
ON THE ADVANTAGES OF FREE CHOICE:

A SYMMETRIC AND FULLY DISTRIBUTED
SOLUTION TO THE DINING PHILOSOPHERS PROBLEM

(Extended Abstract)

by

Daniel Lehmann

and

Michael 0. Rabin*

Mathematics Institute

Hebrew University

Jerusalem, Israel

Abstract

It is shown that distributed systems of proba-

bilistic processors are essentially more powerful

than distributed systems of deterministic processors,

i.e., there are certain useful behaviors that can

be realized only by the former. This is demonstra-

ted on the dining philosophers problem. It is

shown that, under certain natural hypotheses, there

is no way the philosophers can be progranuned (in a

deterministic fashion) so as to guarantee the

absence of deadlock (general starvation). On the

other hand, if the philosophers are given some free-

dom of choice one may program them to guarantee that

every hungry philosopher will eat (with probability

one) under any circumstances (even an adversary

scheduling) . The solution proposed here is fully

distributed and does not involve any central memory

or any process with which every philosopher can

communicate.

1. Introduction

Since the notion of a probabilistic algorithm

was introduced in [101, the idea has been used in

different fields to provide algorithms which are

more efficient than the deterministic algorithms

known to solve the same problem. Recently ([11] and

[12]), the second author has applied the same idea

to some problems of concurrency control and coopera-

tion for distributed systems. His results will

appear elsewhere. We present here an application

of this idea to the dining philosophers problem and

exhibit a probabilistic solution for this problem

which guarantees, with probability one, that every

hungry philosopher eventually gets to eat” We feel

this application is interesting in many ways.

* Michael Rabin is Visiting Professor of Computer

Science and Vinton Hayes Senior Fellow at Harvard

University, Aiken Computation Lab., Cambridge,

Mass. 02138, for the 1980-81 academic year.

Permission to copy without fee all or part of this material is grant-

ed provided that the copies are not made or distributed for direct

commercial advantage, the ACM copy- right and its date appear,

and notice is given that copying is by permission of the Associa.
tion for Computing Machinery. To copy otherwise, or to republ-

ish, requires a fee and/or specific permission.

@ 1981 ACM O-89791 -029 -X/81 /O100-O133$O0.75

Concurrent progranurring seems to be a field

particularly well suited to probabilistic algorithms,

and the idea of an operating system built out of

probabilistic processes and which performs correctly

with a high probability is very attractive.

For the first time, it provides an example of

a problem which can be solved by probabilistic

processors but provably cannot be solved by deter-

ministic processors.

As we shall see later, the system of probabil-

istic processors may be proved to behave correctly

with probability one and not just with a probability

which is as close to one as one likes.

The realm of proofs of correctness for concur-

rent processes is not yet well known. As the

reader will realize proofs of correctness for proba-

bilistic distributed systems are extremely slippery;

in fact the proof presented here (hopefully correct)

is only the last one in a sequence of incorrect

proofs. We hope that the present exercise will

provide some hints as to what the important concepts

are and what could be the adequate formal systems

for such proofs. In particular, we have occasion

to introduce in Section 7 an ordering in time of

complex activities of processes in a distributed

system. It turns out that it is impossible to de-

fine a natural total ordering on these activities.

But, the activities of processes which share exter-

nal variables are totally ordered in time, and this

property suffices for our proof of correctness. We

hope that this methodology concerning the handling

Of time will be useful in other contexts as well.

Our analysis of the interplay between probabil-

istic ideas and the area of large systems of simple

processors suggests an application to the theory of

biological systems where all three features of

randomness, large number of components and simpli-

city of those components appear.

The protocols presented here for the synchro-

nization of the philosophers are the first really

distributed solution to the dining philosophers

problem (N. Francez and M. Rodeh [4] have, concur-

rently, proposed such a solution written in the

language CSP [61; k their solution the processes

do not use random draws). We feel that our proto-

cols pr.vid. an .Ieyant solufiion to the problem and

that the ideas presented here should be useful to

solve other problems in the area of concurrency

control and cooperation between asynchronous processes.

133

Permission to make digital or hard copies of part or all of this work or
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee.
© 1981 ACM 0-89791-029-X…$5.00

2. The Dining Philosophers Problem

In [3] E. Dijkstra proposed a problem in con-

current programming which has, since then, been

considered as a classical problem, the dining philo–

sophers problem. This problem is interesting not so

much on account of its practical importance but be-

cause it is a paradigm for a large class of concur-

rency control problems.

