
Probabilistic Methods in Concurrency

Lecture 4
Problems in distributed systems for which

only randomized solutions exist

Catuscia Palamidessi
catuscia@lix.polytechnique.fr

www.lix.polytechnique.fr/~catuscia

Page of the course:
www.lix.polytechnique.fr/~catuscia/teaching/Pisa/

mailto:catuscia@lix.polytechnique.fr
http://www.lix.polytechnique.fr/~catuscia

(1) The dining philosophers
• Each philosopher needs exactly two forks
• Each fork is shared by exactly two philosophers
• A philosopher can access only one fork at the time

Pisa, 1 July 2004 Prob methods in Concurrency 2

Intended properties of solution
• Deadlock freedom (aka progress): if there is a

hungry philosopher, a philosopher will eventually eat
• Starvation freedom: every hungry philosopher will

eventually eat (but we won’t consider this property
here)

• Robustness wrt a large class of adversaries:
Adversaries decide who does the next move
(schedulers)

• Fully distributed: no centralized control or memory
• Symmetric:

– All philosophers run the same code and are in the
same initial state

– The same holds for the forks

Pisa, 1 July 2004 Prob methods in Concurrency 3

Non-existence of a “deterministic” solution

• Lehman and Rabin have shown that there does not exist a
“deterministic” (i.e. non-probabilistic) solution to the dining
philosophers, satisfying all properties listed in previous slide.

• The proof proceeds by proving that for every possible program
we can define an adversary (scheduler) which preserves the
initial symmetry

• Note: Francez and Rodeh did propose a “deterministic” solution
using CSP. The solution to this apparent contradiction is that
CSP cannot be implemented in a fully distributed way

Pisa, 1 July 2004 Prob methods in Concurrency 4

The algorithm of Lehmann and Rabin

1. Think
2. randomly choose fork in {left,right} %commit
3. if taken(fork) then goto 3
4. else take(fork)
5. if taken(other(fork)) then {release(fork); goto 2}
6. else take(other(fork))
7. eat
8. release(other(fork))
9. release(fork)
10. goto 1

Pisa, 1 July 2004 Prob methods in Concurrency 5

Correctness of the algorithm of Lehmann
and Rabin

• Theorem: for every fair adversary, if a philosopher
becomes hungry, then a philosopher (not necessarily
the same) will eventually eat with probability 1.

• Question: why the fairness requirement? Can we
write a variant of the algorithm which does not
require fairness?

Pisa, 1 July 2004 Prob methods in Concurrency 6

(2) The committee coordination problem
• Description of the problem: In a certain university, professors

have organized themselves into committees. Each committee has
a fixed membership roster of two or more professors. From
time to time a professor may decide to attend a committee
meeting. He then starts waiting and continues to wait until a
meeting of a committee in which he is member is established.

• Requirements:
– Mutual exclusion: No two committees meet simultaneously if they

have a common member
– Weak Interaction Fairness (WIF) : if all professors of a

committee are waiting (i.e. the committee meeting is enabled) , then
eventually some professor will attend a committee meeting (not
necessarily the same).
or

– Strong Interaction Fairness (SIF): A committee meetig that is
enabled infinitely often will be established infinitely often

Pisa, 1 July 2004 Prob methods in Concurrency 7

The committee coordination problem

• Question: for which requirement among WIF and SIF
do we have a correspondence with the
synchronization mechanisms used in process calculi,
like (the theory of) CSP and π?

– General case equivalent to multiway synchronization, like the
mechanism used in (the Theory of) CSP

– Binary case equivalent to the synchronization among two
partners, like in CCS and π

Pisa, 1 July 2004 Prob methods in Concurrency 8

The algorithm of Joung and Smolka
1. while waiting do {
2. randomly choose a committee M ;
3. if TEST&OP(CM,inc,inc) = nM – 1
4. then % a committee meeting is established
5. attend the meeting M
6. else { wait δM time ;
7. if TEST&OP(CM,no-op,dec) = 0
8. then % a committee meeting is established
9. attend the meeting M
10. % else try another committee }

Pisa, 1 July 2004 Prob methods in Concurrency 9

Correctness of the algoritm
• Assumption:

– δM > maxprof{time2-3(M,prof)}

• Theorem: if a committee is enabled then a professor
will eventually attend a meeting with probability 1
(WIF)

• Theorem: if a professor’s transition from thinking to
waiting does not depend on the random draws
performed by other professors, then a committee
meeting which is enabled infinitely often will
eventually be established (SIF)

Pisa, 1 July 2004 Prob methods in Concurrency 10

Importance of the assumption on δ

• The assumption on δM is an assumption about the degree of
synchronism (in the sense of cooperation) of the system. In
Distributed Algorithms there are three models of
cooperation:

1. Partially synchronous
2. Asynchronous
3. Synchronous (lockstep)

This assumption corresponds to (2)

– Hence this algorithm would not be suitable for implementing
the synchronization mechanism of CSP or CCS in a fully
distributed setting, since we need an asynchronous
cooperation model.

Pisa, 1 July 2004 Prob methods in Concurrency 11

Algorithm of Joung and Smolka:
Example of a livelock in absence of the assumption on δ

C B

A
A

1 0

0C B

A
A

1 0

0C B

A
A

0 0

0

Pisa, 1 July 2004 Prob methods in Concurrency 12

B

A
A

0 0

0C

C B

A
A

0 0

0C B

A
A

0 0

0C B

A
A

1 0

1 C B

A
A

0 0

1

The states at the beginning of Lines 3, 5 and 6 are represented with a filled circle.
The states at the beginning of Line 1, 2 and 8 are represented with a white circle.
Lines 4 and 7 are never reached

	Probabilistic Methods in ConcurrencyLecture 4 Problems in distributed systems for which only randomized solutions exist
	(1) The dining philosophers
	Non-existence of a “deterministic” solution
	The algorithm of Lehmann and Rabin
	Correctness of the algorithm of Lehmann and Rabin
	(2) The committee coordination problem
	The committee coordination problem
	The algorithm of Joung and Smolka
	Correctness of the algoritm
	Importance of the assumption on d
	Algorithm of Joung and Smolka: Example of a livelock in absence of the assumption on d

