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Protection of sensitive information

Protecting the confidentiality of sensitive information is a
fundamental issue in computer security

Blood type: AB
Birth date: 9/5/46

HV:

Access control and encryption are not sufficient! Systems
could leak secret information through correlated

observables.
The notion of “observable” depends on the adversary

Often, secret-leaking observables are public, and therefore available to
the adversary



Leakage through correlated observables

Password checking
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Plan of the course

Information leakage: motivation for quantitative approaches.
Information-theoretic view. Notions of entropy and operational
interpretations.

Focus on Shannon leakage and min-entropy leakage.
. G-leakage. Lattice of information. Data processing order.

. Privacy and aggregate data. Differential privacy. Trade-off between
privacy and utility.

. Location Privacy and geo-indistinguishability



Quantitative Information Flow

Information Flow: Leakage of secret information via
correlated observables

Ideally: No leak

e No interference [Goguen & Meseguer’82]

In practice: There is almost always some leak

* Intrinsic to the system (public observables, part of the design)

e Side channels

<> need quantitative ways to measure the leak



Password checker | A
out := OK

Input by the user: z1zs...zN fot‘ t=1,..,N do
Output: out (Fail or OK) if z; # K, then

Password: K1 K5... Ky

out := FAIL
Intrinsic leakage .
end if
By learning the result of the end for

check the adversary learns
something about the secret



Password checker 2

Password: K1 Ks... Ky
Input by the user: r1xy...znN
Output: out (Fail or OK)

More efficient, but what about
security!?

out := OK
fori=1,...,N do
if I; 7/-‘ Kz' then
out := FAIL
{ et
end if
end for




Password checker 2 a
out := OK

fori:=1,...,N do

Password: K1 K5... Ky
Input by the user: r1xy...znN

Output: out (Fail or OK) if z; # K; then
out := FAIL
Side channel attack exit()
end if
If the adversary can measure end for

the execution time, then he can
also learn the longest correct
prefix of the password




Example 2

Example of Anonymity Protocol:
DC Nets [Chaum’88]

® A set of nodes with some
communication channels (edges).

® One of the nodes (source) wants to
broadcast one bit b of information

® The source (broadcaster) must
remain anonymous



Example of Anonymity Protocol:
DC Nets [Chaum’88]

® A set of nodes with some
communication channels (edges).

® One of the nodes (source) wants to
broadcast one bit b of information

® The source (broadcaster) must
remain anonymous
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Chaum’s solution

® Associate to each edge a fair
binary coin

1



Chaum’s solution

® Associate to each edge a fair binary
coin
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Chaum’s solution

® Associate to each edge a fair binary
coin

® Toss the coins

® Fach node computes the binary
sum of the incident edges. The
source adds b.They all broadcast
their results




Chaum’s solution

Associate to each edge a fair binary
coin

Toss the coins

Each node computes the binary
sum of the incident edges. The
source adds b.They all broadcast
their results

Achievement of the goal:
Compute the total binary sum:
it coincides with b



Anonymity of DC Nets

Observables: An (external) attacker can
only see the declarations of the nodes

Question: Does the protocol protects the
anonymity of the source!?



Strong anonymity (Chaum)

® |f the graph is connected and the
coins are fair, then for an external
observer, the protocol satisfies
strong anonymity:

the a posteriori probability that a
certain node is the source is equal
to its a priori probability

® A priori/a posteriori =
before / after observing the
declarations



Example 3: Crowds [Rubin and Reiter’98]

(

Problem: A user (initiator) wants to send a . . dest.
+

message anonymously to another user (dest.)
Crowds: A group of n users who agree to . .
participate in the protocol. +
The initiator selects randomly another user O . .
(forwarder) and forwards the request to her

A forwarder randomly decides whether to
send the message to another forwarder or
to dest.

...and so on



Example 3: Crowds [Rubin and Reiter’98]

4 )

Problem: A user (initiator) wants to send a . . dest.

message anonymously to another user (dest.)

