
Motivation Overview of the course Concurrency in Shared Memory: Effects and Issues Critical Sections and Mutual Exclusion

Concurrency 1
Shared Memory

Catuscia Palamidessi
INRIA Futurs and LIX - Ecole Polytechnique

The other lecturers for this course:

Jean-Jacques Lévy (INRIA Rocquencourt)
James Leifer (INRIA Rocquencourt)

Eric Goubault (CEA)

http://pauillac.inria.fr/˜leifer/teaching/mpri-concurrency-2005/

Motivation Overview of the course Concurrency in Shared Memory: Effects and Issues Critical Sections and Mutual Exclusion

Outline

1 Motivation

2 Overview of the course

3 Concurrency in Shared Memory: Effects and Issues

4 Critical Sections and Mutual Exclusion
Some attempts to implement a critical section
Some famous algorithms
Semaphores
The dining philosophers
Exercises

Motivation Overview of the course Concurrency in Shared Memory: Effects and Issues Critical Sections and Mutual Exclusion

Motivation
Why Concurrency?

Programs for multi-processors
Drivers for slow devices
Human users are concurrent
Distributed systems with multiple clients
Reduce latency
Increase efficiency, but Amdahl’s law

S =
N

b ∗ N + (1 − b)

(S = speedup, b = sequential part, N processors)

Motivation Overview of the course Concurrency in Shared Memory: Effects and Issues Critical Sections and Mutual Exclusion

Motivation
Why Concurrency?

Programs for multi-processors
Drivers for slow devices
Human users are concurrent
Distributed systems with multiple clients
Reduce latency
Increase efficiency, but Amdahl’s law

S =
N

b ∗ N + (1 − b)

(S = speedup, b = sequential part, N processors)

Motivation Overview of the course Concurrency in Shared Memory: Effects and Issues Critical Sections and Mutual Exclusion

Motivation
Why Concurrency?

Programs for multi-processors
Drivers for slow devices
Human users are concurrent
Distributed systems with multiple clients
Reduce latency
Increase efficiency, but Amdahl’s law

S =
N

b ∗ N + (1 − b)

(S = speedup, b = sequential part, N processors)

Motivation Overview of the course Concurrency in Shared Memory: Effects and Issues Critical Sections and Mutual Exclusion

Motivation
Why Concurrency?

Programs for multi-processors
Drivers for slow devices
Human users are concurrent
Distributed systems with multiple clients
Reduce latency
Increase efficiency, but Amdahl’s law

S =
N

b ∗ N + (1 − b)

(S = speedup, b = sequential part, N processors)

Motivation Overview of the course Concurrency in Shared Memory: Effects and Issues Critical Sections and Mutual Exclusion

Motivation
Why Concurrency?

Programs for multi-processors
Drivers for slow devices
Human users are concurrent
Distributed systems with multiple clients
Reduce latency
Increase efficiency, but Amdahl’s law

S =
N

b ∗ N + (1 − b)

(S = speedup, b = sequential part, N processors)

Motivation Overview of the course Concurrency in Shared Memory: Effects and Issues Critical Sections and Mutual Exclusion

Motivation
Why Concurrency?

Programs for multi-processors
Drivers for slow devices
Human users are concurrent
Distributed systems with multiple clients
Reduce latency
Increase efficiency, but Amdahl’s law

S =
N

b ∗ N + (1 − b)

(S = speedup, b = sequential part, N processors)

Motivation Overview of the course Concurrency in Shared Memory: Effects and Issues Critical Sections and Mutual Exclusion

Motivation
Why Concurrency?

Programs for multi-processors
Drivers for slow devices
Human users are concurrent
Distributed systems with multiple clients
Reduce latency
Increase efficiency, but Amdahl’s law

S =
N

b ∗ N + (1 − b)

(S = speedup, b = sequential part, N processors)

Motivation Overview of the course Concurrency in Shared Memory: Effects and Issues Critical Sections and Mutual Exclusion

Overview of the course

09-28 CP Shared memory: atomicity
10-05 CP/JJL Shared memory: verification, report on Ariane 501
10-12 CP CCS: syntax and transitions, coinduction
10-19 CP CCS: weak and strong bisimulations, axiomatization
10-26 CP CCS: examples, Hennessy-Milner logic
11-02 JL π-calculus: syntax; reduction, transitions, strong bisimulation
11-09 JL π-calculus: sum, abstractions, data structures, bisimulation proofs
11-16 JL π-calculus: bisimulation “up to”, congruence, barbed bisimulation
11-23 Review
11-30 MT exam
12-07 JL π-calculus: comparison between equivalences
12-14 JJL Expressivity of the pi-calculus and its variants
12-21 vacation
12-28 vacation
01-04 JJL Distributed pi-calculus
01-11 JJL Problems with distributed implementation
01-18 EG True concurrency versus interleaving semantics
01-25 EG Event structures and Petri nets
02-01 EG Application to the semantics of CCS
02-08 EG Comparison of the expressiveness of different models
02-15 Review
02-22 Final exam

Motivation Overview of the course Concurrency in Shared Memory: Effects and Issues Critical Sections and Mutual Exclusion

Non-determinism

Note: we assume that the update of a variable is atomic
Let x be a global variable. Assume that at the beginning
x = 0
Consider two simple processes

S = [x := 1;] and T = [x := 2;]

After the execution of S || T , we have x ∈ {1, 2}

Conclusion:
Result is not unique.
Concurrent programs are not described by functions.