The problem will be presented first informally

and then in a more precise way. Suppose a number of

philosophers are sitting around a circular table.

The life of a philosopher consists mainly of think-

ing. When a philosopher thinks, she does not inter-

act with her colleagues. But , from time to time,

it may happen that a philosopher gets hungry from

too much thinking. He then wants to eat from a

bowl of foodr which a kind benefactor maintains full

and which is located in the middle of the table. To

eat he needs two chopsticks (wisdom is essentially

oriental in this tale) . He will then try to pick

up the two chopsticks which are closest to him.

One chopstick is located at his right, just in the

middle between him and his right neighbor (there is

only one chopstick between any two adjacent philo-

sophers) and another one is located between him and

his left neighbor. In all, there are only as many

chopsticks as there are philosophers. A philosopher

may only pick up one chopstick at a time and obvi-

ously he cannot pick up a chopstick which is already

in the hand of a neighbor. If a hungry philosopher

cannot eventually get both chopsticks adjacent to

him, for example, if each time he tries to pick up

a chopstick it happens to be in the hand of the

appropriate neighbor, then the philosopher starves.

If a hungry philosopher gets to hold both his chop-

sticks at the same time, he eats (without releasing

his chopsticks), eventually satisfies his

material needs and puts down both his chopsticks.

In a more precise way a philosopher goes indef-

initely through a cycle: thinking, trying, eating

and so on ad infinitum. To eat a philosopher needs

exclusive access to two resources each of which is

shared with a neighbor. A philosopher may die only

while he is thinking.

The problem is to describe a system of proto-

cols for the philosophers, chopsticks and possibly

some other entities, which will behave in the way

indicated above (especially that at any time each

chopstick is in at most one hand) and which will

ensu~e that, with varying degrees of strength, phil-

osophers will be able to eat. Thus we will be talk-

ing, not of one, but of several problems and solu-

tions.

3. Constraints and Properties of the Solutions

We shall now describe some constraints on the

class of solutions we are willing to consider. Such

constraints will be justified both by aesthetic and

practical considerations.

Our first constraint is that we are interested

only in truly distributed systems, i.e. , systems in

which there is no central memory or central process

to which every other process may have access.

Indeedr we are looking for systems in which the only

active agents are the philosophers who do not

communicate directly with each other and in which

chopsticks are represented by passive cells (memor-

ies) which may be accessed only by the two adjacent

philosophers. N. Francez and M. Rodeh have recently

considered this constraint and remarked that none of

the solutions published so far (e. g., [1], [2], [3],

[5], [6], [7] and [8]) satisfied this criterion.

Indeed, they all use some kind of central scheduler

which regulates the eating of the philosophers.

Francez and Rodeh [4] propose a solution which is

truly distributed, in the language CSP [6].

A second constraint that we impose is that all

philosophers be identical (we could call this the

layman’s point of view). This is a very natural

assumption if we think of a very large number of

very simple philosophers, so simple, in fact, that

they could not even possibly remember an identifi-

cation number, personal to each philosopher (assume

we have more than n philosophers, each of whom can

hold fewer than logn bits) . We also restrict our

attention to initial configurations which are symme-

tric: we assume that, in the beginning, all philo-

sophers are in the same state and all shared varia-

bles hold the same value. If it were not for such

an assumption, it would be easy to code different

protocols for the different philosophers in the

initial values of the shared variables (or the

initial states of the different philosophers) ; pro-

tocols similar to those described in Section 7

would also do the job if the initial values of the

shared variables are favorable. In short, we are

interested in large distributed systems of simple

identical processors.

Our goal is to find protocols for the philoso-

phers which will satisfy the two constraints ex-

plained above and will allow the philosophers to

eat. If the system is such that every hungry phil-

osopher eventually gets to eat, then we shall say

that it is lockout-free. We shall exhibit such a

system. But as a first step we will build a

system which enjoys only a weaker non-starvation

property: if, at any time, there is a hungry

philosopher, say Plato, then at some later time

some philosopher (not necessarily Plato) will eat.

A system which enjoys this property will be said to

be deadlock-free. In other words, a deadlock-free

system only guarantees that not all hungry philo-

sophers starve.

