
MPRI Year 2022-2023

Algorithmic Verification of Programs
(Final Examination)

The subject of the exam contains two parts : Exo 1-2 and Exo 3-6.
Write solutions for each part on a different exam sheet. The exam
duration is 3 hours.

Exercice 1 : Correctness under Weak Memory Models
Figure 1 shows a program implementing the Peterson mutual exclusion pro-
tocol. The program has two parallel processes P1 and P2, sharing the two
boolean variables b1 and b2, and the variable x ranging over the set {1, 2}.

Process P1

loop forever

noncritical ;

b1 := true ;

x := 2 ;

wait until x = 1 or (not b2)

do
critical

od

b1 := false

end loop

Process P2

loop forever

noncritical ;

b2 := true ;

x := 1 ;

wait until x = 2 or (not b1)

do
critical

od

b2 := false

end loop

Figure 1 – Peterson algorithm

Question 1 : Verify that the program, when executed under the SC memory
model, satisfies indeed mutual exclusion, which means that the two processes
are never in the critical section in the same time.

1



MPRI Year 2022-2023

Question 2 : Show that under the TSO memory model this program does
not satisfy mutual exclusion, which means that there are behaviors of the
program where both of the processes are in the critical section.

Question 3 : Add an irreducible set of memory fences to the program ensu-
ring mutual exclusion. (Irreducible means that removing any fence from the
set leads to a program that does not satisfy mutual exclusion, i.e., a program
that have behaviors violating this property).

Exercice 2 : Decidability
We consider the problem of parametrized verification of concurrent programs
having an arbitrary number of thread, which means verifying that the pro-
gram is correct for any number of threads. We assume that threads do not
have procedure calls, and therefore they can be modeled using state machine
with a finite number of control states. Moreover, we consider that the threads
use a finite number of shared variables according to the PSO weak memory
model. The data domain of the variables is finite, and therefore there is a
finite number of possible write and read operations.
We recall that the PSO model is the relaxation of TSO where writes on
different variables issued by a same thread can be reordered. This can be
modeled by considering that each thread uses a store buffer for each variable
(contrary to TSO where each thread has only one store buffer use to store
all the write operations issued by that thread). We recall that the reachabi-
lity problem for a fixed number of threads running under PSO is decidable.
The decidability is proven by reduction to the reachability problem in well-
structured systems : roughly, PSO store buffers can be considered as lossy.
In this exercice, we want to extend this result to the case of an arbitrary
number of threads.
For that, we recall some known fact about well-quasi orderings :

1. If S is a finite set, then (S,=) is a well-quasi ordered set.
2. If (S1,61) and (S2,62) are two well-quasi ordered sets, then (S1 ×
S2,61×2) is also a well-quasi ordered set, where S1×S2 is the cartesian
product of S1 and S2, and 61×2 is the product relation of 61 and 62,
i.e., (u1, v1) 61×2 (u2, v2) if and only if u1 61 v1 and u2 62 v2.

3. If (S,6) is a well-quasi ordered set, then (S∗,6∗) is a well-quasi ordered
set, where S∗ is the set of all words over the alphabet S, and 6∗ is the
subword relation over S∗, modulo the relation 6 on the individual

2



MPRI Year 2022-2023

elements of S, i.e., given two words α = u1 · · ·un and β = v1 · · · vm,
α 6∗ β if and only if n 6 m and there exists vi1vi2 · · · vin a subword of
β such that uj 6 vij for every i ∈ {1, · · · , n}.

Question : Show that the parametrized reachability problem under PSO is
decidable.

Hints :
– Define a formal model of programs with an unbounded number of
threads running over PSO : how to represent the configuration of one
thread, how to represent configurations of programs with an arbitrary
number of threads, what is a transition is such a system.

– Show that the defined model is a well-structured system : there is a
well-quasi ordering on the set of configurations of the system, and the
transition relation of the system is monotonic w.r.t. that well-quasi
ordering.