Motivation Overview of the course Concurrency in Shared Memory: Effects and Issues Critical Sections and Mutual Exclusion

Non-determinism

Note: we assume that the update of a variable is atomic
Let x be a global variable. Assume that at the beginning
x = 0
Consider two simple processes

S = [x := 1;] and T = [x := 2;]

After the execution of S || T , we have x ∈ {1, 2}

Conclusion:
Result is not unique.
Concurrent programs are not described by functions.

Motivation Overview of the course Concurrency in Shared Memory: Effects and Issues Critical Sections and Mutual Exclusion

Non-determinism

Note: we assume that the update of a variable is atomic
Let x be a global variable. Assume that at the beginning
x = 0
Consider two simple processes

S = [x := 1;] and T = [x := 2;]

After the execution of S || T , we have x ∈ {1, 2}

Conclusion:
Result is not unique.
Concurrent programs are not described by functions.

Motivation Overview of the course Concurrency in Shared Memory: Effects and Issues Critical Sections and Mutual Exclusion

Non-determinism

Note: we assume that the update of a variable is atomic
Let x be a global variable. Assume that at the beginning
x = 0
Consider two simple processes

S = [x := 1;] and T = [x := 2;]

After the execution of S || T , we have x ∈ {1, 2}

Conclusion:
Result is not unique.
Concurrent programs are not described by functions.

Motivation Overview of the course Concurrency in Shared Memory: Effects and Issues Critical Sections and Mutual Exclusion

Non-determinism

Note: we assume that the update of a variable is atomic
Let x be a global variable. Assume that at the beginning
x = 0
Consider two simple processes

S = [x := 1;] and T = [x := 2;]

After the execution of S || T , we have x ∈ {1, 2}

Conclusion:
Result is not unique.
Concurrent programs are not described by functions.

Motivation Overview of the course Concurrency in Shared Memory: Effects and Issues Critical Sections and Mutual Exclusion

Non-determinism

Note: we assume that the update of a variable is atomic
Let x be a global variable. Assume that at the beginning
x = 0
Consider two simple processes

S = [x := 1;] and T = [x := 2;]

After the execution of S || T , we have x ∈ {1, 2}

Conclusion:
Result is not unique.
Concurrent programs are not described by functions.

Motivation Overview of the course Concurrency in Shared Memory: Effects and Issues Critical Sections and Mutual Exclusion

Non-determinism

Note: we assume that the update of a variable is atomic
Let x be a global variable. Assume that at the beginning
x = 0
Consider two simple processes

S = [x := 1;] and T = [x := 2;]

After the execution of S || T , we have x ∈ {1, 2}

Conclusion:
Result is not unique.
Concurrent programs are not described by functions.

Motivation Overview of the course Concurrency in Shared Memory: Effects and Issues Critical Sections and Mutual Exclusion

Implicit Communication

Let x be a global variable. Assume that at the beginning
x = 0
Consider the two processes

S = [x := x + 1; x := x + 1 || x := 2 ∗ x]
T = [x := x + 1; x := x + 1 || wait (x = 1); x := 2 ∗ x]

After the execution of S, we have x ∈ {2, 3, 4}
After the execution of T , we have x ∈ {3, 4}
T may be blocked

Conclusion: The parallel subcomponents of a program
may interact via their shared variables

Motivation Overview of the course Concurrency in Shared Memory: Effects and Issues Critical Sections and Mutual Exclusion

Implicit Communication

Let x be a global variable. Assume that at the beginning
x = 0
Consider the two processes

S = [x := x + 1; x := x + 1 || x := 2 ∗ x]
T = [x := x + 1; x := x + 1 || wait (x = 1); x := 2 ∗ x]

After the execution of S, we have x ∈ {2, 3, 4}
After the execution of T , we have x ∈ {3, 4}
T may be blocked

Conclusion: The parallel subcomponents of a program
may interact via their shared variables

Motivation Overview of the course Concurrency in Shared Memory: Effects and Issues Critical Sections and Mutual Exclusion

Implicit Communication

Let x be a global variable. Assume that at the beginning
x = 0
Consider the two processes

S = [x := x + 1; x := x + 1 || x := 2 ∗ x]
T = [x := x + 1; x := x + 1 || wait (x = 1); x := 2 ∗ x]

After the execution of S, we have x ∈ {2, 3, 4}
After the execution of T , we have x ∈ {3, 4}
T may be blocked

Conclusion: The parallel subcomponents of a program
may interact via their shared variables

Motivation Overview of the course Concurrency in Shared Memory: Effects and Issues Critical Sections and Mutual Exclusion

Implicit Communication

Let x be a global variable. Assume that at the beginning
x = 0
Consider the two processes

S = [x := x + 1; x := x + 1 || x := 2 ∗ x]
T = [x := x + 1; x := x + 1 || wait (x = 1); x := 2 ∗ x]

After the execution of S, we have x ∈ {2, 3, 4}
After the execution of T , we have x ∈ {3, 4}
T may be blocked

Conclusion: The parallel subcomponents of a program
may interact via their shared variables

Motivation Overview of the course Concurrency in Shared Memory: Effects and Issues Critical Sections and Mutual Exclusion

Implicit Communication

Let x be a global variable. Assume that at the beginning
x = 0
Consider the two processes

S = [x := x + 1; x := x + 1 || x := 2 ∗ x]
T = [x := x + 1; x := x + 1 || wait (x = 1); x := 2 ∗ x]

After the execution of S, we have x ∈ {2, 3, 4}
After the execution of T , we have x ∈ {3, 4}
T may be blocked

Conclusion: The parallel subcomponents of a program
may interact via their shared variables