A word on our assumptions concerning the syn-

chronization of the different processors. We are

not assuming anything concerning the respective

rates of activity of the different philosophers, or

the overall scheduling. We may not, therefore,

exclude the possibility of an adversary scheduler

who would, for example, do his best to keep Plato

from eating, by awaking him only when one of his

neighbors is eating. We allow this adversary

scheduler to make use of all information ab~ut the

system, including the result of random draws per-

formed by processes, the values of the shared vari-

ables and the value of the private variables of each

protocol. This is an extremely severe assumption

which ensures that the protocols presented here

have very strong correctness properties. Other

works, in different situations, make less severe

assumptions ([41 and [11]) . This adversary sched-

uler, though, is not allowed to use information

about the results of future random draws. We have

134

to allow for the possibility of an adversary schedu-

ler because we assume that the interactions between

philosophers that we describe are only the visible

part of an iceberg of complex relations which we do

not know about and are not willing to study. This

is also a very sound principle of system design: we

are to assume that the worst is certain.

We use variables shared by two adjacent philo-

sophers and assume that both philosophers, will never

access a common variable of theirs exactly at the

same time (they have exclusive access to the varia-

ble) and that every philosopher that requests access

to a variable will eventually get access to it. In

other words, we assume that the problem of synchro-

nizing the access of a number (here, only two) of

processes to a shared variable is solved. The justi-

fication for this assumption is that the length of

time taken byan atomic action (reading, writing or

reading and writing) is very small compared with the

rate of activity of a philosopher. Therefore the

density of accesses is very small and we may assume

either that conflicts do not occur, or that they are

taken care of by the hardware. To fix ideas, we are

assuming that we are dealing with four different

orders of magnitude of time slices. The smaller one

is that of the atomic action on a variable (only the

shared variables are of interest) , say, a nanosecond.

The second one is the rate of activity of a philoso-

pher: the idle time between each activation which

is, say, of the order of a millisecond. The third

is the time needed for a meal which is, say, of the

order of a second. A philosopher is therefore will-

ing to suffer a number of failures before he may

eventually get to eat. The last one is the lifetime

of the system itself which we may assume to be of

the order of hours. Since, at the previously men-

tioned rates, each process participating in an actual

system will perform many millions of atomic actions,

the properties we are about to claim for our systems

in terms of unending computations, in practice apply

also to actual systems.

We are therefore justified in assuming that a

philosopher may, in one move and without risk of

being disturbed by or of disturbing a neighbor,

check that a chopstick is down on the table and pick

it up. As will be seen later the picking up and

putting down of a chopstick will be expressed by

a change in the value of a shared variable.

4. Deterministic Solutions

A very simple argument will now show that

there is no solution to the problem, satisfying the

constraints mentioned above, in which the philoso-

phers are deterministic processes.

Theorem 1. There is no deterministic, deadlock-

free, truly distributed and symmetric solution to

the dining philosophers problem.

Proof. Suppose there is a deterministic, truly

~ibuted and symmetric solution. We shall de-

fine a scheduler which will allow no philosopher to

eat, showing in this manner that no such solution

may be deadlock-free. For the proof’s sake, let us

number the philosophers in cyclic order from 1 to n

(this is an external naming and the philosophers

themselves are not aware of their own name). The

scheduler will activate each philosopher for a

single atomic action in the order 1 to n, then

repeat another similar round in which the philoso-

phers 1 to n are activated in turn, and so on. The

claim is that, if the configuration is symmetric

with respect to all philosophers at the beginning

of a round, then the configuration will again be

symmetric at the end of the round. Full details of

the proof will appear elsewhere.

The deterministic solution proposed by Francez

and Rodeh in [4] seems to contradict the claim we

just made. The solution to this apparent contradic-

tion is that there is no truly distributed determin-

istic implementation of CSP. L. Lamport [9] seems

to have been the first to notice this fact, and

Theorem 1 above, together with the CSP protocols

proposed in [4], constitutes formal proof of this

fact. Thus any truly distributed implementation

of CSP must be probabilistic and, in such an imple-

mentation, even terminating programs (for the seman-

tics of CSP) terminate only with probability one.

Such a probabilistic implementation of CSP is pKo-

posed in [4].

5. The Free Philosopher’s Algorithm

The gist of our idea is the following: since

the problem,,with any deterministic solution is the

symmetry which could keep recurring, we need a way

to break this symmetry. We shall incorporate free

choice into the protocols of the individual philo-

sophers, letting the laws of probability ensure

that, with probability one, the symmetry will be

broken.

