Motivation Overview of the course Concurrency in Shared Memory: Effects and Issues Critical Sections and Mutual Exclusion Motivation Overview of the course Concurrency in Shared Memory: Effects and Issues Critical Sections and Mutual Exclusion
000000000000 000000000000

QOutline

Concurrency 1
Shared Memory @ Motivation

@ Overview of the course
Catuscia Palamidessi
INRIA Futurs and LIX - Ecole Polytechnique Q Concurrency in Shared Memory: Effects and Issues

The other lecturers for this course: Q Critical Sections and Mutual Exclusion
@ Some attempts to implement a critical section

Jean—Jacque§ Lévy (INRIA Rocquencourt) @ Some famous algorithms
James Le|.fer (INRIA Rocquencourt) @ Semaphores
Eric Goubault (CEA) @ The dining philosophers
@ Exercises
http://pauillac.inria.fr/"leifer/teaching/mpri-concurrency-2005/
2
Motivation Overview of the course Concurrency in Shared Memory: Effects and Issues Critical Sections and Mutual Exclusion Motivation Overview of the course Concurrency in Shared Memory: Effects and Issues Critical Sections and Mutual Exclusion
QO0000000000 Q00000000000
Motivation Overview of the course
Why Concurrency?
09-28 CcP Shared memory: atomicity
. 10-05 CP/JJL Shared memory: verification, report on Ariane 501
(] PrOgramS for mUItFprOCGSS()rs 1012 CP CCS: syntax and transitions, coinduction
. . 10-19 CcP CCS: weak and strong bisimulations, axiomatization
] Dr|verS f()r S|0W deV|CeS 10-26 CP CCS: examples, Hennessy-Milner logic
11-02 JL w-calculus: syntax; reduction, transitions, strong bisimulation
11-09 JL w-calculus: sum, abstractions, data structures, bisimulation proofs
° Human users are Concurrent 11-16 JL m-calculus: bisimulation “up to”, congruence, barbed bisimulation
. 11-23 Review
@ Distributed systems with multiple clients 11-30 MTexam
12-07 JL m-calculus: comparison between equivalences
@ Reduce |atency 1214 JJL Expressivity of the pi-calculus and its variants
12-21 vacation
e 12-28 acatio
@ Increase efficiency, but Amdahl’s law ot0s L Distributed phcakoulus
01-11 JJL Problems with distributed implementation
01-18 EG True concurrency versus interleaving semantics
N 01-25 EG Event structures and Petri nets
— T 1 I~ 02-01 EG Application to the semantics of CCS
b * N =+ (1 — b) 02-08 EG Comparison of the expressiveness of different models

02-15 Review

(S = speedup, b = sequential part, N processors) 0222 Finalexam

Motivation Overview of the course Concurrency in Shared Memory: Effects and Issues Critical Sections and Mutual Exclusion

000000000000

Non-determinism

Note: we assume that the update of a variable is atomic
Let x be a global variable. Assume that at the beginning
x=0

Consider two simple processes

S=[x:=1] and T=[x:=2;]

After the execution of S || T, we have x € {1,2}

Conclusion:
o Result is not unique.
e Concurrent programs are not described by functions.

Motivation Overview of the course Concurrency in Shared Memory: Effects and Issues Critical Sections and Mutual Exclusion

QO0000000000

Input-output behavior

@ Let x be a global variable.
@ Consider the two processes

S=[x:=1 and T=[x:=0;x:=x+1]

@ Sand T are the same function on memory state.

@ However, S|| Sand T || S are different “functions” on
memory state.

@ A process is an atomic action, followed by a process:
P ~ Null + 2act/'on xP

@ Part of the concurrency course aims at giving sense to this
equation.