Motivation Overview of the course Concurrency in Shared Memory: Effects and Issues Critical Sections and Mutual Exclusion

Implicit Communication

Let x be a global variable. Assume that at the beginning
x = 0
Consider the two processes

S = [x := x + 1; x := x + 1 || x := 2 ∗ x]
T = [x := x + 1; x := x + 1 || wait (x = 1); x := 2 ∗ x]

After the execution of S, we have x ∈ {2, 3, 4}
After the execution of T , we have x ∈ {3, 4}
T may be blocked

Conclusion: The parallel subcomponents of a program
may interact via their shared variables

Motivation Overview of the course Concurrency in Shared Memory: Effects and Issues Critical Sections and Mutual Exclusion

Implicit Communication

Let x be a global variable. Assume that at the beginning
x = 0
Consider the two processes

S = [x := x + 1; x := x + 1 || x := 2 ∗ x]
T = [x := x + 1; x := x + 1 || wait (x = 1); x := 2 ∗ x]

After the execution of S, we have x ∈ {2, 3, 4}
After the execution of T , we have x ∈ {3, 4}
T may be blocked

Conclusion: The parallel subcomponents of a program
may interact via their shared variables

Motivation Overview of the course Concurrency in Shared Memory: Effects and Issues Critical Sections and Mutual Exclusion

Input-output behavior

Let x be a global variable.
Consider the two processes

S = [x := 1] and T = [x := 0; x := x + 1]

S and T are the same function on memory state.
However, S || S and T || S are different “functions” on
memory state.

A process is an atomic action, followed by a process:

P ' Null + 2action×P

Part of the concurrency course aims at giving sense to this
equation.

Motivation Overview of the course Concurrency in Shared Memory: Effects and Issues Critical Sections and Mutual Exclusion

Input-output behavior

Let x be a global variable.
Consider the two processes

S = [x := 1] and T = [x := 0; x := x + 1]

S and T are the same function on memory state.
However, S || S and T || S are different “functions” on
memory state.

A process is an atomic action, followed by a process:

P ' Null + 2action×P

Part of the concurrency course aims at giving sense to this
equation.

Motivation Overview of the course Concurrency in Shared Memory: Effects and Issues Critical Sections and Mutual Exclusion

Input-output behavior

Let x be a global variable.
Consider the two processes

S = [x := 1] and T = [x := 0; x := x + 1]

S and T are the same function on memory state.
However, S || S and T || S are different “functions” on
memory state.

A process is an atomic action, followed by a process:

P ' Null + 2action×P

Part of the concurrency course aims at giving sense to this
equation.

Motivation Overview of the course Concurrency in Shared Memory: Effects and Issues Critical Sections and Mutual Exclusion

Input-output behavior

Let x be a global variable.
Consider the two processes

S = [x := 1] and T = [x := 0; x := x + 1]

S and T are the same function on memory state.
However, S || S and T || S are different “functions” on
memory state.

A process is an atomic action, followed by a process:

P ' Null + 2action×P

Part of the concurrency course aims at giving sense to this
equation.

Motivation Overview of the course Concurrency in Shared Memory: Effects and Issues Critical Sections and Mutual Exclusion

Input-output behavior

Let x be a global variable.
Consider the two processes

S = [x := 1] and T = [x := 0; x := x + 1]

S and T are the same function on memory state.
However, S || S and T || S are different “functions” on
memory state.

A process is an atomic action, followed by a process:

P ' Null + 2action×P

Part of the concurrency course aims at giving sense to this
equation.

Motivation Overview of the course Concurrency in Shared Memory: Effects and Issues Critical Sections and Mutual Exclusion

Input-output behavior

Let x be a global variable.
Consider the two processes

S = [x := 1] and T = [x := 0; x := x + 1]

S and T are the same function on memory state.
However, S || S and T || S are different “functions” on
memory state.

A process is an atomic action, followed by a process:

P ' Null + 2action×P

Part of the concurrency course aims at giving sense to this
equation.

Motivation Overview of the course Concurrency in Shared Memory: Effects and Issues Critical Sections and Mutual Exclusion

Input-output behavior

Let x be a global variable.
Consider the two processes

S = [x := 1] and T = [x := 0; x := x + 1]

S and T are the same function on memory state.
However, S || S and T || S are different “functions” on
memory state.

A process is an atomic action, followed by a process:

P ' Null + 2action×P

Part of the concurrency course aims at giving sense to this
equation.

Motivation Overview of the course Concurrency in Shared Memory: Effects and Issues Critical Sections and Mutual Exclusion

Atomicity

Let x be a global variable. Assume that at beginning x = 0
Consider the process S = [x := x + 1 || x := x + 1]

After the execution of S we have x = 2.

However [x := x + 1] may be compiled into
[A := x + 1; x := A]

So, S may behave as
[A := x + 1; x := A] || [B := x + 1; x := B],
which, after execution, gives x ∈ {1, 2}.

To avoid such effect, [x := x + 1] has to be atomic
Atomic statements, aka critical sections can be
implemented via mutual exclusion

Motivation Overview of the course Concurrency in Shared Memory: Effects and Issues Critical Sections and Mutual Exclusion

Atomicity

Let x be a global variable. Assume that at beginning x = 0
Consider the process S = [x := x + 1 || x := x + 1]

After the execution of S we have x = 2.

However [x := x + 1] may be compiled into
[A := x + 1; x := A]

So, S may behave as
[A := x + 1; x := A] || [B := x + 1; x := B],
which, after execution, gives x ∈ {1, 2}.

