Checking Linearizability: Theoretical
Limits

Constantin Enea
Ecole Polytechnique

concurrent enqueues

Concurrent Objects

Multi-threaded programming

.Cl}.{)D

concurrent dequeues

e.g. Java Development Kit SE

dozens of objects, including queues, maps, sets, lists, locks, atomic integers, ...

Observational Refinement
<=>
L inearizability/ Refinement

Observational Refinement

Reference implementation Efficient implementation

class TreiberStack {

class AtomicStack { cellx top:

cellx top;

void push (int v) {
cellx t;
cellx x = malloc(sizeof *x);
x—>data = v;

void push (int v) {

do {
t = top;
x—=>next = top;
} while (!);
¥ ¥
int pop () { int pop () {
\ - \ -

}

For every Client,
Client x Impl included in Client x Spec

Formalizing Libraries/Programs

We fix an arbitrary set O of operation identifiers, and for given sets
M and V of methods and values, we fix the sets

C={mw),:meM,v eV, oe O}, and
R = {ret(v), : v € V,0 € O}
of call actions and return actions; each call action m(v), combines

a method m &€ M and value v € V with an operation identifier
o € (. Operation identifiers are used to pair call and return actions.

A seguence in (C u R)* is well-formed if every return is preceeded
by a matching call, each identifier is used at most once

A sequence in (C u R)* is sequential if there exists a return
between every successive two calls

Formalizing Libraries/Programs

Definition 3.1. A library L is an LTS over alphabet C' U R such
that each execution e € E(L) is well formed, and

e Call actions ¢ € C cannot be disabled:

e-e € E(L)impliese-c-e € E(L) ife-c-e iswell formed.
e Call actions ¢ € C cannot disable other actions:

e-a-c-e € E(L)impliese-c-a-¢e € E(L).
e Return actions r € R cannot enable other actions:

e-r-a-e € E(L)impliese-a-r-¢e¢ € E(L).

Definition 3.2. A program P over actions 2. is an LTS over alphabet
(X W C' W R) where each execution e € E(P) is well formed, and

e Call actions ¢ € C cannot enable other actions:
e-c-a-e € E(P)impliesc—aore-a-c-e € E(P).
® Return actions r € R cannot disable other actions:
e-a-r-e € E(P)impliesa—rore-r-a-e€ E(P).
® Return actions r € R cannot be disabled:
e-e € E(P)impliese-r-e € E(L)ife-r-¢' iswell formed.

Observational Refinement

Definition 3.3. The library L1 refines Lo, written L1 < Lo, iff
E(P x L1)|% C E(P x L)X

for all programs P over actions ..

Histories

For given sets Ml and V of methods and values, we fix a set

L=MxV x (VU{L}) of operation labels, and denote the label
(m,u,v) by m(u) = v. A history h = (O, <, f) is a partial order
< on a set O C O of operation identifiers labeled by f : O — L for
which f(0) = m(u) = L implies o is maximal in <. The history
H (e) of a well-formed execution e € 3™ labels each operation with
a method-call summary, and orders non-overlapping operations:

e O ={op(e;):0< i< |e|and e; € C},
® op(e;) <op(e;)iffi < j,e; € R,ande; € C.

e f(0) = m(u) =v ifm(u), € eandret(v), € e
flo) = { m(u) =1L ifm(u), €eandret(), € e

The histories admitted by a library L are H(L) = { H(e): e € E(L) }

Histories

push(1) pop = 3

® O—0 O—0
pop = 1 push(2) push(3) pop = EMPTY
® O—O0—0 O—0 O O O—o0

happens-before
partial order

push(/ \ﬁ) = EMPTY

q q
pop = 1 push(2) push(3)

pop =3

Histories

Definition 4.2. Let h1 = (O1, <1, f1) and ha = (O2, <2, f2). We
say hi1 is weaker than ho, written h1 =< ha, when there exists an
injection g : Oz — O1 such that

e 0 € range(g) when f1(o) = m(u) = vandv # L,
® g(01) <1 g(o2) implies 01 <2 02 for each 01,02 € Oo,
e f1(g9(0)) < f2(0) for each o € Os.

where (m1(u1) = v1) < (ma(u2) = v2) iff m1 = me, u1 = us,
and v1 € {vz2, L}. We say h1 and ha are equivalent when h1 =< hs
and hQ j hl.

Examples ?

