
Solution to some of the exercises in previous lecture Verification of Concurrent Software (by Jean-Jacques Lévy)

Concurrency 2
Shared Memory

Catuscia Palamidessi
INRIA Futurs and LIX - Ecole Polytechnique

The other lecturers for this course:

Jean-Jacques Lévy (INRIA Rocquencourt)
James Leifer (INRIA Rocquencourt)

Eric Goubault (CEA)

http://pauillac.inria.fr/˜leifer/teaching/mpri-concurrency-2005/

Solution to some of the exercises in previous lecture Verification of Concurrent Software (by Jean-Jacques Lévy)

Outline

1 Solution to some of the exercises in previous lecture
Semaphores in Java
Readers and Writers

2 Verification of Concurrent Software (by Jean-Jacques Lévy)
A case study: Ariane

Solution to some of the exercises in previous lecture Verification of Concurrent Software (by Jean-Jacques Lévy)

Semaphores in Java

Outline

1 Solution to some of the exercises in previous lecture
Semaphores in Java
Readers and Writers

2 Verification of Concurrent Software (by Jean-Jacques Lévy)
A case study: Ariane

Solution to some of the exercises in previous lecture Verification of Concurrent Software (by Jean-Jacques Lévy)

Semaphores in Java

A few facts about Java (1/2)
Threads in Java

A thread is a single sequential line of control. It may be
execute in parallel/interleaving with other threads.
The states of a live thread in Java:

Suspended

Running

notifyAll()

wait()

Runnable

scheduler

run()
notify()

Solution to some of the exercises in previous lecture Verification of Concurrent Software (by Jean-Jacques Lévy)

Semaphores in Java

A few facts about Java (2/2)
Classes with synchronized methods

Class whose objects may be shared by different threads need synchronized
methods
Example: A bank account with two or more owners

Bank account

class Account {
private int balance;
public Account(int initialDeposit) {

balance = initialDeposit;
}
public synchronized void deposit(int amount) {

balance = balance + amount;
}
...

}

Synchronized methods are handled using a lock mechanism. A lock is per object.
When a thread suspends inside a synchronized method, it releases the lock.

Solution to some of the exercises in previous lecture Verification of Concurrent Software (by Jean-Jacques Lévy)

Semaphores in Java

A few facts about Java (2/2)
Classes with synchronized methods

Class whose objects may be shared by different threads need synchronized
methods
Example: A bank account with two or more owners

Bank account

class Account {
private int balance;
public Account(int initialDeposit) {

balance = initialDeposit;
}
public synchronized void deposit(int amount) {

balance = balance + amount;
}
...

}

Synchronized methods are handled using a lock mechanism. A lock is per object.
When a thread suspends inside a synchronized method, it releases the lock.

Solution to some of the exercises in previous lecture Verification of Concurrent Software (by Jean-Jacques Lévy)

Semaphores in Java

A few facts about Java (2/2)
Classes with synchronized methods

Class whose objects may be shared by different threads need synchronized
methods
Example: A bank account with two or more owners

Bank account

class Account {
private int balance;
public Account(int initialDeposit) {

balance = initialDeposit;
}
public synchronized void deposit(int amount) {

balance = balance + amount;
}
...

}

Synchronized methods are handled using a lock mechanism. A lock is per object.
When a thread suspends inside a synchronized method, it releases the lock.

Solution to some of the exercises in previous lecture Verification of Concurrent Software (by Jean-Jacques Lévy)

Semaphores in Java

A few facts about Java (2/2)
Classes with synchronized methods

Class whose objects may be shared by different threads need synchronized
methods
Example: A bank account with two or more owners

Bank account

class Account {
private int balance;
public Account(int initialDeposit) {

balance = initialDeposit;
}
public synchronized void deposit(int amount) {

balance = balance + amount;
}
...

}

Synchronized methods are handled using a lock mechanism. A lock is per object.
When a thread suspends inside a synchronized method, it releases the lock.