To avoid such effect, [x := x + 1] has to be atomic
Atomic statements, aka critical sections can be
implemented via mutual exclusion

Motivation Overview of the course Concurrency in Shared Memory: Effects and Issues Critical Sections and Mutual Exclusion

Atomicity

Let x be a global variable. Assume that at beginning x = 0
Consider the process S = [x := x + 1 || x := x + 1]

After the execution of S we have x = 2.

However [x := x + 1] may be compiled into
[A := x + 1; x := A]

So, S may behave as
[A := x + 1; x := A] || [B := x + 1; x := B],
which, after execution, gives x ∈ {1, 2}.

To avoid such effect, [x := x + 1] has to be atomic
Atomic statements, aka critical sections can be
implemented via mutual exclusion

Motivation Overview of the course Concurrency in Shared Memory: Effects and Issues Critical Sections and Mutual Exclusion

Atomicity

Let x be a global variable. Assume that at beginning x = 0
Consider the process S = [x := x + 1 || x := x + 1]

After the execution of S we have x = 2.

However [x := x + 1] may be compiled into
[A := x + 1; x := A]

So, S may behave as
[A := x + 1; x := A] || [B := x + 1; x := B],
which, after execution, gives x ∈ {1, 2}.

To avoid such effect, [x := x + 1] has to be atomic
Atomic statements, aka critical sections can be
implemented via mutual exclusion

Motivation Overview of the course Concurrency in Shared Memory: Effects and Issues Critical Sections and Mutual Exclusion

Atomicity

Let x be a global variable. Assume that at beginning x = 0
Consider the process S = [x := x + 1 || x := x + 1]

After the execution of S we have x = 2.

However [x := x + 1] may be compiled into
[A := x + 1; x := A]

So, S may behave as
[A := x + 1; x := A] || [B := x + 1; x := B],
which, after execution, gives x ∈ {1, 2}.

To avoid such effect, [x := x + 1] has to be atomic
Atomic statements, aka critical sections can be
implemented via mutual exclusion

Motivation Overview of the course Concurrency in Shared Memory: Effects and Issues Critical Sections and Mutual Exclusion

Atomicity

Let x be a global variable. Assume that at beginning x = 0
Consider the process S = [x := x + 1 || x := x + 1]

After the execution of S we have x = 2.

However [x := x + 1] may be compiled into
[A := x + 1; x := A]

So, S may behave as
[A := x + 1; x := A] || [B := x + 1; x := B],
which, after execution, gives x ∈ {1, 2}.

To avoid such effect, [x := x + 1] has to be atomic
Atomic statements, aka critical sections can be
implemented via mutual exclusion

Motivation Overview of the course Concurrency in Shared Memory: Effects and Issues Critical Sections and Mutual Exclusion

Atomicity

Let x be a global variable. Assume that at beginning x = 0
Consider the process S = [x := x + 1 || x := x + 1]

After the execution of S we have x = 2.

However [x := x + 1] may be compiled into
[A := x + 1; x := A]

So, S may behave as
[A := x + 1; x := A] || [B := x + 1; x := B],
which, after execution, gives x ∈ {1, 2}.

To avoid such effect, [x := x + 1] has to be atomic
Atomic statements, aka critical sections can be
implemented via mutual exclusion

Motivation Overview of the course Concurrency in Shared Memory: Effects and Issues Critical Sections and Mutual Exclusion

Some attempts to implement a critical section

Outline

1 Motivation

2 Overview of the course

3 Concurrency in Shared Memory: Effects and Issues

4 Critical Sections and Mutual Exclusion
Some attempts to implement a critical section
Some famous algorithms
Semaphores
The dining philosophers
Exercises

Motivation Overview of the course Concurrency in Shared Memory: Effects and Issues Critical Sections and Mutual Exclusion

Some attempts to implement a critical section

The problem

Let P0 = [· · · ; C0; · · ·] and P1 = [· · · ; C1; · · ·]

We intent C0 and C1 to be critical sections, i.e. they should
not be executed simultaneously.

Motivation Overview of the course Concurrency in Shared Memory: Effects and Issues Critical Sections and Mutual Exclusion

Some attempts to implement a critical section

Attempt n.1

Use a variable turn. At beginning, turn = 0.

P0
...;

while turn != 0 do ;
C0;
turn := 1;
...

P1
...;

while turn != 1 do ;
C1;
turn := 0;
...

However the method is unfair, because P0 is privileged.
Worse yet, until P0 executes its critical section, P1 is
blocked.

Motivation Overview of the course Concurrency in Shared Memory: Effects and Issues Critical Sections and Mutual Exclusion

Some attempts to implement a critical section

Attempt n.1

Use a variable turn. At beginning, turn = 0.

P0
...;

while turn != 0 do ;
C0;
turn := 1;
...

P1
...;

while turn != 1 do ;
C1;
turn := 0;
...

However the method is unfair, because P0 is privileged.
Worse yet, until P0 executes its critical section, P1 is
blocked.

Motivation Overview of the course Concurrency in Shared Memory: Effects and Issues Critical Sections and Mutual Exclusion

Some attempts to implement a critical section

Attempt n.2

Use two boolean variables a0, a1.
At beginning, a0 = a1 = false .

P0
...;
while a1 do ;
a0 := true ;
C0;
a0 := false ;
...

P1
...;
while a0 do ;
a1 := true ;
C1;
a1 := false ;
...

Incorrect. It does not ensure mutual exclusion.

Motivation Overview of the course Concurrency in Shared Memory: Effects and Issues Critical Sections and Mutual Exclusion

Some attempts to implement a critical section

Attempt n.2

Use two boolean variables a0, a1.
At beginning, a0 = a1 = false .