Motivation Overview of the course Concurrency in Shared Memory: Effects and Issues Critical Sections and Mutual Exclusion

000000000000

Implicit Communication

@ Let x be a global variable. Assume that at the beginning
x=0

@ Consider the two processes
S=x=x+1x=x+1]|x:=2xx]
T=[x=x+1,x=x+1] wait(x=1);x:=2xX]

@ After the execution of S, we have x € {2, 3, 4}
@ After the execution of T, we have x € {3,4}
@ T may be blocked

@ Conclusion: The parallel subcomponents of a program
may interact via their shared variables

Motivation Overview of the course Concurrency in Shared Memory: Effects and Issues Critical Sections and Mutual Exclusion

000000000000

Atomicity

Let x be a global variable. Assume that at beginning x =0
Consider the process S =[x :=x+1 || x:=x + 1]
After the execution of S we have x = 2.

However [x := x + 1] may be compiled into
[A=x+1,x:=A

So, S may behave as
[Ar=x+1;x:=A||[B:=x+1,x:=B],
which, after execution, gives x € {1,2}.

To avoid such effect, [x := x + 1] has to be atomic

Atomic statements, aka critical sections can be
implemented via mutual exclusion

Motivation Overview of the course Concurrency in Shared Memory: Effects and Issues ~ Critical Sections and Mutual Exclusion
#00000000000
Some attempts to implement a critical section

The problem

@ We intent Cy and C; to be critical sections, i.e. they should
not be executed simultaneously.

Motivation Overview of the course Concurrency in Shared Memory: Effects and Issues Critical Sections and Mutual Exclusion
008000000000

Some attempts to implement a critical section

Attempt n.2

@ Use two boolean variables ay, ay.
At beginning, ay = a; = false .

while a1 do; while a0 do ;
a0 :=true ; al :=true
Co; C1;

a0 = false ; al :=false ;

@ Incorrect. It does not ensure mutual exclusion.

Motivation Overview of the course Concurrency in Shared Memory: Effects and Issues Critical Sections and Mutual Exclusion
080000000000
Some attempts to implement a critical section

Attempt n.1

@ Use a variable furn. At beginning, turn = 0.

while turn =1 do ;

while turn 1= 0 do ;
Co; C1;
turn = 1; turn :=0;

@ However the method is unfair, because P is privileged.

Worse yet, until Py executes its critical section, Py is
blocked.

Motivation Overview of the course Concurrency in Shared Memory: Effects and Issues Critical Sections and Mutual Exclusion
000800000000

Some attempts to implement a critical section

Attempt n.3

@ Use two boolean variables ag, a;.
At beginning, ag = a; = false .

a0 = true ; al =true ;
while a1 do; while a0 do ;
a0 = true ; al =true
CO; C1;

a0 :=false al = false ;

@ We may get a deadlock. Both Py and P; may block.

Motivation Overview of the course Concurrency in Shared Memory: Effects and Issues ~ Critical Sections and Mutual Exclusion
000080000000

Some famous algorithms

Dekker’s Algorithm (early Sixties)

@ The first correct mutual exclusion algorithm
@ Use both the variable furn and the boolean variables ag
and a;. At beginning, ap = a; = false , turn € {0, 1}

KR

a0 :=true ; al :=true ;
while a1 do while a0 do
if turn !=0 begin if turn =1 begin

a0 = false ; al =false ;
while turn =0 do ; while turn 1= 1 do ;
a0 = true ; al =true ;
end ; end ;

Co; C1;

turn ;= 1; a0 ;= false ; turn :=0; a1 =false ;

@ A variant of Dekker’s algorithm for the case of n processes
was presented by Dijkstra (CACM 1965).

Motivation Overview of the course Concurrency in Shared Memory: Effects and Issues Critical Sections and Mutual Exclusion
000000800000

Some famous algorithms

Correctness of Peterson’s Algorithm

@ To show the correctness it is convenient to add two
variables, pc,, pcy, which represent a sort of program
counters for Py and P;.

