Simulation and bisimulation

Concurrency 4

CCS - Simulation and bisimulation. Coinduction.

Catuscia Palamidessi
INRIA Futurs and LIX - Ecole Polytechnique

The other lecturers for this course:

Jean-Jacques Lévy (INRIA Rocquencourt)

James Leifer (INRIA Rocquencourt)

Eric Goubault (CEA)

http://pauillac.inria.fr/~leifer/teaching/mpri-concurrency-2005/

Announcement

The class of Wednesday 26 October will follow the usual schedule (16h15 - 19h15).

Outline

- Solution to exercises from previous time
- Modern definition of CCS (1999)
 - Syntax

Solution to exercises from previous time

- Labeled transition System
- Simulation and bisimulation
 - Simulation
 - Bisimulation
 - Proof methods
 - Examples and exercises
 - Alternative characterization of bisimulation
 - Bisimulation in CCS is a congruence
- Exercises

Simulation and bisimulation

The semaphore

Define in CCS a semaphore with initial value *n*

First Solution

 $rec_{S_n} down.rec_{S_{n-1}} (up.S_n + down.rec_{S_{n-2}} (... (up.S_2 + down.rec_{S_0} up.S_1)...))$

Second solution

- Let $S = rec_X down.up.X$
- Then $S_n = S \mid S \mid ... \mid S$ *n* times

Maximal trace equivalence is not a congruence

Consider the following processes

- P = a.(b.0 + c.0)
- Q = a.b.0 + a.c.0
- \bullet $R = \bar{a}.\bar{b}.\bar{d}.0$

Solution to exercises from previous time

P and Q have the same maximal traces, but $(\nu a)(\nu b)(\nu c)(P \mid R)$ and $(\nu a)(\nu b)(\nu c)(Q \mid R)$ have different maximal traces.

Syntax of "modern" CCS

Solution to exercises from previous time

```
• (channel, port) names: a, b, c, \ldots
```

• co-names:
$$\bar{a}, \bar{b}, \bar{c}, \dots$$
 Note: $\bar{\bar{a}} = a$

silent action: τ

• actions, prefixes:
$$\mu ::= a \mid \bar{a} \mid \tau$$

Process definitions:

$$D ::= K(\vec{x}) \stackrel{\text{def}}{=} P$$
 where P may contain only the \vec{x} as channel names

Labeled transition system for "modern" CCS

We assume a given set of definitions D

The reason for moving to "modern" CCS was to get static scope (thanks to the presence of the parameters). The old version had dynamic scope.

Simulation

Solution to exercises from previous time

Definition We say that a relation R on processes is a simulation if

$$P \mathcal{R} Q$$
 implies that if $P \xrightarrow{\mu} P'$ then $\exists Q'$ s.t. $Q \xrightarrow{\mu} Q'$ and $P' \mathcal{R} Q'$

- lacktriangle Note that this property does not uniquely defines \mathcal{R} . There may be several relations that satisfy it.
- Define $\leq = \bigcup \{ \mathcal{R} \mid \mathcal{R} \text{ is a simulation} \}$
- **Theorem** ≤ is a bisimulation (Proof: Exercise)
- $P \leq Q$ intuitively means that Q can do everything that P can do. Q simulates P.

Bisimulation

Solution to exercises from previous time

Definition We say that a relation R on processes is a *bisimulation* if

$$P \mathcal{R} Q$$
 implies that if $P \xrightarrow{\mu} P'$ then $\exists Q'$ s.t. $Q \xrightarrow{\mu} Q'$ and $P' \mathcal{R} Q'$ if $Q \xrightarrow{\mu} Q'$ then $\exists P'$ s.t. $P \xrightarrow{\mu} P'$ and $P' \mathcal{R} Q'$

- Again, this property does not uniquely defines R. There may be several relations that satisfy it.
- Define $\sim = \{ | \{ \mathcal{R} \mid \mathcal{R} \text{ is a bisimulation} \} \}$
- Theorem ~ is a bisimulation (Proof: Exercise)
- \bullet $P \sim Q$ intuitively means that Q can do everything that P can do, and viceversa, at every step of the computation. Q is bisimilar to P.

