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Utility

Let us start with an example. Suppose we have a medical database,
and we want to use it to do research about a certain disease.

For instance, we want to ask queries like:
|. How many people in the DB have the disease!?

2. What is the average age of the people with the disease!

Suppose we know that :

41 no
* there are 1000 people in the DB 45 yes
* the maximum age is 120 37 no
50 yes

* both queries are sanitised with DP

20 NoO




Loss function

How to measure the quality of the reported answer?

Consider the first query: f(x) = number of people with the disease.
Let y = f(z) be the true answer, and z the reported answer.
Which of the following loss functions is better?

L l(y,z) = |z =y

2. Ly, 2) = (2 —y)

0 if z =
5 g(y,z):{ 1 ifz;éz

4. l(y,z) =0

5. Uy, z)=z+y



Loss function

How to measure the quality of the reported answer?

Consider the first query: f(x) = number of people with the disease.
Let y = f(z) be the true answer, and z the reported answer.
Which of the following loss functions is better?

1. Uy, z) = |z —yl
2. U(y,2) = (2 —y)*

0 if z =
5 g(y,z):{ 1 ifz;éz

4. l(y,z) =0
5. Uy, z)=z+y

(1), (2) and (3) are all reasonable loss functions, they all measure the “precision”
of the answer. Which one is more suitable for our purposes depends on what we
want to do.

On the other hand, (4) does not measure anything, and (5) does not make sense.
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Monotonicity of the loss

In general, if ) C Z and the domain Z is equipped with a
notion of distance d, we want the loss to be monotonic w.r.t.
d. Namely:

E(y,Z) S E(ylaz/) A |Z_y| S |Z,_y/|



Utility as expected loss

Since there are many possible true answers, and even for the same true
answer we have many possible reported answer, it is reasonable to define the

utility as expectation.

Let 7 be the prior on ) (the true answers) and p the probability associated
to the mechanism. We could define:

UK, ) = E;, ly,z)

= >,y p(zly) {(y, 2)
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Utility as expected loss

Since there are many possible true answers, and even for the same true
answer we have many possible reported answer, it is reasonable to define the
utility as expectation.

Let 7 be the prior on ) (the true answers) and p the probability associated
to the mechanism. We could define:

UK, ) = E;, ly,z)
= >,y p(zly) {(y, 2)

Are we happy with this definition?

What if we get a negative answer?” Or an answer greater than 1000, the
number of people in the DB? (it could happen, for instance, with the geo-
metric mechanism).

We are not going to believe these answers, so we could remap them in more
likely values. For instance we could remap the negative values into 0, and
those greater than 1000 into 1000



Remapping

We could use a remapping function defined as:

(0 if2<0

r(z) =4 =z if 0 < 2z <1000

1000 if z > 1000

\

and define

UK,m) = Y m(y)p(zly) Ly, (=)



Remapping

We could use a remapping function defined as:

(0 if2<0

r(z) =4 =z if 0 < 2z <1000

1000 if z > 1000

\

and define
UK, =Y myp(zly) iy r(2))

More in general, we assume that we exploit the prior knowledge, and the
knowledge of the mechanism, to define and use the best possible remapping
function:

UK, m) = min Y 7(y)p(=ly) Ly, r(2))



Notes about utility

® We saw a definition for discrete mechanisms. For continuous
ones, like the Laplace, the definition is analogous except that
the expectation has to be computed via integration

® The expected loss is not the only definition of utility that has
been considered in the literature. There are others, for
instance the worst-case loss, the expected ratio of " 'good"
answers, etc. For the next results, however, we will assume
that utility is defined as expected loss.



Optimal mechanisms

Given a prior T, and a privacy level g, an e-differentially private
mechanism K is called optimal if it provides the best utility
among all those which provide e-differential privacy

Note that the privacy does not depend on the prior, but the
utility (in general) does.

In the finite case the optimal mechanism can be computed with
linear optimization techniques, where the variables are the
conditional probabilities p(z | y)

where y is the exact answer and z is the reported answer

A mechanism is universally optimal if it is optimal for all priors



Counting Queries

® Counting queries are typical examples of
discrete queries. They are of the form: How
many individuals in the database satisfy the

property P 7

e Examples:
® How many individuals in the DB are affected by diabetes?
® How many diabetic people are obese?

e Question: what is the sensitivity of a counting
query!?



Privacy vs utility:
two fundamental results

[Ghosh et al.,, STOC 2009]

The geometric mechanism is universally
optimal for counting queries and any
monotonic loss function



Privacy vs utility:
two fundamental results

2. [Brenner and Nissim, STOC 2010] The counting queries are the
only kind of queries for which a universally optimal mechanism exists

° This means that for other kind of queries one the optimal
mechanism is relative to a specific user.