Equivalent histories need not be distinguished

Histories

Ifh, € H(L) and ha < hy then ha € H(L).

FE(L)={ee (CUR)": H(e) € H(L)}.

History Inclusion

Lirefinesly < H(L7) € H(L2) & E(L7) € E(L2)

* (=>) Given hin Hist(Ly), construct a program Pp that imposes
all the happen-before constraints of h.

 (<=) Clients cannot distinguish executions with the same
history. History inclusion implies Execution Inclusion

History Inclusion (=>)

~ We construct P, = (Q, %, qo, 8) over alphabet ¥ = CURU{a}
whose states Q : O — B track operations called/completed status.

The initial state is go = {o— (L, L) : 0 € O}. Transitions are
given by,
foreachge Q,oc O,me M,v eV
if f(0) = m(v) = _and q(0’) for all o’ < o then

m(v)o

glo— L, 1] —% qlo— T, 1] preserving happens-before
if f(0o) = m(_) = v then

ret(v)o\

glo— T, 1] s . 5 glo— T, T| counting ops completed in h

if f(0) = m(.) = L then ops that are pending in h (an execution
glo— T, 1] ret®)o, glo— T,T] mayhave more completed ops and
less pending - no call for pending)

(7?) Ve € E(Pr). [(e|£)] =n = h < H(e)
— an

nb of completed ops in h

History Inclusion (=>)

(7?7) Ve € E(Py). |(e|X%)] :;L —> h = H(e)

nb of completed ops in h

For every execution e1 € E (Pn X L1) witheq1| 2 =n,
there must exist an execution ec € E (Pn X L2) suchthatex| 2 =e1|Z

(by observational refinement)

Therefore, h < H(ez).
Since e2| (C u R) e E(L2), we have that H(e2) € H(L»)
By closure under weakening, h € H(L2)

History Inclusion (<=)

Lirefinesly < H(L7) € H(L2) & E(L7) € E(L2)

Letee E (P XLy)
e| (C uR)e E(L1) implies H(e) € H(L1) implies H(e) € H(L2)
Therefore, e| (C u R) € E(L2) which by definition of the product P X Lo,

impliese € E (P X L)

inearizability [Herlihy&Wing 1990]

Effects of each invocation appear to occur instantaneously

Execution history

enq: 1 deq: 2
. enqg: 2
e:2 || e:l d:2

o

d:1

Linearization admitted by Queue ADT

enq:1 deq: 2 deq: 1
—_— —

/:eturns—before (rb)

enq: 2

3 lin. rb C lin A lin € Queue ADT

About Linearizability

History inclusion H(L1) € H(L2) equiv. to linearizability when L is atomic

Definition 3.1. A library L is an LTS over alphabet C' U R such
that each execution e € E (L) is well formed, and

e Call actions ¢ € C cannot be disabled:

e-e € E(L)impliese-c-e € E(L)ife-c-e iswell formed.
e Call actions ¢ € C cannot disable other actions:

e-a-c-e € E(L)impliese-c-a-¢e € E(L).
® Return actions r € R cannot enable other actions:

e-r-a-e € E(L)impliese-a-r-¢e¢ € E(L).

We write e; ~ e2 when es can be derived from e; by applying zero
or more of the abovi rules. The closure of a set £/ of executions
under ~ 1s denoted FE.

A library L 1s called atomic it 1t 1s defined by the closure of
some set F of sequential executions, i.e., E(L) = F.

About Linearizability

History inclusion H(L1) € H(L2) equiv. to linearizability when L is atomic

Linearizability 1s defined by an execution order: e; L es
iff there exists a well-formed execution e} obtained from e; by
appending return actions, and deleting call actions, such that:

e is a permutation of €] that preserves the order between
return and call actions, 1.e., a given return action occurs
before a given call action in e} iff the same holds in es.

An execution e; 1S linearizable w.r.t. a library Lo 1ff there exists a
sequential execution e2 € F/(L2), with only completed operations,
such that e; T e2. A library L is linearizable w.r.t. L2, written
L1 T Lo, iff each execution e; € E(L1) is linearizable w.r.t. L.

