = \{ \mathsf{op}(e_i) : 0 \le i < |e| \text{ and } e_i \in C \},\$

• $op(e_i) < op(e_j)$ iff $i < j, e_i \in R$, and $e_j \in C$.

• $f(o) = \begin{cases} m(u) \Rightarrow v & \text{if } m(u)_o \in e \text{ and } \operatorname{ret}(v)_o \in e \\ m(u) \Rightarrow \bot & \text{if } m(u)_o \in e \text{ and } \operatorname{ret}(_)_o \notin e \end{cases}$

The histories admitted by a library L are $H(L) = \{ H(e) : e \in E(L) \}$

Definition 4.2. Let $h_1 = \langle O_1, <_1, f_1 \rangle$ and $h_2 = \langle O_2, <_2, f_2 \rangle$. We say h_1 is weaker than h_2 , written $h_1 \preceq h_2$, when there exists an injection $g: O_2 \rightarrow O_1$ such that

- $o \in \operatorname{range}(g)$ when $f_1(o) = m(u) \Rightarrow v$ and $v \neq \bot$,
- $g(o_1) <_1 g(o_2)$ implies $o_1 <_2 o_2$ for each $o_1, o_2 \in O_2$,
- $f_1(g(o)) \ll f_2(o)$ for each $o \in O_2$.

where $(m_1(u_1) \Rightarrow v_1) \ll (m_2(u_2) \Rightarrow v_2)$ iff $m_1 = m_2$, $u_1 = u_2$, and $v_1 \in \{v_2, \bot\}$. We say h_1 and h_2 are equivalent when $h_1 \preceq h_2$ and $h_2 \preceq h_1$.

Examples ?

Equivalent histories need not be distinguished

If $h_1 \in H(L)$ and $h_2 \leq h_1$ then $h_2 \in H(L)$. $E(L) = \{e \in (C \cup R)^* : H(e) \in H(L)\}.$

History Inclusion

THEOREM

 L_1 refines $L_2 \Leftrightarrow H(L_1) \subseteq H(L_2) \Leftrightarrow E(L_1) \subseteq E(L_2)$

- (=>) Given h in Hist(L_1), construct a program P_h that imposes all the happen-before constraints of h.
- (<=) Clients cannot distinguish executions with the same history. History inclusion implies Execution Inclusion

History Inclusion (=>)

We construct $P_h = \langle Q, \Sigma, q_0, \delta \rangle$ over alphabet $\Sigma = C \cup R \cup \{a\}$ whose states $Q : O \to \mathbb{B}^2$ track operations called/completed status. The initial state is $q_0 = \{o \mapsto \langle \bot, \bot \rangle : o \in O\}$. Transitions are given by,

> for each $q \in Q, o \in O, m \in \mathbb{M}, v \in \mathbb{V}$ if $f(o) = m(v) \Rightarrow _$ and q(o') for all o' < o then $q[o \mapsto \bot, \bot] \xrightarrow{m(v)_o} q[o \mapsto \top, \bot]$ preserving happens-before if $f(o) = m(_) \Rightarrow v$ then $q[o \mapsto \top, \bot] \xrightarrow{\text{ret}(v)_o} \cdot \xrightarrow{a} q[o \mapsto \top, \top]$ counting ops completed in h if $f(o) = m(_) \Rightarrow \bot$ then $q[o \mapsto \top, \bot] \xrightarrow{\text{ret}(v)_o} q[o \mapsto \top, \top]$ ops that are pending in h (an execution may have more completed ops and less pending - no call for pending)

(??)
$$\forall e \in E(P_h)$$
. $|(e|\Sigma)| = n \implies h \preceq H(e)$
= $a^n \qquad f$
nb of completed ops in h

History Inclusion (=>)

 $(??) \ \forall e \in E(P_h). \ |(e|\Sigma)| = n \implies h \preceq H(e)$ $f \qquad \qquad \text{nb of completed ops in h}$

For every execution $e_1 \in E(P_h X L_1)$ with $e_1 | \Sigma = n$,

there must exist an execution $e_2 \in E(P_h X L_2)$ such that $e_2 | \Sigma = e_1 | \Sigma$ (by observational refinement)

Therefore, $h \leq H(e_2)$. Since $e_2 | (C \cup R) \in E(L_2)$, we have that $H(e_2) \in H(L_2)$ By closure under weakening, $h \in H(L_2)$