We propose the following process for each philo-

sopher. In the program below, the function R is

the reflection function on {Right,Left}.

1 while true

2 do think;

3 ‘do trying:=true or die od;

4 Zile trying — —

5 do draw a random element s of {Right,Left};—
***with equal probabilities ***

6 wait until s chopstick is down

and then lift it;——
7 if R(s) chopstick is down

8 ‘then lift it;

9 trying:=false

10
11

else

put down s chopstick

12 fi

13 g; —

14 eat;

15 put down both chopsticks
*** one at a time, in an arbitrary order ***

16 od—.

Definition. A schedule S, for n philosophers, is

a function which assigns to every past behavior of

the philosophers, the philosopher Pi whose turn

is next to be active, i.e. , to perform an atomic

action. Under past behavior up to any given time,

we mean the complete sequence of atomic actions

and random draws with their results, up to that

time.

Following [11], for us a schedule is not merely

a fixed sequence of activations but, rather, is a

mapping which makes the next action depend on the

135

whole past behavior. This captures the idea that,

for any specific system, what will happen next de-

pends on the whole history of past successes and

failures of the processes to gain access to shared

resources, as well as on what has happened inter-

nally within the processes. Unlike [11], we do

include under past history the results of random

draws already made.

For a given schedule S and specific outcomes

of the random draws D (D is an infinite sequence

of elements of the set {Right,Left}), we get a

particular computation C = COM(S,D), which is an

infinite sequence of atomic actions. Note that a

computation is unending and embodies the total life-

span of the system. We shall use the term finite

computation to denote a finite sequence of atomic

actions. The ith element of a computation C is

the atomic action which takes place at time i. Note

that we assume that no two atomic actions take place

exactly at the same time in C; this restriction

could be easily lifted to allow atomic actions of

different processes, as long as they do not concern

the same shared variables, to take place exactly

at the same time.

Definition. A computation C is proper if, in C,

every philosopher is activated an infinite number of

times. A schedule S is called proper if, for every

sequence D of outcomes of the random draws, the

computation COM(S, D) is proper.

It follows from the explanations found after

the program, that, if a schedule S is proper then,

in every possible computation C = COM(S, D), no

philosopher quits while trying to eat, eating, or

exiting.

On the space of all possible outcomes of random

draws D we impose the uniform probability distri-

bution. The function COM then associates with

every schedule S a probability distribution on the

space of all computations,the probability of a set

E of computations being defined as the probability

of the set of sequences of random draws D such

that COM(S,D) is in E.

In the sequel we shall make no assumption on S,

except that it is proper. Our theorems, thus, ensure

that certain properties hold for every individual
proper schedule. We do not assume a probability

distribution on the space of schedules.

Our goal is to show that, in the system of the

free philosophers, a deadlock may occur only with

probability zero. We shall first define precisely

the events in question.

Definition. A deadlocked computation C is a com-

putation for which there exists a point t in time,

at which at least one philosopher is trying to eat,

but after which no philosopher eats. A philosopher

Pi is locked-out (or starving) in a computation C,

if there exists a time t at which Pi is trying

to eat, and after which Pi never eats.

For a fixed proper schedule S, the event of

being a deadlocked computation has a well defined

probability (the proof is left to the reader).

Denote DL(S) = Pr(D : C=COM(S,D) is deadlocked) .

We actually want to prove that, for every proper

schedule S, DL(S) = O.

The following lemmas refer to two philosophers,

Plato and Aristotle, where Plato is seated next and

to the left of Aristotle.

Lemma 1. If Plato picks up a chopstick an infinite

number of times but Aristotle picks up a chopstick

only a finite number of times, then, with probabil-

ity one, Plato eats an infinite number of times.

The exact meaning of the lemma is that the event

of Plato eating an infinite number of times has

probability one relative to the event described in

the hypotheses. The claim is meaningful only for

those schedules which attach a positive probability

to the hypotheses, and it should be understood that

the lemma applies only to those schedules. Proofs

for this and the following lemmas are omitted.

Lemma 2. In a deadlocked computation, every philo-

sopher picks up a chopstick an infinite number of

times, with probability one.

Lemma 3. Let F be a finite computation consisting

of t steps, such that, at time t, both Plato

and Aristotle are trying to eat, Plato’s last random

draw was Left and Aristotle’s last random draw was

Right. Consider all (infinite) computations C

which are continuations of F. Then, with probabil-

ity not less than one half: at least one of Plato

or Aristotle picks up a chopstick just a finite

number of times in C, or at least one of them gets

to eat in C, after his last random draw in F and

no later than two random draws after his last random

draw in F.

