Quantitative Information
Leakage

Lecture 9



The basic model:

Systems = Information-Theoretic channels
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Towards a quantitative notion of leakage

A general principle:

Leakage =  difference between

the a priori vulnerability
and
the a posteriori vulnerability

e vulnerability = vulnerability of the secret,

e a priori/ a posteriori = before / after the observation

Intuitively the vulnerability depends on the distribution: the more uncertainty
there is about the exact value of the secret, the less vulnerable the secret is.

Note that the observation updates the input probability:

o|s
p(s)p( ) Bayes theorem

p(slo) = (o) )



Information theoretic approach

® Entropy H(X) of a random variable X

® Information theory: H(X) measures the degree of uncertainty of
the events

® Security: H(X) can be used to measure the vulnerability of the secret

® Mutual information [(S;0)

® [nformation theory: I(S;O) measures the correlation of S and O
e formally I(S;O) is defined as difference between:

e H(S), the entropy of S before knowing, and
* H(S5|O), the entropy of S after knowing O

® Security: I(S;O) can be used to measure the leakage:
Leakage = I(S;0) = H(S) — H(S|O)

® H(S) depends only on the prior; H(S|O) can be computed using the
prior and the channel matrix
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Shannon entropy

A priori ZP ) log p(s
A posteriori  H(S | O) ZP ZP ) log p(s|o)

Leakage = Mutual Information [(5;0) = H(S) — H(S|O)

* In general H(S) = H(S|O)

* the entropy may increase after one single observation, but in the average it
decreases or remains the same

 H(S) = H(S|]O) if and only if S and O are independent
* This is the case if and only if all rows of the channel matrix are the same

e This case corresponds to strong anonymity in the sense of Chaum

e Shannon capacity C = max I(S;O) aver all priors (worst-case leakage)



Entropy: Alternative notions

4 p
As we argued before, there is no unique notion of vulnerability.

It depends on:
® the model of attack, and

® how we measure its success
- J

4 )

Consider again the general model of adversary proposed by [Kopf and
Basin CCS’07] that we saw before:

® Assume an oracle that answers yes/no to questions of a certain form.

® The adversary is defined by the form of the questions and the measure
of success.

® |n general we consider the best strategy for the adversary, with
respect to a given measure of success.




Entropy: Alternative notions

4 )
We saw that if

* the questions are of the form: “is S € P ?”, and

* the measure of success is: the expected number of questions
needed to find the value of S in the adversary’s best strategy

then the natural measure of protection is Shannon’s entropy
. J

4 )

However, this model of attack does not seem so natural in security, and
alternatives have been considered. In particular, the limited-try attacks

® The adversary has a limited number of attempts at its disposal

® The measure of success is the probability that he discovers the secret
during these attempts (in his best strategy)

-

J

Obviously the best strategy for the adversary is to try first
the values which have the highest probability
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One try attacks: Renyi min-entropy

4 p
One-try attacks

® The questions are of the form: “is S = s7”

® The measure of successis:  — log(maxp(s))

. Y,
s D
The measure of success is
Renyi min-entropy:

Hoo(S) = —log(max p(s))

\_ J

(" Like in the case of Shannon entropy, H..(.S) is highest
when the distribution is uniform, and it is 0 when the
distribution is a delta of Dirac (no uncertainty).

\ J




Towards a notion of leakage based on min-entropy

4 p
Leakage =  difference between

the a priori vulnerability

and

the a posteriori vulnerability
\ J
[ Leakage = Hw(S)— Ho(S| O) J
4 )

How should we define the conditional min-
entropy He(S| O) !




Let us recall the conditional entropy in Shannon’s case

Z p(s)log p(s Shannon entropy
4 L )
An observable o determines a new distribution on S:
0|S
p(slo) = p(s)p( ) Bayes theorem
L p(o) y
4 )
Define the entropy of the new distribution on 5, given that O = o, as:
H(S|0 =0) = —Zp ) log p(s|o)
. J
4 )

Define conditional entropy as the expected value of the updated entropies:

H(S|0) = Zp H(S|0 = o)
= —Zp Zp ) log p(s|o)




Let us try to do the same for the min-entropy case

H (S) = — log(max p(s)) Rényi min-entropy
S

4 )

Define the entropy of the new distribution on S, given that O = o, as:

Hao(S|0=0) = - log(maxp(s|o))
S

. J
4 )

Define conditional entropy as the expected value of the updated entropies:

Heo(8|0) = Zp ~(S|0 = 0)
— —Zp ) log max(s]o))

- J

However this approach does not work: we would obtain negative leakage!



