Name:	
SSN :	

CSE 428

Fall 1997

Midterm #2 19 November 1997

The exam consists of 5 problems on 5 pages, totaling 100 points. Read each question carefully and use your time judiciously.

Write your name/number on every page.

1. Give the most general types for each of the following function declarations.

(20 pts)

(a) fun noc (x,w) = w::x;

(c) fun tc 0 f x = x |tc n f x = f(tc (n-1) f x);

 2. Using the following function definitions, give the value produced by each of the expressions (20 pts) below.

- (a) accumulate(noc,nil,[1,2,3])
- (b) tc 3 (fn n => n+1) 0

- (c) map(invert,[[(1,2)],[(3,4),(4,5)]])
- (d) map(map, [(fn n=>n+1,[1,2]), (fn n=>n+n,[1,2])])

- 3. Define the following concrete datatypes. Your definitions should represent exactly the (20 pts) trees specified nothing more and nothing less.
 - (a) A datatype for I-trees in which an I-tree is a node containing an integer value and having zero or more descendants, all of which are also I-trees. (A leaf is just a node with zero successors.)

(b) A datatype for 2-3 α -trees. A 2-3 α -tree is either a leaf containing an α -value, a node containing an α -value and having exactly 2 descendants, or a node containing an α -value and having exactly 3 descendants.

4. Recall the definition of Church numerals and booleans:

(20 pts)

$$\overline{n} = \text{fn f => fn x => f(f(...(f x)...))} \quad (n \text{ applications of f})$$

$$\overline{true} = \text{fn x => fn y => x}$$

$$\overline{false} = \text{fn x => fn y => y}$$

(a) Write the function churchnot which takes a church boolean and returns its complement. Your solution may not use tochurchbool, fromchurchbool, or any other expression of type bool.

(b) Write the function even which takes a church numeral and returns the churchboolean \overline{true} if the numeral represents an even number, and returns \overline{false} otherwise. Your solution may not use tochurch, fromchurch, tochurchbool, fromchurchbool, or any other expression of type bool or int.

- 5. For each of the following terms, give its β -normal form if it has one, or state that it has (20 pts) no β -normal form.
 - (a) $(\lambda x.\lambda y.x)(\lambda u.\lambda v.u)p(\lambda z.z)r$

(b) $(\lambda f.((\lambda x.f(x\,x))(\lambda x.f(x\,x))))(\lambda z.z)$

(c) $(\lambda x.\lambda y.\lambda z.(x\,z)(y\,z))(\lambda w.w)$

(d) $\lambda x.(x(\lambda y.y))$