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The basic model: 
Systems = Information-Theoretic channels

Observables

......

o1

on

System

Secret Information

Input Output

s1

sm

2



A general principle:

Leakage    =      difference between
the a priori vulnerability
and        
the a posteriori vulnerability

• vulnerability = vulnerability of the secret, 

• a priori / a posteriori = before / after the observation

Intuitively the vulnerability depends on the distribution:  the more uncertainty 
there is about the exact value of the secret, the less vulnerable the secret is.
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Towards a quantitative notion of leakage

p(s|o) = p(s)
p(o|s)
p(o)

Bayes theorem

Note that the observation updates the input probability:



Information theoretic approach

• Entropy H(X) of a random variable X  
• Information theory:  H(X) measures the degree of uncertainty of 

the events

• Security: H(X) can be used to measure the vulnerability of the secret 

• Mutual information    I(S;O)
• Information theory:  I(S;O) measures the correlation of S and O

• formally I(S;O) is defined as difference between:

• H(S), the entropy of S before knowing, and 

• H(S|O), the entropy of S after knowing O

• Security: I(S;O) can be used to measure the leakage:

• H(S) depends only on the prior;  H(S|O) can be computed using the 
prior and the channel matrix
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Leakage  =  I(S;O)  =  H(S)  −  H(S|O)



Shannon entropy
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• In general  H(S) ≥ H(S|O) 

• the entropy may increase after one single observation, but in the average it 
decreases or remains the same

• H(S) = H(S|O) if and only if S and O are independent
• This is the case if and only if all rows of the channel matrix are the same

• This case corresponds to strong anonymity in the sense of Chaum

• Shannon capacity C = max I(S;O) over all priors  (worst-case leakage)

A priori

A posteriori H(S | O) = �
X

o

p(o)
X

s

p(s|o) log p(s|o)

H(S) = �
X

s

p(s) log p(s)

Leakage  =  Mutual Information I(S;O) = H(S)�H(S|O)



Entropy:  Alternative notions

Consider again the general model of adversary proposed by [Köpf and 
Basin CCS’07] that we saw before:            

• Assume an oracle that answers yes/no to questions of a certain form.  

• The adversary is defined by the form of the questions and the measure 
of success.

• In general we consider the best strategy for the adversary, with 
respect to a given measure of success.  
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As we argued before, there is no unique notion of vulnerability.  
It depends on: 

• the model of attack, and 

• how we measure its success
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However, this model of attack does not seem so natural in security,  and 
alternatives have been considered. In particular, the limited-try attacks 

• The adversary has a limited number of attempts at its disposal

• The measure of success is the probability that he discovers the secret 
during these attempts (in his best strategy)

Entropy:  Alternative notions
We saw that if

• the questions are of the form:  “is S ∈ P ?”,  and

• the measure of success is:  the expected number of questions 
needed to find the value of S in the adversary’s best strategy

then the natural measure of protection is Shannon’s entropy

Obviously the best strategy for the adversary is to try first 
the values which have the highest probability 



8

 One-try attacks  

• The questions are of the form:   

• The measure of success is:    � log(max

s
p(s))

“is S = s ?”

One try attacks:  Rényi min-entropy

The measure of success is 
Rényi min-entropy: H1(S) = � log(max

s
p(s))

Like in the case of Shannon entropy,               is highest 
when the distribution is uniform, and it is 0 when the 
distribution is a delta of Dirac (no uncertainty). 

H1(S)



Towards a notion of leakage based on min-entropy
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Leakage    =      difference between
the a priori vulnerability
and        
the a posteriori vulnerability

Leakage    =     H∞( S ) − H∞(S | O )

How should we define the conditional min-
entropy H∞(S | O )  ?



Define the entropy of the new distribution on S,  given that O = o, as: 

H(S|O = o) = �
X

s

p(s|o) log p(s|o)

Let us recall the conditional entropy in Shannon’s case
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Define conditional entropy as the expected value of the updated entropies:

H(S|O) =

X

o

p(o) H(S|O = o)

= �
X

o

p(o)
X

s

p(s|o) log p(s|o)

p(s|o) = p(s)
p(o|s)
p(o)

Bayes theorem

An observable o determines a new distribution on S:

H(S) = �
X

s

p(s) log p(s) Shannon entropy



Define the entropy of the new distribution on S,  given that O = o, as: 

Let us try to do the same for the min-entropy case
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Define conditional entropy as the expected value of the updated entropies:

H1(S|O = o) = � log(max

s
p(s|o))

H1(S|O) =

X

o

p(o) H1(S|O = o)

= �
X

o

p(o) log(max

s

(s|o))

However this approach does not work: we would obtain negative leakage!