Solution to some of the exercises in previous lecture Verification of Concurrent Software (by Jean-Jacques Lévy)

Semaphores in Java

Definition of Semaphore (from previous lecture)

A generalized semaphore s is an integer variable with two operations:

acquire(s): If s > 0 then s := s − 1, otherwise suspend on s.
(atomically)

release(s): If some process is suspended on s, wake it up,
otherwise s := s + 1. (atomically)

Example of use: At beginning, s = max . Then

[· · · ; acquire(s); C1; release(s); · · ·] || [· · · ; acquire(s); C2; release(s); · · ·]

Solution to some of the exercises in previous lecture Verification of Concurrent Software (by Jean-Jacques Lévy)

Semaphores in Java

Definition of Semaphore (from previous lecture)

A generalized semaphore s is an integer variable with two operations:

acquire(s): If s > 0 then s := s − 1, otherwise suspend on s.
(atomically)

release(s): If some process is suspended on s, wake it up,
otherwise s := s + 1. (atomically)

Example of use: At beginning, s = max . Then

[· · · ; acquire(s); C1; release(s); · · ·] || [· · · ; acquire(s); C2; release(s); · · ·]

Solution to some of the exercises in previous lecture Verification of Concurrent Software (by Jean-Jacques Lévy)

Semaphores in Java

Definition of Semaphore (from previous lecture)

A generalized semaphore s is an integer variable with two operations:

acquire(s): If s > 0 then s := s − 1, otherwise suspend on s.
(atomically)

release(s): If some process is suspended on s, wake it up,
otherwise s := s + 1. (atomically)

Example of use: At beginning, s = max . Then

[· · · ; acquire(s); C1; release(s); · · ·] || [· · · ; acquire(s); C2; release(s); · · ·]

Solution to some of the exercises in previous lecture Verification of Concurrent Software (by Jean-Jacques Lévy)

Semaphores in Java

Definition of Semaphore (from previous lecture)

A generalized semaphore s is an integer variable with two operations:

acquire(s): If s > 0 then s := s − 1, otherwise suspend on s.
(atomically)

release(s): If some process is suspended on s, wake it up,
otherwise s := s + 1. (atomically)

Example of use: At beginning, s = max . Then

[· · · ; acquire(s); C1; release(s); · · ·] || [· · · ; acquire(s); C2; release(s); · · ·]

Solution to some of the exercises in previous lecture Verification of Concurrent Software (by Jean-Jacques Lévy)

Semaphores in Java

Use of a semaphore in Java

Creation of a Semaphore s
s.Semaphore(max);

Thread 1

...
s.acquire();
C1;
s.release();
...

Thread 2

...
s.acquire();
C2;
s.release();
...

Solution to some of the exercises in previous lecture Verification of Concurrent Software (by Jean-Jacques Lévy)

Semaphores in Java

Declaration of class Semaphore in Java
Use sus to indicate the number of suspended threads on the semaphore

Semaphore

class Semaphore {
private int value, sus;
public Semaphore(int initial) {

value = initial; sus = 0;
}
public synchronized void acquire() {

if (value == 0) { sus = sus + 1; wait(); sus = sus - 1; }
else value = value - 1;

}
public synchronized void release() {

if (sus > 0) { notify(); }
else { value = value + 1; }

}
}

However, this is not efficient (why?) and it is not in the typical “Java style”.

Solution to some of the exercises in previous lecture Verification of Concurrent Software (by Jean-Jacques Lévy)

Semaphores in Java

Declaration of class Semaphore in Java
Use sus to indicate the number of suspended threads on the semaphore

Semaphore

class Semaphore {
private int value, sus;
public Semaphore(int initial) {

value = initial; sus = 0;
}
public synchronized void acquire() {

if (value == 0) { sus = sus + 1; wait(); sus = sus - 1; }
else value = value - 1;

}
public synchronized void release() {

if (sus > 0) { notify(); }
else { value = value + 1; }

}
}

However, this is not efficient (why?) and it is not in the typical “Java style”.

Solution to some of the exercises in previous lecture Verification of Concurrent Software (by Jean-Jacques Lévy)

Semaphores in Java

Semaphore in Java (typical Java solution)

Semaphore

class Semaphore {
private int value;
public Semaphore(int initial) {

value = initial;
}
public synchronized void acquire() {

while (value == 0) wait();
value = value - 1;

}
public synchronized void release() {

value = value + 1;
notify();

}
}

Solution to some of the exercises in previous lecture Verification of Concurrent Software (by Jean-Jacques Lévy)

Readers and Writers

Outline

1 Solution to some of the exercises in previous lecture
Semaphores in Java
Readers and Writers

2 Verification of Concurrent Software (by Jean-Jacques Lévy)
A case study: Ariane

Solution to some of the exercises in previous lecture Verification of Concurrent Software (by Jean-Jacques Lévy)

Readers and Writers

Problem: A certain resource (for instance a file) is shared by
some readers and some writers. The readers cannot modify
the resource, while the writers can.