History Inclusion (<=)

THEOREM

 L_1 refines $L_2 \Leftrightarrow H(L_1) \subseteq H(L_2) \Leftrightarrow E(L_1) \subseteq E(L_2)$

Let $e \in E(P X L_1)$

 $e \mid (C \cup R) \in E(L_1)$ implies $H(e) \in H(L_1)$ implies $H(e) \in H(L_2)$ Therefore, $e \mid (C \cup R) \in E(L_2)$ which by definition of the product P X L₂,

implies $e \in E(P \times L_2)$

Linearizability [Herlihy&Wing 1990]

Effects of each invocation appear to occur instantaneously

Linearization admitted by Queue ADT

 $\exists \text{ lin. rb} \subseteq \text{ lin } \land \text{ lin} \in \text{Queue ADT}$

History inclusion $H(L_1) \subseteq H(L_2)$ equiv. to linearizability when L_2 is **atomic**

Definition 3.1. A library *L* is an LTS over alphabet $C \cup R$ such that each execution $e \in E(L)$ is well formed, and

- Call actions $c \in C$ cannot be disabled: $e \cdot e' \in E(L)$ implies $e \cdot c \cdot e' \in E(L)$ if $e \cdot c \cdot e'$ is well formed.
- Call actions $c \in C$ cannot disable other actions: $e \cdot a \cdot c \cdot e' \in E(L)$ implies $e \cdot c \cdot a \cdot e' \in E(L)$.
- Return actions $r \in R$ cannot enable other actions: $e \cdot r \cdot a \cdot e' \in E(L)$ implies $e \cdot a \cdot r \cdot e' \in E(L)$.

We write $e_1 \rightsquigarrow e_2$ when e_2 can be derived from e_1 by applying zero or more of the above rules. The *closure* of a set *E* of executions under \rightsquigarrow is denoted \overline{E} .

A library L is called *atomic* if it is defined by the closure of some set E of sequential executions, i.e., $E(L) = \overline{E}$.

History inclusion $H(L_1) \subseteq H(L_2)$ equiv. to linearizability when L_2 is **atomic**

Linearizability is defined by an execution order: $e_1 \sqsubseteq e_2$ iff there exists a well-formed execution e'_1 obtained from e_1 by appending return actions, and deleting call actions, such that:

 e_2 is a permutation of e'_1 that preserves the order between return and call actions, i.e., a given return action occurs before a given call action in e'_1 iff the same holds in e_2 .

An execution e_1 is *linearizable* w.r.t. a library L_2 iff there exists a sequential execution $e_2 \in E(L_2)$, with only completed operations, such that $e_1 \sqsubseteq e_2$. A library L_1 is *linearizable* w.r.t. L_2 , written $L_1 \sqsubseteq L_2$, iff each execution $e_1 \in E(L_1)$ is linearizable w.r.t. L_2 .

History inclusion $H(L_1) \subseteq H(L_2)$ equiv. to linearizability when L_2 is **atomic**

Linearizability compares execs of L₁ with pending ops. with execs of L₂ with only completed ops => problematic when L₂ contains non-terminating methods

Example 5.1. Let L be the library whose kernel contains the single execution $e = m(u)_1 m'(u)_2 \operatorname{ret}(v)_1$, in which the call to m' is pending. Although L refines itself, since refinement is reflexive, L is not linearizable w.r.t. itself, since e could only be linearizable w.r.t. L if E(L) were to contain one of the following executions:

 $m(u)_1 \operatorname{ret}(v)_1 \quad m(u)_1 \ m'(u)_2 \operatorname{ret}(v)_1 \operatorname{ret}(_-)_2$

 $m(u)_1 \operatorname{ret}(v)_1 m'(u)_2 \operatorname{ret}(_)_2 m'(u)_2 \operatorname{ret}(_)_2 m(u)_1 \operatorname{ret}(v)_1.$ Yet $E(L) = \overline{\{e\}}$ clearly contains none of them.

History inclusion $H(L_1) \subseteq H(L_2)$ equiv. to linearizability when L_2 is **atomic**

Lemma 5.1. $e_1 \sqsubseteq e_2$ iff $H(e_1) \preceq H(e_2)$.

Theorem 2. $L_1 \sqsubseteq L_2$ iff $H(L_1) \subseteq H(L_2)$, if L_2 is atomic.

