
MPRI Year 2023-2024

Algorithmic Verification of Programs
(Final Examination)

The subject of the exam contains two parts : Exo 1-2 and Exo 3-6.
Write solutions for each part on a different exam sheet. The exam
duration is 3 hours.

Exercice 1 : Multithreaded programs
Consider concurrent programs with dynamic creation of processes. These
processes have local variables and a shared memory. In addition, they can
communicate by message passing, either by rendez-vous (binary synchronous
communication), or by broadcast (from one process to all processes).
We assume that all the processes are identical. They have the same set of local
variables and the same set operations. The valuations of the local variables
correspond to local states. Valuations of the shared variables are global states.
We assume that the data domain is finite, which means that the set of local
states is finite, and the same holds for the set of global states.
Then, the operations that a process can perform at each point are :

1. g := g′ : update of the shared memory (change of the global state)

2. ` := `′ : update of its own local state

3. async(`) : spawn a new process at some initial local state : the new
process is added to the set of processes

4. send(a) : sends a message a (we assume that there is a finite number of
messages). This action is blocking and is executed only in a synchronous
way with another process who can perfrom a receive(a) action.

5. receive(a) : receives a message a (we assume that there is a finite
number of messages). This action is blocking and is executed only in
a synchronous way with another process who can perfrom a send(a)
action.

6. broadcast(a) : sends a message a to all processes who are ready to get
it. This action is not blocking. When it is executed by a process at
some program configuration, every process, if any, that can perform
at this configuration an action get(a) must execute this action to get
the message a. Notice that it is possible that at some configuration no
process gets the broadcasted message (if no process is ready to get the
message at the moment it is broadcasted).

1

MPRI Year 2023-2024

Process P1

loop forever

noncritical ;

b1 := true ;

x := 2 ;

wait until x = 1 or (not b2)

do
critical

od

b1 := false

end loop

Process P2

loop forever

noncritical ;

b2 := true ;

x := 1 ;

wait until x = 2 or (not b1)

do
critical

od

b2 := false

end loop

Figure 1 – Peterson algorithm

7. get(a) : gets a broadcasted message. This action is blocking. It is exe-
cuted only at the moment of a broadcast of a by some process.

Question 1 : Provide an operational semantics to these programs, i.e., define
a state machine that captures the computations of such program. Indication :
use an extension of vector addition systems with states.

Question 2 : Prove that state reachability for these programs is decidable.

Exercice 2 : Weak Memory Models
Figure 1 shows a program implementing the Peterson mutual exclusion pro-
tocol. The program has two parallel processes P1 and P2, sharing the two
boolean variables b1 and b2, and the variable x ranging over the set {1, 2}.

2

MPRI Year 2023-2024

Question 1 : Verify that the program, when executed under the SC memory
model, satisfies indeed mutual exclusion, which means that the two processes
are never in the critical section in the same time.

Question 2 : Show that under the TSO memory model this program does
not satisfy mutual exclusion, which means that there are behaviors of the
program where both of the processes are in the critical section.

Question 3 : Add an irreducible set of memory fences to the program ensu-
ring mutual exclusion. (Irreducible means that removing any fence from the
set leads to a program that does not satisfy mutual exclusion, i.e., a program
that have behaviors violating this property).

3

MPRI Year 2023-2024

read()=>1 write(2)

write(1) read()=>1 read()=>2

read()=>1

write(1) read()=>1 read()=>2

write(2) read()=>1

write(1)

write(2)

read()=>2

read()=>1

push(1) pop()=>1

push(3) pop()=>3

pop()=>2

push(1) pop()=>1

pop()=>2

push(2) pop()=>empty

push(2)

(d)

(e)

(a) (b)

(c)

Figure 2 – Histories for Exercice 3

Exercice 3 : Consistency criteria

1. Figure 2(a)-(c) picture three histories of a concurrent register with me-
thods write(v) writing the value v to the register and read() returning
the current value of the register. Also, Figure 2(d)-(e) picture two histo-
ries of a concurrent stack. For each of these histories, give the correctness
criteria they satisfy among quiescent consistency, sequential consistency,
and linearizability. Provide a short justification for your answer.

2. Give an example of a history of a concurrent queue that is linearizable
but not sequentially consistent, sequentially consistent but not quiescent
consistent, and quiescent consistent but not sequentially consistent. Write
a short justification in each case.

Exercice 4 : Quiescent consistency
Consider a memory object that encompasses two register components x and
y. Therefore, the memory object has methods x.write(v) and y.write(v) for

4

MPRI Year 2023-2024

writing some value v to x or y, and x.read() and y.read() that return the
value of x and y, respectively.
1. Is it true that if both registers are quiescently consistent, then so is the

memory ? More precisely, is it true that for every history/execution of the
memory object, if each projection on operations of x and y, respectively,
is quiescently consistent, then so is the entire history/execution ?

2. Does the converse hold ? If the memory is quiescently consistent, are the
individual registers quiescently consistent ?

For both questions, outline a proof, or give a counterexample.

Exercice 5 : Stack object
Consider the problem of implementing a concurrent stack using an array
indexed by a top counter, initially zero. To push an item, increment top to
reserve an array entry (e.g., the first increment reserves position 0), and then
store the item in that entry. To pop an item, decrement top if it is strictly
greater than 0, and return the item at the previous top index. If top is 0
then return empty_stack. Assume that increment and decrements of top are
done atomically in a single indivisible step.
Is this implementation linearizable ? Outline a proof, or give a counterexample.
In case it is not linearizable, propose a fix that makes it linearizable and that
does not involve locks.

Exercice 6 : Another Stack object
The following code presents an implementation of a concurrent stack (each
statement is executed in a single atomic step) :

void push(int x) {
i = range++;
items[i] = x;

}

int pop() {
t = range - 1;
for i = t downto 0 {
x = swap(items[i],null);
if (x != null)
return x

}
return empty;

}

This stack stores the elements into an infinite array items, a shared variable
range keeping the index of the first unused position in items (initially, range

5

MPRI Year 2023-2024

is 0). The push method stores the input value in the array while also incre-
menting range. The pop method first reads range and then traverses the
array backwards starting from this position, until it finds a position storing a
non-null element (array cells can be nullified by concurrent pop invocations).
It atomically reads this element and stores null in its place (represented by
swap(items[i],null)). If the pop reaches the bottom of the array without
finding non-null cells, then it returns that the stack is empty.
Does this implementation admit fixed linearization points (i.e., the lineariza-
tion point of every push or pop in every execution corresponds to executing
some fixed statement in the code) ? Justify your answer.
Is this implementation linearizable ? Justify your answer.

6