We want that only one writer can access the resource at a time,
while the readers are allowed to do it concurrently.

Solution to some of the exercises in previous lecture Verification of Concurrent Software (by Jean-Jacques Lévy)

Readers and Writers

Problem: A certain resource (for instance a file) is shared by
some readers and some writers. The readers cannot modify
the resource, while the writers can.

We want that only one writer can access the resource at a time,
while the readers are allowed to do it concurrently.

Solution to some of the exercises in previous lecture Verification of Concurrent Software (by Jean-Jacques Lévy)

Readers and Writers

Readers and Writers in Java

Reader

...
r.acquireShared();
use r ;
r.releaseShared();
...

Writer

...
r.acquireExclusive();
use r;
r.releaseExclusive();
...

Solution to some of the exercises in previous lecture Verification of Concurrent Software (by Jean-Jacques Lévy)

Readers and Writers

The class Resource

Resource

class Resource {
private int readers, writers;
public Resource() {

readers = 0;
writers = 0;

}
public synchronized void acquireShared() { ... }
public synchronized void releaseShared() { ... }
public synchronized void acquireExclusive() { ... }
public synchronized void releaseExclusive() { ... }

}

Solution to some of the exercises in previous lecture Verification of Concurrent Software (by Jean-Jacques Lévy)

Readers and Writers

The methods of Resource

acquireShared()

{
while (writers == 1) {

wait();
}
readers = readers + 1;

}

releaseShared()

{
readers = readers - 1;
notify();

}

acquireExclusive()

{
while (writers == 1 || readers > 0) {

wait();
}
writers = 1;

}

releaseExclusive()

{
writers = 0;
notifyAll();

}

However, this solution is not efficient. (Why?)

Solution to some of the exercises in previous lecture Verification of Concurrent Software (by Jean-Jacques Lévy)

Readers and Writers

The methods of Resource

acquireShared()

{
while (writers == 1) {

wait();
}
readers = readers + 1;

}

releaseShared()

{
readers = readers - 1;
notify();

}

acquireExclusive()

{
while (writers == 1 || readers > 0) {

wait();
}
writers = 1;

}

releaseExclusive()

{
writers = 0;
notifyAll();

}

However, this solution is not efficient. (Why?)

Solution to some of the exercises in previous lecture Verification of Concurrent Software (by Jean-Jacques Lévy)

Readers and Writers

A more efficient solution

Use suspension conditions cR, cW
Use sR to indicate the number of readers suspended.

acquireShared()

{
while (writers == 1) {

sR = sR + 1;
wait(cR);
sR = sR - 1;

}
readers = readers + 1;

}

releaseShared()

{
readers = readers - 1;
notify(cW);

}

acquireExclusive()

{
while (writers == 1 || readers > 0) {

wait(cW);
}
writers = 1;

}

releaseExclusive()

{
writers = 0;
if (sR > 0) { notifyAll(cR); }
else { notify(cW); }

}

Suspension conditions do not exist in Java, but they exist in other languages

Solution to some of the exercises in previous lecture Verification of Concurrent Software (by Jean-Jacques Lévy)

Readers and Writers

Exercises

The "more efficient solution" for the Readers and Writers
problem that we presented in this lecture is not
starvation-free, because it always gives priority to the
readers. Modify the solution so to ensure that neither the
writers nor the readers will starve.
About the first solution we presented for the Readers and
Writers problem: it that one starvation-free? Justify your
answer.

Solution to some of the exercises in previous lecture Verification of Concurrent Software (by Jean-Jacques Lévy)

A case study: Ariane

Outline

1 Solution to some of the exercises in previous lecture
Semaphores in Java
Readers and Writers

2 Verification of Concurrent Software (by Jean-Jacques Lévy)
A case study: Ariane

Solution to some of the exercises in previous lecture Verification of Concurrent Software (by Jean-Jacques Lévy)

A case study: Ariane

	Solution to some of the exercises in previous lecture
	Semaphores in Java
	Readers and Writers

	Verification of Concurrent Software (by Jean-Jacques Lévy)
	A case study: Ariane