About Linearizability

History inclusion H(L1) € H(L2) equiv. to linearizability when L is atomic

Linearizability compares execs of L1 with pending ops. with execs of Lo
with only completed ops => problematic when L2 contains non-
terminating methods

Example 5.1. Let L be the library whose kernel contains the single
execution ¢ = m(u)1 m'(u)2 ret(v)1, in which the call to m’ is
pending. Although L refines itself, since refinement is reflexive, L is
not linearizable w.r.t. itself, since e could only be linearizable w.r.t.
L if E(L) were to contain one of the following executions:

m(u)1 ret(v)r m(u)r m' (u)z2 ret(v)y ret()2
m(u)1 ret(v)y m'(u)z ret(D)2 m' (u)2 ret(J)am(u)r ret(v).

Yet E(L) = {e} clearly contains none of them.

About Linearizability

History inclusion H(L1) € H(L2) equiv. to linearizability when L is atomic

Lemma 5.1. €1 ; €9 l:ﬁ[H(61) j H(eg).

Theorem 2. [L Lo lﬁCH(Ll) C H(LQ), lfLQ IS atomic.

Proof. (=>) Let h € H(L1). Then, every execution e+ with H(e1) = h is
inearizable w.r.t. some execution ez e Lo

By the lemma above, H(e1) < H(e2). By closure under weakening, if H(e2)
e H(L2) then any weakening, h in particular, belongs to H(L2).

(<=) Let e1 € E(L+). By hypothesis, H(e1) € H(L2), which implies e1 € E(L»).
Since L2 is atomic, there exists a sequential e2 € E(L2) with only
completed ops such that H(e+1) € H(L2) such that et is lin. w.r.t. ez,

L inearizability Proofs based on
Forward Simulations

Linearizability vs Refinement

* Modelling concurrent objects with Labeled Transition Systems (LTSs)
e Linearizability is a property of sequences of call/return actions

e Given an ADT A, define a reference implementation Spec(A) which admits all
histories linearizable w.r.t. A

e standard reference implementations (atomic method bodies): call, return, and
linearization point actions

i
[a,b,...] n enq » [[a,b,...,V]

lin deq() => v
>

[v,a,b,...] [a,b,...]

* Linearizability = inclusion of traces with call/return actions (these are the only
common actions) between Impl and Spec(A)

e the actions included in traces are called observable

Proving Refinement

Inductive reasoning for proving refinement: forward/backward simulations

Simulations: relations between states of the impl. and , relating initial
states ana
Forward Backward
. a a
Implementation: IS+ > >

Sim Sim Sim Sim

@@ O

Proving Refinement

* Given two LTSs A and B such that A refines B [Abadi et al.’91, Lynch et al.’95]

Frw Sim (FS) Bckw Sim (BS)
exists if B deterministic A forest
exists if we add | Prophecy vars to A | History varsto A

* Forward simulations are easier to derive and establish (standard invariant
checking)

Proving Linearizability

 Implis linearizable w.r.t. A iff Impl refines Spec(A)

e refinement = inclusion of traces with call/return actions (observable actions)

e Spec(A) is not deterministic when projected on observable actions =>

backward simulations are unavoidable in general

lin enq(v)
>

Callwv [a,b,...]
[a,b,...] \
call eng(V’)

[a,b,...,V]

[a,b,...]

call eng(V’)
>

[a,b,...

* Classes of implementations for which forward simulations are sufficient -
associate linearization points with statements of the implementation

* the linearization point actions become observable

 Spec(A) is deterministic assuming that A is deterministic

Fixed Linearization Points

* Fixed linearization points: the linearization point is fixed to a particular
statement in the code

class Node { class NodePtr {
Node tl1; Node wval;
int wval; } TOP

}

vold push (int e) {

int pop () {
Node vy, n; Node vy, z;
y = new(); while (true) {
y—>val = e; y = TOP->val;
while (true) { 1f (y==0) return EMPTY;
v->tl = ny; z = y->tl;
if (cas (TOP->val, n, Vv)) if (cas (TOP->val, vy, z))
break; break;

} }
return y->val;

}

Herlihy & Wing Queue

void eng (int x) {

1 = back++; 1tems[1] = Xx;
}
int deqg () {
while (1)
range = back - 1;
for (int 1 = 0;, 1 <= range; 1++) {
Xx = swap(items[1],null);

i1f (x !'= null) return x;

