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INTRODUCTION VARIATIONAL AUTO-ENCODERS

In this talk | will in some detail describe the paper of Kingma and Welling.
“Auto-Encoding Variational Bayes, International Conference on Learning
Representations.” ICLR, 2014.

arXiv:1312.6114 [stat.ML].
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INTRODUCTION VARIATIONAL AUTO-ENCODERS
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MANIFOLD HYPOTHESIS

« X high dimensional vector
Data is concentrated around a low dimensional manifold

Hope finding a representation Z of that manifold.
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MANIFOLD HYPOTHESIS

Low Dimensional High Dimensional (number of pixels)
representation a line
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PRINCIPLE IDEA ENCODER NETWORK

« We have a set of N-observations (e.g. images) {x(1),x@), .. xN)}
 Complex model parameterized with 6
 There is a latent space z with

7z~ p(z) multivariate Gaussian

x|z ~ py(x|2)

pe(X|Z)

O,

One Example

Wish to learn 0 from the N training observations xi=1,...,N
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TRAINING AS AN AUTOENCODER
Po(z|x) P, (x|2)

O

Training use maximum likelihood
of p(x) given the training data

Problem:

pe(z‘x)

Cannot be calculated:

Solution:
« MCMC (too costly)
» Approximate p(z|x) with q(z|x)
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MODEL FOR DECODER NETWORK

* For illustration z one dimensional x 2D
« Want a complex model of distribution of x given z
» |dea: NN + Gaussian (or Bernoulli) here with diagonal covariance 2
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COMPLETE AUTO-ENCODER

CON\A}
C OB H D

Learning the parameters ¢ and 6 via backpropagation o2 »0

Determining the loss function
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TRAINING: LOSS FUNCTION

« What is (one of the) most beautiful idea in statistics?

« Max-Likelihood, tune ®, 6 to maximize the likelihood

« We maximize the (log) likelihood of a given “image” x® of the training set.
Later we sum over all training data (using minibatches)

10
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LOWER BOUND OF LIKELIHOOD

Likelihood, for an image x® from training set. Writing x=x{ for short.

L = log (p(x))
= 2 g(zlx) log (p(x)) multiplied with 1

— Z g(zlx) log (Z((Zj:)) )

- 3o tog (22 29

q(zlx) p(zlx)

_ p(z,x) q(zlx)
_ z;{ 4(zlx) log ( E ) + 2;4 4(zlx) log ( )

p(zlx)

= L" + Dy, (q(z0)lip(zlx))
> L'

D, KL-Divergence >= 0 depends on how good q(z|x) can approximate p(z|x)

LV “lower variational bound of the (log) likelihood” LV =L for perfect approximation

11
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APPROXIMATE INFERENCE

L' = ; q(zlx) log (I;((ZZ’I;) ) with p(z,x) = p(xlz) p(z)

_ Z 420 log (P(xlz)P(Z))
: q(zlx)

_ p(2)
= Z g(zlx) log ( q(zlx)) + Z q(zlx) log (p(xlz))

= —Dyg (gz0pR)) + Eyear (log (p(x12))) putting in x for x
"Dyt (qx®)lp() dg (P12

Reconstruction quality, log(1) if x® gets always
reconstructed perfectly (z produces x®)

Regularisation
p(z) is usually a

simple prior N(0,1) Example x0

g a3 p

Z)
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CALCULATION OF THE REGULARIZATION s (ate=yip0)

Use N(0,1) as prior for p(z)
q(z|x") is Gaussian with parameters (u(),0()) determined by NN

-Die (4 ®)p@) = ~ 3 (1+1loglol”) — 4 — o)

2 4

J
1
J=1

L AP H N




VARIATIONAL AUTO-ENCODERS 14

SAMPLING TO CALCULATE sy (toe(eci2)) =

Approximating E,x0y with sampling form the distribution g(zlx)

withz#? [ =1,2,...L sampled from 720D ~ q(zlx(_i)) _
L’ = —Dy (q(zx?)lIp(2)) + Eqexoy (log (p(x“12)))

A ] 1 - 0.1
L' ~ -Dy (q(zx?)lip(z)) + - ; log (p(x©1z%"))

=xample x® log(p, (¥|2)  where £ ~ N(1, .5, )

: (@)
|l' ) [N
&
0 log(py(x|z))  where 24 ~ N(u," ,0,*)
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AN USEFUL TRICK ~ Orgnalfom Reparameterised form

Backpropagation not /# -aex) |
possible through random |

sampling!