Crowds: A group of n users who agree to . .
participate in the protocol. +
The initiator selects randomly another user O
O0—0
(forwarder) and forwards the request to her
\_ J

A forwarder randomly decides whether to
send the message to another forwarder or
to dest.

N
Probable innocence: under
certain conditions, an attacker

who intercepts the message from
X cannot attribute more than 0.5

probability to x to be the initiator
- J

...and so on




Common features

® Secret information

®  Password checker:The password
® DC:the identity of the source

® Crowds: the identity of the initiator

® Public information (Observables)

® Password checker:The result (OK / Fail) and the execution time
® DC: the declarations of the nodes

® Crowds: the identity of the agent forwarding to a corrupted user

® The system may be probabilistic

® Often the system uses randomization to obfuscate the relation between secrets
and observables

® DC:coin tossing

® Crowds: random forwarding to another user

20



The basic model:

Systems = Information-Theoretic channels

Secret Information Observables
S| — ——> Ol
AAEEN BN,
i System X
Sm — PRTT On

Input Output




—

Probabilistic systems are noisy channels:
an output can correspond to different inputs, and
an input can generate different outputs, according to a prob. distribution

S|

P(oj|si): the conditional probability to observe o; given the secret s;




O] e On
si [p(oisi) =+ |p(on|si)
Sm |pP(o1]sm) P(On|Sm)

A channel is characterized by its matrix: the array of conditional probabilities

In a information-theoretic channel these conditional probabilities are

independent from the input distribution

This means that we can model systems abstracting from the input
distribution




Particular case: Deterministic systems
In these systems an input generates only one output
Still interesting: the problem is how to retrieve the input from the output

S|

R

Sm

The entries of the channel matrix can be only 0 or 1




Example: DC nets (ring of 3 nodes, b=1)

no Secret Information Observables

n» nj
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Example: DC nets (ring of 3 nodes, b=1)

no Secret Information Observables
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Example: DC nets (ring of 3 nodes, b=1)

no Secret Information Observables
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Example: DC nets (ring of 3 nodes, b=1)

No Secret Information Observables
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Example: DC nets (ring of 3 nodes, b=1)

no Secret Information Observables
, 001
No
010
A > 100
N3 n N2 >| | |




Example: DC nets (ring of 3 nodes, b=1)

el - e e

o Vo Vs Ve %

oA Y e

| Ya | Ya | V4|

fair coins: Pr(0) = Pr(1) = )2

strong anonymity

elonl - e e i

biased coins: Pr(0)=2%3,Pr(1)=13

The source is more likely to declare 1 than O




Quantitative Information Flow

® |ntuitively, the leakage is the (probabilistic)
information that the adversary gains about the
secret through the observables

® Fach observable changes the prior probability
distribution on the secret values into a posterior
probability distribution according to the Bayes
theorem

® |n the average, the posterior probability distribution
gives a better hint about the actual secret value



Observables: prior = posterior




Observables: prior = posterior

p(n) 001 010 100 111

% n2 2/9 2/9 V3 2/9
rior

specret p(o|n)
prob conditional prob



Observables: prior = posterior

P(n) 001 OT10 100 111 001 O10 100 111
Voo o Y5 Y Y o n Y6 B Yo W
4 n | % BB % | Y n 1/18 1/12 1/18 1/18
Vo m| % | % BER %5 n, 1/18 1/18 1/12 1/18

g P(o|n) P(n,0)
prob conditional prob joint prob



Observables: prior = posterior

p(o) s ¥ Vi % obs

prob

p(n) 001 010 100 117 001 010 100 117

Vo no| V8| % | | % n % % W W

4 n | % BB % | Y ni Vis Va2 Vis Vs

ha n| % | % IR % n. Vis Vs V2 Vs

rior

specret p(o|n) p(n,0)

prob conditional prob joint prob
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Password-checker 1

out := OK

fori=1.....N do
if z; #+ K; then

out = FAIL Let us construct the channel matrix
end if

end for

Note: The string xix2x3 typed by the user is a parameter,and K;K>K3 is the
channel input