3



MPRI Year 2022-2023

enq(1) deq()=>empty

enq(3) deq()=>3

deq()=>2

enq(1)

enq(2)

deq()=>2

deq()=>1

deq()=>empty inc()

read()=>0

dec()

read()=>1

enq(2)

(a) (b)

(c)

deq()=>1

enq(4)

deq()=>4

Figure 2 – Histories for Exercice 3

Exercice 3 : Consistency criteria

1. Figure 2 shows two histories of a concurrent queue and one history of a
concurrent counter. For each of the these histories, say whether it is li-
nearizable and provide a short justification for your answer (e.g., showing
a possible assignment of linearization points when the history is lineari-
zable).

2. Give an example of a history of a concurrent stack that is linearizable
but not sequentially consistent, sequentially consistent but not quiescent
consistent, and quiescent consistent but not sequentially consistent. Write
a short justification in each case.

Exercice 4 : Concurrent queue
The following code presents an implementation of FIFO queue :

void enqueue(int x) {
int slot;
do {
slot = tail;

while (! CAS(tail, slot, slot+1))
items[slot] = x;

}

int dequeue() {
int value, slot;
do {
slot = head;
value = items[slot]
if (value == null)
return "empty";

while (! CAS(head, slot, slot+1))
}
return value;

}

4



MPRI Year 2022-2023

This queue stores the elements into an infinite array items, and it has two
shared variables : tail represents the index of the next slot in which to place
an item, and head represents the index of the next slot from which to remove
an item. These two variables are initially set to 0.

1. Is this implementation linearizable ? Justify your answer.

Exercice 5 : Concurrent set

class Node {
int val;
bool marked;
Node next;

}

// Global Vars
Node Root;

bool contains(int key) {
Node pred, curr;
int k;
pred = Root;
curr = Root->next;
k = curr->val;
// locate
while (k < key) {
pred = curr;
curr = curr->next;
k = curr->val;

}
return (k == key);

}

bool add(int key) {
Node pred, curr, entry;
int k;
while (true) {
pred = Root;
curr = Root->next;
k = curr->val;
// locate
while (k < key) {
pred = curr;
curr = curr->next;
k = curr->val;

}
if (k == key) return false;
entry = new Node(key,false,curr);
atomic {
if (pred->next == curr

&& !pred->marked) {
pred->next = entry;
return true;

}
}

}
}

bool remove(int key) {
Node pred, curr, next;
int k;
while (true) {
pred = Root;
curr = Root->next;
k = curr->val;
// locate
while (k < key) {
pred = curr;
curr = curr->next;
k = curr->val;

}
if (k > key) return false;
atomic {

if (pred->next == curr
&& !pred->marked) {

next = curr->next;
curr->marked = true,
pred->next = next;
return true;

}
}

}
}

Figure 3 – A concurrent set.

We consider the implementation of a concurrent set given in figure 3. This
object provides three methods : contains, add and remove. Notice that
the state of the object is organized as a sorted linked list, where the field
marked indicates whether an item should be considered in the list or not (see
remove). Also, the first node of the list (Root) is a sentinel node whose value
is irrelevant. The atomic keyword marks code that is executed in a single
indivisible step.

1. Consider only the methods add and remove. Is this subset of the object
linearizable ? If so indicate the linearization points in these methods.

5



MPRI Year 2022-2023

2. Consider now all the methods. Is the object linearizable ? Can we provide
linearization points for each of the methods ? Does the implementation
satisfy static linearizability ? Justify your answer.

Exercice 6 : Reductions to linearizability
Consider the problem of checking whether a word w over an alphabet Σ
is included in a regular language L. Is this problem reducible to checking
linearizability of completed histories, i.e., where every invocation of a me-
thod returns ? More precisely, does there exist a library Lib and a sequential
specification Spec such that Lib admits a completed history that is not linea-
rizable w.r.t. Spec if and only if w ∈ L ? (Suggestion : You can try to use the
ideas and the synchronization mechanisms we used to show undecidability,
EXPTIME-completeness, for linearizability).

6