Kingma, 2013]
Bengio, 2013]

[
[
. [Kingma and Welling 2014]
. : Random node [Rezende et al 2014]

: Deterministic node

Sampling (reparametrization trick) Cannot back propagate through a
random drawn number

29 N(u® 620
=u"+0"0e € ~N(,)

z has the same distribution, but now
one can back propagate.

Writing z in this form, results in a deterministic part and noise.
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PUTTING IT ALL TOGETHER

Prior p(z) ~ N(0,1) and p, g Gaussian, extension to dim(z) > 1 trivial

Cost: Regularisation

We use mini batch gradient

J
—Dy:. (q@x)lp(z)) = % (1 +log(at”) — i) - az‘?‘) decent to optimize the cost
=1 function over all x®in the mini
_ batch
Cost: Reproduction
. , D 1 x'(i) - ”’x-)z
~1og(p(x?1z2?)) = Z Elog(,,%) + > d Leqst Square for constant
j=1 X variance
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PUTTING IT ALL TOGETHER

Decoder

KLN (X)X

X1 N0 (1

1
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INTRODUCTION

Denoising Autoencoders
for learning Deep Networks

For more details, see:

P. Vincent, H. Larochelle, Y. Bengio, P.A. Manzagol,
Extracting and Composing Robust Features with Denoising

Autoencoders, Proceedings of the 25 International Conference on
Machine Learning (ICML'2008), pp. 1096-1103, Omnipress, 2008.

19
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INTRODUCTION

@ Building good predictors on complex domains
means learning complicated functions.

@ These are best represented by multiple levels of non-linear operations
l.e. deep architectures.

@ Deep architectures are an old idea: multi-layer perceptrons.

@ Learning the parameters of deep architectures proved to be
challenging!
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MAIN IDEA

Open question: what would make a good unsupervised criterion for
finding good initial intermediate representations?

@ Inspiration: our ability to “fill-in-the-blanks” in sensory input.

missing pixels, small occlusions, image from sound, ...

@ Good fill-in-the-blanks performance < distribution is well captured.

@ — old notion of associative memory (motivated Hopfield
models (Hopfield, 1982))

What we propose:
unsupervised initialization by explicit fill-in-the-blanks training.
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DENOISING AUTOENCODER

(OO000)
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DENOISING AUTOENCODER

XOXOOl«—" (OO0 00)

e Clean input x € [0, 1] is partially destroyed,
yielding corrupted input: X ~ gp(X|x).

23
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DENOISING AUTOENCODER

CO0)

fo

XOXOOl—2 100000

o Clean input x € [0,1]9 is partially destroyed,
yielding corrupted input: X ~ gp(X|x).

@ X is mapped to hidden representation y = fy(X).

24
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DENOISING AUTOENCODER

TN

XOXOOl«? (OO0000) (OOOO0)

e Clean input x € [0,1]? is partially destroyed,
yielding corrupted input: X ~ gp(X|x).

@ X is mapped to hidden representation y = fy(X).

@ From y we reconstruct a z = gy/(y).

25
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DENOISING AUTOENCODER

Ly(x,2)

-
-

RORKOOl> (00000) (00000)

o Clean input x € [0,1]¢ is partially destroyed,
yielding corrupted input: X ~ gp(X|x).

@ X is mapped to hidden representation y = fp(X).
@ From y we reconstruct a z = gy (y).

@ Train parameters to minimize the cross-entropy “reconstruction
error’” Ly(x,z) = H(By||B;), where By denotes multivariate Bernoulli
distribution with parameter x.
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NOISE PROCESS

XOXO Ol (OO0 0O0)

@ Choose a fixed proportion v of components of x at random.
@ Reset their values to 0.

@ Can be viewed as replacing a component considered missing by a
default value.

Other corruption processes are possible.

27
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ENCODER - DECODER

We use standard sigmoid network layers:

o y= fy(X) = sigmoid( W X+ b )
d’ xd d’ x1

, — . W/ / .
o gy (y) =sigmoid(W' y+ b’ )

dxd’ dx1
and cross-entropy loss.

28
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ENCODER - DECODER

Denoising is a fundamentally different task

@ Think of classical autoencoder in overcomplete case: d’ > d

@ Perfect reconstruction is possible without having learnt anything
useful!

@ Denoising autoencoder learns useful representation in this case.

@ Being good at denoising requires capturing structure in the input.

