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Information theory: useful concepts

• Entropy H(X) of a random variable X  	

• A measure of the degree of uncertainty of the events	


• It can be used to measure the vulnerability of the secret, i.e. how 
“easily” the adversary can discover the secret	


• Mutual information    I(S;O)	

• Degree of correlation between the input S and the output O	


• formally defined as difference between:	


• H(S), the entropy of S before knowing, and 	


• H(S|O), the entropy of S after knowing O	


• It can be used to measure the leakage:	


!
!

• H(S) depends only on the prior;  H(S|O) can be computed using the 
prior and the channel matrix
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Leakage  =  I(S;O)  =  H(S)  −  H(S|O)



Entropy and Operational Interpretation

A general model of adversary [Köpf and Basin, CCS’07]:            	


• Assume an oracle that answers yes/no to questions of a certain form.  	


• The adversary is defined by the form of the questions, and the 
measure of success of the attack.	


• In general we consider the best strategy for the attacker, with respect 
to a given measure of success.  

3

In the realm of security,  there is no unique notion of entropy.                     
A suitable notion of entropy should have an operational interpretation 
in terms of the kind of adversary we want to model , namely: 	


• the kind of attack, and 	


• how we measure its success



Entropy
Case 1: 	


• The questions are of the form:  “is S ∈ P ?”	


• The measure of success is:  the expected number of questions 
needed to find the value of S in the attacker’s best strategy
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Exercise : guessing a password in case of uniform distribution 

It is possible to prove that the best 
strategy for the adversary is to split each 
time the search space in two  subspaces 
with probability masses as close as 
possible. This gives an almost perfectly 
balanced tree in terms of masses.

Example:   S ∈ { a, b, c, d, e, f, g, h }



Entropy: Case 1
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In the best strategy, the number of questions needed to determine the 
value of the secret S,  when S = s,   is:   − log p(s)   (log is in base 2)

H(S) = �
X

s

p(s) log p(s)

hence the expected number of question is:

This is exactly the formula for Shannon entropy 

This is in case we can construct a perfectly balanced tree	

In most cases we can only construct an almost perfectly balanced tree, 	

so this formula is an approximation. 

Conclusion: For this model of adversary, the degree of protection of the secret,  
i.e., the degree of difficulty for the adversary to perform his attack,  is measured by 
Shannon entropy



Shannon entropy: information-theoretic int.
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Information-theoretic interpretation:  

H(S) is the expected length of the optimal encoding of the values of S	

For the strategy in previous example:  a: 01  b: 10  c: 000  d: 111  e: 0010  f: 0011  g: 1100  h: 1101	




Shannon entropy: properties
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If |S| = n, and the distribution is uniform, then H(S) = log n

In general, the entropy is highest when the distribution is uniform

p(a) = p(b) = 1
4 p(c) = p(d) = 1

8 p(e) = p(f) = p(g) = p(h) = 1
16

H(S) = �
P

s p(s) log p(s)

= �2
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4 log

1
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8 log
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16 log

1
16

= 1 +
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4

S = {a, b, c, d, e, f, g, h} p(a) = p(b) = . . . = p(f) = 1
8

H(S) = �8

1
8 log

1
8 = log 8 = 3



Shannon entropy: properties
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H(S)

x

S = {a, b}
p(a) = x p(b) = 1� x

S = {a, b, c}
p(a) = x p(b) = y p(c) = 1� (x+ y)

H(S)

x

y

The entropy is a concave function of the probability distribution



Shannon conditional entropy
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p(s|o) = p(s)
p(o|s)
p(o)

Bayes theorem

An observable o determines a new distribution on S:

The entropy of the new distribution on S,  given that O = o, is: 

H(S|O = o) = �
X

s

p(s|o) log p(s|o)

The conditional entropy is the expected value of the updated entropies:

H(S|O) =

X

o

p(o) H(S|O = o)

= �
X

o

p(o)
X

s

p(s|o) log p(s|o)



Shannon mutual information
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• In general  H(S) ≥ H(S|O) 	

• the entropy may increase after one single observation, but in the average it 

cannot increase	


!
• H(S) = H(S|O) if and only if S and O are independent	


• This is the case if and only if all rows of the channel matrix are the same	


• This case corresponds to strong anonymity in the sense of Chaum	


!
• Shannon capacity C = max I(S;O) over all priors  (worst-case leakage)	


!

A priori

A posteriori H(S | O) = �
X

o

p(o)
X

s

p(s|o) log p(s|o)

H(S) = �
X

s

p(s) log p(s)

Leakage  =  Mutual Information I(S;O) = H(S)�H(S|O)



Example: DC nets.  Ring of 2 nodes, b = 1, fair coin
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Input S:  n0 , n1	


Output O:  the declarations of n1 and n0:  d1d0 ∈ {01,10}n0

n1

01 10

n ½ ½

n ½ ½

Fair coin: p(0) = p(1) = ½ 

H(S)

x = p(n0)

The entropy of S,         
as a function of 
the distribution on 

p(n0|01) = p(01|n0)
p(01) p(n0)

= p(01|n0)
p(01|n0)p(n0)+p(01|n1)p(n1)

p(n0)

=
1
2

1
2p(n0)+ 1

2p(n1)
p(n0)

= p(n0)

The updated 
distribution after 
observation 01

Similarly, after 
observation 10 p(n0|10) = p(n0)
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H(S)

x = p(n0)

The entropy of S,         
as a function of 
the distribution on 

H(S | O = 01)

x = p(n0)

The entropies of S 
given O = 01,  

and given O = 10, 	

as functions of the 
distribution on S

H(S | O = 10)

x = p(n0)