P0
...;
while a1 do ;
a0 := true ;
C0;
a0 := false ;
...

P1
...;
while a0 do ;
a1 := true ;
C1;
a1 := false ;
...

Incorrect. It does not ensure mutual exclusion.

Motivation Overview of the course Concurrency in Shared Memory: Effects and Issues Critical Sections and Mutual Exclusion

Some attempts to implement a critical section

Attempt n.3

Use two boolean variables a0, a1.
At beginning, a0 = a1 = false .

P0
...;
a0 := true ;
while a1 do ;
a0 := true ;
C0;
a0 :=false ;
...

P1
...;
a1 := true ;
while a0 do ;
a1 := true ;
C1;
a1 := false ;
...

We may get a deadlock. Both P0 and P1 may block.

Motivation Overview of the course Concurrency in Shared Memory: Effects and Issues Critical Sections and Mutual Exclusion

Some attempts to implement a critical section

Attempt n.3

Use two boolean variables a0, a1.
At beginning, a0 = a1 = false .

P0
...;
a0 := true ;
while a1 do ;
a0 := true ;
C0;
a0 :=false ;
...

P1
...;
a1 := true ;
while a0 do ;
a1 := true ;
C1;
a1 := false ;
...

We may get a deadlock. Both P0 and P1 may block.

Motivation Overview of the course Concurrency in Shared Memory: Effects and Issues Critical Sections and Mutual Exclusion

Some famous algorithms

Outline

1 Motivation

2 Overview of the course

3 Concurrency in Shared Memory: Effects and Issues

4 Critical Sections and Mutual Exclusion
Some attempts to implement a critical section
Some famous algorithms
Semaphores
The dining philosophers
Exercises

Motivation Overview of the course Concurrency in Shared Memory: Effects and Issues Critical Sections and Mutual Exclusion

Some famous algorithms

Dekker’s Algorithm (early Sixties)

The first correct mutual exclusion algorithm
Use both the variable turn and the boolean variables a0
and a1. At beginning, a0 = a1 = false , turn ∈ {0, 1}

P0
...;
a0 := true ;
while a1 do

if turn != 0 begin
a0 := false ;
while turn != 0 do ;
a0 := true ;
end ;

C0;
turn := 1; a0 := false ;
...

P1
...;
a1 := true ;
while a0 do

if turn != 1 begin
a1 := false ;
while turn != 1 do ;
a1 := true ;
end ;

C1;
turn := 0; a1 := false ;
...

A variant of Dekker’s algorithm for the case of n processes
was presented by Dijkstra (CACM 1965).

Motivation Overview of the course Concurrency in Shared Memory: Effects and Issues Critical Sections and Mutual Exclusion

Some famous algorithms

Dekker’s Algorithm (early Sixties)

The first correct mutual exclusion algorithm
Use both the variable turn and the boolean variables a0
and a1. At beginning, a0 = a1 = false , turn ∈ {0, 1}

P0
...;
a0 := true ;
while a1 do

if turn != 0 begin
a0 := false ;
while turn != 0 do ;
a0 := true ;
end ;

C0;
turn := 1; a0 := false ;
...

P1
...;
a1 := true ;
while a0 do

if turn != 1 begin
a1 := false ;
while turn != 1 do ;
a1 := true ;
end ;

C1;
turn := 0; a1 := false ;
...

A variant of Dekker’s algorithm for the case of n processes
was presented by Dijkstra (CACM 1965).

Motivation Overview of the course Concurrency in Shared Memory: Effects and Issues Critical Sections and Mutual Exclusion

Some famous algorithms

Peterson’s Algorithm (IPL 1981)

The simplest and most compact mutual exclusion
algorithm in literature
Use both the variable turn and the boolean variables a0
and a1. At beginning, a0 = a1 = false , turn ∈ {0, 1}

P0
...;
a0 := true ;
turn := 1;
while a1 and turn != 0 do ;
C0;
a0 := false ;
...

P1
...;
a1 := true ;
turn := 0;
while a0 and turn != 1 do ;
C1;
a1 := false ;
...

Motivation Overview of the course Concurrency in Shared Memory: Effects and Issues Critical Sections and Mutual Exclusion

Some famous algorithms

Correctness of Peterson’s Algorithm (1/2)

To show the correctness it is convenient to add two
variables, pc0, pc1, which represent a sort of program
counters for P0 and P1.
At beginning pc0 = pc1 = 1

P0
...;
{¬a0 ∧ pc0 6= 2}
a0 := true ; pc0 := 2;
{a0 ∧ pc0 = 2}
turn := 1; pc0 := 1;
{a0 ∧ pc0 6= 2}
while a1 and turn != 0 do ;
{a0 ∧ pc0 6= 2 ∧ (¬a1 ∨ turn = 0 ∨ pc1 = 2)}
C0;
a0 := false ;
{¬a0 ∧ pc0 6= 2}
...

P1
...;
{¬a1 ∧ pc1 6= 2}
a1 := true ; pc1 := 2;
{a1 ∧ pc1 = 2}
turn := 0; pc1 := 1;
{a1 ∧ pc1 6= 2}
while a0 and turn != 1 do ;
{a1 ∧ pc1 6= 2 ∧ (¬a0 ∨ turn = 1 ∨ pc0 = 2)}
C1;
a1 := false ;
{¬a1 ∧ pc1 6= 2}
...

