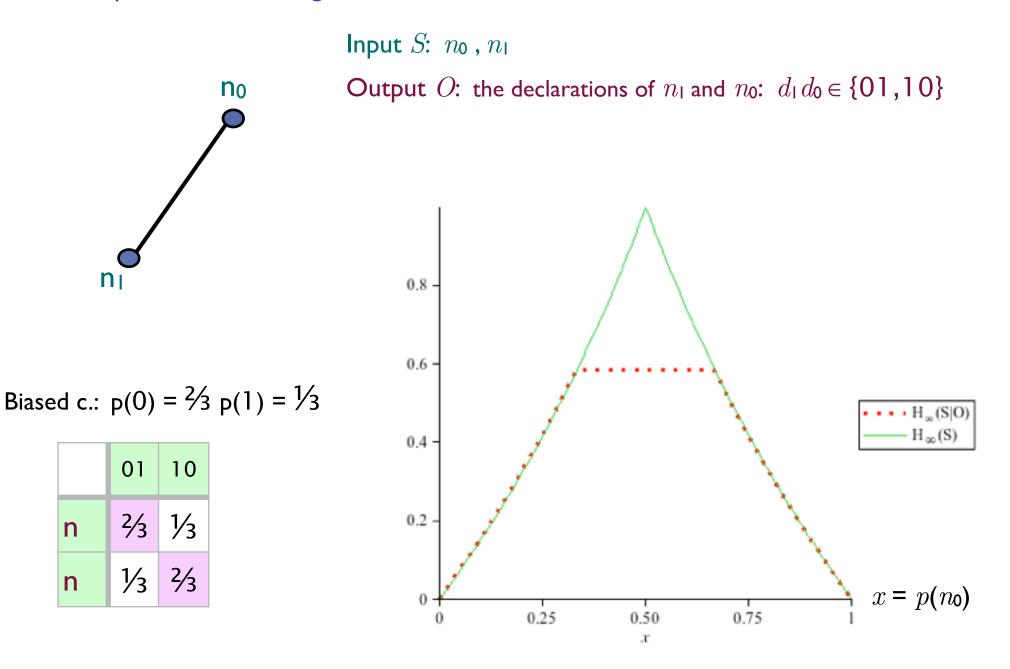
Quantitative approaches to information protection

Course in Pisa, April 2014 Lecture 3

Leakage in the min-entropy approach



Example: DC nets. Ring of 2 nodes, b = 1, biased coin



Properties of the leakage in the min-entropy approach

- In general $I_{\infty}(S;O) \ge 0$
- $I_{\infty}(S;O) = 0$ if all rows are the same (but not viceversa)
- Define min-capacity: $C_{\infty} = \max I_{\infty}(S;O)$ over all priors. We have:

I. $C_{\infty} = 0$ if and only if all rows are the same

- 2. C_{∞} is obtained on the uniform distribution (but, in general, there can be other distribution that give maximum leakage)
- 3. C_{∞} = the log of the sum of the max of each column
- 4. $C_{\infty} = C$ in the deterministic case
- 5. $C_{\infty} \ge C$ in general

Leakage in the min-entropy approach

- $\bullet\ C_\infty$ is obtained on the uniform distribution
- C_{∞} = the sum of the max of each column

Proof (a) $I_{\infty}(S;O) = H_{\infty}(S) - H_{\infty}(S|O)$ $= -\log \max_{s} p(s) - (-\log(\sum_{o} \max_{s}(p(o|s) p(s))))$ $= \log \frac{\sum_{o} \max_{s} (p(o|s) p(s))}{\max_{s} p(s)}$ $\leq \log \frac{\sum_{s} (\max_{s} p(o|s)) (\max_{s} p(s))}{\max_{s} p(s)}$ $= \log \sum \max_{s} p(o|s)$

(b) This expression is also given by $I_{\infty}(S;O)$ on the uniform input distribution

Exercises

- 4. Prove that $I_{\infty}(S;O) \ge 0$
- 5. Prove that if all rows of the channel matrix are equal, then $I_{\infty}(S;O) = 0$
- 6. Prove that all rows of the channel matrix are equal if and only if $C_{\infty} = 0$
- 7. Compute Shannon leakage and Rényi min-leakage for the password checker (the version where the adversary can observe the execution time), assuming a uniform distribution on the passwords