H(S|O = 01) = H(S|O = 10) = H(S)

Hence H(S|O) = p(01)H(S|O = 01) + p(10)H(S|O = 10) = H(S)



Example: DC nets.  Ring of 2 nodes, b = 1, biased coin
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Input S:  n0 , n1	


Output O:  the declarations of n1 and n0:  d1d0 ∈ {01,10}n0

n1
The updated 
distribution after 
observation 01

Biased c.:  p(0) = ⅔ p(1) = ⅓ 

01 10

n ⅔ ⅓
n ⅓ ⅔

p(n0|01) = p(01|n0)
p(01) p(n0)

= p(01|n0)
p(01|n0)p(n0)+p(01|n1)p(n1)

p(n0)

=
2
3

2
3p(n0)+ 1

3p(n1)
p(n0)

=
2
3

2
3p(n0)+ 1

3 (1�p(n0))
p(n0)

= 2 p(n0)
p(n0)+1

The updated 
distribution after 
observation 10

p(n0|10) =
p(n0)

2� p(n0)
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H(S)

x = p(n0)

The entropy of S,         
as a function of 
the distribution on 

The conditional 
entropy of S given O         
as a function of the 
distribution on S

x = p(n0)
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I(S|O) = H(S) - H(S|O) 
Capacity = max I(S|O) 

!
In this example the capacity is about 0.1 bits,    and  
it is obtained when the input distribution is uniform



Exercise 3

• Prove that if the rows of the channel matrix 
are all equal, then the Shannon Leakage (i.e., 
Shannon mutual information) is 0.	


• Note: The above proof should be relatively 
easy.  The converse is also true, but the proof 
is much more difficult. 
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Entropy:  Alternative notions

Consider again the general model of adversary proposed by [Köpf and 
Basin CCS’07] that we saw before:            	


• Assume an oracle that answers yes/no to questions of a certain form.  	


• The adversary is defined by the form of the questions and the measure 
of success.	


• In general we consider the best strategy for the adversary, with 
respect to a given measure of success.  
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As we argued before, there is no unique notion of vulnerability.  
It depends on: 	


• the model of attack, and 	


• how we measure its success
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However, this model of attack does not seem so natural in security,  and 
alternatives have been considered. In particular, the limited-try attacks 

• The adversary has a limited number of attempts at its disposal	


• The measure of success is the probability that he discovers the secret 
during these attempts (in his best strategy)

Entropy:  Alternative notions
We saw that if	


• the questions are of the form:  “is S ∈ P ?”,  and	


• the measure of success is:  the expected number of questions 
needed to find the value of S in the adversary’s best strategy	


then the natural measure of protection is Shannon’s entropy

Obviously the best strategy for the adversary is to try first 
the values which have the highest probability 
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 One-try attacks  	


• The questions are of the form:   	


• The measure of success is:    � log(max

s
p(s))

“is S = s ?”

One try attacks:  Rényi min-entropy

The measure of success is 
Rényi min-entropy: H1(S) = � log(max

s
p(s))

Like in the case of Shannon entropy,               is highest 
when the distribution is uniform, and it is 0 when the 
distribution is a delta of Dirac (no uncertainty). 

H1(S)



Towards a notion of leakage based on min-entropy
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Leakage    =      difference between	

the a priori vulnerability	

and        	

the a posteriori vulnerability	


Leakage    =     H∞( S ) − H∞(S | O )	


How should we define the conditional min-
entropy H∞(S | O )  ?	




Define the entropy of the new distribution on S,  given that O = o, as: 

H(S|O = o) = �
X

s

p(s|o) log p(s|o)

Let us recall the conditional entropy in Shannon’s case
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Define conditional entropy as the expected value of the updated entropies:

H(S|O) =

X

o

p(o) H(S|O = o)

= �
X

o

p(o)
X

s

p(s|o) log p(s|o)

p(s|o) = p(s)
p(o|s)
p(o)

Bayes theorem

An observable o determines a new distribution on S:

H(S) = �
X

s

p(s) log p(s) Shannon entropy



Define the entropy of the new distribution on S,  given that O = o, as: 

Let us try to do the same for the min-entropy case
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Define conditional entropy as the expected value of the updated entropies:

H1(S|O = o) = � log(max

s
p(s|o))

H1(S|O) =

X

o

p(o) H1(S|O = o)

= �
X

o

p(o) log(max

s

(s|o))

However this approach does not work: we would obtain negative leakage!

H1(S) = � log(max

s
p(s)) Rényi min-entropy



Conditional min-entropy
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Probability of success of an attack on S,  given that O = o: 

Prsucc(S|O = o) = max

s
p(s|o)

Now define H1(S|O) = � log Prsucc(S|O) [Smith 2009]

The expected value of the prob. of success (aka converse of the Bayes risk):

Prsucc(S|O) =

X

o

p(o) Prsucc(S|O = o)

=

X

o

p(o)max

s

p(s|o)

=

X

o

max

s

(p(o|s) p(s))



Leakage in the min-entropy approach
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• In general  I∞(S;O) ≥ 0 	

!

• I∞(S;O) = 0 if  all rows are the same (but not viceversa)	

!
Define min-capacity:  C∞ =  max I∞(S;O) over all priors. We have:	

• C∞ = 0 if and only if all rows are the same 	

• C∞ is obtained on the uniform distribution (but not only)	

• C∞ = the sum of the max of each column  	

• C∞ ≥  C   	


A priori

A posteriori

Leakage  =  min-Mutual Inf.

H1(S) = � logmax

s
p(s)

H1(S|O) = � log

X

o

max

s

(p(o|s) · p(s))

I1(S;O) = H1(S)�H1(S|O)