Motivation Overview of the course Concurrency in Shared Memory: Effects and Issues Critical Sections and Mutual Exclusion

Some famous algorithms

Correctness of Peterson’s Algorithm (2/2)

We can prove the correctness by contradiction. If both
programs were in their critical section, then the formulas
{a0 ∧ pc0 6= 2 ∧ (¬a1 ∨ turn = 0 ∨ pc1 = 2)} and
{a1 ∧ pc1 6= 2 ∧ (¬a0 ∨ turn = 1 ∨ pc0 = 2)} should be true at
the same time, but:

a0 ∧ pc0 6= 2 ∧ (¬a1 ∨ turn = 0 ∨ pc1 = 2)
∧ a1 ∧ pc1 6= 2 ∧ (¬a0 ∨ turn = 1 ∨ pc0 = 2)

≡ turn = 0 ∧ turn = 1

Contradiction!

Motivation Overview of the course Concurrency in Shared Memory: Effects and Issues Critical Sections and Mutual Exclusion

Some famous algorithms

Correctness of Peterson’s Algorithm (2/2)

We can prove the correctness by contradiction. If both
programs were in their critical section, then the formulas
{a0 ∧ pc0 6= 2 ∧ (¬a1 ∨ turn = 0 ∨ pc1 = 2)} and
{a1 ∧ pc1 6= 2 ∧ (¬a0 ∨ turn = 1 ∨ pc0 = 2)} should be true at
the same time, but:

a0 ∧ pc0 6= 2 ∧ (¬a1 ∨ turn = 0 ∨ pc1 = 2)
∧ a1 ∧ pc1 6= 2 ∧ (¬a0 ∨ turn = 1 ∨ pc0 = 2)

≡ turn = 0 ∧ turn = 1

Contradiction!

Motivation Overview of the course Concurrency in Shared Memory: Effects and Issues Critical Sections and Mutual Exclusion

Some famous algorithms

Correctness of Peterson’s Algorithm (2/2)

We can prove the correctness by contradiction. If both
programs were in their critical section, then the formulas
{a0 ∧ pc0 6= 2 ∧ (¬a1 ∨ turn = 0 ∨ pc1 = 2)} and
{a1 ∧ pc1 6= 2 ∧ (¬a0 ∨ turn = 1 ∨ pc0 = 2)} should be true at
the same time, but:

a0 ∧ pc0 6= 2 ∧ (¬a1 ∨ turn = 0 ∨ pc1 = 2)
∧ a1 ∧ pc1 6= 2 ∧ (¬a0 ∨ turn = 1 ∨ pc0 = 2)

≡ turn = 0 ∧ turn = 1

Contradiction!

Motivation Overview of the course Concurrency in Shared Memory: Effects and Issues Critical Sections and Mutual Exclusion

Some famous algorithms

Synchronization in Concurrent/Distributed algorithms

Dekker’s algorithm (early sixties). Quite complex.
Peterson is simpler and can be generalized to N processes
more easily
Both algorithms by Dekker and Peterson use busy waiting
Fairness relies on fair scheduling
Many other algorithms for mutual exclusion have been
proposed in literature. Particularly by Lamport: barber,
baker, . . .
Proofs ? By model checking ? With assertions ? In
temporal logic (eg Lamport’s TLA)?

Need for higher constructs in concurrent programming.

Motivation Overview of the course Concurrency in Shared Memory: Effects and Issues Critical Sections and Mutual Exclusion

Some famous algorithms

Synchronization in Concurrent/Distributed algorithms

Dekker’s algorithm (early sixties). Quite complex.
Peterson is simpler and can be generalized to N processes
more easily
Both algorithms by Dekker and Peterson use busy waiting
Fairness relies on fair scheduling
Many other algorithms for mutual exclusion have been
proposed in literature. Particularly by Lamport: barber,
baker, . . .
Proofs ? By model checking ? With assertions ? In
temporal logic (eg Lamport’s TLA)?

Need for higher constructs in concurrent programming.

Motivation Overview of the course Concurrency in Shared Memory: Effects and Issues Critical Sections and Mutual Exclusion

Some famous algorithms

Synchronization in Concurrent/Distributed algorithms

Dekker’s algorithm (early sixties). Quite complex.
Peterson is simpler and can be generalized to N processes
more easily
Both algorithms by Dekker and Peterson use busy waiting
Fairness relies on fair scheduling
Many other algorithms for mutual exclusion have been
proposed in literature. Particularly by Lamport: barber,
baker, . . .
Proofs ? By model checking ? With assertions ? In
temporal logic (eg Lamport’s TLA)?

Need for higher constructs in concurrent programming.

Motivation Overview of the course Concurrency in Shared Memory: Effects and Issues Critical Sections and Mutual Exclusion

Some famous algorithms

Synchronization in Concurrent/Distributed algorithms

Dekker’s algorithm (early sixties). Quite complex.
Peterson is simpler and can be generalized to N processes
more easily
Both algorithms by Dekker and Peterson use busy waiting
Fairness relies on fair scheduling
Many other algorithms for mutual exclusion have been
proposed in literature. Particularly by Lamport: barber,
baker, . . .
Proofs ? By model checking ? With assertions ? In
temporal logic (eg Lamport’s TLA)?

Need for higher constructs in concurrent programming.

Motivation Overview of the course Concurrency in Shared Memory: Effects and Issues Critical Sections and Mutual Exclusion

Some famous algorithms

Synchronization in Concurrent/Distributed algorithms

Dekker’s algorithm (early sixties). Quite complex.
Peterson is simpler and can be generalized to N processes
more easily
Both algorithms by Dekker and Peterson use busy waiting
Fairness relies on fair scheduling
Many other algorithms for mutual exclusion have been
proposed in literature. Particularly by Lamport: barber,
baker, . . .
Proofs ? By model checking ? With assertions ? In
temporal logic (eg Lamport’s TLA)?