° The precise characterization is given in terms of the graph (V,~)
induced by (X, ~)

—— O A

ok

not ok not ok
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The Local Model



DP in the Global Model
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Standard Differential Privacy
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Local Differential Privacy Google
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Local Differential Privacy
[ Jordan &Wainwright 'l 3]

Definition Let X be a set of possible values and ) the set of noisy values. A
mechanism K is e-locally differentially private (e-LDP) if for all z1, 22 € X and
forally € Y

PK(z) =y] < e P[K(z") = y]

or equivalently, using the conditional probability notation:

py|z) <ef ply|a)

For instance, the Randomized Response

protocol is (log 3)-LPD Y
0/. H ,® Yes

/e 1 1 X
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The flat mechanism (aka k-RR)

[ Kairouz et al,'16 ]

0.184

The flat mechanism is the simplest way to implement LPD. |
It is defined as follows: 0141

0.12
cet

ifer=y

0.10

p(ylz) = { C otherwise

0.08+

0.064

where ¢ is a normalization constant.

0.041

1 0.021
namely ¢ = ————— where k is the size of the domain

k?—1—|—€€ 0

Privacy Properties: What about Utility ?

* Compositionalit -y .
P 4 * Statistical Utility

e QoS

* Independence from the side
knowledge of the adversary
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d-privacy: a generalization of DP and LDP
[Chatzikokolakis et al., "1 3]

d-privacy
On a generic domain X provided with a distance d:

\V/QZ,QZ/ c X,VZ p(z|x) < ead(a:,:c’)

p(z|z')
/ generalizes \
Differential Privacy Local Differential Privacy
* X, X are databases * d is the discrete distance
* d is the Hamming distance
Properties

* Like LDP, it can be applied at the user side
* Like DP and LDP, it is compositional
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Typical d-private mechanisms

Laplace, Geometric, and
their Planar versions "] -

Planar Laplace

dp,(2) = 5 el

Used especially for location privacy, where
d-privacy is called geo-indistinguishability
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Statistical Utility
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Statistical utility: The matrix inversion method
[ Kairouz et al,"'16 ]

 Let C be the stochastic matrix associated to the mechanism

+ Let g be the empirical distribution (derived from the noisy data).

* Compute the approximation of the true distributionas r = g C!

Example Assume ¢(Yes) = 15 and ¢(No) = £;. Then:

3 1 6
2 p(Yes) + = p(No) = —
5 P(Yes) + 2 p(No) = -
1 3 4
= p(Yes) + = p(No) = —
5 P(Yes) + 7 p(No) = -

:i

From which we derive p(Yes) = 1—70 and p(No) 10
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Statistical utility: The matrix inversion method

Problem 1: C must be invertible

Problem 2: Assume ¢(Yes) = ¢ and ¢(No) = 7. Then:

Y

yes no

yes Q7 Vi
X
o
11 1

From which we derive p( Yes) = 15 and p(No) = — 15

p(Yes) + § p(No) =

p(Yes) + p(No) =

e~ = W
QU — Ot
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Statistical utility: The matrix inversion method

r = g C! may not be a distribution because it may contain
negative elements. In order to try to obtain the true
distribution Tt we can either:

* set to 0 all the negative elements, and renormalize, or
* project r on the simplex.

The resulting distribution however usually is not the best
approximation of the original distribution.

29



Our approach: Iterative Bayesian Update

TC —»  X1,X2, X3,.. —P C —>  Y1LY2, Y3

A

D'\

The IBU:

* is based on the Maximization-Expectation method

* produces a Maximum Likelihood Estimator p of the true
distribution T

* If C is invertible, the MLE is unique and as the number of samples
grows it converges to T

30



The Iterative Bayesian Update

Define p© = any distribution (for ex. the uniform distribution)

Repeat: Define p(™+D as the Bayesian update of p(") weighted on the corresponding
element of g, namely:

(n)
(n+1) __ E , Pz CSU?J
’ qy (n) Czy

Note that p(tD = T(pm)
When C is invertible, T has unique fix point (the MLE)

Open problem: in some cases (with few samples) the MLE may not be the best
estimation of the true distribution. We are trying to devise corrective methods.
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Comparison:

C = Laplace € = 0.1

Data domain: {0, 1,.
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Comparison: C = Planar Laplace € =1
Gowalla Location Data in S. Francisco
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Comparison between LPD and d-privacy
Experiments on the Gowalla dataset

® Gowalla is a dataset of geographical checkins in several cities in the world

® We have used it to compare the statistical utility of kRR and Planar Laplace with the
respective € calibrated so to satisfy the same privacy constraint:
same level of privacy within about 1 Km?

‘‘‘‘‘‘‘‘‘‘

TERRACE

Gowalla checkins in an area of 3x3 km? in San Francisco downtown (about 10K checkins)
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n=>0.

The kRR
mechanism
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KantorovichDistance
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KantorovichDistance
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Positions available:
Phd, Postdoc and Research Assistant

HYPATIA:

e Statistical utility from noisy data

e Optimal privacy-utility trade-off

e (Generation of optimal mechanism via ML

a Vo
D H T n I H e Analysis of privacy threats in ML

Data Science, Intelligence & Society

INSTITUTE



Thanks!

Questions?