To each time instant there corresponds a con-

figuration of latest random draws. We shall say that

a configuration, A, and a later configuration B,

are disjoint if each philosopher has, between A

and B, performed a random draw.

Lemma 4. If every philosopher picks up a chopstick

an infinite number of times, and if, at time t, the

configuration of last random draws is A, then there

will arise, with probability one, a later configura-

tion B, disjoint from A, in which some philosopher’s

last random draw is Left while his right neighbor’s

last random draw is Right.

We now get to the main theorem concerning the

free philosophers.

Theorem 2. For every proper schedule S, DL(S) = O.

Proof. We shall prove the theorem by contradiction.

Assume that DL(S) >0. We may then talk about the

probability of events relative to a deadlock. By

Lemma 2, with probability one (relative to the event

of deadlocked computation) , every philosopher per-

forms an infinite number of random draws. By Lemma

4, there will arise, with probability one, an infi-

nite sequence of disjoint configurations of last

random draws satisfying the hypotheses of Lemma 3:

say AO, Al ,.. .,An... . BY Lemma 3, some philoso-

pher eats between An and An+2, for every n, with

probability one. We have shown that, relative to

tlie event of deadlocked computations, non-deadlocked

computations have probability one. We conclude that

a deadlock may occur only with probability zero.QED

136

6. Lockouts are Possible

As indicated in the introduction one would like

a lockout-free system. It may be shown that the

system proposed above is not lockout-free.

Theorem 3. The system of the free philosophers is

not lockout-free.

C.A.R. Hoare [5] has proposed a measure of the

quality of a solution to the dining philosophers
problem: the size of the longest chain of starving

philosophers that may occur. Though it is possible

that the protocols proposed above are quite satis-
factory in practice, we shall show that a schedule

may, with probability one, starve all but one philo-

sopher.

Theorem 4. For the system of n free philosophers,

there is a schedule which starves, with probability

one, n-1 philosophers.

The previous theorem throws light on why the

proof of Theorem 2 had to be delicate. No local

reasoning would succeed in showing that one of a

chain of philosophers sitting next to each other

will get to eat.

We shall now offer another solution which

guarantees that, with probability one, there will

be no lockout, i.e, nobody will starve.

7. The Courteous Philosopher’s Algorithm

The possibility for lockouts demonstrated in

Section 6 is due to the fact that a philosopher Pi

may be discourteous enough to pick up his neighbor’s

chopstick (on line 6), even if that neighbor is

trying to eat and Pi has alread eaten after his

neighbor’s most recent meal. By using a~onal

values for the variables shared by neighboring

philosophers, we can ensure courteous behavior and

obtain a lockout-free system. The courteous philo-

sopher is defined by the following process.

var Ieft-signal,right-signal : {On,Off};—

*** Left-signal is shared with left neighbor. ***

*** It is initially set to Off and iS set to On ***

*** when one becomes hungry and restored to ***

*** Off only after eating. ***

*** The left neighbor may read it but not ***

*** change it. ***

*** He refers to it as right-neighbor-signal . ***

*** s~etrically for right-signal. ***

read only var left-neighbor-signal ,right-neighbor——
signal : {Roff};

var—

Left-neighbor-signal is left neighbor’s ***

right signal. ***

left-last,right-last : {Left,Neutral,Right};

left-last is shared with left neighbor and ***

both may change it. ***

It indicates who ate last : left from chop-***

stick or right from chopstick. It is ***

initially on Neutral. ***

Left-last is the same as left neighbor’s ***

right-last. ***

1 while true— —
2 do think;

3 do trying:=true

4— left-signal:=On; right-signal:=On

5 or die—
6 g;

7 while trying

8 do

9 ‘draw a random element s of {Right,Left};

*** with equalprobabilities ***

10 wait until s chopstick is down——
11 and

12 (s-neighbor-signal = Off

13 or s-last = Neutral

14 ~ s-last = s)

15 and then li~ s chopstick——
16 if R(s) chopstick is down

17 ‘then lift it;

18 trying: =false

19

20
else

put down s chopstick

21 fi

22 *

23 eat;

24 left-signal:=Off; right-signal:=Off;

25 left-last:=Right; right-last:=Left;

26 put down both chopsticks

*** one at a time in any order ***

27 od—.