Proof. (=>) Let $h \in H(L_1)$. Then, every execution e_1 with $H(e_1) = h$ is linearizable w.r.t. some execution $e_2 \in L_2$ By the lemma above, $H(e_1) \leq H(e_2)$. By closure under weakening, if $H(e_2) \in H(L_2)$ then any weakening, h in particular, belongs to $H(L_2)$. (<=) Let $e_1 \in E(L_1)$. By hypothesis, $H(e_1) \in H(L_2)$, which implies $e_1 \in E(L_2)$. Since L_2 is atomic, there exists a sequential $e_2 \in E(L_2)$ with only completed ops such that $H(e_1) \in H(L_2)$ such that e_1 is lin. w.r.t. e_2 .

Linearizability Proofs based on Forward Simulations

Linearizability vs Refinement

- Modelling concurrent objects with Labeled Transition Systems (LTSs)
- Linearizability is a property of sequences of call/return actions
- Given an ADT A, define a reference implementation Spec(A) which admits all histories linearizable w.r.t. A
 - standard reference implementations (atomic method bodies): call, return, and linearization point actions

- Linearizability = inclusion of traces with call/return actions (these are the only common actions) between Impl and Spec(A)
 - the actions included in traces are called **observable**

Proving Refinement

Inductive reasoning for proving refinement: forward/backward simulations

Simulations: relations between states of the impl. and spec., relating initial states and

• Given

	Frw Sim (FS)	Bckw Sim (BS)
exists if	B deterministic	A forest
exists if we add	Prophecy vars to A	History vars to A

Forware
 check

Proving Linearizability

- Impl is linearizable w.r.t. A iff Impl refines Spec(A)
 - refinement = inclusion of traces with call/return actions (observable actions)
- Spec(A) is not deterministic when projected on observable actions => backward simulations are unavoidable in general

- Classes of implementations for which forward simulations are sufficient associate linearization points with statements of the implementation
 - the linearization point actions become **observable**
 - **Spec(A)** is deterministic assuming that A is **deterministic**

Fixed Linearization Points

• Fixed linearization points: the linearization point is fixed to a particular statement in the code

```
class Node {
                      class NodePtr {
                        Node val;
  Node tl;
  int val;
                      } TOP
}
void push(int e) {
                                    int pop() {
  Node y, n;
  y = new();
  y->val = e;
  while(true) {
    y - > tl = n;
    if (cas(TOP->val, n, y))
      break;
```

```
Treiber Stack
```

```
ht pop(){
Node y,z;
while(true) {
    y = TOP->val;
    if (y==0) return EMPTY;
    z = y->tl;
    if (cas(TOP->val, y, z))
        break;
}
return y->val;
```

Herlihy & Wing Queue

```
void enq(int x) {
    i = back++; items[i] = x;
}
int deq() {
    while (1) {
        range = back - 1;
        for (int i = 0; i <= range; i++) {
            x = swap(items[i],null);
            if (x != null) return x;
        }
    }
}</pre>
```


Non-fixed linearization points => proofs based on **forward simulations** are impossible in general

Possible for certain ADTs, queues and stacks [BEEM-CAV'17]

- assuming fixed linearization points only for dequeue/pop
- reference implementations whose states are partial orders of enq/push

Non-fixed linearization points => proofs based on **forward simulations** are impossible in general

Possible for certain ADTs, queues and stacks [BEEM-CAV'17]

- assuming fixed linearization points only for dequeue/pop
- reference implementations whose states are **partial orders** of enq/push

Non-fixed linearization points => proofs based on **forward simulations** are impossible in general

Possible for certain ADTs, queues and stacks [BEEM-CAV'17]

- assuming fixed linearization points only for dequeue/pop
- reference implementations whose states are partial orders of enq/push

Forward Sim. for H&W Queue

FS *f* between HWQ and *AbsQ*. Given a HWQ state *s* and an *AbsQ* state *t*, $(s, t) \in f$ iff:

- Pending enqueues in *s* are pending and maximal in *t*.
- Order in t is consistent with the positions reserved in items of s.
- For two enqueues e_1 , e_2 and dequeue d, if e_1 reserves a position before e_2 , d is visiting an index in between and d can remove e_2 in s, then e_1 cannot be ordered before e_2 in t.

