Quantitative approaches
to information protection

Course in Pisa, April 2014
Lecture 4



Reényi min-entropy vs. Shannon entropy
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Rényi min entropy and conditional entropy are the log of piecewise linear functions
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Reényi min-entropy vs. Shannon entropy
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In the second figure, the “dome” represents Shannon entropy



Shannon capacity vs. Rényi min-capacity

binary channel a |1-a
1-b

Shannon capacity Rényi min-capacity

In general, Renyi min capacity is an upper bound for Shannon capacity



Limitations of min-entropy leakage

® Min-entropy leakage implicitly assumes an
operational scenario where adversary ‘A benefits

only by guessing secret S exactly, and in one try.

® But many other scenarios are possible:
® Maybe A can benefit by guessing S partially or approximately.
® Maybe A is allowed to make multiple guesses.

® Maybe A is penalized for making a wrong guess.

® How can any single leakage measure be
appropriate in all scenarios!?



Notation

TT prior probability
X, X1, X2 ... X secrets
X,¥1,Y2 ... Y observables

W, Wi, W2 ... W guesses
(they may be different from the secrets)



Gain functions and g-leakage

We generalize min-entropy leakage by introducing gain functions to
model the operational scenario.

In any scenario, there is a finite set W of guesses that A can make
about the secret.

For each guess w and secret value X, there is a gain g(w,x) that ‘A
gets by choosing w when the secret’s actual value is x.

Definition: gain function g : W x X — [0, |]
Example: Min-entropy leakage implicitly uses
1,if w=x
gia(wix) = 0, otherwise
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g-vulnerability and g-leakage

® Definition: Prior g-vulnerability:

[Vg[Tr] = maxw X x TT[x]g(w,x) ]

“A’s maximum expected gain, over all possible guesses.”

® Posterior g-vulnerability:

| VaIT.Cl = 5 p(y) Valpy] |

® g-leakage: L4(TT,C) = logV,[TT,C] - log V[ TT]

® g-capacity: MLg(C) = supn Lg(11,C)

8



The power of gain functions

Guessing a secret approximately. Guessing a property of a secret.
g(w,x) = 1 - dist(w,x) g(w,x) = Is x of gender w?
@ - @
Guessing a part of a secret. Guessing a secret in 3 tries.
g(w, x) = Does w match the high-order bits of x? g3(w, x) = Is x an element of set w of size 3?

Dictionary:

superman

history123



Distinguishing channels with gain functions

® Two channels on a uniformly distributed, 64-bit x:

A. y = (x or 00000... Olll);
B. if(x7% 8==0) theny =x; else y=1;

® A always leaks all but the last three bits of x.

® B |eaks all of x one-eighth of the time, and almost nothing seven-eighths of the
time.

® Both have min-entropy leakage of 61.0 bits out of 64.

® VWe can distinguish them with gain functions.
® g3 which allows 8 tries, makes A worse than B.

® giiser, Which gives a penalty for a wrong guess (allowing
“1” to mean “don’t guess”) makes B worse.



Robustness worries

Using g-leakage, we can express precisely a rich variety
of operational scenarios.

But we could worry about the robustness of our
conclusions about leakage.

The g-leakage L4(TT,C) depends on both 1T and g.

® TT models adversary A’s prior knowledge about X

® g models (among other things) what is valuable to A.

How confident can we be about these?

Can we minimize sensitivity to questionable
assumptions about TT and g?



Capacity results

Capacity (the maximum leakage over all priors) eliminates
assumptions about the prior TT.

Capacity relationships between different leakage measures
are particularly useful.

Theorem: Min-capacity is an upper bound on Shannon
capacity: ML(C) = SC(C).

Theorem (“Miracle”): Min-capacity is an upper bound on g-
capacity, for every g: ML(C) = MLy (C).

® Hence if C has small min-capacity, then it has small g-leakage under every prior and every
gain function.

® (But g does affect the prior g-vulnerability.)



Robust channel ordering

® Given channels A and B on secret input X, the
question of which leaks more will ordinarily depend
on the prior and the particular leakage measure
used.

® |s there a robust ordering?