The following proof requires an ordering in

time of the meals of the philosophers. It turns out

that while there is no immediate natural way to

define a global order on the meals, we are able to

say when a philosopher’s meal preceded or followed

his neighbor’s meal. This local ordering suffices

for our proof. The methodology used here for

dealing with time in systems of concurrent proces-

ses may be useful, with appropriate modifications,

in other contexts.

When a philosopher eats he goes through the

following sequence of actions: picking up a first

chopstick (line 15), picking up a second chopstick

(line 17), setting his left-last variable to Right

(line 25), setting his right-last variable to Left

(line 25), and putting down both his chopsticks

(line 26). If, while performing the sequence

described above, a philosopher picks up his second

chopstick (line 17) at time tl and puts down the

first of the chopsticks he releases at time t2, we

shall say that his corresponding meal-interval is

[tl,t2] (this implies tl<t2).

Definition. We shall say that meal–interval [tl,t2]

precedes meal-interval [t3,t41 ([tl, t21 <[t3rt41)
if t2<t3.

Remark 1. The relation “precedes” is antireflexive

and transitive.

Remark 2. If [tl,t2] is a meal-interval of Plato,

then between time tl and time t2, Plato is the

only philosopher who has access to Plato’s left-last

and right-last variables (since Plato holds both

his chopsticks during this interval of time and no

philosopher ever changes his “last” variables unless

he holds both his chopsticks) and therefore at time

t2 Plato’s left-last variable is equal to Right

and his right-last variable to Left.

Remark 3. If, in a computation C, [tl, t2] is a

137

meal-interval of Plato and [t3,t4] a meal-interval [12] Rabin, M.O. The choice coordination problem

of Plato and [t3rt4] a meal-interval of Aristotle, Memorandum No. UCB/ERL M80/38, Univ. of Calif.

then either [tl, t2] < [t3, t4] or [t3, t4] < [tl, t2] Berkeley, August 1980.

(since a philosopher has both his chopsticks in

hazds during any meal-interval of his,and no two

neighbors may each have both their chopsticks in

hands at the same time) .

Theorem 5. If S is a proper schedule for a system

of courteous philosophers, then, with probability

one, a computation c = COM(S, D) is lockout-free.

8. Conclusions

The solution to the dining philosophers problem

presented here suggests an approach to the general

question of programming methodology which seems to

be opposed to the prevalent one, as illustrated in

particular in [11. There, the reproducible beha-

vior of programs is advocated as a necessary condi-

tion for debugging and it is claimed that, for

systems to be reliable, they must be built out of

components which themselves have a reproducible

behavior. Here the reliability of the system is

guaranteed even though the component processes may

have a totally irreproducible behavior.

References

[1] Brinch Hansen, P. Operating Systems Principles.

Prentice-Hall 1973.

[2] Brinch Hansen, P. Distributed processes, a con-

current programming concept. CACM 21, 11 (November

1978) .

[3] Dijkstra, E.W. Hierarchical ordering of sequen-

tial processes, Operating Systems Techniques,

Academic Press 1972.

[4] Francezr N. and Rodeh, M. A distributed abstract

data type implemented by a probabilistic communica-

tion scheme. I.B.M. Israel Scientific Center TR-080,

April 1980 (to be presented at 21st Annual Symposium

on F.O.C.S. , Syracuse Oct. 1980).

[5] Hoare, C.A.R. Towards a theory of parallel

programming, Operating Systems Techniques, quoted

above.

[6] Hearer C.A. R. Communicating sequential prOces-

ses. CACM 21, 8 (August 1978).

[7] Holt, R. C., Graham, G.S., Lazowska, E.D., and

Scott, M.A. Structured concurrent programming with

operating systems applications, Addison-Wesley 1978.

[8] Kaubisch, W. H., Perrotr R. H., and Hearer C.A. R.

Quasiparallel programming. Software and Experience,

Vol. 6 1976, Pp. 341-356.

[9] Lamport, L. Private communication, 1978.

[10] Rabin, M.O. Theoretical impediments to arti-

ficial intelligence, Information Processing 74
(Jack L. Rosenfeld ed.)r pp. 615-619.

[111 Rabin, M.O. N-process synchronization by

4.logN-valued shared variable, Technical Report

Forschungsinstitut fuer mathematik, ETH Zuerich,

March 1980, 21St Annual F.O.C.S. Symposium (1980) .

138