Need for higher constructs in concurrent programming.

Motivation Overview of the course Concurrency in Shared Memory: Effects and Issues Critical Sections and Mutual Exclusion

Some famous algorithms

Synchronization in Concurrent/Distributed algorithms

Dekker’s algorithm (early sixties). Quite complex.
Peterson is simpler and can be generalized to N processes
more easily
Both algorithms by Dekker and Peterson use busy waiting
Fairness relies on fair scheduling
Many other algorithms for mutual exclusion have been
proposed in literature. Particularly by Lamport: barber,
baker, . . .
Proofs ? By model checking ? With assertions ? In
temporal logic (eg Lamport’s TLA)?

Need for higher constructs in concurrent programming.

Motivation Overview of the course Concurrency in Shared Memory: Effects and Issues Critical Sections and Mutual Exclusion

Some famous algorithms

Synchronization in Concurrent/Distributed algorithms

Dekker’s algorithm (early sixties). Quite complex.
Peterson is simpler and can be generalized to N processes
more easily
Both algorithms by Dekker and Peterson use busy waiting
Fairness relies on fair scheduling
Many other algorithms for mutual exclusion have been
proposed in literature. Particularly by Lamport: barber,
baker, . . .
Proofs ? By model checking ? With assertions ? In
temporal logic (eg Lamport’s TLA)?

Need for higher constructs in concurrent programming.

Motivation Overview of the course Concurrency in Shared Memory: Effects and Issues Critical Sections and Mutual Exclusion

Some famous algorithms

Synchronization in Concurrent/Distributed algorithms

Dekker’s algorithm (early sixties). Quite complex.
Peterson is simpler and can be generalized to N processes
more easily
Both algorithms by Dekker and Peterson use busy waiting
Fairness relies on fair scheduling
Many other algorithms for mutual exclusion have been
proposed in literature. Particularly by Lamport: barber,
baker, . . .
Proofs ? By model checking ? With assertions ? In
temporal logic (eg Lamport’s TLA)?

Need for higher constructs in concurrent programming.

Motivation Overview of the course Concurrency in Shared Memory: Effects and Issues Critical Sections and Mutual Exclusion

Semaphores

Outline

1 Motivation

2 Overview of the course

3 Concurrency in Shared Memory: Effects and Issues

4 Critical Sections and Mutual Exclusion
Some attempts to implement a critical section
Some famous algorithms
Semaphores
The dining philosophers
Exercises

Motivation Overview of the course Concurrency in Shared Memory: Effects and Issues Critical Sections and Mutual Exclusion

Semaphores

Semaphores

A generalized semaphore s is an integer variable with 2 operations

acquire(s): If s > 0 then s := s − 1, otherwise suspend on s.
(atomically)

release(s): If some process is suspended on s, wake it up,
otherwise s := s + 1. (atomically)

Now mutual exclusion is easy: At beginning, s = 1. Then

[· · · ; acquire(s); C0; release(s); · · ·] || [· · · ; acquire(s); C1; release(s); · · ·]

Question Consider another definition for semaphore:
acquire(s): If s > 0 then s := s − 1. Otherwise restart.
release(s): Do s := s + 1.

Are these definitions equivalent?

Motivation Overview of the course Concurrency in Shared Memory: Effects and Issues Critical Sections and Mutual Exclusion

Semaphores

Semaphores

A generalized semaphore s is an integer variable with 2 operations

acquire(s): If s > 0 then s := s − 1, otherwise suspend on s.
(atomically)

release(s): If some process is suspended on s, wake it up,
otherwise s := s + 1. (atomically)

Now mutual exclusion is easy: At beginning, s = 1. Then

[· · · ; acquire(s); C0; release(s); · · ·] || [· · · ; acquire(s); C1; release(s); · · ·]

Question Consider another definition for semaphore:
acquire(s): If s > 0 then s := s − 1. Otherwise restart.
release(s): Do s := s + 1.

Are these definitions equivalent?

Motivation Overview of the course Concurrency in Shared Memory: Effects and Issues Critical Sections and Mutual Exclusion

Semaphores

Semaphores

A generalized semaphore s is an integer variable with 2 operations

acquire(s): If s > 0 then s := s − 1, otherwise suspend on s.
(atomically)

release(s): If some process is suspended on s, wake it up,
otherwise s := s + 1. (atomically)

Now mutual exclusion is easy: At beginning, s = 1. Then

[· · · ; acquire(s); C0; release(s); · · ·] || [· · · ; acquire(s); C1; release(s); · · ·]

Question Consider another definition for semaphore:
acquire(s): If s > 0 then s := s − 1. Otherwise restart.
release(s): Do s := s + 1.

Are these definitions equivalent?

Motivation Overview of the course Concurrency in Shared Memory: Effects and Issues Critical Sections and Mutual Exclusion

Semaphores

Semaphores

A generalized semaphore s is an integer variable with 2 operations

acquire(s): If s > 0 then s := s − 1, otherwise suspend on s.
(atomically)

release(s): If some process is suspended on s, wake it up,
otherwise s := s + 1. (atomically)

Now mutual exclusion is easy: At beginning, s = 1. Then

[· · · ; acquire(s); C0; release(s); · · ·] || [· · · ; acquire(s); C1; release(s); · · ·]

Question Consider another definition for semaphore:
acquire(s): If s > 0 then s := s − 1. Otherwise restart.
release(s): Do s := s + 1.

Are these definitions equivalent?

