Name:
SSN

CSE 428
Fall 1997

Final Exam

16 December 1997

The exam consists of 10 problems on 8 pages, totaling 200 points. Read each question carefully
and use your time judiciously.

Write your name/number on every page.

1. Give the most general types for each of the following function declarations. Recall that (20 pts)
‘@’ is the infix append function.

datatype ’a tree = Lf of ’a | Node of ’a tree * ’a * ’a tree;

(a) fun f1 (Lf x) = x::nil
[f1 (Node(tl,x,t2)) = (£f1 t2) @ [x] @ (f1 t1);

(b) fun reduce(f,a,nil) = a
|reduce(f,a,x::xs) = f(x,reduce(f,a,xs));

(c) fun nfold(f,x,0)
|Infold(f,x,n)

x
f(nfold(f,x,n-1));

(d) fun bfc n = n(0, fn k=>k+1);

2. Which of the following grammars are unambiguous ? You may assume the nonterminals (20 pts)

N and Id unambiguously generate integers and identifiers, respectively. The symbols “+”

Wk

and are terminal symbols.

(a) Ex=N |Id|E+Id| ExId

(b) Ex=N |Id|E+1d|Id«E

(¢) Ex=N|Id|EE + |EE »

() Ex=N|Id|E+E|E+E

3. Recall the definition of Church numerals and booleans: (20 pts)

n = fn f => fn x => £(£(...(f x)...)) (n applications of f)
true = fn x => fn y => x
false = fnx =>fny=>y

Also recall the definition of churchnot and even:

fun churchnot cb = cb (fn x => fn y => y) (fn x => fn y => x)
fun even cb = cb churchnot (fn x => fn y => x);

(a) Write the function churchxor which takes a pair of Church booleans and returns
their exclusive OR (also represented as a Church boolean). Your solution may
not use tochurchbool, fromchurchbool, or any other expression of type bool.

(b) Write the function mod2 which takes a Church numeral n and computes n mod 2,
returning the result as a Church numeral. Your solution may not use tochurch,
fromchurch, tochurchbool, fromchurchbool, or any other expression of type
bool or int.

4. Indicate which of the following A-terms are in -normal form. (20 pts)

(a) Af-an.(bn(Az.Ay.x) (f (pn)))

(b) Af((Az-f(z2)) Az f(z2)))

(¢) Az Ay Az.(z 2(y z) Aw.w))

(d) Az.(z (Ay-y))

5. Write a first-order formula which expresses the property that integers n and m are rela- (10 pts)
tively prime (n and m have no common divisors except for 1).

6. Which of the following partial correctness assertions are valid? (20 pts)

@ {X>Y} X =X-Y{X>0AX>Y}

(b) {X *Y >0} while X #0 do X := X —2end do {X =0}
(c) {true} if X > 0 then X := X else X := —-X {X >0}

@ {X=T+1} X =X+1{X =1}

7. Consider the following program: (30 pts)
program main

i,j,k : integer;

procedure bianca(a : integer)
k : integer;

begin
k :=a+ j;
joi=1+ j+1;

write(a,j,k);
end bianca;

procedure kate(b : integer)
j : integer;
begin
joi=1+1;
bianca(b+j);
write(k,j);
end kate;

begin main

i:=1;
j :=1;
k :=1;
kate(j);

write(i,j);
end main;

What is output by this program under call-by-value parameter passing and

(a) static scoping

(b) dynamic scoping

8. Consider the following program: (20 pts)

program main
i,j,k : integer;

procedure grumio(a,b,c :integer)

begin
a:=Db+ j;
b =1+ a;
c :=k + 1;

write(a,b,c);

end grumio;

begin main

i:=1;
Jj =2
k := 3;

grumio(i,j,k);
write(i,j,k);
end main;

What is output by this program if all parameters are passed using the following (state
any assumptions you need to make).

(a) call-by-value

(b) call-by-value-result

(c) call-by-reference

9. Give the inference rule for type checking the conditional expression
if e; then ey else e3

Your rule should specify how to type this expression in a context I'. Recall that the
judgment for typechecking expression e is of the form I' e : 7.

10. Extend the following fragment of the function typecheck: (context * term) -> tp to
handle the case for conditional expressions. Assume the conditional expression (if e;
then ey else e3) is represented as the data object Cond(el,e2,e3) as specified by the
given datatype declaration .

datatype tp = Int | Bool | --> of tp * tp | ** of tp * tp;
datatype term = I of int | ... | Cond of term * term * term;

type context = (string * tp) list;
infixr -->;
infixr *%*;

exception untypeable;

fun typecheck(G, I n) = Int
|typecheck (G, pair(el,e2)) = (typecheck(G,el) ** typecheck(G,e2))

| typecheck (G, Cond(el,e2,e3)) =

(20 pts)

(20 pts)