At beginning pcy = pc; = 1

I

{—a0 A poy # 2} {—ay Apo; # 2}

a0 := true ; pc0 = 2; al :=true ; pcl :=2;
{a0 Apeg = 2} {a Ape, = 2}

turn := 1; pcO := 1; turn :=0; pct = 1;
{ao A pcy # 2} {a1 Apcy # 2}

while a1 and turn !=0 do ; while a0 andturn!=1 do;

{a0 Apco #2 A (—ay Viurn=0Vpcy =2)} | {al Apcy 2N (ma Viurn=1V pcy =2)}
CO; C1;

a0 = false ; al =false ;

{-ao A pog # 2} {-ar Apey # 2}

15

Motivation Overview of the course Concurrency in Shared Memory: Effects and Issues Critical Sections and Mutual Exclusion
000008000000

Some famous algorithms

Peterson’s Algorithm (IPL 1981)

@ The simplest and most compact mutual exclusion
algorithm in literature

@ Use both the variable turn and the boolean variables ag
and ay. At beginning, ap = a; = false , furn € {0,1}

a0 = true ; al =true;

turn = 1; turn := 0;

while a1 and turn 1=0 do ; while a0 andturn!=1 do;
CO; C1;

a0 = false ; al = false ;

Motivation Overview of the course Concurrency in Shared Memory: Effects and Issues Critical Sections and Mutual Exclusion
000000080000

Some famous algorithms

Correctness of Peterson’s Algorithm s

We can prove the correctness by contradiction. If both
programs were in their critical section, then the formulas

{a0 A pcy #2 A(—ay Viurn=0V pcy =2)} and

{al Apey #2 A (—ag Vturn =1V pc, = 2)} should be true at
the same time, but:

a N pco#2 N (mayViurn=0Vpcy =2)
A ai A pcy#2 A (magViurn=1Vpcy =2)

= turn=0Atun=1

Contradiction!

Motivation Overview of the course Concurrency in Shared Memory: Effects and Issues Critical Sections and Mutual Exclusion
000000008000

Some famous algorithms

Synchronization in Concurrent/Distributed algorithms

@ Dekker’s algorithm (early sixties). Quite complex.

@ Peterson is simpler and can be generalized to N processes
more easily

@ Both algorithms by Dekker and Peterson use busy waiting
@ Fairness relies on fair scheduling

@ Many other algorithms for mutual exclusion have been
proposed in literature. Particularly by Lamport: barber,
baker, ...

@ Proofs ? By model checking ? With assertions ? In
temporal logic (eg Lamport's TLA)?

Need for higher constructs in concurrent programming.

Motivation Overview of the course Concurrency in Shared Memory: Effects and Issues Critical Sections and Mutual Exclusion
000000000080

The dining philosophers

The dining philosophers

@ Problem proposed by Dijkstra for testing concurrency primitives

@ 5 philosophers spend their time around a table thinking or eating
spaghetti. In order to eat, each philosopher needs two forks.
However, there are only 5 forks on the table.

@ Desiderata

o if one philosopher gets hungry, some philosopher will
eventually eat (progress)

e if one philosopher gets hungry, he will eventually eat
(starvation-freedom)

Motivation Overview of the course Concurrency in Shared Memory: Effects and Issues Critical Sections and Mutual Exclusion
000000000800

Semaphores

Semaphores

A generalized semaphore s is an integer variable with 2 operations

@ acquire(s): If s > 0then s:= s — 1, otherwise suspend on s.
(atomically)

@ release(s): If some process is suspended on s, wake it up,
otherwise s:=s+ 1. (atomically)

Now mutual exclusion is easy: At beginning, s = 1. Then

[---; acquire(s); Co; release(s);---] || [--:acquire(s); Ci; release(s); - -]

Question Consider another definition for semaphore:
acquire(s): If s > 0then s := s — 1. Otherwise restart.
release(s): Do s:=s+ 1.

Are these definitions equivalent?

Motivation Overview of the course Concurrency in Shared Memory: Effects and Issues Critical Sections and Mutual Exclusion
Q00000000008

Exercises

Exercises

o (Difficult) Generalize Dekker’s algorithm to the case of n
processes

@ Generalize Petersons’s algorithm to the case of n
processes

@ Implement the Semaphore in Java

@ Write a program for the dining philosophers which ensure
progress

@ Discuss how to modify the solution so to ensure
starvation-freedom

@ Problem: A certain file is shared by some Reader and
some Writer processes: we want that only one writer can
write on the file at a time, while the readers are allowed to
do it concurrently. Write the code for the Reader and the
Writer.

20