Motivation Overview of the course Concurrency in Shared Memory: Effects and Issues Critical Sections and Mutual Exclusion

Semaphores

Semaphores

A generalized semaphore s is an integer variable with 2 operations

acquire(s): If s > 0 then s := s − 1, otherwise suspend on s.
(atomically)

release(s): If some process is suspended on s, wake it up,
otherwise s := s + 1. (atomically)

Now mutual exclusion is easy: At beginning, s = 1. Then

[· · · ; acquire(s); C0; release(s); · · ·] || [· · · ; acquire(s); C1; release(s); · · ·]

Question Consider another definition for semaphore:
acquire(s): If s > 0 then s := s − 1. Otherwise restart.
release(s): Do s := s + 1.

Are these definitions equivalent?

Motivation Overview of the course Concurrency in Shared Memory: Effects and Issues Critical Sections and Mutual Exclusion

The dining philosophers

Outline

1 Motivation

2 Overview of the course

3 Concurrency in Shared Memory: Effects and Issues

4 Critical Sections and Mutual Exclusion
Some attempts to implement a critical section
Some famous algorithms
Semaphores
The dining philosophers
Exercises

Motivation Overview of the course Concurrency in Shared Memory: Effects and Issues Critical Sections and Mutual Exclusion

The dining philosophers

The dining philosophers

Problem proposed by Dijkstra for testing concurrency primitives

5 philosophers spend their time around a table thinking or eating
spaghetti. In order to eat, each philosopher needs two forks.
However, there are only 5 forks on the table.

Desiderata

if one philosopher gets hungry, some philosopher will
eventually eat (progress)
if one philosopher gets hungry, he will eventually eat
(starvation-freedom)

Motivation Overview of the course Concurrency in Shared Memory: Effects and Issues Critical Sections and Mutual Exclusion

The dining philosophers

The dining philosophers

Problem proposed by Dijkstra for testing concurrency primitives

5 philosophers spend their time around a table thinking or eating
spaghetti. In order to eat, each philosopher needs two forks.
However, there are only 5 forks on the table.

Desiderata

if one philosopher gets hungry, some philosopher will
eventually eat (progress)
if one philosopher gets hungry, he will eventually eat
(starvation-freedom)

Motivation Overview of the course Concurrency in Shared Memory: Effects and Issues Critical Sections and Mutual Exclusion

The dining philosophers

The dining philosophers

Problem proposed by Dijkstra for testing concurrency primitives

5 philosophers spend their time around a table thinking or eating
spaghetti. In order to eat, each philosopher needs two forks.
However, there are only 5 forks on the table.

Desiderata
if one philosopher gets hungry, some philosopher will
eventually eat (progress)
if one philosopher gets hungry, he will eventually eat
(starvation-freedom)

Motivation Overview of the course Concurrency in Shared Memory: Effects and Issues Critical Sections and Mutual Exclusion

The dining philosophers

The dining philosophers

Problem proposed by Dijkstra for testing concurrency primitives

5 philosophers spend their time around a table thinking or eating
spaghetti. In order to eat, each philosopher needs two forks.
However, there are only 5 forks on the table.

Desiderata
if one philosopher gets hungry, some philosopher will
eventually eat (progress)
if one philosopher gets hungry, he will eventually eat
(starvation-freedom)

Motivation Overview of the course Concurrency in Shared Memory: Effects and Issues Critical Sections and Mutual Exclusion

The dining philosophers

The dining philosophers

Problem proposed by Dijkstra for testing concurrency primitives

5 philosophers spend their time around a table thinking or eating
spaghetti. In order to eat, each philosopher needs two forks.
However, there are only 5 forks on the table.

Desiderata
if one philosopher gets hungry, some philosopher will
eventually eat (progress)
if one philosopher gets hungry, he will eventually eat
(starvation-freedom)

Motivation Overview of the course Concurrency in Shared Memory: Effects and Issues Critical Sections and Mutual Exclusion

The dining philosophers

The dining philosophers

Problem proposed by Dijkstra for testing concurrency primitives

5 philosophers spend their time around a table thinking or eating
spaghetti. In order to eat, each philosopher needs two forks.
However, there are only 5 forks on the table.

Desiderata
if one philosopher gets hungry, some philosopher will
eventually eat (progress)
if one philosopher gets hungry, he will eventually eat
(starvation-freedom)

Motivation Overview of the course Concurrency in Shared Memory: Effects and Issues Critical Sections and Mutual Exclusion

Exercises

Outline

1 Motivation

2 Overview of the course

3 Concurrency in Shared Memory: Effects and Issues

4 Critical Sections and Mutual Exclusion
Some attempts to implement a critical section
Some famous algorithms
Semaphores
The dining philosophers
Exercises

Motivation Overview of the course Concurrency in Shared Memory: Effects and Issues Critical Sections and Mutual Exclusion

Exercises

Exercises

(Difficult) Generalize Dekker’s algorithm to the case of n
processes
Generalize Petersons’s algorithm to the case of n
processes
Implement the Semaphore in Java
Write a program for the dining philosophers which ensure
progress
Discuss how to modify the solution so to ensure
starvation-freedom
Problem: A certain file is shared by some Reader and
some Writer processes: we want that only one writer can
write on the file at a time, while the readers are allowed to
do it concurrently. Write the code for the Reader and the
Writer.

	Motivation
	Overview of the course
	Concurrency in Shared Memory: Effects and Issues
	Critical Sections and Mutual Exclusion
	Some attempts to implement a critical section
	Some famous algorithms
	Semaphores
	The dining philosophers
	Exercises