H1(S) = � log(max

s
p(s)) Rényi min-entropy



Conditional min-entropy
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Probability of success of an attack on S,  given that O = o: 

Prsucc(S|O = o) = max

s
p(s|o)

Now define H1(S|O) = � log Prsucc(S|O) [Smith 2009]

The expected value of the prob. of success (aka converse of the Bayes risk):

Prsucc(S|O) =

X

o

p(o) Prsucc(S|O = o)

=

X

o

p(o)max

s

p(s|o)

=

X

o

max

s

(p(o|s) p(s))



Leakage in the min-entropy approach
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A priori

A posteriori

Leakage  =  min-Mutual Inf.

H1(S) = � logmax

s
p(s)

H1(S|O) = � log

X

o

max

s

(p(o|s) · p(s))

I1(S;O) = H1(S)�H1(S|O)



Example: DC nets.  Ring of 2 nodes, b = 1, biased coin
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Input S:  n0 , n1

Output O:  the declarations of n1 and n0:  d1d0 ∈ {01,10}n0

n1

Biased c.:  p(0) = ⅔ p(1) = ⅓ 

01 10

n0 ⅔ ⅓
n1 ⅓ ⅔ x = p(n0)



Properties of the leakage                          
in the min-entropy approach
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• In general  I∞(S;O) ≥ 0 

• I∞(S;O) = 0 if  all rows are the same (but not viceversa)

• Define min-capacity:  C∞ =  max I∞(S;O) over all priors. We have:

1. C∞ = 0 if and only if all rows are the same 

2. C∞ is obtained on the uniform distribution (but, in general, there can 
be other distribution that give maximum leakage)

3. C∞ = the log of the sum of the max of each column  

4. C∞ =  C  in the deterministic case

5. C∞ ≥ C  in general 



Leakage in the min-entropy approach
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• C∞ is obtained on the uniform distribution 
• C∞ = the sum of the max of each column  

Proof

(b)  This expression is also given by  I∞(S;O) on the uniform input distribution 

I1(S;O) = H1(S)�H1(S|O)

= � logmax

s

p(s)� (� log(

X

o

max

s

(p(o|s) p(s))))

= log

X

o

max

s

(p(o|s) p(s))

maxs p(s)

 log

X

o

(max

s

p(o|s)) (max

s

p(s))

maxs p(s)

= log

X

o

max

s

p(o|s)

(a)



More properties of the leakage 

• H(S) = H∞(S) = 0  iff  S is a point probability distribution (aka 
delta of Dirac), i.e., all the probability mass is in one single value

• The maximum value of H(S) and H∞(S) is   log #S

• Shannon mutual information is symmetric:   I(S;O) = I(O;S)  
Namely:         H(S) - H(S|O)  =  H(O) - H(O|S).                             
This does not hold for the min-entropy case

• If the channel is deterministic, then    I(S;O)  =  H(O)

• If the channel is deterministic, then  C∞= C = log #O
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H∞(S)

x

y

H(S)

y

x

H∞(S)

Rényi min-entropy vs. Shannon entropy
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x

S = {a, b}
p(a) = x p(b) = 1� x

S = {a, b, c}
p(a) = x p(b) = y p(c) = 1� (x+ y)

Rényi min entropy and conditional entropy are the log of piecewise linear functions



Shannon capacity vs. Rényi min-capacity
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a 1-a

b 1-b

Shannon capacity Rényi min-capacity

binary channel

In general, Rényi min capacity is an upper bound for Shannon capacity



Exercises

1. Prove that I∞(S;O) ≥ 0

2. Prove that if all rows of the channel matrix are equal, then I∞(S;O) = 0

3. Prove that all rows of the channel matrix are equal if and only if C∞ = 0

4. Compute Shannon leakage and Rényi min-leakage for the password 
checker (the version where the adversary can observe the execution 
time), assuming a uniform distribution on the passwords 
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