Proof methods

Solution to exercises from previous time

- Simulation and bisimulation are coinductive definitions.
- In order to prove that $P \leq Q$ it is sufficient to find a simulation \mathcal{R} such that $P \mathcal{R} Q$
- Similarly, in order to prove that $P \sim Q$ it is sufficient to find a bisimulation \mathcal{R} such that $P \mathcal{R} Q$

Examples and exercises

- Consider the following processes
 - P = a.(b.0 + c.0)
 - Q = a.b.0 + a.c.0

Prove that $Q \leq P$ but $P \not\leq Q$ and $Q \not\sim P$

- Assume that $Q \leq P$ and $P \leq Q$ (for two generic P and Q). Does it follow that $P \sim Q$?
- Consider the following processes
 - R = a.(b.0 + b.0)
 - S = a.b.0 + a.b.0

Prove that $Q \sim P$

- Consider the two definitions of semaphore given at the beginning of this lecture. Prove that they are bisimilar.
- Consider the processes H(a) and K(a) defined by $H(x) \stackrel{\text{def}}{=} x.H(x)$ and $K(x) \stackrel{\text{def}}{=} x.K(x) \mid x.K(x)$. Are they bisimilar?
- What is the smallest bisimulation?

Bisimulation as greatest fixpoint

- Consider the set of relations on processes (that is, on the powerset of the cartesian product on processes) ordered by set inclusion. Obviously, this is a complete lattice.
- **Definition** Let \mathcal{F} be a function on relation defined in the following way:

$$P \mathcal{F}(\mathcal{R}) \ Q \quad \text{iff} \quad \text{if} \ P \xrightarrow{\mu} P' \ \text{then} \ \exists \ Q' \ \text{s.t.} \ Q \xrightarrow{\mu} \ Q' \ \text{and} \ P' \ \mathcal{R} \ Q' \quad \text{if} \ Q \xrightarrow{\mu} \ Q' \ \text{then} \ \exists P' \ \text{s.t.} \ P \xrightarrow{\mu} P' \ \text{and} \ P' \ \mathcal{R} \ Q'$$

- **Lemma** \mathcal{F} is monotonic
- Theorem (Knaster-Tarski) F has (unique) least and greatest fixpoints, and

$$lfp(\mathcal{F}) = \bigcap \{ \mathcal{R} \mid \mathcal{F}(\mathcal{R}) \subseteq \mathcal{R} \}$$
$$gfp(\mathcal{F}) = \bigcup \{ \mathcal{R} \mid \mathcal{R} \subseteq \mathcal{F}(\mathcal{R}) \}$$

- Corollary $\sim = qfp(\mathcal{F})$
- A similar characterization, of course, holds for \lesssim as well.

Bisimulation in CCS is a congruence

- Definition A relation R on a language is called congruence if
 - \bullet \mathcal{R} is an equivalence relation (i.e. it is reflexive, symmetric, and transitive), and
 - \bullet \mathcal{R} is preserved by all the operators of the language, namely if $P \mathcal{R} Q$ then $op(P, \vec{R}) \mathcal{R} op(P, \vec{R})$
- Theorem ~ is a congruence relation

Exercises

Solution to exercises from previous time

- Complete the proof that bisimulation in CCS is a congruence
- Prove that if $P \leq Q$ then the traces of P are contained in the traces of O
- Prove that if $P \sim Q$ then $P \lesssim Q$ and $Q \lesssim P$
- Prove that
 - $P + 0 \sim P$ and $P|0 \sim P$
 - $P + P \sim P$ but (in general) $P \mid P \nsim P$
 - $P + Q \sim Q + P$ and $P|Q \sim Q|P$
 - $(P+Q)+R\sim P+(Q+R)$ and $(P|Q)|R\sim P|(Q|R)$