Midterm #1 Solution

CSE 428 Fall 1998
7 October

1. For each of the following grammars, (20 pts)

e state whether or not it is ambiguous
e state any operator precedences which are enforced
e state any operator associativities which are enforced

Note that even if a grammar is ambiguous, it can still enforce operator precedences and

associativities.

(a)

E = E<“E|F
F = F“—}—”T | F“*”T | T
T — N | Id | cc(aaE“)n

Ambiguous (due to E“«” E);
Precedence: x < 4, —
+ and — are left-associative

(b)

E = E“F|F
F F4'G | G
G == T“G|T
T == N|Id|“CE“)”

Unambiguous ;
Precedence: x < 4+ < —
* and + are left-associative, — is right-associative

2. Recall the general form of let expressions: (20 pts)
let x1 = el;
x2 = e3;
xn = en
in e
endlet

The original operational semantics for expressions evaluated the e; sequentially, incre-
mentally adding new bindings to the environment. We also saw (in an assignment) how
to give an alternative semantics in which the e; are evaluated in parallel.

Give a precise description of when a let expression (such as the one above) will yield
the same value using either the sequential or parallel semantics for let in an arbitrary
environment p. l.e., what syntactic restrictions must be placed on let expressions to
ensure this behavior?

Answer: for all e;, (1 <j <n), ¢; cannot contain any z; for all 4, 1 <1 < j.

. Recall the typechecking rule for recursive function declarations:

Tf:7—>7x:71]ke:7
F'Ff(x) =e=T[f:7— 1]

Since we also added function calls to the language of expressions, we also need to add
typechecking rules for function calls:
I'(fy=1"—-7 Tkre:7
C'kfle):r

Let Ty = [f:integer — bool, g:integer — integer, x:bool, y:integer]. Using the rule above
for typechecking function calls (and all the original rules for typechecking expressions),
type each of the following expressions with respect to I'g. If the expression is not well-
typed, then write no type; otherwise, give the type of the expression.

(a) let x = g(y+1) +y
in f(x)
endlet

bool

(b) let f
y
in f(y)

endlet

£f(y);

f or x

no type

let x = 5 in f(x);
z and x

(c) let z
y
in y

endlet

bool

(20 pts)

(d) let g
y
in f£(y)

endlet

let £ = 5 in g(£);
f(g)

no type

4. Consider the following program: (20 pts)
program main

X,y : integer;

procedure lear()
X : integer;

begin
x =y + 1;
yi=x+y;

write(x,y);
end lear;

procedure gonerill()

y : integer;

begin
y :=x + 1;
lear();
write(x,y);

end gonerill;

begin main
x = 1;
y :=1;
gonerill();
write(x,y);
end main;

What is output by this program under

(a) static scoping: 23 12 13
(b) dynamic scoping3 5 15 11

5. Consider the following program: (20 pts)

program main
X,y : integer;

procedure regan(a,b :integer)

begin
a :=b + x;
b := a + x;

write(a,b);
end regan;

begin main

x :=1;
y = 2;
regan(x,y);

write(x,y);
end main;

What is output by this program if all parameters are passed using the following.

(a) call-by-value 34 1 2
(b) call-by-reference 3 6 3 6