Denoising using classical autoencoders was actually introduced much

earlier (LeCun, 1987; Gallinari et al., 1987), as an alternative to Hopfield
networks (Hopfield, 1982).

29
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LAYER-WISE INITIALIZATION

y
[Q Q Q]\ Lr(x,z)
/ & _ - SR

ROROO " (00000 0O0000)

©Q Learn first mapping fy by training as a denoising autoencoder.

30
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LAYER-WISE INITIALIZATION

y
/[Q Q Qj\ Lu(x,2)
fy 8o’ » VX
_ - \

)

ROXOOl«—" (0000 0) |

D000

© Learn first mapping fy by training as a denoising autoencoder.

@ Remove scaffolding. Use fy directly on input yielding higher level

representation.

31
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LAYER-WISE INITIALIZATION

(OO0)

]

(e]e]elele)

©Q Learn first mapping fy by training as a denoising autoencoder.

@ Remove scaffolding. Use fy directly on input yielding higher level
representation.

32
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LAYER-WISE INITIALIZATION

[ele]e)

]

(OO000)

© Learn first mapping fy by training as a denoising autoencoder.

© Remove scaffolding. Use fy directly on input yielding higher level
representation.

© Learn next level mapping fe(z) by training denoising autoencoder on
current level representation.

33
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LAYER-WISE INITIALIZATION

@(2)
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(OO0000)

©Q Learn first mapping fy by training as a denoising autoencoder.

© Remove scaffolding. Use fy directly on input yielding higher level
representation.

© Learn next level mapping fe(z) by training denoising autoencoder on
current level representation.
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LAYER-WISE INITIALIZATION
(ele)

,:0(2)

(OO0)

]

(OO0000)

© Learn first mapping fy by training as a denoising autoencoder.

@ Remove scaffolding. Use fy directly on input yielding higher level
representation.

© Learn next level mapping fe(z) by training denoising autoencoder on
current level representation.

© lterate to initialize subsequent layers.

35
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SUPERVISED FINE-TUNING

@ Initial deep mapping was learnt in
an unsupervised way.

36
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SUPERVISED FINE-TUNING

@ Initial deep mapping was learnt in
an unsupervised way.

@ — initialization for a supervised
task.

37
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SUPERVISED FINE-TUNING

@ Initial deep mapping was learnt in
an unsupervised way.

@ — initialization for a supervised
task.

@ Output layer gets added.

@ Global fine tuning by gradient
descent on supervised criterion.

supervised cost

38
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MANIFOLD LEARNING PERSPECTIVE . |

Denoising autoencoder can be seen as a way to learn a manifold:

@ Suppose training data (x) concentrate near a low-dimensional manifold.

@ Corrupted examples (o) are obtained by applying corruption process
gp(X|X) and will lie farther from the manifold.

@ The model learns with p(X|X) to “project them back” onto the manifold.

@ Intermediate representation Y can be interpreted as a coordinate system
for points on the manifold.
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INFORMATION THEORETIC PERSPECTIVE

o Consider X ~ q(X), g unknown. X ~ gp(X|X). Y = f(X).

@ It can be shown that minimizing the expected reconstruction error
amounts to maximizing a lower bound on mutual information

1(X: Y).

@ Denoising autoencoder training can thus be justified by the objective
that hidden representation Y captures as much information as
possible about X even as Y is a function of corrupted input.
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GENERATIVE MODEL PERSPECTIVE

@ Denoising autoencoder training can be shown to be equivalent to
maximizing a variational bound on the likelihood of a generative
model for the corrupted data.

i hidden
?&igt(})ig factors
observed
gted observed corrupted
C((l);tr " data data data

Bl o

variational model generative model
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VARIATIONS ON MNIST DIGIT CLASSIFICATION

basic: subset of original MNIST digits: 10 000 training samples, 2 000 validation
samples, 50 000 test samples.

rot: applied random rotation (angle be- bg-rand: background made of random
tween 0 and 27 radians) pixels (value in 0...255)

bg-img: background is random patch rot-bg-img: combination of rotation and
from one of 20 images background image
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SHAPE DISCRIMINATION

@ rect: discriminate between tall and wide rectangles on black background.

@ rect-img: borderless rectangle filled with random image patch. Background is a
different image patch.

@ convex: discriminate between convex and non-convex shapes.

Y

43
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EXPERIMENTATION

We compared the following algorithms on the benchmark problems:
@ SVM,,r: suport Vector Machines with Gaussian Kernel.

