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(1)  The dining philosophers
• Each philosopher needs exactly two forks
• Each fork is shared by exactly two philosophers
• A philosopher can access only one fork at the time
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Intended properties of solution
• Deadlock freedom (aka progress): if there is a 

hungry philosopher, a philosopher will eventually eat
• Starvation freedom: every hungry philosopher will 

eventually eat (but we won’t consider this property 
here)

• Robustness wrt a large class of adversaries:
Adversaries decide who does the next move 
(schedulers)

• Fully distributed: no centralized control or memory
• Symmetric:

– All philosophers run the same code and are in the 
same initial state

– The same holds for the forks
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Non-existence of a “deterministic” solution

• Lehman and Rabin have shown that there does not exist a 
“deterministic” (i.e. non-probabilistic) solution to the dining 
philosophers, satisfying all properties listed in previous slide.

• The proof proceeds by proving that for every possible program 
we can define an adversary (scheduler) which preserves the 
initial symmetry

• Note: Francez and Rodeh did propose a  “deterministic” solution 
using CSP. The solution to this apparent contradiction is that 
CSP cannot be implemented in a fully distributed way
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The algorithm of Lehmann and Rabin

1. Think
2. randomly choose fork in {left,right}   %commit
3. if taken(fork) then goto 3
4. else take(fork)
5. if taken(other(fork)) then {release(fork); goto 2}
6. else take(other(fork)) 
7. eat
8. release(other(fork)) 
9. release(fork)
10. goto 1
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Correctness of the algorithm of Lehmann
and Rabin

• Theorem: for every fair adversary, if a philosopher 
becomes hungry, then a philosopher (not necessarily 
the same) will eventually eat with probability 1.

• Question: why the fairness requirement? Can we 
write a variant of the algorithm which does not 
require fairness? 
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(2) The committee coordination problem
• Description of the problem: In a certain university, professors 

have organized themselves into committees. Each committee has 
a fixed membership roster of two or more professors. From 
time to time a professor may decide to attend a committee 
meeting. He then starts waiting and continues to wait until a  
meeting of a committee in which he is member is established.

• Requirements: 
– Mutual exclusion: No two committees meet simultaneously if they 

have a common member
– Weak Interaction Fairness (WIF) : if all professors of a 

committee are waiting (i.e. the committee meeting is enabled) , then 
eventually some professor will attend a committee meeting (not 
necessarily the same).
or

– Strong Interaction Fairness (SIF): A committee meetig that is 
enabled infinitely often will be established infinitely often
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The committee coordination problem

• Question: for which requirement among WIF and SIF
do we have a correspondence with the 
synchronization mechanisms used in process calculi, 
like (the theory of) CSP and π? 

– General case equivalent to multiway synchronization, like the 
mechanism used in (the Theory of) CSP

– Binary case equivalent to the synchronization among two 
partners, like in CCS and π
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The algorithm of Joung and Smolka
1. while waiting do {
2. randomly choose a committee M ;
3. if TEST&OP(CM,inc,inc) = nM – 1
4. then % a committee meeting is established
5. attend the meeting M
6. else { wait δM time ;
7. if TEST&OP(CM,no-op,dec) = 0  
8. then % a committee meeting is established
9. attend the meeting M
10. % else try another committee    }
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Correctness of the algoritm
• Assumption: 

– δM > maxprof{time2-3(M,prof)}

• Theorem: if a committee is enabled then a professor 
will eventually attend a meeting with probability 1 
(WIF)

• Theorem: if a professor’s transition from thinking to 
waiting does not depend on the random draws 
performed by other professors, then a committee 
meeting which is enabled infinitely often will 
eventually be established (SIF)
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Importance of the assumption on δ

• The assumption on δM is an assumption about the degree of 
synchronism (in the sense of cooperation) of the system. In 
Distributed Algorithms there are three models of 
cooperation: 

1. Partially synchronous
2. Asynchronous
3. Synchronous (lockstep)

This assumption corresponds to (2)

– Hence this algorithm would not be suitable for implementing 
the synchronization mechanism of CSP or CCS in a fully 
distributed setting, since we need an asynchronous 
cooperation model. 
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Algorithm of Joung and Smolka: 
Example of a livelock in absence of the assumption on δ
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The states at the beginning of Lines 3, 5 and  6 are represented with  a filled circle. 
The states at the beginning of Line 1, 2 and 8 are represented with a white circle. 
Lines 4 and 7 are never reached
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