® This could allow a stepwise refinement methodology.
® This is arguably indispensable for security.
® Anything that we think is “unlikely in practice” is arguably more likely,

since adversaries are thinking about what we are thinking, and trying
to exploit it!
® For deterministic channels, a robust ordering has

long been understood: the Lattice of Information
[Landauer & Redmond ’93].

13



The Lattice of Information

® A deterministic channel from X to Y induces a partition on X:

secrets are in the same block iff they map to the same output.
® Example: Ceountry Mmaps a person x to the country of birth.

Ccountry S partition: m

® Partition refinement C: Subdivide zero or more of the blocks.

® Example: Cstate also includes the state of birth for Americans.

Cs'l'a'l'e's pClI"TITIOI’\:

® CCOUI’\tI’)’ E Cstate



Partition refinement and leakage

e |f A C B, the adversary never prefers A to B.
® |nterestingly, the converse also holds.
® Theorem [Yasuoka &Terauchi’l0, Malacaria’l |]
ACB
iff

A never leaks more than B on any prior, under any of the standard
leakage measures (Shannon-, min-, and guessing entropy. The latter is
the expected number of questions of the form “is S=s?” to figure out
the secret entirely).

® Hence C is an ordering on deterministic channels with both a
structural and a leakage-testing characterization.

® Can we generalize it to probabilistic channels?
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Composition refinement

® Note that Ceountry is the composition of Cseace and
Crnerge, Where Cmerge post-processes by mapping all
American states to USA.

Ccountry - Cstate Cmerge

® Def: AL, B(“Ais composition refined by B”) if there
exists a (post-processing) C such that A = BC.

® On deterministic channels, composition refinement C, coincides with

partition refinement LC.
® So L, generalizes C to probabilistic channels.



Strong leakage ordering

® Def:A <nmin B if the min-entropy leakage of A never
exceeds that of B, for any prior TT.

4 - 2/3 1/3 3 - 1/2 1/2 0
- 2/3 1/3 - 1/2 0 1/2
1/4 3/4 0 1/2 1/2

® |t turns out that A <min B, even though A Z, B.

® Def:A <; B (“A never out-leaks B”) if the g-leakage of A never
exceeds that of B, for any prior TT and any gain function g.



Relationship between Eoand <

® Theorem: [Generalized data-processing inequality]

If A Co B then A < B.

® |Intuitively, the adversary should never prefer BC to B.

® Theorem:[“Coriaceous Conjecture”]

If A <g B then A C, B.

® Conjectured for a long time. Proved by Mclver et al. in 2014 using
geometrical techniques (the Separating Hyperplane Lemma).

® So we have an ordering of probabilistic channels, with both
structural and leakage-testing significance.



Mathematical structure of channels under C,

® L, is only a pre-order on channel matrices.

® But channel matrices contain redundant structure with
respect to their abstract denotation as mappings from priors
to hyper-distributions.

1 0 O 2/5 0O 3/5
1/4 1/2 1/4 1/10 3/4 3/20
1/2 1/3 1/6 1/5 1/2 3/10

C and D are actually the same abstract channel!

® Theorem: On abstract channels, C, is a partial order.

® PBut it is not a lattice.
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Limits of the information-theoretic perspective

® |n all the leakage measures we have discussed, the particular
names of outputs are abstracted away.

® We thus model information-theoretic rather than
computationally-bounded adversaries.

® Consider channels taking as input a prime p:
® A outputs pZ.

® B randomly chooses another prime q and outputs pq.

® A and B both leak p completely.

® They are the same as abstract channels.

® But, given standard assumptions about factorization, a
computational measure of leakage would judge A to leak
much more than B.
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Exercises

Consider again the two programs A and B on a uniformly
distributed, 64-bit x:

A. y = (x or 00000... 0lIT);
B. if(x7% 8==0) theny =x; else y=0;

8. Show that they both have min-entropy leakage 61 bits.

9. Define gs, which allows 8 tries, and show that it makes A
worse than B.

0. Define giiger, Which gives a penalty for a wrong guess
(allowing guess “_L” to mean “don’t guess’) and show that it

makes B worse. For simplicity, allow griger to range in [-1, 1]
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Exercises

| 1. Prove the miracle theorem:

Min-capacity is an upper bound on g-capacity for every g, i.e.,

ML(C) = ML(C).
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