@ DBN-3: Deep Belief Nets with 3 hidden layers (stacked Restricted
Boltzmann Machines trained with contrastive divergence).

@ SAA-3: Stacked Autoassociators with 3 hidden layers (no
denoising).
@ SdA-3: Stacked Denoising Autoassociators with 3 hidden layers.

Hyper-parameters for all algorithms were tuned based on classificaiton
performance on validation set. (In particular hidden-layer sizes, and v for

SdA-3).
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PERFORMANCE COMPARISON

Dataset

45
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PERFORMANCE COMPARISON

Dataset

46

basic

rot

bg-rand

bg-img

rot-bg-img

rect

rect-img

convex
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PERFORMANCE COMPARISON

Dataset SVM, ¢

basic 3.03+0.15

rot 11.11 4028

bg-rand 14.58+031

bg-img 22.61+037

rot-bg-img | 55.18+04s

rect 2.15+013

rect-img 24.04 1037

convex 19.13+034
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PERFORMANCE COMPARISON

48

Dataset SVM,,r DBN-3
basic 3.03x015  3.11i01s
rot 11.11+02s 10.30+027
bg-rand 14581031 6.73+022
bg-img 22.61+037 16.31+03
rot-bg-img | 55.18+044 47.39+04
rect 2.154013 2.601014
rect-img 24 041037  22.50+037
convex 19.13103¢  18.63+034
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PERFORMANCE COMPARISON

49

Dataset SVM, ¢ DBN-3 SAA-3
basic 3.03+015s  3.11i015  3.46+016
rot 11.11402s 10.30+027  10.30027
bg-rand 14584051 6.73+022 11.2810028
bg-img 22.61+037 1631032 23.00+037
rot-bg-img | 55.18+04¢a 47.391+04s 51.93+04
rect 2.15+013 2.60x014  2.41+t013
rect-img 24.041057  22.501037  24.051037
convex 19.13+03¢ 18.63+03¢ 18.41+034
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PERFORMANCE COMPARISON

o0

Dataset SVM, - DBN-3 SAA-3 SdA-3 (v)
basic 3.0350i5 311015 3.46501  2.80x01 (10%)
rot 11.11400s 10.30+02r  10.304027  10.29+027 (10%)
bg-rand 14.58+0m  6.73x022  11.28202s 10.38x02r (40%)
bg-img 22 61s0sr  16.31s0s  23.00205  16.68205 (25%)
rot-bg-img | 55.1820s 47.39:00 51.93:0u 44.4950s (25%)
rect 2.154013  2.60x014 2411013  1.99+012 (10%)
rect-img | 24.04105r 225005 24.05405  21.59103s (25%)
convex 10.13403 18.6305 18.41s0s 19.06:03 (10%)
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PERFORMANCE COMPARISON

Dataset SVM,,r DBN-3 SAA-3 SdA-3 (v)  SVM,ur(v)
basic 3032015 3.1lso1s  3.46:00  2.80x01s (10%)  3.07 (10%)
rot 1111202 10.30402 10.30202r 10.29+0x7 (10%) 11.62 (10%)
bg-rand 14584031  6.731022 11.28+02s 10.38+027 (40%) 15.63 (25%)
bg-img 2261405 163140 23.000sr 16.68105 (25%) 23.15 (25%)
rot-bg-img | 55.18+04 47.39:0s 51.9310s 44.4910m (25%) 54.16 (10%)
rect 215405 2.60s01s  2.41s0s  1.9910n (10%)  2.45 (25%)
rect-img 24.041057  22.504037 24.05+0sr 21.59+03 (25%) 23.00 (10%)
convex 19.13+03s 18.63+03s 18.41+03a 19.06+034 (10%) 24.20 (10%)

51
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92

LEARNT FILTERS (07 DESTROYED)
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LEARNT FILTERS (10% DESTROYED)
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LEARNT FILTERS (25% DESTROYED)
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LEARNT FILTERS (50% DESTROYED)
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CONCLUDING REMARKS

@ Unsupervised initialization of layers with an explicit denoising
criterion appears to help capture interesting structure in the input
distribution.

@ This leads to intermediate representations much better suited for
subsequent learning tasks such as supervised classification.

@ Resulting algorithm for learning deep networks is simple and
Improves on state-of-the-art on benchmark problems.

@ Although our experimental focus was supervised classification, SAA
is directly usable in a semi-supervised setting.

@ We are currently investigating the effect of different types of
corruption process, and applying the technique to recurrent nets.
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