Conditional min-entropy

4 )
Probability of success of an attack on S, given that O = o:
Preyee (S|O =0) = msaxp(s|0)
. J

The expected value of the prob. of success (aka converse of the Bayes risk):
Prsyec(S]O) Zp ) Pryec(S|O = o)
S max p(s]o)
= 3" max(p(ols) p(s))
G 0 J

[Now define Ho(S|0O) = —log Prgycc(S|O)  [Smith 2009]]

12




Leakage in the min-entropy approach

A priori Ho.(S) = —log max p(s)
A posteriori ~(5]0) = lomeaX (o|s) - p(s))

Leakage = min-Mutual Inf.  [(5;0) = Ho(S) — H(5|0)



Example: DC nets. Ring of 2 nodes, b = 1, biased coin

Input S: no , ni

no Output O: the declarations of 7 and no: didoe {01,10}
Nnj 0.8 4
0.6 4 ’x" .......... b
Biased c.: p(0) = %5 p(1) = /3 T
0.4 J H . (S)
01 10
no | %5 13 =
1 2
ni /3 /3 ("' T T T - $=p(n0)




Properties of the leakage
in the min-entropy approach

* In general 1x(5;0) > 0
* [x(S5;0) = 0if all rows are the same (but not viceversa)

* Define min-capacity: Co = max I« (S;O) over all priors.VWe have:
|. Co =0 if and only if all rows are the same

2. Cw is obtained on the uniform distribution (but, in general, there can
be other distribution that give maximum leakage)

3. Cw = the log of the sum of the max of each column
4. Co = C in the deterministic case

5. Co = C in general



Leakage in the min-entropy approach

e C is obtained on the uniform distribution
¢ Cw = the sum of the max of each column

Proof (a) 1.(5;0) = H.(S)- H.(50)

= —logmax, p(s — log Zmax (o|s) p(s))))

> (max p(ofs)) (max p(s))

o

< log

maxs p(s)

= log Z max p(o|s)

(b) This expression is also given by 1x(S;O) on the uniform input distribution
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More properties of the leakage

e H(S) = Ho(S) =0 iff Sis a point probability distribution (aka
delta of Dirac), i.e., all the probability mass is in one single value

e The maximum value of H(S) and H(S) is log #S

e Shannon mutual information is symmetric: 1(S;0) = I(O;S)
Namely: H(S) - H(S|O) = H(O) - H(O|S).
This does not hold for the min-entropy case

e If the channel is deterministic, then [(S;0) = H(O)

* If the channel is deterministic, then Cx= C = log #O

|7



S ={a,b}
pla) =z pb)=1-z

\_

15 T
{ I':] -\'\_.
0.751
0501 f S Y [m— 7
|||'I ‘ I'll T HZ (LS')
0254 / AR
Il /7 II
I|I . : v. III
04 : 4
0 025 1

N\

Renyi min-entropy vs. Shannon entropy

.
Rényi min entropy and conditional entropy are the log of piecewise linear functions

J
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S ={a,b,c}
p(a) =z p(b) =y




Shannon capacity vs. Rényi min-capacity

binary channel a | 1-a
1-b

Shannon capacity Rényi min-capacity

In general, Rényi min capacity is an upper bound for Shannon capacity
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How N

Exercises

. Prove that 1o(S;0) = 0

Prove that if all rows of the channel matrix are equal, then 1(5;0) =0
Prove that all rows of the channel matrix are equal if and only if Ce = 0

Compute Shannon leakage and Rényi min-leakage for the password
checker (the version where the adversary can observe the execution
time), assuming a uniform distribution on the passwords
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