Non-fixed Linearization Points

m Her"hy . Wing
Queue
back i i(e, i i(e,

NULL | <29 0 L RGO R

| back ! back
NULL NULL | «— NULL |«
NULL NULL NULL
NULL eri= b?.ile++ NULL e: item%[i] =X NULL
NULL — > NULL —— NULL

items
i(e,x): index i of enqueue with id e that will insert item x

(e, i(d i(eq,x i(d) i(e;,x i(eq,x
NuL | < g D o | L) . — | NULL Hew®) § NuLr, | <)
i(e2,y) i(e2,y) | i(e2,y) i(d) i(e2,y)
NULL | <— | NULL | <— | NULL | <—— i —> ? D
NULL back range(d) NULL back range(d) Z i(es,2) range(d) Z i(es,z)
| | back | back
NULL | NULL i NULL | «— NULL | «——
d:range,i = .. d:CAS(...) d:i+ +
NULL ﬁ NULL ﬁ NULL ‘ NULL

Non-fixed Linearization Points

e1: inv(x) e:i=back++ eqiitems [i]=x ej:ret
O & O
ey inv(y) eyii=back++ eyiitems[i]=y ey:ret
O & O
dqi:deq(x) d,:deq(y)
NuLL | <€r® [y | Hee b g | Sy x Hev) o g | <@ | Tyop | <@
i(ezy) | i(ezy) i(ey,y) ! i(ez,y) | i(ezy)
NULL |23 0 I NuLL | <2770 |y : y Cay) i 7 220 NULL | <227
back back back back back
NULL NULL | «—— NULL | «—— NULL | «—— NULL | «—— NULL | «——
NULL NULL NULL NULL NULL NULL
NULL NULL NULL NULL NULL NULL

Non-fixed Linearization Points

e1:inv(x) e;:i=back++ ' eqiitems [i]=x . ej:ret

o—o- —e———@

e inv(y) €y i=back++ ey:items[i]=y | ey:ret
o o & 0
- dyideq(y) dy: deq(x)
00— o—©@
NULL i(el’x)é NULL i(el’x)? nuLL | <) NuLL | <) x| Leed) NuLL | <)
NULL | Back - ygpy | S]) NOLL | <22 Ty | <2 Ty | <2
NULL NULL | <2 1 [oL | &2 NULL | <2 NULL | <2< NULL | <2
NULL NULL NULL NULL NULL NULL
NULL NULL NULL NULL NULL NULL

Non-fixed Linearization Points

Non-fixed linearization points => proofs based on forward simulations are
Impossible in general

Possible for certain ADTs, queues and stacks | BEEM-CAV'1/]
e assuming fixed linearization points only for dequeue/pop
e reference implementations whose states are partial orders of eng/push

enq(vi) :compl eng(vi) :compl
7" englvs):ipend call enq(v) 7" enqlvs) :pend

~~ -

enq(vz):compl

enq(v) :pend

enq(vz):compl

happens-before of
enqueues

Non-fixed Linearization Points

Non-fixed linearization points => proofs based on forward simulations are
Impossible in general

Possible for certain ADTs, queues and stacks | BEEM-CAV'1/]
e assuming fixed linearization points only for dequeue/pop
e reference implementations whose states are partial orders of eng/push

enq(vi) :compl enq(vi) :compl
/ enq(vs) :m ret GHQ(V) / enq(vs) :pem4

—_—
/nq(v) : pend /enq(v) :compl

enq(v2):compl enq(v2) :compl

happens-before of
enqueues

Non-fixed Linearization Points

Non-fixed linearization points => proofs based on forward simulations are
Impossible in general

Possible for certain ADTs, queues and stacks | BEEM-CAV'1/]
e assuming fixed linearization points only for dequeue/pop
e reference implementations whose states are partial orders of eng/push

enq(vi) :compl enq(vi):compl
enq(ve) : - ’////)' enq(vs) :pend lin deg(vo) jff;efz ’//,/)' enq(vs) : pend

—

~ ~

enq(v2) :compl enq(vz) :compl

minimal element

Forward Sim. for H&W Queue

FS f between HWQ and AbsQ. Given a HWQ state s and an AbsQ state t, (s,t) € f

Iff:

e Pending engqueues in s are pending and maximal in t.

e Order in t is consistent with the positions reserved in items of s.

e For two enqueues ey, &> and dequeue d, if e; reserves a position before e», d is visiting
an index in between and d can remove &5 in s, then e; cannot be ordered before e in t.

nuLL | e . (x,COMP) (y, COMP)

back E

NULL | <—— (z, PEND)