The standard view is that the input represents the secret. Hence we should take
KiK2K3 as the channel input



Password-checker 1

out := OK
fori=1..... N do
if z; #+ K; then

out := FAIL

end if

end for

000 —
001

010
011 —
100 —
101 —

— Fail

OK

110
111 —

Assume the user string is z1xox3 = 110

Let us construct the channel matrix

Input:
Output:
Fail|OK

000/ 1 | O
001 1 [ O
010 1 | O
011 1 [ O
100f, 1 | O
101|, 1 | O
110 O | 1
1111} 1 | O

KiK>yKs3 € {OOO, 001,..., 111}
out € {OK, FAIL}

Different values of xx2x3
give different channel
matrices, but they all
have this kind of shape
(seven inputs map to Fail,
one maps to OK)



Password-checker 2

Assume the user string is x1xor3 = 110

out := OK
fori=1,..,N do Assume the adversary can measure
if z; # K; then the execution time
out := FAIL
exit() Let us construct the channel matrix
BRI I K1 K2 K3 € {000,001,...,111
t: € ; e
end for nput: Ko KoK €4 J
Output: out € {OK, (FAIL, 1), (FAIL,2), (FAIL,3)}
000 (Fail, 1)|(Fail, 2)|(Fail, 3)|OK
001 / — (Fail.1) 000l 1 0 0 |0
010 — | 001] 1 0 0 |0
011 — / — (Fail.2) 010] 1 0 0 |0
100 — _ 011 1 0 0 0
101 — — (Fail,3) 100/ © 1 0 |0
] —— OK 110 0 0 0 |1
111 o 0 1 |0

42



Exercise |

® Assuming that the possible passwords have
uniform prior distribution, compute the
matrix of the joint probabilities, and the

posterior probabilities, for the two password-
checker programs

43



Example:

ni

no

DC nets. Ring of 2 nodes, and assume b = |

Let us construct the channel matrix

Input: no, n|

Output: the declarations of njand no: dido€ {01,10}

Secret Observable
no —0——""""-_. > 01
Ll >10




ni

Example: DC nets. Ring of 2 nodes, and assume b = |

Let us construct the channel matrix

no
Input: no, n|

Output: the declarations of njand no: dido€ {01,10}

Fair coin: p(0) = p(1) = /2 Biased coin: p(0) =%3 p(1) =13
01 10 01 10
n Vo | Vo n Z BE!

n VAN n 1/3 2/3




Exercise 2

® Assuming that no and n; have uniform prior
distribution, compute the matrix of the joint
probabilities, and the posterior probabilities,

in the two cases of fair coins, and of biased
coins

® Same exercise, but now assume that the prior
distribution is 2/3 for no and |/3 for n

46



Information theory: useful concepts

® Entropy H(X) of a random variable X

® A measure of the degree of uncertainty of the events

® |t can be used to measure the vulnerability of the secret, i.e. how
“easily” the adversary can discover the secret

® Mutual information [(S;O)

® Degree of correlation between the input S and the output O
® formally defined as difference between:

* H(S), the entropy of S before knowing, and
e H(S|O), the entropy of S after knowing O

® |t can be used to measure the leakage:

Leakage = I(S;0) = H(S) — H(S|O)

® H(S) depends only on the prior; H(S|O) can be computed using the

prior and the channel matrix
47



Vulnerability

There is no unique notion of vulnerability. It depends on:
® the model of attack, and

® how we measure its success

A general model of attack [Kopf and Basin’07/]:

® Assume an oracle that answers yes/no to questions of a
certain form.

® The attack is defined by the form of the questions.

® |n general we consider the best strategy for the attacker, with
respect to a given measure of success.
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