Probabilistic Methods in Concurrency

Lecture 6

Progress statements: A tool for verification of probabilistic automata

> Catuscia Palamidessi <u>catuscia@lix.polytechnique.fr</u> <u>www.lix.polytechnique.fr/~catuscia</u>

Page of the course: www.lix.polytechnique.fr/~catuscia/teaching/Pisa/

Progress statements

- Progress statements
 - Proposed by Lynch and Segala
 - A formal method to analyse probabilistic algorithms
- Definition (progress statements)
 - Given sets of states S, T, and a class of adversaries A, we write

if, under any adversary in A, from any state in S, we eventually reach a state in T with probability at least p

- Furthermore, we write

S unless T

if, whenever from a state in S we do not reach a state in T, we remain in S (possibly in a different state of S)

Progress statements

- Some useful properties
 - If A is history-insensitive , S A,p-> T, and T A,q-> U, then S A,pq-> U
 - If $S_1 A, p_1 \rightarrow T_1$, and $S_2 A, p_2 \rightarrow T_2$, then $S_1 \cup S_2 - A, p \rightarrow T_1 \cup T_2$ where $p = min\{p_1, p_2\}$
 - S-A,1-> S
 - If A is history-insensitive and S-A,p-> T and S unless T, and p > 0, then

Pisa, 6 July 2004

History insensitivity

- **Definition:** a class of adversaries A is history-insensitive if: for every $\alpha \in A$, and for every fragment of execution e, there exists $\alpha' \in A$ such that, for every fragment of execution e', $\alpha'(e') = \alpha(ee')$
- Proposition: The class of fair adversaries is history-insensitive

Proof: Given α and e, define $\alpha'(e') = \alpha(ee')$. Clearly α' is still fair

Example of verification: the dining philosophers

- An example of verification using the progress statements.
- The example we consider is the randomized algorithm of Lehmann and Rabin for the dining philosophers
- We will show that under a fair adversary scheduler we have deadlock-freedom (and livelock-freedom), i.e. if a philosopher gets hungry, then with probability 1 some philosopher (not necessarily the same) will eventually eat.

The dining philosophers: the algorithm

<u>S</u> .	<u>tate</u>	<u>action</u>	description	
•	R	think or	reminder region	
		get hungry	/	
•	F	flip	ready to toss	
•	W	wait	waiting for first fork	Т
•	S	second	checking second resource	
•	D	drop	dropping first resource	
•	Ρ	eat	pre-critical region	
•	С	exit	critical region	
•	E _F	dropF	drop first fork	
•	\dot{E}_{S}	dropS	drop second fork	
•	E _R	rem	move to reminder region	

Example of verification: The dining philosophers

- Let us introduce the following global (sets of) states
 - Try : at least one phil is in T={F,W,S,D,P}
 - Eat : at least one phil is in C
 - **RT**: at least one phil is in T, all the others are in T, R or E_R
 - Flip : at least one phil is in F
 - Pre: at least one phil is in P
 - Good : at least one process is in a "good state", i.e. in {W,S} while his second fork f is not the first fork for the neighbor (i.e. the neighbor is not committed to f)
- We want to show that $Try A, 1 \rightarrow Eat$ for A = fair adv

Example of verification: The dining philosophers

- We can prove that, for the class of fair adversaries A (omitted in the following notation):
 - Try -1-> $\mathsf{RT} \cup \mathsf{Eat}$
 - RT -1-> Flip \cup Good \cup Pre
 - Flip -1/2-> Good \cup Pre
 - Good -1/4-> Pre
 - Pre -1-> Eat
- Using the properties of progress statements we derive Try -1/8-> Eat
- Since we also have Try unless Eat, we can conclude